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Abstract. The relationship between nucleation events and
spectral solar irradiance was analysed using two years of
data collected at the Station for Measuring Forest Ecosystem-
Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. We
analysed the data in two different ways. In the first step we
calculated ten nanometer average values from the irradiance
measurements between 280 and 580 nm and explored if any
special wavelengths groups showed higher values on event
days compared to a spectral reference curve for all the days
for 2 years or to reference curves for every month. The re-
sults indicated that short wavelength irradiance between 300
and 340 nm is higher on event days in winter (February and
March) compared to the monthly reference graph but quan-
titative much smaller than in spring or summer. By building
the ratio between the average values of different event classes
and the yearly reference graph we obtained peaks between
1.17 and 1.6 in the short wavelength range (300–340 nm). In
the next step we included number concentrations of particles
between 3 and 10 nm and calculated correlation coefficients
between the different wavelengths groups and the particles.
The results were quite similar to those obtained previously;
the highest correlation coefficients were reached for the spec-
tral irradiance groups 3–5 (300–330 nm) with average values
for the single event classes around 0.6 and a nearly linear
decrease towards higher wavelengths groups by 30%. Both
analyses indicate quite clearly that short wavelength irradi-
ance between 300 and 330 or 340 nm is the most important
solar spectral radiation for the formation of newly formed
aerosols. In the end we introduce a photochemical mecha-
nism as one possible pathway how short wavelength irradi-
ance can influence the formation of SOA by calculating the
production rate of excited oxygen. This mechanism shows
in which way short wavelength irradiance can influence the
formation of new particles even though the absolute values
are one to two magnitudes smaller compared to irradiance
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between 400 and 500 nm.

1 Introduction

Atmospheric aerosols are amongst other constituents respon-
sible for light scattering, cloud formation and heterogeneous
chemical effects and they are a key factor in balancing global
climate (e.g. Houghton et al., 1996). There are two main
sources for atmospheric aerosols: the emission of particles –
natural or anthropogenic – and the gas-to-particle transfer by
homogeneous or heterogeneous nucleation of supersaturated
vapours. The formation of secondary aerosols has been ex-
tensively studied in different environments in the last decades
(e.g. free troposphere: Clarke, 1993; marine: Raes et al.,
1997; coastal: O’Dowd et al., 1998; continental boundary
layer: Kulmala et al., 2001b; Nilsson et al., 2001). Several
nucleation mechanisms have been developed in the past few
years to explain the observations of particle bursts in the at-
mosphere. The best understood way up till now is the binary
nucleation of H2SO4 and H2O (Kulmala et al., 1998) or the
ternary nucleation of H2O, NH3 and H2SO4 (Korhonen et
al., 1999). According to Kulmala et al. (2000) binary nu-
cleation theory is not able to predict the observed nucleation
rates in the atmosphere at typical tropospheric sulphuric acid
concentrations (105−−107 cm−3, Weber et al., 1998; Weber
et al., 1999). Ternary nucleation, however, gives significantly
higher nucleation rates and thus can better predict the forma-
tion of new particles at typical tropospheric conditions (am-
monia at a level of a few ppt). Kulmala et al. (2000) suggest
that nucleation occurs almost everywhere in the atmosphere,
at least during the daytime and leads to a reservoir of ther-
modynamically stable clusters (TSCs), which under certain
conditions grow to detectable sizes. However we still do not
exactly know under what kind of meteorological and physi-
cal conditions the growth of these TSCs will occur and which
precursor gases are necessary.

c© European Geosciences Union 2002
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Figure 1: 
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Fig. 1. Monthly distribution of event classes for 2000 and 2001.

In our last publication (Boy and Kulmala, 2002) we sug-
gested that UVA solar radiation is one key parameter for the
formation of new particles. We calculated ratios of UVA to
different solar bands (PAR – photo synthetically active radia-
tion, reflected PAR, global, reflected global and net radiation)
and plotted these ratios against the number concentrations of
particles between 3–5 nm during the time the particle bursts
occurred. Our analysis for that work was based on radiation
sensor data from 1999. In January 2000 we installed a ra-
diospectrometer – measuring solar irradiance between 280–
580 nm – in Hyytïalä and in this experimental series we used
continuous measurements made with this instrument to in-
vestigate more detailed information about what part of the
solar spectrum has the highest influence on the formation of
newly formed aerosols.

2 Measurements

Data were collected at the Station for Measuring Forest
Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä,
Finland. The station is located in Southern Finland
(61◦51′ N, 24◦17′ E, 181 m asl), within extended areas of
pine-dominated forests. For a detailed description of the
SMEAR II station and instrumentation, we refer to Vesala
(1998). The conditions at the site are typical for a back-
ground location, however, occasionally measurements were
polluted by the station buildings (0.5 km) and the city of
Tampere (60 km) both located in a west-south-west direction
from the instruments.

Nucleation events have been classified into A, B and C
classes (M̈akel̈a et al., 2000) and an extra group (marked by
S) for days with small indications that the formation of new
particles had occurred but not enough indications to classify
the formation as an event. Class A events are categorised
by high amounts of 3 nm particles and continuous growth to
larger particle sizes. Class B events show the same behaviour
with less clarity and class C events are marginal nucleation
events where one of the two stages was not clearly observed.

This type of classification is quite subjective and takes into
account the uncertainties and limitations of the instrumenta-
tion. Because of this, there will always exist an overlap be-
tween the classes. There are new numerical methods which
have been published (Birmili et al., 2001) to classify different
event days by the maximal number concentration of particles
in the nucleation mode, the background aerosol concentra-
tion and the characteristic times for the concentration curves
of the newly formed particles increase and decrease.

These methods may have some advantages compared to
our technique of looking at all the days and deciding in a
more or less subjective way the class of the event. How-
ever there are still disagreements in the scientific community
about the best way numerical solutions can be used for clas-
sification and all numerical methods need to be modulated to
the location. For these reasons we used for this work the old
classification system for the events. In Table 1 all events of
2000 and 2001 are listed including the start and the end time
of the particle bursts and some extra parameters which will
be explained later. The monthly distribution of A to C events
for 2000 and 2001 (Fig. 1) shows two peaks: the first one in
spring (March till May) with 40% of event-days and a second
smaller one in autumn (August and September) with 25% of
the events.

The spectral solar radiation data were measured using a
radiospectrometer system produced by Bentham (England).
The system consists of the following four components:

– A DM150 double monochromator with 300 mm focal
length, fixed slit, remote operated swing-away mirror,
holographic gratings (2400 g/mm blazed at 250), inter-
nal 6-position stepping-motor-driven filter wheel, filter
set for UV solar measurement (selected for order sort-
ing and optimum stray light detector hysteresis) and an
end window pmt bialkali photo cathode

– Benthams 200 series Detection electronics; including
the 217-T power supply & display, 215 high voltage
power supply, 228A integrating A to D converter and
267 programmable d.c. amplifier

– Input optics; including a ptfe diffuser (200–800 nm) and
an UV transmitting fibre optic (2 m, 4 mm dia to 13×
1 mm)

– Data transfer equipment; including a 488/IEEE inter-
face card for use with a PCMIA expansion socket on
a PC, two IEEE/488 Cables, radiospectrometer control
and data acquisition, display and manipulation software

The whole system is placed above the tree level in a small
wooden cottage on a 10 m high building to insure an undis-
turbed solar irradiance throughout the year. The diffuser is
protected by a quartz-glass which has a high transmittance
(94–96%) in the measured wavelength-range and dry air is
streaming permanently into the dome to prevent condensa-
tion. The calibration of the glass dome is made by measuring

Atmos. Chem. Phys., 2, 375–386, 2002 www.atmos-chem-phys.org/acp/2/375/
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Table 1. Date, start and end time of the particle bursts; Time of the day spectral irradiance (300–339 nm) reaches 600 mW m−2; Time of the
day particle concentration (3–10 nm) exceeds 400 particle cm−3; Maximal spectral irradiance (in 300–339 nm) and maxima particle number
concentration (in 3–10 nm) for all A- and B-events of 2000 and 2001

Date Doy Start of End of Time atI600 Imax [mW m−2] Time atN400 Nmax [cm−3]
particle burst (300–339 nm) (3–10 nm)

A-Events

20000205 36 9,18 15,41 11,74 628 9,51 2073
20000311 71 9,49 14,95 7,78 4249 10,38 2542
20000312 72 11,21 16,69 11,21 3272
20000329 89 8,69 15,44 6,84 5967 8,43 10848
20000407 98 8,39 14,79 6,47 6066 9,08 2029
20000502 123 10,78 14,79 5,40 7975 10,84 4026
20000504 125 6,95 14,39 5,36 8330 7,10 2885
20000506 127 6,27 15,01 5,18 8520 5,89 3976
20000507 128 9,61 15,56 5,09 8236 9,65 3699
20000508 129 9,00 13,47 5,29 7347 9,37 2433
20000511 132 7,72 17,94 5,50 7898 8,62 2415
20000512 133 6,92 17,92 7,25 8086
20000514 135 9,86 14,82 10,41 1469
20000515 136 11,36 13,17 9051 11,47 1901
20000518 139 7,90 13,90 4,85 8318 7,66 4126
20000921 265 10,90 14,85 11,32 6482
20000926 270 11,36 15,65 11,61 1884
20010216 47 10,96 15,10 9,28 2128 11,33 2743
20010307 66 10,78 15,16 9,64 3846
20010319 78 9,80 16,93 7,50 4422 10,03 7592
20010325 84 10,26 15,34 7,17 5004 10,49 2792
20010403 93 8,27 13,60 6,64 6057 8,35 4859
20010405 95 8,85 12,25 6,69 4939 3320
20010413 103 8,21 18,34 8,47 8453
20010414 104 7,32 13,26 4,96 4128
20010510 130 8,24 13,81 5,06 7478 2712
20010511 131 9,16 14,24 5,07 8975 9,49 2412
20010514 134 10,47 14,39 4,94 8414 10,58 1375
20010828 240 8,70 11,61 6,17 7049 9,01 4056
20000117 17 12,40 16,29 12,86 1303
20000328 88 10,41 15,50 6,91 5440 10,30 2195
20000402 93 11,27 16,26 6,67 6014 12,00 1995
20000423 114 9,43 13,47 5,79 7114 9,46 2261
20000427 118 13,05 14,36 5,75 6693 12,79 1736
20000430 121 9,09 15,34 5,43 8043 9,26 3174
20000501 122 8,50 15,66 5,37 7917 10,80 1149
20000505 126 9,83 13,54 5,44 7979 10,17 1803
20000516 137 7,74 12,43 4,84 9109 1285

solar radiation on cloudless days with and without the glass
about twice per year.

The calibration sources include two calibrated Bentham
CL6-H lamps (150 W, 250–2500 nm, in a housing with
mounting for a direct connection to diffuser), a current sta-
bilised power supply 250 W with automatic current ramp
up/down facility and a mercury calibration lamp with a
mounting for direct connection to the DM150. The signal

calibration is carried out once a month with one of the two
CL6-H lamps and once every 3 months the second CL6-H
lamp is used as a reference emitter to recalibrate the first
lamp if necessary. The wavelengths are checked also once
every three months and in the two years a maximum wave-
length shift of 0.4 nm at 253.65 nm was detectable.

The spectroradiometer has been making measurements ev-
ery 30 minutes since 28 January 2000. The scans are from

www.atmos-chem-phys.org/acp/2/375/ Atmos. Chem. Phys., 2, 375–386, 2002
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Table 1. Continued ...

Date Doy Start of End of Time atI600 Imax [mW m−2] Time atN400 Nmax [cm−3]
particle burst (300–339 nm) (3–10 nm)

B-Events

20000527 148 9,46 16,60 4,60 9498 9,61 1339
20000605 157 7,25 10,44 8,02 753
20000610 162 9,97 13,49 4,36 9844 11,00 986
20000611 163 8,50 11,38 4,49 8646 9,51 884
20000613 165 8,36 12,03 4,28 9645 8,39 1069
20000614 166 9,61 15,44 9907 9,91 1884
20000615 167 7,29 14,55 4,30 10947 8,03 1748
20000617 169 9,55 15,07 4,14 9842 10,05 1734
20000621 173 7,68 12,71 4,27 9632 8,15 1217
20000710 192 9,64 11,67 10,41 447
20000727 209 8,42 14,52 4,95 9475 8,95 2827
20000728 210 11,15 11,97 5,29 5340 11,56 437
20000816 229 10,04 12,16 6,20 7793 10,60 614
20000827 240 10,10 14,92 6163 10,79 2255
20000906 250 10,81 13,38 3838 10,74 1538
20000907 251 10,38 15,10 6,57 5788 10,82 4196
20000910 254 13,05 16,51 6,93 4767 13,21 2044
20000915 259 9,46 15,53 6,90 5522 9,71 1488
20000916 260 11,18 13,11 6,92 5239 11,60 627
20000919 263 12,53 15,65 12,58 3358
20010220 51 9,07 15,49 9,07 2304 9,73 1511
20010308 67 10,96 16,87 3718 12,64 2121
20010317 76 9,04 17,27 7,64 4203 8,94 2398
20010318 77 9,86 16,01 7,64 3679 11,89 1432
20010503 123 9,77 17,70 5,30 8070 9139
20010506 126 9,65 17,54 5,24 8287 10,64 1491
20010513 133 8,06 12,65 5,05 8272 7,81 7531
20010516 136 9,71 16,20 4,91 8432 11,06 1282
20010526 146 9,92 13,04 10,75 741
20010802 214 7,54 14,45 5,21 9221 1276
20010819 231 9,37 14,79 5,84 7542 7,46 1075
20010927 270 9,98 14,73 7,39 4766 9,41 1900
20010928 271 13,29 17,39 7,90 3551 14,08 2390
20010929 272 9,86 17,08 10,27 1012
20010930 273 10,08 16,32 9,82 2787
20011019 292 13,26 16,69 8,89 2293 13,41 1632

280–580 nm and the step-width is 1 nm. The row data are
stored and recalibrated afterwards to enable later corrections
of the data if necessary.

A Differential Mobility Particle Sizer (DMPS) system (lo-
cated near the mast) monitors aerosol size distributions at a
height of 2 m from ground level giving a continuous view of
the distribution and evolution of sub-micrometer aerosol par-
ticles. The DMPS system used here actually consists of two
components. The first one includes a TSI 3025 UFCPC and
a Hauke-type short DMA (Differential Mobility Analyzer)
and measures particles between 3 and 20 nm in dry diam-
eter. The second includes a TSI 3010 CPC and a Hauke-

type medium DMA capable of measuring particles between
20 and 500 nm. Particle size distribution is recorded every
10 min. A detailed description of this system is given in Joki-
nen and M̈akel̈a (1997) and M̈akel̈a et al. (1997).

Concentrations of ozone were measured with a TEI 49
(Thermo Environmental Instruments) gas analyser based on
O3 specific absorption of UV light. Air samples were col-
lected from the mast at heights of 4.2 m, 16.8 m and 67.2 m
every 5 min. Temperature (measured with PT-100-sensors)
were collected every 50 s at these three heights as well.

Atmos. Chem. Phys., 2, 375–386, 2002 www.atmos-chem-phys.org/acp/2/375/
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Fig. 2. Spectral solar irradiance for a representative selection of
A-event days in 2000 and 2001.

3 Correlation between nucleation and solar spectral ir-
radiance

3.1 Concerning the classification of the events

The importance of solar irradiance for the formation of new
particles and the growth of these particles to the Aitken mode
has been described in many papers (Birmili and Wieden-
sohler, 2000; Clement et al., 2000; Kulmala et al., 2001a).
However, it is still an open question as to what part of the
solar spectrum is responsible for the realization of these pro-
cesses. To date, nearly all publications have used measure-
ments of global solar irradiance as the radiation parameter.
In this work we analysed data from a radiospectrometer mea-
suring solar radiation from 280 to 580 nm with a step width
of one nm to gain detailed information about which wave-
length range of the solar spectrum has more influence on the
formation of new aerosols.

In the first step we divide the measured spectral solar ir-
radiance ISPR into 30 groups with 10 nm wavelength ranges
and calculate the average solar irradiance per group per scan
per nanometer by

IS,G(j, h, d) =
1

10

ew(j)∑
k=sw(j)

ISPR(k, h, d) (1)

with

sw(j) = [280, 290, 300, . . . , 570] nm

ew(j) = [289, 299, 309, . . . , 579] nm

j is the number of the wavelength groups from 280 to
580 nm,h is the time of the scans starting at 00:00 ending
at 23:30 LT (every half hour) andd is the day of the year
going form 1 to 731 for 2000 and 2001.

According to our own experience gained from analysing
data for two years and the results of Mäkel̈a et al. (2000)
nearly all of the particle bursts occurred between 08:00 and
16:00 LT (see also Table 1). For these reasons in Eq. (2) we
calculate the solar energyEG for each wavelength group and
day during this time period.

EG(j, d) =

32∑
h=17

(IS,G(j, h, d) · 1800) (2)

Figure 2 shows theEG curves for 15 A-Events in 2000 and
2001 (monthly representative selection). The curves show
the same trend but there is a difference of more than one mag-
nitude in all wavelength groups between the highest solar ir-
radiance on 18 May 2000 and 5 February 2000. Although
we can produce these plots for all event and non-event days
for the two years, the plots will not give us differences in
the spectral distribution for different days. Therefore we nor-
malise every day by dividing all wavelengths groups by the
mean value of this day between 330 and 380 nm. We then
obtainAv, the average of this wavelengths interval, and can
then calculate a normalised solar energyENG for every day
and wavelength group:

Av(j, d) =
1

5

10∑
j=6

EG(j, d)

ENG(j, d) =
EG(j, d)

Av(j, d)
(3)

The reasons we choose the 330 to 380 nm wavelength in-
terval is the nearly linear trend with different slopes for all
these curves throughout the year and the fact that irradiance
in this range is mostly diminished by the scattering of perma-
nent gases in the atmosphere and not by water vapour (Sein-
feld and Pandis, 1998). In order to compare different event
days with all days we now calculate first in Eq. (4) an average
normalised spectral solar energy graph.

ENG,N (j) =
1

NE

NE∑
d=1

ENG

(
j, N(d)

)
(4)

with the number of all measured daysNE = 546. The
graph ofENG,N can now be used as a reference graph of nor-
malised spectral distribution for all days in 2000 and 2001.
Now we divide every wavelength group of the A-event days
in Fig. 2 with the corresponding values from Eq. (4) by

RA

(
j, A(d)

)
=

ENG

(
j, A(d)

)
ENG,N (j)

(5)

The results of Eq. (5) are plotted for all A-events in Fig. 3.
The data for wavelengths numbers smaller than 300 nm are
uncertain since in this wavelength range we are most of the
year at the detection limit of the instrumentation with val-
ues smaller than 1 mW m−2. However, we recognise on all

www.atmos-chem-phys.org/acp/2/375/ Atmos. Chem. Phys., 2, 375–386, 2002
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Fig. 3. Ratios for A-events from Fig. 2 of spectral solar irradiance
against a yearly reference graph from Eq. (4) (EG,N ).

days in April until September (green, red, magenta and yel-
low curves) a steep rise toward smaller wavelength numbers
starting between 330 and 340 nm. This can be equated with
an increase in solar radiation by a factor up to 2. On the
other side the event days in February and some of the days
in March (blue curves) behave in the opposite way with a de-
crease of spectral irradiance at wavelengths below 340 nm.
The right hand side of all the curves are more bunched and
mixed than the left side with a weak slope toward higher
wavelength numbers. The rest of the A- and B-event days
show a similar trend to those in Fig. 3 with a steep increase
below 340 nm from April to September and a decrease in the
same wavelength range in the autumn and winter months.
The reason for this behaviour is physical. In the Finnish
autumn and winter the solar zenith angle is always larger
than 60◦ and so the pathway of the solar beam through the
atmosphere is much longer compared to summer or spring.
Rayleigh scattering is more effective for smaller wavelength
than for larger once and this has the consequence that our
calculated yearly reference curve is inadequate. To avoid this
we calculate by Eq. (6) equal to Eq. (4) and Eq. (5) a spectral
solar reference curve for every month and the ratios for every
event day to the corresponding month:

ENG,N,M(j,m) =
1

MD(m)

MD(m)∑
d=1

ENG

(
j, M(d)

)
RA,M

(
j, A(d, m)

)
=

ENG

(
j, A(d)

)
ENG,N,M(j,m)

(6)

with MD the amount of measured days per month in 2000
and 2001 (e.g. February = 57). In Fig. 4 the calculated ratios
of RA,M(j, A(d,m)) are plotted for the A-events of Fig. 2.
If we compare this figure now with Fig. 3 we can see that the
trend of increasing short wavelength irradiance in spring and
summer has disappeared. Further we realise that both events
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Fig. 4. Ratios for A-events from Fig. 2 of spectral solar irradiance
against monthly reference graphs from Eq. (6) (EG,N,M ).

in February and the events in March 2000 show a steep in-
crease in short wavelength radiation in comparison with the
reference curve for the corresponding month. The highest in-
crease is by a factor of 2 for the day in March with the small-
est amount of solar irradiance (see Fig. 2). We also found that
in spring and summer higher and smaller values of spectral
radiation between 300 and 340 nm on the event days are well
mixed. If we combine the results from Fig. 3 and 4 we can
conclude that short wavelength irradiance between 300 and
340 nm is higher on most event days in winter compared to
a normalised reference graph for all days of the correspond-
ing month but quantitative still much smaller than in spring
or summer. It appears that on days with a low amount of so-
lar energy the relative high values of irradiance between 300
and 340 nm seem to be important. The same results presented
here for some of the A-events in 2000 and 2001 can be seen
for all the event days. This indicates that for the formation
of new particles the responsible solar radiation band is short
wavelength irradiance in UV-B and the first 10 to 20 nm of
UV-A. We calculate now for all event classes throughout the
two years a comprehensive mean value for every wavelength
group according to Eq. (4) withNE being now the num-
ber of measured event days per class and divide then these
values by the values of our reference graph of normalised
spectral irradiance for all days in 2000 and 2001 (ENG,N ).
The average irradiance per class and the results of the above
calculations are shown for all classes in Fig. 5. The amount
of solar energy is for A-, B- and C-events in all wavelength
groups about 2 times higher compared to the average for all
the days in the two years and about 3 times higher compared
to the non-event days. The graphs further show an increase
in the short wavelength range between 300 to 340 nm and a
continuously light increase towards higher wavelengths.

Atmos. Chem. Phys., 2, 375–386, 2002 www.atmos-chem-phys.org/acp/2/375/
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Fig. 5. (a)Average spectral solar irradiance for all event and non-event classes of 2000 and 2001;(b) Ratio of the graphs from (a) to a yearly
reference graph from Eq. (4) (EG,N ).

3.2 Concerning the number concentration of the particles

So far we have only compared the spectral solar irradiance
with a classification of the single days into those with events
and non-events. Furthermore, we have included half hour
average values of number concentrations of different particle
size ranges (size ranges: 3–5 nm, 3–6 nm, 3–10 nm and 3–
50 nm). We have calculated correlation coefficients between
the number concentration of the particles and the irradiance
in the different wavelength groups for every day of the two
years. The results with the highest correlations are those,
which use a particle size of 3–10 nm. The differences in the
correlation coefficients between the smaller size ranges and
the 3–10 nm range is negligible (< 0.02). It could be due to
the fact that at this small range 3–5 nm or 3–6 nm we are mea-
suring particles at the detection limit of the DMPS system.
So our results are more reliable if larger particles such as 3 to
10 nm were included for the following discussion. The size
range 3 to 50 nm also includes the Aitken mode aerosols and
here the correlation coefficients reach only half the previous
values. This may be due to the fact that in this size range be-
side condensational growth, coagulation plays an important
role and the influence of solar radiation is less important.

Figure 6 gives the average correlation coefficients between

the number concentrations of particles between 3 and 10 nm
and the spectral solar irradiance for the different classes in
a histogram plot. The solid lines in each subplot mark the
maximum value of the correlation coefficient in each class.
The number of measured days per class is included in each
subplot. All of the three event classes (A, B and C) have
the highest correlation in the wavelength groups 3–5, which
corresponds to the short wavelength range between 300–
329 nm. After 330 nm the gaps between the solid lines and
the bars in the first three subplots increase slightly towards
higher wavelengths and reach a maximum around 30% at
580 nm. The absolute values of the correlation coefficients
are not very high (around 0.6 for A-events) but we have to
remember that these numbers are averages over all events
per class and that in this context more than for the absolute
values, the differences of the correlation coefficients between
the single wavelength groups are interesting.

3.3 Case study for 5 May 2002

We will use now an example-day (5 May 2000) and present
reasons for the higher correlation coefficients of the short
wavelength bands. In order to do this we plotted the
daily particle number concentrations for particles (3–10 nm),
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short (300–339 nm) and longer wavelength irradiance (460–
469 nm) in Fig. 7. The graph firstly shows that longer wave-
length irradiances start to increase earlier as shorter (green
compared to red curve). This is a physically well-known ef-
fect and because particle bursts always appear after sunrise

and stop mostly long before sunset (see Table 1) this leads
to higher correlation coefficients between UV solar radiation
and the particle number concentrations. The second reason
for the higher coefficients can be explained by the three peaks
in the short wavelength irradiance curve marked by black
lines (a, b and c). The irradiance peaks at line (a) and (c)
in the morning and in the afternoon also appear in the parti-
cle curve during the next hour. The peak at line (b) around
noon has no time lag and occurs at the same time in the radi-
ation and particle concentration. Such patterns of solar radia-
tion and particle number concentration curves occur on many
event days. Most times the particles trends and peaks better
fit the shorter wavelength of the solar spectrum by having
the smallest time lags between peaks around noon when the
pathways for the solar beam through the atmosphere reach
their minima. However there are still event days where the
correlation is quite small, but before making any conclusions
we should consider two important facts:

– The radiospectrometer and the DMPS system are about
200 m apart from each other and the influence of mov-
ing clouds are not negligible for the solar irradiance at
this distance.

– For both data sets (spectral irradiance and particles) half
hour average values were used. A time step is necessary
for handling all the data in reasonable computer time,
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however many interested features of the daily trend are
neglected.

3.4 Time lag between irradiance and particle increases

At the end of this session we use for each parameter – short
wavelength radiation and particle concentration – one se-
lected value to calculate the time difference between the two
curves. For the particle we took the time when the con-
centration exceeds 400 particles cm−3 (blue dot in Fig. 7)
and for the irradiance we chose 600 mW m−2 (red dot in
Fig. 7). The chosen values for irradiance and number con-
centration of particles are subjective selections for the situa-
tion in Hyytiälä, Finland and are not competitative for other
locations. Figure 8 shows for all A- and B-event days for
both parameters the specified times and the time lack (see
also Table 1). There is a trend – especially in 2001 – that
the time differences (green dots) with values around 0.5–2 h
are smaller in winter till the beginning of spring than in sum-
mer and autumn (2–7 h). However, for the first event day
on 5 February the particle concentration exceeds already two
hours earlier the amount of 400 particles cm−3 before the ir-
radiance reaches 600 mW m−2. A more detailed analysis of
different parameters of this day showed that on 5 February
the highest ozone concentrations (39 ppb) between 1 January
till 11 March were measured and that the concentration of
H2O was as small as 1017 molecules cm−3. Further biolog-
ical activity measured by CO2 flux measurements in cham-
bers were going on at this day. Bonn et al. (2002) investi-
gated in laboratory experiments the highest ozonolysis-rates
of monoterpenes and special of exocyclic monoterpenes (β-
pinene and sabinene) for low water vapour and high ozone
concentrations. Exactly this physical situation can be seen
on day 36 of 2000. This feature and the results above in-
dicate that there are most probably different chemical and
photochemical mechanisms responsible for the production
of the condensable vapour/s. From the high conformity be-
tween the short wavelength spectrum and the particles it ap-
pears that radiation leads to the formation of new aerosols
on many event days, however, on other event days different
mechanisms such as the ozonolysis of monoterpenes seem to
be more important.

4 A potential mechanism explaining the indirect influ-
ence of short wavelength irradiance on the formation
of SOA

In the previous session we showed that the short wavelengths
range between 300 and 330 or 340 nm seems to be the most
important spectral solar radiation band concerning the forma-
tion of new particles or the growth of new clusters to the de-
tectable 3 nm size. In this session we will continue with this
result and present a photochemical reaction mechanisms, as a
hypothesis explaining the possible indirect influence of short
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wavelength irradiance on the production of newly formed
SOA. This is only one out of possible many different mecha-
nisms participating in the formation of aerosols and the rea-
son for presenting it here was to show one way besides any
other photochemical reactions or the onset of vertical fluxes
how solar irradiance and specially short wavelength irradi-
ance can influence the formation of SOA.

First we calculate with the radiospectrometer data (average
values of 5 nm ranges) between 280 and 350 nm for every
half hour and day the average number of photons per 5 nm
intervals.

Pho(k, h, j) =
ISPR(k, h, j) ∗ WL(k)

h ∗ (co)
(7)

with WL(k) the wavelength per group (= 282.5, 287.5,. . .,
347.5 nm),h the Planck constant andco the speed of light
in a vacuum. Further we include half hour average data for
ozone and temperature in our analyses and calculate with the
absorption cross section (ACSO3 – Molina and Molina, 1986)
and the quantum yield (QO3 – JPL publication 00-003, 2000)
of ozone the photolyse rate for O3 at the same times as in
Eq. (7).

PRO3(k, h, j) = Pho(k, h, j) · QO3(k, T ) · ACSO3(k) (8)

With the photolyse rate and the half hour average values of
ozone we now calculate in Eq. (9) the production rate of
O(1D) as a function of time and wavelength

O(1D)(k, h, j) = PRO3(k, h, j) · O3(h, j) (9)

Figure 8 shows as an example the production rate of O(1D)

for 15 May 2000. In thex-axis a maximum occurs around
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Fig. 9. Production rate of excited oxygen for 28 May 2000.

noon when the solar zenith angle has its minimum and in
the y-axis a maximum occurs around 310 nm with a gradi-
ent of one magnitude in less than 15 nm in both directions.
The maximum in they-axis is a combination between the
decreasing of the absorption cross-section and the quantum
yield of ozone with higher wavelengths on one side and the
steep increase of the spectral irradiance in the same direction
on the other side. Although the absolute values of solar ir-
radiance in the wavelength range from 300–330 nm is one to
two magnitudes smaller than the maximum values between
450–500 nm this spectral solar band is the only one which
enables the production of excited oxygen radicals in the tro-
posphere. The produced O(1D) most often collides with N2
and O2, removing its excess energy and quenching back to
its ground state by

O(1D) + M → O + M (10)

Then the oxygen atom reacts with O2 to replenish O3. Occa-
sionally, as much as every tenth O(1D) radical collides with
H2O and produces two hydroxyl radicals,

O(1D) + H2O → 2OH (11)

Two OH radicals are formed in Eq. (11) and this leads to
an OH yield of approximately 0.2 molecule OH per O3
molecule photolysed at a relative humidity of 50% and a tem-
perature of 298 K (Seinfeld and Pandis, 1998). Hydroxyl
radicals do not react with the major constituents of the atmo-
sphere (N2, O2, CO2 and H2O). It is still an open question,
which species and what kind of chemical reactions are re-
sponsible for the production of the condensable vapours in-
volved in the formation of new aerosols. However, there is a
high possibility that excited oxygen atoms and hydroxyl radi-
cals are involved in these reactions. We will close this session
with a temporally more comprehensive view on the explored

Figure 9: 
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Fig. 10. Daily maxima production rate of excited oxygen for 2000
and 2001.

theory by calculating the maxima of O(1D) production per
day and plot these data for the whole year in Fig. 9. Most of
the event days and especially the events in winter show very
high values for excited oxygen production rate compared to
the none-event days in the same month. However, there are
still many none-event days with high values for this parame-
ter; but it is well known that besides radiation other variables
like the condensational sink, the temperature and the con-
centration of some till now unknown precursor species also
influence the formation process of new aerosols.

5 Summary and conclusions

We analysed two years of solar spectral irradiance data and
number concentrations of particles in different size ranges.
It has been showed for the classification in events and non-
events that there exists an increase in short wavelength so-
lar radiation on event days. By normalising all daily average
spectral radiation curves with the mean value of 330–380 nm,
calculating ratios between the normalised values of events to
the reference curve for all days of the two years or to refer-
ence curves for all days of the corresponding month respec-
tively, we obtained the following results: The short wave-
length irradiance between 300 and 340 nm on many event
days in autumn and winter shows an increase compared to
the reference curve for the corresponding month. During the
rest of the year this trend disappears, however the absolute
amounts of solar irradiance in this range is still as much as
one magnitude higher in spring and summer. Using the same
normalised values as before and calculating the ratios of the
average of the different event classes to the reference curve
of the two years we found a peak between 1.17 and 1.6 in
the short wavelength range for all classes (Fig. 5) and a weak
continuous increase towards higher wavelengths.
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Furthermore we calculated for every day the correlation
coefficients between number concentrations of particles (3–
10 nm) and the different wavelengths groups. The graphs
showed the same results as above with the highest correla-
tion for the short wavelength range being between 300 and
330 nm. A more specific answer to the reasons for the dif-
ferences in the correlation coefficients was given by using
an example day (5 May 2000). Plotting the curves for par-
ticle number concentration and the spectral irradiance for
short (300–339 nm) and longer (460–469 nm) wavelengths
brought two aspects into focus. First, a temporal later in-
creases of shorter wavelengths and second a higher agree-
ment on most event days between the peaks of the parti-
cle curves and the peaks of the short wavelengths groups.
The first effect is a well known physically aspect and it is
attributed to the fact that particle bursts always occur af-
ter the sunrise and vanish long before sunset. The second
point indeed more indicates a direct influence of the short
wavelength solar spectrum on the formation of newly formed
aerosols. Further we plotted the time differences when the
solar radiation (300–339 nm) exceeds a value of 600 mW
m−2 and the particle number concentration increases to 400
particles cm−3. The results showed smaller time lags in win-
ter and spring compared to summer and autumn with one
day 5 February where the particle number concentration ex-
ceeded the selected value already two hours earlier than the
irradiance. However this day also had the highest ozone con-
centration during winter (39 ppb), a very low amount of wa-
ter vapour (< 1017 molecules cm−3) and biological activi-
ties. Bonn et al. (2002) found in laboratory experiments that
ozonolysis of monoterpenes had the highest rates at small
concentrations of H2O and high concentrations of ozone. All
conditions were present on 5 February. This indicates that
during special periods different chemical and photochemical
mechanisms are responsible for the production of condens-
able vapours and so for the formation of new aerosols.

In session 4 we presented a hypothesis to explain how the
evaluated part of solar irradiance affects the production of
condensable vapours and so the formation of new aerosols.
For this reason we used half hour average values of ozone
and temperature to calculate the production rate of excited
oxygen atoms. The results of this analysis showed a max-
ima of O(1D) around noon and at 310 nm with a decrease of
more than one magnitude below or above 295 and 325 nm,
respectively. O(1D) is the main source in the troposphere
for the production of hydroxyl radicals and the above intro-
duced part of the solar spectrum is the only way to produce
excited oxygen atoms in the troposphere. OH radicals are
the most reactive species in the troposphere steering many
atmospheric chemical reactions and could also be involved
in the formation of new particles through chemical reactions,
which produce the condensable vapours.

We conclude this publication with a correction concern-
ing our last paper (Boy and Kulmala, 2002). As mentioned
in the introduction we suggested in that paper UV-A to be

the responsible solar radiation parameter for the formation
of new aerosols by using a data set of different radiation
sensors for 1999. Comparing the UV sensors data of 2000
and 2001 with the calculated UV radiospectrometer data we
realised that UV-A measurements of the sensor were con-
tinuously approximately 10% too high and UV-B showed a
strong dependency on the solar zenith angle. It is not possible
afterwards to find the reasons for the overestimation of UV-
A by the sensor, however a possible explanation could be the
expanding of the sensor-filter (normally from 320–400 nm)
into the UV-B range. This would explain the higher amounts
of UV-A compared to other solar measurements during the
time of the particle bursts, which occurred in 1999 and agree
completely with the results of the present work.
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