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Mean field limit for bosons and
propagation of Wigner measures

Z. Ammari∗ F. Nier†

July 2008

Abstract

We consider the N-body Schrödinger dynamics of bosons in the mean field limit with a
bounded pair-interaction potential. According to the previous work [AmNi], the mean field limit
is translated into a semiclassical problem with a small parameterε → 0, after introducing anε-
dependent bosonic quantization. The limit is expressed as apush-forward by a nonlinear flow
(e.g. Hartree) of the associated Wigner measures. These object and their basic properties were
introduced in [AmNi] in the infinite dimensional setting. The additional result presented here
states that the transport by the nonlinear flow holds for rather general class of quantum states in
their mean field limit.

2000 Mathematics subject classification: 81S30, 81S05, 81T10, 35Q55

1 Introduction

The mathematical analysis of the mean field limit of theN-body quantum dynamics of bosons started
with the work of [Hep] and [GiVe]. Since, the problem has experienced intensive investigations
using mainly the so-called BBGKY hierarchy method explained in [Spo]. Interest was focused
on studying the cases of singular interaction potential (see for example [BGM], [EY], [BEGMY],
[ESY]).

Recently, a new method was given in [FGS] (see also [FKP]) fora scalar bounded potential
which inspires this work. The convergence of the quantum dynamics are typically tested on the
above quoted articles, either on coherent states or on Hermite states. Even when such specific
choices are avoided, the convergence on arbitrary states still has to be studied.

In the work [AmNi], Wigner measures were extended to the infinite dimensional setting, as
Borel probability measures under general assumptions. It was also explained how previous weak
formulations of the mean field limit are contained in the definition of these asymptotic Wigner
measures, after a reformulation of theN-body problem as a semiclassical problem with the small
parameterε = 1

N → 0. The basic properties of these Wigner measures were considered and they were
used to check that the mean field dynamics for the coherent states and Hermite states are essentially
equivalent.

In this paper, the problem of the mean field dynamics is considered under some restrictive as-
sumptions on the initial data. The convergence of N-body Schrödinger dynamics of bosons in the
mean field limit will be proved for a class of density operatorsequences, which contains all the com-
mon examples. Remember that contrary to the finite dimensional case no natural pseudodifferential
calculus can be deformed by arbitrary nonlinear flows, and the propagation of Wigner measures as
dual objects cannot be straightforward in the infinite dimensional case. The limit is expressed as
push-forward by a nonlinear flow (e.g. Hartree) of Wigner measures associated with the sequence of
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density operators. The result holds here when the pair interaction potential is bounded onL2(R2d
x,y).

This can be considered as a regular case and subsequent work will be devoted to more singular cases
like in [FKS] with a Coulombic interactionV(x−y) = 1

|x−y| or in the derivation of cubic nonlinear

Schrödinger equations withV(x−y) = δ (x−y) like in the [ESY].
Since in the literature the non relativistic and the semi-relativistic dynamics of bosons were both

studied (see [ElSc]), an abstract setting for the linear part of the flow seems relevant. Examples are
reviewed in the last section.

We keep the same notations as in [AmNi]. The phase-space, a complex separable Hilbert space,
is denoted byZ with the scalar product〈., .〉. The symmetric Fock space onZ is denoted byH
and

∨n
Z is then-fold symmetric (Hilbert) tensor product, so thatH = ⊕n∈N

∨n
Z as a Hilbert

direct sum. Algebraic direct sums or tensor products are denoted with a alg superscript. Hence
H0 =⊕alg

n∈N

∨n
Z denotes the subspace of vectors with a finite number of particles. For anyp,q∈N,

the spacePp,q(Z ) of complex-valued polynomials onZ is defined with the following continuity
condition:b∈ Pp,q(Z ) iff there exists a uniquẽb∈ L (

∨p
Z ,

∨q
Z ) such that:

b(z) = 〈z⊗q, b̃z⊗p〉 .

The subspace ofPp,q(Z ) made of polynomialsb such that̃b is a compact operator is denoted by
P∞

p,q(Z ). TheWick monomialof symbolb ∈ Pp,q(Z ) is the linear operatorbWick : H0 → H0

defined as follows:

bWick
|∨nZ

= 1[p,+∞)(n)

√
n!(n+q− p)!

(n− p)!
ε

p+q
2 Sn−p+q

(
b̃⊗ I∨n−p

Z

)
,

whereSn is the symmetrization orthogonal projection from⊗nZ onto
∨n

Z . Remark thatbWick

depends on the scaling parameterε.
Consider a polynomialQ ∈ P2,2(Z ) such thatQ̃ ∈ L (

∨2
Z ) is bounded symmetric. The

many-body quantum Hamiltonian of bosons is a self-adjoint operator onH having the general
shape:

Hε = dΓ(A)+QWick, (1)

whereA is a given self-adjoint operator onZ . The time evolution of the quantum system is given
by Uε(t) = e−i t

ε Hε andU0
ε (t) = e−i t

ε dΓ(A) for the free motion. The commutation[QWick,N] = 0

with the number operatorN = dΓ(1) =
(
|z|2

)Wick
, ensures the essential self-adjointness ofHε on

D(dΓ(A))∩H0 and the fact that both dynamics preserve the number.
Now we turn to the description of the nonlinear classical dynamics analogues of (1).

Let us first recall some notations from [AmNi]. Polynomials inPp,q(Z ) admit Fréchet differentials.
Forb∈ Pp,q(Z ), set

∂zb(z)[u] = ∂̄rb(z+ ru)|r=0, ∂zb(z)[u] = ∂rb(z+ ru)|r=0 ,

where∂̄r ,∂r are the usual derivatives overC. Moreover,∂ k
z b(z) naturally belongs to(

∨k
Z )∗ (i.e.:

k-linear symmetric functionals) while∂ j
z b(z) is identified via the scalar product with an element of∨ j

Z , for any fixedz∈ Z . Forbi ∈ Ppi ,qi (Z ), i = 1,2 andk∈ N, set

∂ k
z b1 . ∂ k

z̄ b2(z) = 〈∂ k
z b1(z),∂ k

z̄ b2(z)〉(∨k Z )∗,
∨k Z

∈ Pp1+p2−k,q1+q2−k(Z ) .

The multiplePoisson bracketsare defined by

{b1,b2}(k) = ∂ k
z b1.∂ k

z̄ b2− ∂ k
z b2.∂ k

z̄ b1, {b1,b2} = {b1,b2}(1).

The energy functional
h(z) = 〈z,Az〉+Q(z) , z∈ D(A),

has the associated vector fieldX : D(A) → Z , X(z) = Az+ ∂z̄Q(z) and the nonlinear field equation

i∂tzt = X(zt)

2



with initial conditionz0 = z∈ D(A). For our purpose, we only need the integral form of the later
equation

zt = e−itAz− i
∫ t

0
e−i(t−s)A ∂z̄Q(zs)ds, for z∈ Z . (2)

The standard fixed point argument implies that (2) admits a unique globalC0-flow on Z which is
denoted byF : R×Z → Z (i.e.: F is aC0-map satisfyingFt+s(z) = Ft ◦Fs(z) andFt(z) solves (2)
for anyz∈ Z ). While considering the evolution of the Wick symbols, the action of the free flow
e−itA will be summarized by the next notation :

bt = b◦e−itA : Z ∋ z 7→ bt(z) = b(e−itAz) , bt ∈⊕alg
p,q∈NPp,q(Z ) , (3)

for anyb∈ ⊕alg
p,q∈NPp,q(Z ) and anyt ∈ R.

Moreover, ifzt solves(2), andQt is defined according to (3), thenwt = eitAzt solves the differential
equation

d
dt

wt = −i∂z̄Qt(wt ) .

Therefore for anyb∈ Pp,q(Z ), the following identity holds

d
dt

b(wt) = ∂z̄b(wt)[−i∂z̄Qt(wt )]+ ∂zb(wt)[−i∂z̄Qt(wt )]

= i{Qt ,b}(wt).

This yields for anyz∈ Z andb∈ ⊕alg
p,q∈NPp,q(Z ), the Duhamel formula

b◦Ft(z) = bt(z)+ i
∫ t

0
{Q,bt−t1}◦Ft1(z) dt1 , (4)

by observing that{Qt1,b}(wt1) = {Q,b−t1}(zt1).

2 Results

While introducing or using Wigner measures, all the arguments are carried out with extracted se-
quences (or subsequences)(εn)n∈N such that limn→∞ εn = 0, instead of considering a non countable
range(0,ε), ε > 0, of values for the small parameterε. Without loss of generality (see [AmNi]) one
can consider a countable family(ρεn)n∈N of density matrices,ρεn ≥ 0, Tr[ρεn] = 1, and test them
with εn-quantized (Wick, Weyl or anti-Wick) observables before taking the limit εn → 0. For the
sake of conciseness, theε or εn parameter does not appear in the notations of quantized observables.

The first condition which characterizes our class ofεn-dependent density matrices reads:

∃λ > 0 : ∀k∈ N, Tr[Nkρεn] ≤ λ k uniformly in n∈ N ,(N = Nεn) . (H0)

Wigner measures were constructed in [AmNi, Corollary 6.14]for the sequence(ρεn)n∈N. Possibly
extracting a subsequence still denoted(εn)n∈N, there exists a Borel probability measureµ called
Wigner measuresuch that:

lim
εn→0

Tr[ρεn bWick] =
∫

Z

b(z) dµ(z) , for any b∈ ⊕alg
α ,β∈N

P
∞
α ,β (Z ) , (5)

with againbWick = bWick
εn

.

The statement (5) does not hold in general for allb ∈ ⊕alg
α ,β∈N

Pα ,β (Z ) and counterexamples ex-
hibiting the phenomenon of dimensional defect of compactness were given in [AmNi]. The exten-
sion of (5) to the larger class of symbols⊕alg

α ,β∈N
Pα ,β (Z ) depends on the sequence(ρεn)n∈N and

it turns out to be an important fact when studying the mean field limit. In the following, a sequence
(ρεn)n∈N with a single Wigner measureµ will have the property(P) when:

lim
εn→0

Tr[ρεn bWick] =

∫

Z

b(z) dµ(z) , for any b∈ ⊕alg
α ,β∈N

Pα ,β (Z ) . (P)

Here is the main theorem.
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Theorem 2.1 Let the sequence(ρεn)n∈N of density matrices,ρεn ≥ 0, Tr [ρεn] = 1, limn→∞ εn = 0,
satisfy(H0) and(P). Then the limit

lim
n→∞

Tr[ρεn ei t
εn

Hεn bWick e−i t
εn

Hεn ] =
∫

Z

(b◦Ft)(z) dµ , (6)

holds for any t∈ R and any b∈⊕alg
α ,β∈N

Pα ,β (Z ) with bWick = bWick
εn

.

Remark 2.2 SinceF is a C0-map the r.h.s. of (6) can be written as
∫

Z

(b◦Ft)(z) dµ =
∫

Z

b(z) dµt ,

whereµt is a push-forward measure defined byµt(B) = µ(F−t(B)), for any Borel set B.

We refer the reader to [AmNi] for the definition of Weyl observables and the Schwartz class of
cylindrical functionsScyl(Z ).

Corollary 2.3 Let the sequence(ρεn)n∈N of density matrices,ρεn ≥ 0, Tr [ρεn] = 1, limn→∞ εn = 0,
satisfy(H0) and(P). Then the limit

lim
εn→0

Tr[ρεn ei t
εn

Hεn bWeyl e−i t
εn

Hεn ] =

∫

Z

b◦Ft(z) dµ , (7)

holds for any b∈ Scyl(Z ) and any t∈ R.

Proof. A consequence of Thm. 2.1 and [AmNi, Prop. 6.15] is that the sequence

ρεn(t) = Uεn(t)ρεnUεn(t)
∗

admits a single Wigner measure given byµt . Hence, by definition

lim
εn→0

Tr[ρεn(t) bWeyl] = lim
εn→0

∫

pZ

F [b](ξ ) Tr[ρεn(t) W(
√

2πξ )] Lp(dξ )

=
∫

pZ

F [b](ξ )
∫

Z

e2π iRe(z,ξ ) dµt(z) Lp(dξ ) .

�

Another formulation states that the Wigner measureµt satisfies a transport equation in an integral
form.

Corollary 2.4 Let (ρεn(t))n∈N be as above and letµt denote its Wigner measure. Then t∈ R 7→ µt

is a solution to the transport equation:

µt(b) = µ0
t (b)+ i

∫ t

0
µs({Q,bt−s})ds, (8)

for any b∈ ⊕alg
p,q∈NP(Z ) and whereµ0

t (B) = µ(e−itAB) for any borel set B.

Proof. The relation (8) is given by testing (4) onµ = µ0 . �

3 Criteria for the property (P)

In the following, two conditions which ensure the property(P) are formulated. Recall that for any
P∈ L (Z ) the operatorΓ(P) acting onH is defined by

Γ(P)|∨n
Z = P⊗P· · ·⊗P

andΓ(P) is an orthogonal projector ifP is too. The first criterion is a ’tightness’ assumption with
respect to the trace norm of the state

∀η > 0,∃P∈ L (Z ) finite rank orthogonal projector, ∀n∈ N : Tr[(1−Γ(P))ρεn] < η (T) .
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The dual version is formulated as an equicontinuity assumption with respect to the Wick symbols:

∀p,q∈ N, ∀η > 0,∃W0 ⊂ L (
p∨

Z ,
q∨

Z ) ∀b̃∈ W0,∀n∈ N :
∣∣∣Tr[ρεnb

Wick]
∣∣∣ < η , (E)

whereW0 is a neighborhood of zero inL (
∨p

Z ,
∨q

Z ) endowed with theσ -weak topology.

Lemma 3.1 Assume that(ρεn)n∈N satisfies(H0). Then
(i) (T) ⇒ (P),
(ii) (E) ⇒ (P).

Proof. We aim to prove(P) for b∈ Pp,q(Z ).
(i) Start with

Tr[ρεn bWick] = Tr[ρεn Γ(P)bWickΓ(P)]+Tr[ρεn (1−Γ(P))bWickΓ(P)]

+ Tr[ρεn Γ(P)bWick(1−Γ(P))]+Tr[ρεn (1−Γ(P))bWick(1−Γ(P))]

Estimate all the terms containing(1−Γ(P)) in a similar way. For example, we have
∣∣∣Tr[ρεn (1−Γ(P))bWickΓ(P)]

∣∣∣ =
∣∣∣Tr[〈N〉

p+q
2 ρεn (1−Γ(P))bWick〈N〉−

p+q
2 Γ(P)]

∣∣∣ (9)

≤ Cp,q(b)
∥∥∥〈N〉

p+q
2 ρ1/2

εn ρ1/2
εn (1−Γ(P))

∥∥∥
1

(10)

≤ Cp,q(b)
∥∥∥〈N〉

p+q
2 ρεn〈N〉

p+q
2

∥∥∥
1/2

1
‖(1−Γ(P))ρεn(1−Γ(P))‖1/2

1 (11)

≤ C̃p,q(b)Tr[ρεn(1−Γ(P))]1/2. (12)

First (10) comes from the number estimate
∥∥∥bWick〈N〉−

p+q
2

∥∥∥ ≤ Cp,q(b) then Cauchy-Schwarz in-

equality yield (11). The last estimate (12) is possible with(H0). Remark thatΓ(P)bWickΓ(P) =
Γ(P)b(Pz)WickΓ(P) and that the polynomialb(Pz) ∈ P∞

p,q(Z ) when P is finite rank orthogonal
projector. The hypothesis(T) and the above argument allow to approximate Tr[ρεn bWick] by the
quantity Tr[ρεn b(Pz)Wick] usingη/3 argument.
Now, write
∣∣∣∣Tr[ρεn bWick]−

∫

Z

b(z)dµ
∣∣∣∣ ≤

∣∣∣∣Tr[ρεn

(
bWick−b(Pz)Wick

)
]+Tr[ρεn b(Pz)Wick]−

∫

Z

b(Pz)dµ

+

∫

Z

[b(Pz)−b(z)]dµ
∣∣∣∣ .

So, the property(T) and(H0) implies(P).
(ii) There exists a sequencebκ ∈ P∞

p,q(Z ) such that̃bκ converges in theσ -weak topology tõb. We
have∣∣∣∣Tr[ρεn bWick]−

∫

Z

b(z)dµ
∣∣∣∣ ≤

∣∣∣∣Tr[ρεn

(
bWick−bWick

κ

)
]+

(
Tr[ρεn bκ(z)Wick]−

∫

Z

bκ(z)dµ
)

+
∫

Z

[bκ(z)−b(z)]dµ
∣∣∣∣ . (13)

So,(P) holds by anη/3 argument and using respectively(E), (5) and dominated convergence for
each term in the (r.h.s.) of (13). �

Remark 3.2
1) The space of bounded operatorsL (

∨p
Z ,

∨q
Z ) endowed with theσ -weak topology is not a

Baire space whenZ is infinite dimensional. Otherwise,(E) and hence(P) would be fulfilled by any
sequence(ρεn)n∈N satisfying(H0), according to Banach-Steinhaus Theorem (Uniform Boundedness
Principle).
2) The hypothesis(H0) in the above lemma, can be replaced by the weaker statement (see [AmNi,
Prop.6.15])

∃C > 0 : ∀k∈ N, Tr[NkρεnNk] ≤C(Ck)k

uniformly in εn. This can be interpreted as an analyticity property of t→ Tr[eitN2ρεneitN2
] in

{|t| < 1/C}, uniformly w.r.tεn.
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4 Proof of Thm. 2.1

Definition 4.1 For m∈ N, r ∈ {0, · · · ,m} and t1, · · · ,tm,t ∈ R, associate with any b∈ Pp,q(Z ) the
polynomial:

C(m)
r (tm, · · · , t1, t) =

1
2r ∑

♯{i: γi=2}=r

{Qtm, · · · ,{Qt1,bt }(γ1) · · ·}(γn)

︸ ︷︷ ︸
γi∈{1,2}

∈ Pp−r+m,q−r+m(Z ) . (14)

Note that for shortness the dependence of C(m)
r (tm, · · · ,t1,t) on b is not made explicit on the notation

and even sometimes we will write C(m)
r . By convention we set C(0)

0 (t) = bt .

We collect some statements from [AmNi]. Remember thatb̃ denotes the operatorb̃=
∂ q

z̄ ∂ p
z

q!p! b(z)∈
L (

∨p
Z ,

∨p
Z ) associated withb∈ Pp,q(Z ).

Lemma 4.2 Let b∈ Pp,q(Z ).
(i) The following inequality holds true

∣∣∣∣ ˜{Qs,bt}(2)

∣∣∣∣
L (

∨pZ ,
∨qZ )

≤ 2[p(p−1)+q(q−1)] |Q̃| |b̃|L (
∨p

Z ,
∨q

Z ) .

(ii) For any m∈ N and r∈ {0,1, . . . ,m}, we have
∣∣∣∣C̃

(m)
r

∣∣∣∣
L (

∨p+m−r
Z ,

∨q+m−r
Z )

≤ 22m−r (m
r ) (p+m− r)2r (p+m− r −1)!

(p−1)!
|Q̃|m |b̃|L (

∨p
Z ,

∨q
Z ) ,

when p≥ q with a similar expression when q≥ p (replace(p+m− r, p−1) with (q+m− r,q−1)) .

Proof. See [AmNi, Lemma 5.8, 5.9]. �

Lemma 4.3 For anyδ > 0 there exists T> 0 such that for all0 < t < T :

∞

∑
m=0

δ m
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∣∣∣∣C̃
(m)
0 (tm, . . . ,t1,t)

∣∣∣∣
L (

∨p+mZ ,
∨q+mZ )

< ∞ (15)

Proof. It is enough to bound (15) in the casep≥ q. Using Lemma 4.2 (iii) withr = 0, we obtain

∞

∑
m=0

δ m
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∣∣∣∣C̃
(m)
0 (tm, . . . ,t1,t)

∣∣∣∣ ≤ 2p−1|b̃|
∞

∑
m=0

(
23δ t |Q̃|

)m
.

The r.h.s. is finite whenever 0< t < T = (23 δ |Q̃|)−1. �

Proof of Thm. 2.1
First consider the following expansion proved in [AmNi, (50)-(52)] for any positive integerM:

Uε(t)
∗bWickUε(t) =

M−1

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

[
C(m)

0 (tm, · · · ,t1,t)
]Wick

+
ε
2

M

∑
m=1

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm Uε(tm)∗U0

ε (tm)
[
{Qtm,C(m−1)

0 (tm−1, · · · ,t1,t)}(2)
]Wick

U0
ε (tm)∗Uε(tm)

+iM
∫ t

0
dt1 · · ·

∫ tM−1

0
dtM Uε(tM)∗U0

ε (tM)
[
C(M)

0 (tM, · · · ,t1,t)
]Wick

U0
ε (tM)∗Uε(tM) ,

where the equality holds inL (
∨s

Z ,
∨s+q−p

Z ) for anys∈ N, s≥ q− p. Multiplying on the left
the above identity byρεn and then using number estimates with the help of(H0), yields an identity
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onL1(H ) on which we take the trace. This leads to

Tr[ρεnUεn(t)
∗bWickUεn(t)] =

M−1

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm Tr

[
ρεn

(
C(m)

0 (tm, · · · ,t1,t)
)Wick

]
(16)

+
εn

2

M

∑
m=1

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

Tr

[
ρεnUεn(tm)∗U0

εn
(tm)

(
{Qtm,C(m−1)

0 (tm−1, · · · ,t1,t)}(2)
)Wick

U0
εn

(tm)∗Uεn(tm)

]
(17)

+iM
∫ t

0
dt1 · · ·

∫ tM−1

0
dtM Tr

[
ρεnUεn(tM)∗U0

εn
(tM)

(
C(M)

0 (tM, · · · ,t1,t)
)Wick

U0
εn

(tM)∗Uεn(tM)

]
. (18)

The interchange of trace and integrals on the r.h.s. is justified by the bounds on Lemma 4.2. Lemma
4.3 implies that the term of (16) and (17) are bounded by

Am = λ m+ p+q
2 sign(t)m

∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∣∣∣∣C̃
(m)
0

∣∣∣∣

Bm = εn
∣∣Q̃

∣∣(p+q+m−1)2λ m−1+ p+q
2 sign(t)m

∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∣∣∣∣
˜
C(m−1)

0

∣∣∣∣

while the remainder (18) is estimated by

|(18)| ≤ sign(t)M
∫ t

0
dt1 · · ·

∫ tM−1

0
dtM

∣∣∣∣C̃
(M)
0

∣∣∣∣ = CM.

By Lemma 4.2, the series∑∞
m=0Am and∑∞

m=0 Bm converge as soon as|t| < T0 = (23λ |Q̃|)−1 while
limM→∞ CM = 0. Hence the relation (16)(17)(18) holds withM = ∞ with a vanishing third term and
a second term bounded by∑∞

m=0Bm = O(εn). Therefore, we obtain

lim
εn→0

Tr[ρεnUεn(t)
∗bWickUεn(t)]−

∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtmTr

[
ρεn

(
C(m)

0 (tm, · · · ,t1,t)
)Wick

]
= 0.

Owing to the condition(P) which provides the pointwise convergence and the uniform bound of
∑∞

m=0Am, the Lebesgue’s convergence theorem implies

lim
εn→0

∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm Tr

[
ρεn

(
C(m)

0 (tm, · · · ,t1,t)
)Wick

]
=

∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∫

Z

C(m)
0 (tm, · · · ,t1,t;z) dµ . (19)

Now, we interchange the sum overm and the integrals on(t1, · · · ,tm,t) with the integral overZ on
(19) simply with a Fubini argument based on the absolute convergence (written here fort > 0):

∞

∑
m=0

∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∫

Z

∣∣∣C(m)
0 (tm, · · · ,t1,t;z)

∣∣∣ dµ ≤

∞

∑
m=0

(∫

Z

|z|p+q+2m dµ
) ∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∣∣∣∣C̃
(m)
0 (tm, · · · ,t1,t)

∣∣∣∣ .

Again (H0) and(P) imply that for allk∈ N there existsλ > 0 such that
∫

Z

|z|2k dµ = lim
εn→0

Tr[ρεn (|z|2k)Wick] = lim
εn→0

Tr[ρεnNk] ≤ λ k.

Hence, Lemma 4.3 yields for|t| < T0:

lim
εn→0

Tr[ρεnUεn(t)
∗bWickUεn(t)] =

∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∫

Z

C(m)
0 (tm, · · · ,t1,t;z)dµ

=

∫

Z

∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm C(m)

0 (tm, · · · ,t1,t;z) dµ ,
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where the integrand
∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm C(m)

0 (z) is a convergent series inL1(µ).

The last step is the identification of the limit with the r.h.s. of (6). Indeed, an iteration of (4) reads

b(zt) = bt(z)+ i
∫ t

0
{Qt1,bt}(z) dt1 + i2

∫ t

0
dt1

∫ t1

0
dt2 {Qt2,{Qt1,bt}}(eit2Azt2) ,

after settingzt = Ft(z) and defining the Wick symbolsbt andQt according to (3). By induction we
obtain for anyM > 1:

b◦Ft(z) = bt(z)+
M−1

∑
m=1

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm C(m)

0 (tm, · · · ,t1,t;z)

+ iM
∫ t

0
dt1 · · ·

∫ tM−1

0
dtM C(M)

0 (tM, · · · ,t1,t;eitMAztM ) .

An integration with respect to the measureµ leads to

∫

Z

b◦Ft(z) dµ =
M−1

∑
n=0

in
∫ t

0
dt1 · · ·

∫ tn−1

0
dtn

∫

Z

C(n)
0 (tn, · · · ,t1,t;z)dµ

+ iM
∫ t

0
dt1 · · ·

∫ tM−1

0
dtM

∫

Z

C(M)
0 (tM, · · · ,t1,t;eitMAztM ) dµ .

Again the uniform estimate∑∞
m=0Am when|t| < T0 and limM→∞ CM = 0, allow to take the limit as

M → ∞. This implies for|t| < T0

∫

Z

b◦Ft(z) dµ =
∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm

∫

Z

C(m)
0 (tm, · · · ,t1,t;z) dµ .

This proves the result for|t| < T0 and it is extended to any time by the next iteration argument.
Indeed, it is clear thatρεn(t) = Uεn(t)ρεnUεn(t)

∗ satisfies(H0) sinceUεn(t) commute withN. The
property(P) holds forρεn(t) when |t| < T0 by Remark 2.2 and Corollary 2.3. Fort,s such that
|t|, |s| < T0, the sequence(ρεn(t))n∈N satisfies(H0) and(P). Therefore, the result for short times
yields

lim
εn→0

Tr[ρεn(t)Uεn(s)
∗bWickUεn(s)] =

∫

Z

b◦Fs(z) dµt =

∫

Z

b◦Ft+s(z) dµ .

�

Remark 4.4 As by product we have for any b∈ ⊕alg
α ,β∈N

Pα ,β (Z )

b◦Ft(z) = L1(µ)−
∞

∑
m=0

im
∫ t

0
dt1 · · ·

∫ tm−1

0
dtm C(m)

0 (tm, · · · ,t1,t;z) . (20)

Moreover, the arguments used in the proof of Thm. 2.1 can not ensure the pointwise absolute con-
vergence of the r.h.s. (20) for all z∈ Z .

5 Examples

Models:
M1) LetZ = L2(Rd,dx), A= D2

x +U(x) self-adjoint andQ is a multiplication operator by12V(x−y)
with V ∈ L∞(Rd).
M2) Let Z = L2(Rd,dx), A =

√
D2

x +m2+U(x) self-adjoint andQ as above.
M3) WhenZ = Cd ∼R2d

x,ξ , one recovers the standard semiclassical limit problem andthe condition
(P) is always satisfied if(H0) is satisfied. We refer for example the reader to [CRR] [Ger] [GMMP]
[HMR] [LiPa] [Mar] [Rob] for various results about this topic.

Density operator Sequences:

8



1) Every sequence(ρεn)n∈N valued in a compact set of the Banach space of trace class operators has
the Wigner measureδ0. If in addition(ρεn)n∈N satisfies(H0) then(P) holds true.
2) Let (ρεn)n∈N as in 1) and satisfying(H0) and let(zn)n∈N be a sequence ofZ such that limn→∞

|zn−z|= 0. Thenρ̃εn = W(
√

2
iε zn)ρεnW(−

√
2

iε zn) admits the unique Wigner measureµ = δz wherez
and (P) holds true. The push-forward measure isµt = δzt .

3) Let(zn)n∈N be a sequence valued in a compact set ofZ . Soρεn = |z⊗[ε−1
n ]

n 〉〈z⊗[ε−1
n ]

n | satisfies(H0)
and the property(P) and admits the Wigner measures1

2π
∫ π

0 δeiθ zdθ wherez is any cluster point of
(zn)n∈N. Several other examples can be obtained by superposition, see [AmNi].
4) Let (zn)n∈N be a sequence such that|zn| = 1 in Z converging weakly to 0. Then(P) fails for

ρεn = |E(zn)〉〈E(zn)| with E(zn) = W(
√

2
iε zn)|Ω〉, although(H0) holds.
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