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Mean field limit for bosons and
propagation of Wigner measures

Z. Ammarit  F. Nier®

July 2008

Abstract

We consider the N-body Schrodinger dynamics of bosons énntiean field limit with a
bounded pair-interaction potential. According to the pyas work [AmNi], the mean field limit
is translated into a semiclassical problem with a small patare — 0, after introducing ar-
dependent bosonic quantization. The limit is expressed mssh-forward by a nonlinear flow
(e.g. Hartree) of the associated Wigner measures. Thesetabjd their basic properties were
introduced in [AmNI] in the infinite dimensional setting. &fadditional result presented here
states that the transport by the nonlinear flow holds foreragjeneral class of quantum states in
their mean field limit.

2000 Mathematics subject classificatidd1S30, 81S05, 81T10, 35Q55

1 Introduction

The mathematical analysis of the mean field limit of ilk@ody quantum dynamics of bosons started
with the work of [Hep] and [GiVe]. Since, the problem has exgeced intensive investigations
using mainly the so-called BBGKY hierarchy method expldime [Spo]. Interest was focused
on studying the cases of singular interaction potentia {se example [BGM], [EY], [BEGMY],
[ESY]).

Recently, a new method was given in [FGS] (see also [FKP]jafscalar bounded potential
which inspires this work. The convergence of the quanturmadyins are typically tested on the
above quoted articles, either on coherent states or on Hestdates. Even when such specific
choices are avoided, the convergence on arbitrary staltdsastto be studied.

In the work [AmNIi], Wigner measures were extended to the itdidimensional setting, as
Borel probability measures under general assumptionsast also explained how previous weak
formulations of the mean field limit are contained in the défin of these asymptotic Wigner
measures, after a reformulation of tNebody problem as a semiclassical problem with the small
parametee = % — 0. The basic properties of these Wigner measures were @edidnd they were
used to check that the mean field dynamics for the coherdessiad Hermite states are essentially
equivalent.

In this paper, the problem of the mean field dynamics is cameilunder some restrictive as-
sumptions on the initial data. The convergence of N-body&tihger dynamics of bosons in the
mean field limit will be proved for a class of density operaeguences, which contains all the com-
mon examples. Remember that contrary to the finite dimeabtase no natural pseudodifferential
calculus can be deformed by arbitrary nonlinear flows, aecptiopagation of Wigner measures as
dual objects cannot be straightforward in the infinite disienal case. The limit is expressed as
push-forward by a nonlinear flow (e.g. Hartree) of Wigner sugas associated with the sequence of

*Département de Mathématiques, Université de CergyefsmUMR-CNRS 8088, 2, avenue Adolphe Chauvin 95302
Cergy-Pontoise Cedex France. Email: zied.ammari@u-dergy

TIRMAR, UMR-CNRS 6625, Université de Rennes |, campus deuBea, 35042 Rennes Cedex, France. Email:
francis.nier@univ-rennesl.fr



density operators. The result holds here when the pairdatien potential is bounded dﬁ(REg).
This can be considered as a regular case and subsequent idwdx devoted to more singular cases
like in [FKS] with a Coulombic interactiol (x—y) = ﬁ or in the derivation of cubic nonlinear
Schrddinger equations with(x — y) = d(x—y) like in the [ESY].

Since in the literature the non relativistic and the sertatiéstic dynamics of bosons were both
studied (see [EISc]), an abstract setting for the linear giathe flow seems relevant. Examples are
reviewed in the last section.

We keep the same notations as in [AmNi]. The phase-spacenpler separable Hilbert space,
is denoted byZ with the scalar produdt,.). The symmetric Fock space d# is denoted by’
and\/" & is then-fold symmetric (Hilbert) tensor product, so tha#’ = ©nen V" 2 as a Hilbert
direct sum. Algebraic direct sums or tensor products aretenwith a alg superscript. Hence
IO = @ﬁ'egN V" Z denotes the subspace of vectors with a finite number of festiEor anyp,q € N,
the space?pq(2’) of complex-valued polynomials of” is defined with the following continuity
condition:b € Z4(Z) iff there exists a uniqub € .2 (\/P 2,9 %) such that:

b(z) = (z°9,b2°P).

The subspace of?p o(Z°) made of polynomial® such thab is a compact operator is denoted by
P54(Z). TheWick monomiabf symbolb € 2, 4(%) is the linear operatob™'™® : s —
defined as follows:

n(n+q—p)! pig

pWick — ez ,jﬂn,erq B®|\/n—Pfg )
(n—p)!

Wi = Lp+e)(N)

where.#, is the symmetrization orthogonal projection fram? 2 onto\/" 2. Remark thab"ick
depends on the scaling parameger

Consider a polynomiaQ € 2, ,(%) such thatQ € .#(\/2 %) is bounded symmetric. The
many-body quantum Hamiltonian of bosons is a self-adjop#rator ons# having the general
shape:

He = dr (A) + QWick 1)

whereA is a given self-adjoint operator off. The time evolution of the quantum system is given
by Ug(t) = e'sHe andU2(t) = e 's9(A) for the free motion. The commutatid@"ik N] = 0
with the number operatdd = dr (1) = (|z|2)W'°k, ensures the essential self-adjointnessigon
2(dr (A)) N #% and the fact that both dynamics preserve the number.

Now we turn to the description of the nonlinear classicalaiyics analogues of (1).
Let us first recall some notations from [AmNi]. Polynomials#, (") admit Fréchet differentials.
Forbe Zpq4(2), set

db(2)[u] = ab(z+ru)—g,  db(2)[u] = Arb(z+ ru) o,

whered;, ; are the usual derivatives Oover Moreover,d¥b(z) naturally belongs tg\/X 2)* (i.e.:
k-linear symmetric functionals) whilé/b(z) is identified via the scalar product with an element of
V! %, for any fixedze 2. Forb € Py, 4 (%), i=1,2andk € N, set

05y . 0502(2) = (3501(2), 002(2)) ke ik 5 € Pputpp—ka+apk(Z)
The multiplePoisson bracketare defined by
{by,bp}® = 0¥y 0K, — OF0p. 001, {bn, b} = {by, bp} Y.

The energy functional
h(z) =(zA2 +Q(2), ze 2(A),
has the associated vector fild 2(A) — 2, X(z) = Az+ d:Q(z) and the nonlinear field equation

idz =X(z)



with initial conditionzy = z€ Z(A). For our purpose, we only need the integral form of the later
equation

. t .
z—ethz_j / e (=94 9,0(z)ds for ze 2. @)
0

The standard fixed point argument implies that (2) admitsiquenglobalC®-flow on 2 which is
denoted byF : R x 2 — & (i.e.: F is aC®-map satisfying,s(z) = Fy o Fs(z) andF¢(z) solves (2)
for anyz € Z). While considering the evolution of the Wick symbols, tlatian of the free flow
e ™A will be summarized by the next notation :

b=boe™ : #3zb(z2)=be ™), beadd  Ppa2), (3)

for anyb ¢ @2{%@{%)”(&”) and anyt € R. |
Moreover, ifz solves(2), andQ; is defined according to (3), them = €'Az solves the differential
equation

d
aWt = —i05Q (W) .
Therefore for any € & ¢(Z), the following identity holds
d . .
qiPw) = dzb(we)[—i02Qk ()] + 9zb(we) [—102Qx ()]
= i{Q, b}(w).
This yields for anyz € 2 andb € 39 pq(Z), the Duhamel formula
t
boFy(2) =bx(d)+i [ {Qby} oy (@ d, (4)

by observing thafQ,,b} (W, ) = {Q,b_t, } (%, )

2 Results

While introducing or using Wigner measures, all the arguishane carried out with extracted se-
quences (or subsequencés))nen such that lim_.. & = 0, instead of considering a non countable
range(0,€), € > 0, of values for the small parametrWithout loss of generality (see [AmNi]) one
can consider a countable famifpg, )ney Of density matricespg, > 0, Tr[pg,] = 1, and test them
with gn-quantized (Wick, Weyl or anti-Wick) observables beforkitg the limite, — 0. For the
sake of conciseness, th®r g, parameter does not appear in the notations of quantizedvatises.

The first condition which characterizes our clasgptlependent density matrices reads:
JA >0 :vkeN, TriNKpg,] <AK uniformlyinne N, (N =Ng,). (HO)

Wigner measures were constructed in [AmNi, Corollary 6fbdthe sequencépg, )nen. POSSIibly
extracting a subsequence still denoteg)) <y, there exists a Borel probability measyrecalled
Wigner measursuch that:

| w
£Inlm Tr(pg, bVIK = / b(2) du(2), foranybe @3% 25 5(2), (5)
with againbick = pfVick,
The statement (5) does not hold in general forbadl @Z"%EN(@(,,L;(%) and counterexamples ex-

hibiting the phenomenon of dimensional defect of compasweere given in [AmNi]. The exten-
sion of (5) to the larger class of symb@@%eNﬂa’B(ff} depends on the sequen@®, )nen and
it turns out to be an important fact when studying the mead figdit. In the following, a sequence
(Pe, )nen With a single Wigner measuye will have the propertyP) when:

lim Trpgan'Ck] /b du(2), foranybe @29 _ 2, 5(2).  (P)

£n—0 a,BeN

Here is the main theorem.



Theorem 2.1 Let the sequencgs, )nery Of density matricesps, > 0, Tr(pg,] = 1, limp e &y = 0,
satisfy(HO) and (P). Then the limit

L

rl]iLnooTr[pEn ei 27 Hen bWiCk e—ist_ann] = /y(bo Ft)(z) d“ , (6)

[ , . .
holds for any t€ R and any be @2%61\{(@(,,‘; () with pVick = plick,

Remark 2.2 SinceF is a C°-map the r.h.s. of (6) can be written as

/ (boFy)(2) du = / b(z) dp.
7 z
whereL is a push-forward measure defined fayB) = u(F_:(B)), for any Borel set B.

We refer the reader to [AmNI] for the definition of Weyl obsebles and the Schwartz class of
cylindrical functions ¢ (Z).

Corollary 2.3 Let the sequencps, )nen Of density matricespg, > 0, Tr[pg,] = 1, liMp_w &0 = 0,
satisfy(HO) and (P). Then the limit

IimOTr[pgn g & Hen eyl e’i;?HS"] = /ybo Fi(2) du, @)

&n—

holds for any be .%¢(2) and any te R.
Proof. A consequence of Thm. 2.1 and [AmNi, Prop. 6.15] is that thipieace
pfn (t) = U«‘-'n (t)pEnUSn (t)*

admits a single Wigner measure givenfgy Hence, by definition

i Trlpe, (6% =i [ F10)(€) Tripe, () W(V27E )] Ly(dé)

= [ FWE@) [ M dp(a) Lo(de).
pZ z

O
Another formulation states that the Wigner meagursatisfies a transport equation in an integral
form.

Corollary 2.4 Let (pg,(t))nen be as above and Igk denote its Wigner measure. Thea R — 14
is a solution to the transport equation:

t
(D) = b0(0) +i [ ps({Qub-sh)ds, ®)
for any be EB?)'%ENQZ(%) and whereu?(B) = (e ™AB) for any borel set B.
Proof. The relation (8) is given by testing (4) @n= Ll . O

3 Criteria for the property (P)

In the following, two conditions which ensure the propei®y are formulated. Recall that for any
P e Z(%) the operatof (P) acting ons7 is defined by

andl (P) is an orthogonal projector I is too. The first criterion is a 'tightness’ assumption with
respect to the trace norm of the state

vn > 0,3P € .Z (%) finite rank orthogonal projectotvn e N: Tr[(1—T(P))pg,] <n (T).



The dual version is formulated as an equicontinuity assiomptith respect to the Wick symbols:

<n, (E)
where# is a neighborhood of zero i’ (\/P 2, V9 2°) endowed with ther-weak topology.

Lemma 3.1 Assume thafps, )nen SatisfiegHO0). Then
(i) (T) = (P),
(ii) (E) = (P).
Proof. We aim to proveP) for b € &2 o(Z).
(i) Start with
Trlpe, BV = Trlpg, F(P)BY'T (P)] + Tr{pe, (1 — T (P))bY'r (P)]
+ Trlps, T (P)DV (1~ (P))] + Trlpg, (1~ (P)bY(1 — T (P))]

Estimate all the terms containiri@y— ' (P)) in a similar way. For example, we have

P q ,
vp,geN,vn > 0,3 Cc 2(\/ Z,\/ Z) Ybe #,neN : ‘Tr[pgnbw'c"]

[Trlpe, (LT POV (PY]| = [THI(N) "2 o, (1T (P)BY(N) 2" T (P)] ©)
< Cpalb) | (N) 202?022 (1T (P) (10)
< Cpal®)]| (V)% 02, ) | (- (P (1 T PYIY? (1)
< Coq(0)Trlpe, (1T (P)]V2 (12)

First (10) comes from the number estim#ﬂé"”c"m)’% < Cpgq(b) then Cauchy-Schwarz in-
equality yield (11). The last estimate (12) is possible wit0). Remark thaf (P)bVikr (P) =

[ (P)b(P2Vikr (P) and that the polynomiah(P2) € #5,(2) whenP is finite rank orthogonal
projector. The hypothesi€l) and the above argument allow to approximatgpgb"Vi° by the
quantity Tipg, b(P2)i° usingn /3 argument.

Now, write

Trloq BV~ [ b(Z)du‘ <

Trlpg, (6"~ b(P2"'™) ] + Trlog, b(P2)' - /J b(P2)du

+ /@p[b(Pz) - b(z)]du’ .
So, the propertyT) and(HO) implies (P).

(i) There exists a sequenbe € #7;4(Z’) such thaby converges in the-weak topologytdS. We
have

Trloe 59— | b(Z)du‘ <

e, (65— 0e4) ¢ (Tr[psn b2~ | bK(Z)du)

+ [, Ibetz) - b2lau). (3)
So, (P) holds by ann /3 argument and using respectivély), (5) and dominated convergence for
each term in the (r.h.s.) of (13). O

Remark 3.2
1) The space of bounded operata#&(\/P 2,V Z’) endowed with ther-weak topology is not a
Baire space wher#” is infinite dimensional. Otherwisé&:) and henceP) would be fulfilled by any
sequenceépg, )nen Satisfying(HO0), according to Banach-Steinhaus Theorem (Uniform Bounessin
Principle).
2) The hypothesiéH0) in the above lemma, can be replaced by the weaker statenenfAsNi,
Prop.6.15])

3C > 0: Yk e N, Tr[Nkpg, NK] < C(Ck)¥

uniformly in &,. This can be interpreted as an analyticity property of:tTr[eN’p, 6tN?] in
{It| < 1/C}, uniformly w.r.ten.



4 Proof of Thm. 2.1

Definition 4.1 Forme N, r € {0,---,m} and t,--- ,tm,t € R, associate with any b &, 4(Z) the
polynomial:

1
Cr(m)(tm,... 1) = > z {Q,, ’{Q[lyb[}(yﬂ...}(yn) € Py rimgrim(Z). (14)
L= N—_——
Hizu=2}=r
vie{1,2}
Note that for shortness the dependencer(B‘? @m, - ,t1,t) on b is not made explicit on the notation
and even sometimes we will writ¢"®. By convention we seté@(t) = bx.

d,pP
%% 1(7) e

We collect some statements from [AmNi]. Remember théenotes the operatBr: é_!p!

ZL(VPZ,\PZ) associated with € 22, 4(Z).

Lemma 4.2 Letbe Zpq(Z).
(i) The following inequality holds true

{Qs,bx}(@ < 2[p(p—1)+q(q—1)]|Q| |bl(y» 2 yaz)-

’ﬂvp@avq %)
(i) Foranyme Nandre {0,1,...,m}, we have

}CT("/") p+m—r—1)

[ ~

=‘(Z(Verm—r Pg[’,vq‘#mfl’ Dg[’)
when p> g with a similar expression wherg p (replace(p+m—r, p—1) with (q+m-r,q—1)).
Proof. See [AmNi, Lemma 5.8, 5.9]. O

Lemma 4.3 For anyd > Othere exists T> 0 such thatforal0 <t < T:

had t tm-1
zam/dtl---/ dtrn
m=0 0 0

Proof. It is enough to bound (15) in the cape> q. Using Lemma 4.2 (iii) withr = 0, we obtain

* t tm—1
zam/dtl---/ dtr
m=0 0 0

The r.h.s. is finite whenever 9t < T = (235 |Q|) % 0
Proof of Thm. 2.1
First consider the following expansion proved in [AmNi, [§62)] for any positive intege:

57 1) < (15)
P\ )

Cém)(tm,...,tl,t)‘ <P ¥ (261G

m=0

_ M-1 t tm_ Wick
Ug(t)*bWICkUs(t) — Z jm / dt]_"'/ 1dtm [C(()m)(tm,"' ,t]_,t):| ©
m=0 0 0
c M . t tm—1 - Wick
5 31 [t [t Ue(tm) U2(m) [{ Qs C8™ tm2.+ 12,03 UZ(tm) Ue(tm)
m=1

t tvM—1 Wick
+iM/0dt1---/O dtv Ug(tM)*US(tM)[C(()W(tmw-,tl,t)] U2(tm)*Ue (tm) ,

where the equality holds i’ (\/° 27, /st P &) for anys € N, s > q— p. Multiplying on the left
the above identity by, and then using number estimates with the helpH0), yields an identity



on .1 () on which we take the trace. This leads to

Tr{9e,Us, (6B, / dt; - /Otm dtp Tr [pgn( ™ (trn, - - ,tl,t))WiCk] (16)

22 /dtl /tmltm

Tr |:pSnUSn (tm)*Ug% (tm) ({Q[m7c(()m_l) (tmfl7 e 7tlyt)}(2>)WiCkU£On (tm)*Ugn (tm):| (17)

Wick

t tM—1
M/o dtl"'/o dy Tr [pgnugn(tM)*ug(tM) (CéM)(tM,--- ,tl,t))

The interchange of trace and integrals on the r.h.s. idigdtby the bounds on Lemma 4.2. Lemma
4.3 implies that the term of (16) and (17) are bounded by

U2 (tm)*Ug, (tM)] .(18)

t . —
An = )\m"'% sigr(t)m/o dtl.../o 1dtm ‘C(()m)
. t tm ——
Bmn = «ﬁ‘n‘Q|(p—i-GH-m—1)2)\"‘*1*'%q sign(t)m/ dt1---/ 1dtm C(()mfl)
0 0

while the remainder (18) is estimated by

t tv—1 vt
|(18)|S5ign(t)'v'/0dt1---/o dt (M| = cy.

By Lemma 4.2, the seriegq,_oAm and S5, Bm converge as soon 4§ < To = (2°A|Q|)~* while
limm_»Cm = 0. Hence the relation (16)(17)(18) holds with= c with a vanishing third term and
a second term bounded By, ,Bm = €(&,). Therefore, we obtain

lim Tr{oe, s, (1) B U Z / dty - /Otm’ldtmw [psn ("t wn) | =

&n—0

Wick]

Owing to the conditionP) which provides the pointwise convergence and the uniforemboof
Y m=0Am, the Lebesgue’s convergence theorem implies

i 0 'm/tdt /tm, dt, T |: ( >(t ¢ t))Wick:|

im i r et =

o n;o 0 1 0 Pe;, m 1
S i [ 2 (m)
)3 im/ dtl---/ dtm/ CU™ (t, -+ 1, t:2) dpt. (19)
=0 0 0 Z

Now, we interchange the sum overand the integrals ofty, - - - ,tm,t) with the integral overZ on
(19) simply with a Fubini argument based on the absolute e@@ance (written here far> 0):

s [ 1 (m)

Z/dtl---/ dtm / ‘Co (tm,---,tl,t;z)’ du <

/o 0 7
had t tm—1
z (/ |Z|P+Q+2mdu) /dtl---/ dtm,
o \Jz 0 0

Again (HO) and(P) imply that for allk € N there exists\ > 0 such that

cl™ (t, -+ ,tl,t)} .

/ 122 dp = lim Tr[pg, (1Z%)V1] = lim Tr{pg, N < AX.
a &n—0 &n—0

Hence, Lemma 4.3 yields fdt] < To:

) 0 t e
lim Tr[pgnUgn()*bW'CkUgn(t)] Sim /dtl---/ 1dtm/ C (tm,-- - ,ta, t;2)d
&n—0 0 0 0 z

0

t tm—1
yim dtl---/ At C™ (t, -+, 11, t;2) dit,
% m:O 0 0



o t tm_
where the integranoz im/ dtl---/ 1dtm Cém)(z) is a convergent series It (u).
m=0 0 0
The last step is the identification of the limit with the r.ho§(6). Indeed, an iteration of (4) reads

b(z) =bi(2) +i /0 {Qu.b} (@) dt1+i2/otd‘1/otldtz {Qu {Qu. b} }(€747,),

after settingz = Fi(z) and defining the Wick symbolg andQ; according to (3). By induction we
obtain for anyM > 1:

M-1 t tm—1 m
boR(@ = B@+ y " [dti " din Ot 1062
m=1 0 0

t tv— .
M/ dtl/M 1dtM C(()M)(tMa"'atlat;eltMAth)~
0 0

An integration with respect to the measyréeads to

M-1 t tho1
boF(2) du = in /dt---/ d /C(”’t,---,t t:2d
/@pwm S [ [T dn [, G iz
t tv— .
M/ dtl.../M " dty / CM (tyy, -ty ;A7) dpt.
0 0 s

Again the uniform estimatg o Am When|t| < Tp and limy—_.Cu = 0, allow to take the limit as
M — oo. This implies for|t| < To

tm—
/boFt du_ /oltl / 1dtm/cgm>(tm,...,tl,t;z)du.
<

This proves the result fot| < To and it is extended to any time by the next iteration argument.
Indeed, it is clear thgpg, (t) = Ug, (t)pe,Ug, (t)* satisfies(HO) sinceUg,(t) commute withN. The
property(P) holds for p,(t) when|t| < To by Remark 2.2 and Corollary 2.3. Foys such that
[t],]s| < To, the sequencéps,(t))nen Satisfies(HO) and(P). Therefore, the result for short times
yields

E':T Tr{pe, (1)U, (90" *Ug, () / boFs(z) duy = / boFiis(2)
O
Remark 4.4 As by product we have for anyda@z'?ﬁeN,@a,B (%)
boFt(z):Ll(u)—éoim/otdtl---/otm1dtrnCém)(tm,--- t.t2). (20)

Moreover, the arguments used in the proof of Thm. 2.1 canmmire the pointwise absolute con-
vergence of the r.h.s. (20) for allz 2.

5 Examples

Models:

M1) Let 2 = L2(RY,dx), A= D2+ U (x) self-adjoint and is a multiplication operator byV (x—y)
with V € L®(R9Y).

M2) Let 2 = L?(RY,dx), A /D2 +m? 4+ U(x) self-adjoint andQ as above.

M3) WhenZ = (Cd ~ R« s.£ One recovers the standard semiclassical limit problenttadondition
(P) is always satisfied ifHO) is satisfied. We refer for example the reader to [CRR] [GeNINP]
[HMR] [LiPa] [Mar] [Rob] for various results about this topi

Density operator Sequences:




1) Every sequencipg, )nen Valued in a compact set of the Banach space of trace clasatopsehas
the Wigner measur&. If in addition (pg, )nen SatisfiesHO) then(P) holds true.
2) Let (pg, )nen @s in 1) and satisfyingHO) and let(zy)neny be a sequence of such that lim .«
|z — 2] =0. Thenpg, = W(%zn)pgnW(—i—\fzn) admits the unique Wigner measyre= 5, wherez
and (P) holds true. The push-forward measung is: & .

- -
3) Let(zn)nen be a sequence valued in a compact se¥ofSopg, = |z‘f$[£” b(zﬁg[s” }| satisfiegHO)
and the propertyP) and admits the Wigner measur#fonééezde wherezis any cluster point of
(zn)nen- Several other examples can be obtained by superposigeAsnNi].
4) Let (zn)nen be a sequence such that| = 1 in 2 converging weakly to 0. The(P) fails for
Pen = |E(20)) (E(20)| with E(z,) =W(¥272)|Q), although(H0) holds.
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