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Introduction

In recent years there has been a wide-spread interest in the study of qualitative properties of stochastic models which describe cooperative effects in fluids by taking into account macroscopic parameters such as temperature or/and magnetic field. The corresponding mathematical models consists in coupling the stochastic Navier-Stokes equations with some transport or/and Maxwell equations, which are also stochastically perturbed.

Our goal in this paper is to suggest and develop a unified approach which makes it possible to cover a wide class of mathematical coupled models from fluid dynamics. Due to well-known reasons we mainly restrict ourselves to spatially two dimensional models. Our unified approach is based on an abstract stochastic evolution equation in some Hilbert space of the form

∂ t u + Au + B(u, u) + R(u) = σ(t, u) Ẇ , (1.1) 
where σ(t, u) Ẇ is a multiplicative noise white in time with spatial correlation. The hypotheses which we impose on the linear operator A, the bilinear mapping B and the operator R are true in the case of 2D Navier-Stokes equation (where R = 0), and also for some other classes of two dimensional hydrodynamical models such as magneto-hydrodynamic equations, the Boussinesq model for the Bénard convection and 2D magnetic Bénard problem. They also cover the case of regular higher dimensional problems such as the 3D Leray α-model for the Navier-Stokes equation and some shell models of turbulence. See a further discussion in Sect.2.1 below.

For general abstract stochastic evolution equation in infinite dimensional spaces we refer to [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF]. However the hypotheses in [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF] do not cover our hydrodynamical type model. We also note the stochastic Navier-Stokes equations were studied by many authors (see, e.g., [START_REF] Capinsky | Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension[END_REF][START_REF] Flandoli | Martingale and stationary solutions for stochastic Navier-Stokes equations[END_REF][START_REF] Menaldi | Stochastic 2-D Navier-Stokes equation[END_REF][START_REF] Vishik | Some mathematical problems of statistical hydromechanics[END_REF] and the references therein).

We first state the result on existence, uniqueness and provide a priori estimates for a weak (variational) solution to the abstract problem of the form (1.1) where the forcing term also includes a stochastic control term with a multiplicative coefficient (see Theorem 2.4). As a particular case, we deduce well posedness when the Brownian motion W is translated by a random element of its Reproducing Kernel Hilbert Space (RKHS), as well a priori bounds of the solution with constants which only depend on an a.s. bound of the RKHS norm of the control. In all the concrete hydrodynamical examples described above, the diffusion coefficient may contain a small multiple of the gradient of the solution. Thus, this result contains the corresponding existence and uniqueness theorems and a priori bounds for 2D Navier-Stokes equations (see, e.g. [START_REF] Menaldi | Stochastic 2-D Navier-Stokes equation[END_REF][START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF]), for the Boussinesq model of the Bénard convection (see [START_REF] Ferrario | The Bénard Problem with random perturbations: Dissipativity and invariant measures[END_REF], [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]), and also for the GOY shell model of turbulence (see [START_REF] Barbato | Some rigorous results on a stochastic Goy model[END_REF] and [START_REF] Manna | Large deviations for the stochastic shell model of turbulence[END_REF]). Theorem 2.4 generalizes the existence result for MHD equations given in [START_REF] Barbu | Existence and ergodicity for the two-dimensional stochastic magnetohydrodynamics equations[END_REF] to the case of multiplicative noise and also covers new situations such as the 2D magnetic Bénard problem, the 3D Leray α-model and the Sabra shell model of turbulence.

Our argument mainly follows the local monotonicity idea suggested in [START_REF] Menaldi | Stochastic 2-D Navier-Stokes equation[END_REF][START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF]. However, since we deal with an abstract hydrodynamical model with a forcing term which contains a stochastic control under a minimal set of hypotheses, the argument requires substantial modifications compared to that of [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] or [START_REF] Manna | Large deviations for the stochastic shell model of turbulence[END_REF]. It relies on a two-step Gronwall lemma (see Lemma 4.1 below and also [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]).

Our main result (see Theorem 3.2) is a Wentzell-Freidlin type large deviation principle (LDP) for stochastic equations of the form (1.1) with σ := √ εσ as ε → 0, which describes the exponential rate of convergence of the solution u := u ε to the deterministic solution u 0 . As in the classical case of finite-dimensional diffusions, the rate function is described by an energy minimization problem which involves deterministic controlled equations. The LDP result is that which would hold true if the solution were a continuous functional of the noise W . Our proof consists in transferring the LDP satisfied by the Hilbert-valued Brownian motion √ εW to that of a Polish-space valued measurable functional of √ εW as established in [START_REF] Budhiraja | A variational representation for positive functionals of infinite dimensional Brownian motion[END_REF]; see also [START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF], [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] and [START_REF] Dupuis | A Weak Convergence Approach to the Theory of Large Deviations[END_REF]. This is related to the Laplace principle. This approach has been already applied in several specific infinite dimensional situations (see, e.g, [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] for 2D Navier-Stokes equations, [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF] for 2D Bénard convection, [START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF] for stochastic reactiondiffusion system, [START_REF] Liu | Large deviations for stochastic evolution equations with small multiplicative noise[END_REF][START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF] for stochastic p-Laplacian equation and some its generalizations, [START_REF] Manna | Large deviations for the stochastic shell model of turbulence[END_REF] for the GOY shell model of turbulence). We also refer to [START_REF] Cerrai | Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction terms[END_REF] for large deviation results for evolution equations in the case on non-Lipschitz coefficients. Our result in Theorem 3.2 comprehends a wide class of hydrodynamical systems. In particular, in addition to the 2D Navier-Stokes equations and the Boussinesq model mentioned above, Theorem 3.2 also proves LDP for 2D MHD equations, 2D magnetic Bénard convection, 3D Leray α-model, the Sabra shell model and dyadic model of turbulence. Note that unlike [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] and [START_REF] Manna | Large deviations for the stochastic shell model of turbulence[END_REF], in order to give a complete argument for the weak convergence (Proposition 3.4) and the compactness result (Proposition 3.5), we need to prove a time approximation result (Lemma 3.3). This requires to make stronger assumptions on the diffusion coefficient σ, which should have some Hölder time regularity, and in the explicit hydrodynamical models, no longer can include the gradient of the solution (see also [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]).

Note that the weak convergence approach has been used recently to prove LDP for stochastic evolution equations which satisfy monotonicity and coercivity conditions by J. Ren and X. Zhang [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF] and by W. Liu [START_REF] Liu | Large deviations for stochastic evolution equations with small multiplicative noise[END_REF]. This class of models does not contain the hydrodynamical systems considered in this paper and the main PDE model for this class is a reaction-diffusion equation with a nonlinear monotone diffusion term perturbed by globally Lipschitz sub-critical nonlinearity. Let us point out one of the main differences which explains why we have to impose some more time regularity assumptions on the diffusion coefficient, in contrast with [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF]. Indeed, unlike the situation considered in [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF] we do not assume the compactness of embeddings in the corresponding Gelfand triple V ′ ⊂ H ⊂ V . Thus the elegant method in [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF], which is based on some compactness property of the family of solutions in C([0, T ], V ′ ) obtained by means of the Ascoli theorem, cannot be applied here, and we use a technical time discretization. Let us also point out that due to the bilinear term which arises in hydrodynamical models, the control of any moment of the V ′ norm for time increments of the solution is not as good as that in [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF]. On the other hand, giving up the compactness conditions allows us to cover the important class of hydrodynamical models in unbounded domains. The payoff for this is some Hölder condition in time for the diffusion coefficient (see condition (C4) below). The paper by W. Liu [START_REF] Liu | Large deviations for stochastic evolution equations with small multiplicative noise[END_REF] does not assume the compactness embeddings in the Gelfand triple and uses another way to obtain the compactness of the set of solutions in some set of time continuous functions. This approach is based on the rather strong approximation hypothesis which involves some compact embeddings (see Hypotheses (A4) and (A5) in [START_REF] Liu | Large deviations for stochastic evolution equations with small multiplicative noise[END_REF]). The technique introduced by W. Liu might be used in our framework, in order to avoid the extra time regularity of σ, at the expense of some compact approximation condition of diffusion term. The corresponding proof is quite involved and we do not adapt it to keep down the size of the paper; we rather focus on the main technical problems raised by our models, even in the simple case of a time-independent diffusion coefficient. Note that even in the case of monotone and coercive equations, the diffusion coefficient considered in [START_REF] Ren | Freidlin-Wentzell Large Deviations for Stochastic Evolution Equations[END_REF] (resp. [START_REF] Liu | Large deviations for stochastic evolution equations with small multiplicative noise[END_REF]) cannot involve the gradient in order to satisfy condition (H5) (resp. (A4)).

The paper is organized as follows. In Section 2 we describe our mathematical model with details and provide the corresponding motivations from the theory of (coupled) models of fluid dynamics. In this section we also formulate our abstract hypotheses and state the results about well posedness and apriori bounds of the abstract stochastic equation which also may contain some random control term. The proof of these technical results is given in the Appendix, Section 4. Note that these preliminary results are proved in a more general framework than what is needed to establish the large deviation principle. Indeed, we use them in [START_REF] Chueshov | Stochastic 2D hydrodynamical systems: Support theorem[END_REF] where we characterize the support of the distribution of the solution to the stochastic hydrodynamical equations. We formulate and prove the large deviations principle by the weak convergence approach in Section 3. There we use properties (such as a priori bounds and localized time increment estimates) of this stochastic control system as a preliminary step in order to apply the general LDP results from [START_REF] Budhiraja | A variational representation for positive functionals of infinite dimensional Brownian motion[END_REF][START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF] in our situation.

Description of the model

Let (H, |.|) denote a separable Hilbert space, A be an (unbounded) self-adjoint positive linear operator on H.

Set V = Dom(A 1 2 ). For v ∈ V set v = |A 1 2 v|. Let V ′
denote the dual of V (with respect to the inner product (., .) of H). Thus we have the Gelfand triple V ⊂ H ⊂ V ′ . Let u, v denote the duality between u ∈ V and v ∈ V ′ such that u, v = (u, v) for u ∈ V , v ∈ H, and let B : V × V → V ′ be a continuous mapping (satisfying the condition (C1) given below).

The goal of this paper is to study stochastic perturbations of the following abstract model in

H ∂ t u(t) + Au(t) + B u(t), u(t) + Ru(t) = f, (2.1) 
where R is a linear bounded operator in H. We assume that the mapping B : V × V → V ′ satisfies the following antisymmetry and bound conditions:

Condition (C1): • B : V × V → V ′ is a bilinear continuous mapping. • For u i ∈ V , i = 1, 2, 3, B(u 1 , u 2 ) , u 3 = -B(u 1 , u 3 ) , u 2 . ( 2 

.2)

• There exists a Banach (interpolation) space H possessing the properties (i) V ⊂ H ⊂ H;

(ii) there exists a constant a 0 > 0 such that

v 2 H ≤ a 0 |v| v for any v ∈ V ; (2.3) (iii) for every η > 0 there exists C η > 0 such that | B(u 1 , u 2 ) , u 3 | ≤ η u 3 2 + C η u 1 2 H u 2 2 H , f or u i ∈ V, i = 1, 2, 3. (2.4) Remark 2.1. (1)
The relation in (2.4) obviously implies that

| B(u 1 , u 2 ) , u 3 | ≤ C 1 u 3 2 + C 2 u 1 2 H u 2 2 H , for u i ∈ V, i = 1, 2, 3, (2.5) 
for some positive constants C 1 and C 2 . On the other hand, if we put in (2.5) ηC -1 1 u 3 instead of u 3 , then we recover (2.4) with 

C η = C 1 C 2 η -1
= 0 we put now η = u 1 H u 2 H u 3 -1 in (2.4) with C η = C 1 C 2 η -1 , then using (2.
2) we obtain that for some constant C > 0,

| B(u 1 , u 2 ) , u 3 | ≤ C u 1 H u 2 u 3 H , for u i ∈ V, i = 1, 2, 3. (2.6)
It is also evident that (2.6) and (2.2) imply (2.4). Thus the conditions in (2.4), (2.5) and (2.6) are equivalent to each other.

(2) To lighten notations for u 1 ∈ V , set B(u 1 ) := B(u 1 , u 1 ); relations (2.2), (2.3) and (2.6) yield for every η > 0 the existence of

C η > 0 such that for u 1 , u 2 ∈ V , | B(u 1 ) , u 2 | ≤ η u 1 2 + C η |u 1 | 2 u 2 4 H . (2.7) Relations (2.2) and (2.7) yield | B(u 1 ) -B(u 2 ) , u 1 -u 2 | = | B(u 1 -u 2 ), u 2 | ≤ η u 1 -u 2 2 + C η |u 1 -u 2 | 2 u 2 4 H . (2.8)
2.1. Motivation. The main motivation for the condition (C1) is that it covers a wide class of 2D hydrodynamical models including the following ones. An element of R 2 is denoted u = (u 1 , u 2 ). 

∂ t u -ν∆u + u∇u + ∇p = f, div u = 0 in D, u = 0 on ∂D, (2.9) 
where u = (u 1 (x, t), u 2 (x, t)) is the velocity of a fluid, p(x, t) is the pressure, ν the kinematic viscosity and f (x, t) is an external density of force per volume. Let n denote the outward normal to ∂D and let

H (1) = {f ∈ L 2 (D)
2 : div f = 0 in D and f . n = 0 on ∂D} be endowed with the usual L 2 scalar product. Here above we set div f = i=1,2 ∂ i f i , Projecting on the space H (1) of divergence free vector fields, problem (2.9) can be written in the form (2.1) (with R ≡ 0) in the space H (1) (see e.g. [START_REF] Temam | Navier-Stokes Equations and Nonlinear Functional Analysis[END_REF]), where A is the Stokes operator defined by the bilinear form

a(u 1 , u 2 ) = ν 2 j=1 D ∇u j 1 • ∇u j 2 dx, (2.10) with u 1 , u 2 ∈ V = V 1 ≡ H 1 0 (D) 2 ∩ H (1) . The map B ≡ B 1 : V 1 × V 1 → V ′ 1 is defined by B 1 (u 1 , u 2 ) , u 3 = D [u 1 (x)∇u 2 (x)] u 3 (x)dx ≡ 2 i,j=1 D u j 1 ∂ j u i 2 u i 3 dx, u i ∈ V 1 . (2.11)
Using integration by parts, Schwarz's and Young's inequality, one checks that this map B 1 satisfies the conditions of (C1) with H = L 4 (D) 2 ∩ H [START_REF] Barbato | Some rigorous results on a stochastic Goy model[END_REF] . The inequality in (2.3) is the well-known Ladyzhenskaya inequality (see e.g. [START_REF] Constantin | Navier-Stokes Equations[END_REF] or [START_REF] Temam | Navier-Stokes Equations and Nonlinear Functional Analysis[END_REF]). We can also include in (2.9) a Coriolis type force by changing f into f -Ru, where R(u 1 , u 2 ) = c 0 (-u 2 , u 1 ), for some constant c 0 . In this case we get (2.1) with R = 0.

The case of unbounded domains D (including D = R 2 ) can be also considered in our abstract framework. For this we only need to shift the spectrum away from zero by changing A into A + Id and introducing R = -Id.

2.1.2. 2D magneto-hydrodynamic equations. We consider magneto-hydrodynamic (MHD) equations for a viscous incompressible resistive fluid in a 2D domain D, which have the form (see, e.g., [START_REF] Moreau | Magnetohydrodynamics[END_REF]):

∂ t u -ν 1 ∆u + u∇u = -∇ p + s 2 |b| 2 + sb∇b + f, (2.12 
)

∂ t b -ν 2 ∆b + u∇b = b∇u + g, (2.13 
)

div u = 0, div b = 0 (2.14)
where u = (u 1 (x, t), u 2 (x, t)) and b = (b 1 (x, t), b 2 (x, t)) denote velocity and magnetic fields, p(x, t) is a scalar pressure. We consider the following boundary conditions

u = 0, b . n = 0, ∂ 1 b 2 -∂ 2 b 1 = 0 on ∂D (2.15) 
In equations above ν 1 is the kinematic viscosity, ν 2 is the magnetic diffusivity (which is determined from magnetic permeability and conductivity of the fluid), the positive parameter s is defined by the relation s = Ha 2 ν 1 ν 2 , where Ha is the so-called Hartman number. The given functions f = f (x, t) and g = g(x, t) represent external volume forces and the curl of external current applied to the fluid. We refer to [START_REF] Ladyzhenskaya | Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid[END_REF], [START_REF] Duvaut | Inéquations en thermoélasticité et magnéto hydrodynamique[END_REF] and [START_REF] Sermange | Some mathematical questions related to MHD equations[END_REF] for the mathematical theory for the MHD equations. Again, the above equations are a particular case of equation (2.1) for the following spaces and operators which satisfy (C1). To see this we first note that without loss of generality we can assume that s = 1 in (2.12) (indeed, if s = 1 we can introduce a new magnetic field b := √ sb and rescale the curl of the current g := √ sg). For the velocity part of the MHD equations, we use the same spaces H (1) and V 1 and the Stokes operator generated by the bilinear form defined by (2.10) with ν = ν 1 . Now we denote this operator by A 1 .

As for the magnetic part we set 

H (2) = H (1) and V 2 = H 1 (D)
H = H (1) × H (2) with A = A 1 × A 2 , R ≡ 0. We also set V = V 1 × V 2 and define B : V × V → V ′ by the relation B(z 1 , z 2 ), z 3 = B 1 (u 1 , u 2 ), u 3 -B 1 (b 1 , b 2 ), u 3 + B 1 (u 1 , b 2 ), b 3 -B 1 (b 1 , u 2 ), b 3 for z i = (u i , b i ) ∈ V = V 1 × V 2 ,
where B 1 is given by (2.11). The conditions in (C1) are satisfied with

H = L 4 (D) 2 × L 4 (D) 2 ∩ H.
2.1.3. 2D Boussinesq model for the Bénard convection. The next example is the following coupled system of Navier-Stokes and heat equations from the Bénard convection problem (see e.g. [START_REF] Foias | Attractors for the Bénard problem: existence and physical bounds on their fractal dimension[END_REF] and the references therein). Let D = (0, l) × (0, 1) be a rectangular domain in the vertical plane, (e 1 , e 2 ) the standard basis in R 2 and x = (x 1 , x 2 ) an element of R 2 .

Denote by p(x, t) the pressure field, f, g external forces, u = (u1 (x, t), u 2 (x, t)) the velocity field and θ = θ(x, t) the temperature field satisfying the following system

∂ t u + u∇u -ν∆u + ∇p = θe 2 + f, div u = 0, (2.16 
)

∂ t θ + u∇θ -u 2 -κ∆θ = g, (2.17) 
with boundary conditions u = 0 & θ = 0 on x 2 = 0 and x 2 = 1, u, p, θ, u x 1 , θ x 1 are periodic in x 1 with period l. 1 Here above ν is the kinematic viscosity, κ is the thermal diffusion coefficient. Let

H (3) = u ∈ L 2 (D) 2 , div u = 0, u 2 | x 2 =0 = u 2 | x 2 =1 = 0, u 1 | x 1 =0 = u 1 | x 1 =l
and H (4) = L 2 (D). We also denote

V 3 = u ∈ H (3) ∩ H 1 (D) 2 , u| x 2 =0 = u| x 2 =1 = 0, u is l-periodic in x 1 , V 4 = θ ∈ H 1 (D), θ| x 2 =0 = θ| x 2 =1 = 0, θ is l-periodic in x 1 .
Let A 3 be the Stokes operator in H (3) generated by the bilinear form (2.10) considered on V 3 and A 4 be the operator in H (4) generated by the Dirichlet form

a(θ 1 , θ 2 ) = κ D ∇θ 1 • ∇θ 2 dx, θ 1 , θ 2 ∈ V 4 .
Again, the above equations are a particular case of equation (2.1) for the following spaces and operators which satisfy (C1). Let H = H (3) × H (4) and V = V 3 × V 4 . We set A(u, θ) = (A 3 u , A 4 θ), R(u, θ) = -(θe 2 , u 2 ), and define the mapping

B : V × V → V ′ by the relation B(z 1 , z 2 ), z 3 = B 1 (u 1 , u 2 ), u 3 + i=1,2 D u i 1 ∂ i θ 2 θ 3 dx for z i = (u i , θ i ) ∈ V = V 3 × V 4
, where B 1 is given by (2.11). With these notations, the Boussinesq equations for (u, θ) are a particular case of (2.1) with condition (C1) for

H = L 4 (D) 2 × L 4 (D) ∩ H.
2.1.4. 2D magnetic Bénard problem. This is the Boussinesq model coupled with magnetic field (see [START_REF] Galdi | A new approach to energy theory in the stability of fluid motion[END_REF]). As above let D = (0, l) × (0, 1) be a rectangular domain in the vertical plane, (e 1 , e 2 ) the standard basis in R 2 . We consider the equations

∂ t u + u∇u -ν 1 ∆u + ∇ p + s 2 |b| 2 -sb∇b = θe 2 + f, div u = 0, ∂ t θ + u∇θ -u 2 -κ∆θ = f, ∂ t b -ν 2 ∆b + u∇b -b∇u = h, div b = 0, with boundary conditions u = 0 & θ = 0 & b 2 = 0, ∂ 2 b 1 = 0 on x 2 = 0 and x 2 = 1, u, p, θ, b, u x 1 , θ x 1 , b x 1 are periodic in x 1 with period l.
As for the MHD case we can assume that s = 1. In this case we have (2.1) for the variable

z = (u, θ, b) with H = H (3) × H (4) × H (5)
, where H (3) and H (4) are the same as in the previous example and H [START_REF] Capinsky | Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension[END_REF] = H [START_REF] Budhiraja | A variational representation for positive functionals of infinite dimensional Brownian motion[END_REF] . We also set

V = V 3 × V 4 × V 5
, where V 3 and V 4 are the same as above and

V 5 = H (3) ∩ H 1 (D) 2 .
The operator A is generated by the bilinear form

a(z 1 , z 2 ) = ν 1 2 j=1 D ∇u j 1 • ∇u j 2 dx + κ D ∇θ 1 • ∇θ 2 dx + ν 2 2 j=1 D ∇b j 1 • ∇b j 2 dx for z i = (u i , θ i , b i ) ∈ V .
The bilinear operator B is defined by 

B(z 1 , z 2 ), z 3 = B 1 (u 1 , u 2 ), u 3 -B 1 (b 1 , b 2 ), u 3 + B 1 (u 1 , b 2 ), b 3 -B 1 (b 1 , u 2 ), b 3 + i=1,2 D u i 1 ∂ i θ 2 θ 3 dx for z i = (u i , θ i , b i ) ∈ V ,
H = L 4 (D) 2 × L 4 (D) × L 4 (D) 2 ∩ H.
2.1.5. 3D Leray α-model for Navier-Stokes equations. The theory developed in this paper can be also applied to some 3D models. As an example we consider 3D Leray α-model (see [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF]; for recent development of this model we refer to [START_REF] Chepyzhov | On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system[END_REF][START_REF] Cheskidov | On a Leray-α model of turbulence[END_REF] and to the references therein).

In a bounded 3D domain D we consider the following equations:

∂ t u -ν∆u + v∇u + ∇p = f, (2.18) 
(1

-α∆)v = u, div u = 0, div v = 0 in D, (2.19) 
v = u = 0 on ∂D. (2.20) 
where u = (u 1 , u 2 , u 3 ) and v = (v 1 , v 2 , v 3 ) are unknown fields, p(x, t) is the pressure. In the space

H = {u ∈ L 2 (D) 3 : div u = 0 in D and u . n = 0 on ∂D} problem (2.18)-(2.

20) can be written in the form

u t + Au + B(G α u, u) = f ,
where A is the corresponding 3D Stokes operator (defined as in the 2D case by the form

a(u 1 , u 2 ) = ν 3 j=1 D ∇u j 1 ∇u j 2 dx on V ≡ H ∩ H 1 0 (D) 3 ), G α = Id + αν -1 A -1 is the
Green operator and

B(u 1 , u 2 ) , u 3 = 3 i,j=1 D u j 1 ∂ j u i 2 u i 3 dx, u i ∈ V = H ∩ H 1 0 (D) 3 .
Note that the embedding H 1/2 (D) ⊂ L 3 (D) implies that the inequality (2.3) holds true for

H = L 3 (D)
3 ∩ H. Furthermore, Hölder's inequality and the embedding

H 1 (D) ⊂ L 6 (D) imply that for u 1 , u 2 , u 3 ∈ V , | B(G α u 1 , u 2 ) , u 3 | ≤ C u 2 |G α u 1 | L 6 (D) |u 3 | L 3 (D) ≤ C u 2 G α u 1 |u 3 | L 3 (D) ≤ C u 2 |u 1 | L 3 (D) |u 3 | L 3 (D) ,
where the last inequality comes from the fact that A

1 2 G α is a bounded operator on H, so that G α u 1 = |A 1 2 G α u 1 | ≤ C|u 1 | ≤ C|u 1 | L 3 (D) . By Remark 2.1(1) this implies condition (C1) for B α (u 1 , u 2 ) := B(G α u 1 , u 2 ).
2.1.6. Shell models of turbulence. Let H be a set of all sequences u = (u 1 , u 2 , . . .) of complex numbers such that n |u n | 2 < ∞. We consider H as a real Hilbert space endowed with the inner product (•, •) and the norm | • | of the form

(u, v) = Re ∞ n=1 u n v * n , |u| 2 = ∞ n=1 |u n | 2 ,
where v * n denotes the complex conjugate of v n . In this space H we consider the evolution equation (2.1) with R = 0 and with linear operator A and bilinear mapping B defined by the formulas

(Au) n = νk 2 n u u , n = 1, 2, . . . , Dom(A) = u ∈ H : ∞ n=1 k 4 n |u n | 2 < ∞ ,
where ν > 0, k n = k 0 µ n with k 0 > 0 and µ > 1, and

[B(u, v)] n = -i ak n+1 u * n+1 v * n+2 + bk n u * n-1 v * n+1 -ak n-1 u * n-1 v * n-2 -bk n-1 u * n-2 v * n-1
for n = 1, 2, . . ., where a and b are real numbers (here above we also assume that u

-1 = u 0 = v -1 = v 0 = 0)
. This choice of A and B corresponds to the so-called GOY-model (see, e.g., [START_REF] Ohkitani | Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence[END_REF]). If we take

[B(u, v)] n = -i ak n+1 u * n+1 v n+2 + bk n u * n-1 v n+1 + ak n-1 u n-1 v n-2 + bk n-1 u n-2 v n-1
, then we obtain the Sabra shell model introduced in [START_REF] Lvov | Improved shell model of turbulence[END_REF]. In both cases the equation (2.1) is an infinite sequence of ODEs.

One can easily show (see [START_REF] Barbato | Some rigorous results on a stochastic Goy model[END_REF] for the GOY model and [START_REF] Constantin | Analytic study of the shell model of turbulence[END_REF] for the Sabra model) that the trilinear form

B(u, v), w ≡ Re ∞ n=1 [B(u, v)] n w * n
possesses the property (2.2) and also satisfies the inequality

| B(u, v), w | ≤ C|u||A 1/2 v||w|, ∀u, w ∈ H, ∀v ∈ Dom(A 1/2 ).
Thus by Remark 2.1(1) the condition (C1) holds with H = Dom(A s ) for any choice of s ∈ [0, 1/4].

We can also consider the so-called dyadic model (see, e.g., [START_REF] Katz | Finite time blow-up for a dyadic model of the Euler equations[END_REF] and the references therein) which can be written as an infinite system of real ODEs of the form

∂ t u n + νλ 2αn u n -λ n u 2 n-1 + λ n+1 u n u n+1 = f n , n = 1, 2, . . . , (2.21) 
where ν, α > 0, λ > 1, u 0 = 0. Simple calculations show that under the condition α ≥ 1/2 the system (2.21) can be written as (2.1) and that condition (C1) holds for

[B(u, v)] n = -λ n u n-1 v n-1 + λ n+1 u n v n+1 and (Au) n = ν λ 2αn u n .
2.2. Stochastic model. We will consider a stochastic external random force f of the equation in (2.1) driven by a Wiener process W and whose intensity may depend on the solution u. More precisely, let Q be a linear positive operator in the Hilbert space H which belongs to the trace class, and hence is compact.

Let H 0 = Q 1 2 H. Then H 0 is a Hilbert space with the scalar product (φ, ψ) 0 = (Q -1 2 φ, Q -1 2 ψ), ∀φ, ψ ∈ H 0 , together with the induced norm | • | 0 = (•, •) 0 .
The embedding i : H 0 → H is Hilbert-Schmidt and hence compact, and moreover,

i i * = Q. Let L Q ≡ L Q (H 0 , H) be the space of linear operators S : H 0 → H such that SQ 1 2 is a Hilbert-Schmidt operator from H to H. The norm in the space L Q is defined by |S| 2 L Q = tr(SQS * )
, where S * is the adjoint operator of S. The L Q -norm can be also written in the form

|S| 2 L Q = tr([SQ 1/2 ][SQ 1/2 ] * ) = ∞ k=1 |SQ 1/2 ψ k | 2 = ∞ k=1 |[SQ 1/2 ] * ψ k | 2 (2.22)
for any orthonormal basis {ψ k } in H.

Let W (t) be a Wiener process defined on a filtered probability space (Ω, F, F t , P), taking values in H and with covariance operator Q. This means that W is Gaussian, has independent time increments and that for s, t ≥ 0, f, g ∈ H,

E(W (s), f ) = 0 and E(W (s), f )(W (t), g) = s ∧ t) (Qf, g).
We also have the representation

W (t) = lim n→∞ W n (t) in L 2 (Ω; H) with W n (t) = n j=1 q 1/2 j β j (t)e j , (2.23) 
where β j are standard (scalar) mutually independent Wiener processes, {e j } is an orthonormal basis in H consisting of eigen-elements of Q, with Qe j = q j e j . For details concerning this Wiener process we refer to [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF], for instance. The noise intensity σ : [0, T ] × V → L Q (H 0 , H) of the stochastic perturbation which we put in (2.1) is assumed to satisfy the following growth and Lipschitz conditions:

Condition (C2): σ ∈ C [0, T ] × V ; L Q (H 0 , H) ,
and there exist non negative constants K i and L i such that for every t ∈ [0, T ] and u, v ∈ V :

(i) |σ(t, u)| 2 L Q ≤ K 0 + K 1 |u| 2 + K 2 u 2 , (ii) |σ(t, u) -σ(t, v)| 2 L Q ≤ L 1 |u -v| 2 + L 2 u -v 2 . Remark 2.2. Assume that σ ∈ C [0, T ] × Dom(A s ); L Q (H 0 , H) for some s < 1/2 is such that |σ(t, u)| 2 L Q ≤ K ′ 0 + K ′ 1 |A s u| 2 , |σ(t, u) -σ(t, v)| 2 L Q ≤ L ′ |A s (u -v)| 2
for every t ∈ [0, T ] and u, v ∈ Dom(A s ) with some positive constants K ′ 0 , K ′ 1 and L ′ . By interpolation we have that for some constant c 0 > 0 and any η > 0 and u ∈ V :

|A s u| 2 ≤ c 0 |A 1/2 u| 4s |u| 2-4s ≤ η|A 1/2 u| 2 + C η |u| 2 .
(2.24)

Therefore in this case the conditions in (C2) are valid with positive constants K 2 and L 2 which can be taken arbitrary small. This observation is important because in Theorem 2.4 below we impose some restrictions on the values of the parameters K 2 and L 2 .

Recall that for u ∈ V , B(u) = B(u, u). Consider the following stochastic equation

du(t) + Au(t) + B u(t) + Ru(t) dt = σ(t, u(t)) dW (t). (2.25)
For technical reasons, in order to prove a large deviation principle for the law the solution to (2.25), we will need some precise estimates on the solution of the equation deduced from (2.25) by shifting the Brownian W by some random element (see e.g. [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] and [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]). This cannot be deduced from similar ones on u by means of a Girsanov transformation since the Girsanov density is not uniformly bounded when the intensity of the noise tends to zero (see [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]). Thus we also need to consider the corresponding shifted problem.

To describe a set of admissible random shifts we introduce the class A as the set of H 0 -valued (F t )-predictable stochastic processes h such that

T 0 |h(s)| 2 0 ds < ∞, a.s. Let S M = h ∈ L 2 (0, T ; H 0 ) : T 0 |h(s)| 2 0 ds ≤ M .
The set S M endowed with the following weak topology is a Polish space (complete separable metric space) [START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF]:

d 1 (h, k) = ∞ i=1 1 2 i T 0 h(s) -k(s), ẽi (s) 0 ds , where {ẽ i (s)} ∞ i=1 is an orthonormal basis for L 2 (0, T ; H 0 ). Define A M = {h ∈ A : h(ω) ∈ S M , a.s.}.
(2.26)

In order to define the stochastic control equation, we introduce another intensity coefficient σ and also nonlinear feedback forcing R (instead of R) which satisfy Condition (C3): (i) σ ∈ C [0, T ] × V ; L(H 0 , H) and there exist constants KH , Ki , and Lj , for i = 0, 1 and j = 1, 2 such that

|σ(t, u)| 2 L(H 0 ,H) ≤ K0 + K1 |u| 2 + KH u 2 H , ∀t ∈ [0, T ], ∀u ∈ V, (2.27 
)

|σ(t, u) -σ(t, v)| 2 L(H 0 ,H) ≤ L1 |u -v| 2 + L2 u -v 2 , ∀t ∈ [0, T ], ∀u, v ∈ V, (2.28) 
where | • | L(H 0 ,H) denotes the (operator) norm in the space L(H 0 , H) of all bounded linear operators from H 0 into H.

(ii) R : [0, T ] × H → H is a continuous mapping such that | R(t, 0)| ≤ R 0 , | R(t, u) -R(t, v)| ≤ R 1 |u -v|, ∀u, v ∈ H, ∀t ∈ [0, T ],
for non-negative constants R 0 and R 1 .

Remark 2.3. In contrast with Condition (C2) our hypotheses concerning the control intensity coefficient σ involve a weaker topology (we deal with the operator norm Let M > 0, h ∈ A M and ξ ∈ H. Under Conditions (C2) and (C3) we consider the nonlinear SPDE with initial condition u h (0) = ξ:

|•| L(H 0 ,H) instead of the trace class norm | • | L Q ).
du h (t)+ Au h (t)+B u h (t) + R(t, u h (t)) dt = σ(t, u h (t)) dW (t)+σ(t, u h (t))h(t) dt. (2.29)
Fix T > 0 and let X := C [0, T ]; H ∩ L 2 0, T ; V denote the Banach space with the norm defined by

u X = sup 0≤s≤T |u(s)| 2 + T 0 u(s) 2 ds 1 2 .
(2.30)

Recall that an (F t )-predictable stochastic process u h (t, ω) is called a weak solution in X for the stochastic equation (2.29) on [0, T ] with initial condition ξ if u ∈ X = C([0, T ]; H)∩ L 2 ((0, T ); V ), a.s., and satisfies

(u h (t), v) -(ξ, v) + t 0 [ u h (s), Av + B(u h (s)) , v + ( R(s, u h (s)), v)]ds = t 0 σ(s, u h (s))dW (s), v + t 0 σ(s, u h (s))h(s) , v ds, a.s.,
for all v ∈ Dom(A) and all t ∈ [0, T ]. Note that this solution is a strong one in the probabilistic meaning, that is written in terms of stochastic integrals with respect to the given Brownian motion W .

The following assertion shows that equation (2.25), as well as (2.29), has a unique solution in X, and the X-norm of the solution u h to (2.29) satisfies a priori bounds depending on M when h ∈ A M .

Theorem 2.4. Assume that Conditions (C1)-(C2) are satisfied, and that either condition (i) or else (ii) below hold true:

(i) σ = σ and R satisfies condition (C3)(ii);

(ii) Condition (C3) is satisfied. Then for every M > 0 and T > 0 there exists K2 := K 2 (T, M ) > 0, (which also depends on K i , Ki and R i , i = 0, 1, and on KH ) such that under conditions E|ξ| 4 < ∞, h ∈ A M , K 2 ∈ [0, K2 [ and L 2 < 2 there exists a weak solution u h in X of the equation (2.29) with initial data u h (0) = ξ ∈ H. Furthermore, for this solution there exists a constant 

C := C(K i , L i , Ki , KH , Li , R i , T, M ) such that for h ∈ A M , E sup 0≤t≤T |u h (t)| 4 + T 0 u h (t) 2 dt + T 0 u h (t) 4 H dt ≤ C 1 + E|ξ| 4 . ( 2 
ψ(t) ∈ L 2 (0, T ) such that |h(t)| 0 ≤ ψ(t) a.s.
The proof is similar to that given in [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF] for 2D Boussinesq model (2.16) and (2.17) (see also [START_REF] Menaldi | Stochastic 2-D Navier-Stokes equation[END_REF][START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] for the case of 2D Navier-Stokes equations (2.9)). However, since we deal with an abstract hydrodynamical model under a minimal set of hypotheses, the argument requires substantial modifications. For the sake of completeness we give a detailed proof in an Appendix (see Section 4). Note that only the case σ = σ will be used for the large deviations results. However, the general case is needed in some other frameworks, such as the support characterization of the distribution to equation (2.25) in [START_REF] Chueshov | Stochastic 2D hydrodynamical systems: Support theorem[END_REF].

Large deviations

We consider large deviations using a weak convergence approach [START_REF] Budhiraja | A variational representation for positive functionals of infinite dimensional Brownian motion[END_REF][START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF], based on variational representations of infinite dimensional Wiener processes. Let ε > 0 and let u ε denote the solution to the following equation

du ε (t) + [Au ε (t) + B(u ε (t)) + R(t, u ε (t))] dt = √ ε σ(t, u ε (t)) dW (t) , u ε (0) = ξ ∈ H. (3.1)
Theorem 2.4 shows that for a any choice of K 2 and L 2 , for ε small enough the solution of (3.1) exists and is unique in

X := C([0, T ], H) ∩ L 2 ([0, T ], V ); it is denoted by u ε = G ε ( √ εW ) for a Borel measurable function G ε : C([0, T ], H) → X.
A detailed proof of the existence of a such function G ε is given in [START_REF] Röckner | Yamada-Watanabe Theorem for Stochastic Evolution Equations in Infinite Dimension[END_REF].

Let B(X) denote the Borel σ-field of the Polish space X endowed with the metric associated with the norm defined by (2.30). We recall some classical definitions; by convention the infimum over an empty set is +∞. Definition 3.1. The random family (u ε ) is said to satisfy a large deviation principle on X with the good rate function I if the following conditions hold:

I is a good rate function. The function function

I : X → [0, ∞] is such that for each M ∈ [0, ∞[ the level set {φ ∈ X : I(φ) ≤ M } is a compact subset of X. For A ∈ B(X), set I(A) = inf u∈A I(u).
Large deviation upper bound. For each closed subset F of X:

lim sup ε→0 ε log P(u ε ∈ F ) ≤ -I(F ).
Large deviation lower bound. For each open subset G of X:

lim inf ε→0 ε log P(u ε ∈ G) ≥ -I(G).
For all h ∈ L 2 ([0, T ], H 0 ), let u h be the solution of the corresponding control equation (3.2) with initial condition u h (0) = ξ:

du h (t) + [Au h (t) + B(u h (t)) + R(t, u h (t))]dt = σ(t, u h (t))h(t)dt. (3.2) Let C 0 = { . 0 h(s)ds : h ∈ L 2 ([0, T ], H 0 )} ⊂ C([0, T ], H 0 ). Define G 0 : C([0, T ], H 0 ) → X by G 0 (g) = u h for g = .
0 h(s)ds ∈ C 0 and G 0 (g) = 0 otherwise. Since the argument below requires some information about the difference of the solution at two different times, we need an additional assumption about the regularity of the map σ(., u).

Condition (C4) (Time Hölder regularity of σ):

There exist constants γ > 0 and C ≥ 0 such that for t 1 , t 2 ∈ [0, T ] and u ∈ V :

|σ(t 1 , u) -σ(t 2 , u)| L Q ≤ C (1 + u ) |t 1 -t 2 | γ .
The following theorem is the main result of this section. Theorem 3.2. Suppose the conditions (C1) and (C2) with K 2 = L 2 = 0 are satisfied. Suppose furthermore that the conditions (C3 (ii)) and (C4) hold. Then the solution (u ε ) to (3.1) satisfies the large deviation principle in X = C([0, T ]; H) ∩ L 2 ((0, T ); V ), with the good rate function

I ξ (u) = inf {h∈L 2 (0,T ;H 0 ): u=G 0 ( R . 0 h(s)ds)} 1 2 T 0 |h(s)| 2 0 ds . (3.3) 
We at first prove the following technical lemma, which studies time increments of the solution to a stochastic control problem extending both (3.1) and (3.2). When σ, σ and R satisfy (C2) and (C3), h ∈ A M , the stochastic control problem is defined as in (2.29):

u ε h (0) = ξ and du ε h (t) + [Au ε h (t) + B(u ε h (t)) + R(t, u ε h (t))] dt = √ ε σ(t, u ε h (t)) dW (t) + σ(t, u ε h (t)) h(t) dt.
(3.4) To state the lemma mentioned above, we need the following notations. For every integer n, let ψ n : [0, T ] → [0, T ] denote a measurable map such that for every s ∈ [0, T ], s ≤ ψ n (s) ≤ s + c2 -n ) ∧ T for some positive constant c. Given N > 0, h ∈ A M , and for t ∈ [0, T ], let

G N (t) = ω : sup 0≤s≤t |u ε h (s)(ω)| 2 ∨ t 0 u ε h (s)(ω) 2 ds ≤ N .
As in Proposition 4.2, we can use a relaxed form of condition (C3 (i)) in order to perform calculations in the following lemma; this more general setting is again used in [START_REF] Chueshov | Stochastic 2D hydrodynamical systems: Support theorem[END_REF].

Lemma 3.3. Let ε 0 , M, N > 0, σ satisfy condition (C2) and σ satisfy (2.28) and the following condition (3.5)

|σ(t, u)| 2 L(H 0 ,H) ≤ K0 + K1 |u| 2 + K2 u 2 , ∀t ∈ [0, T ], ∀u ∈ V, (3.5) 
instead of (2.27). Assume that ξ ∈ L 4 (Ω; H) and let u h (t) be solution of (3.4) satisfying the conclusion of Theorem 2.4. Then there exists a positive constant C (depending on

K i , Ki , i = 0, 1, 2, L j , Lj , j = 1, 2, R 1 , T, M, N, ε 0 ) such that for any h ∈ A M , ε ∈ [0, ε 0 ], I n (h, ε) := E 1 G N (T ) T 0 |u ε h (s) -u ε h (ψ n (s))| 2 ds ≤ C 2 -n 2 . (3.6)
Proof. The proof is close to that of Lemma 4.2 in [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]. However we deal with a class of more general functions ψ n (s) and do not assume that K 2 = L 2 = K2 = L2 = 0. As above, to lighten the notation we skip the time dependence of σ, σ and R. Let h ∈ A M , ε ≥ 0; for any s ∈ [0, T ], Itô's formula yields

|u ε h (ψ n (s)) -u ε h (s)| 2 = 2 ψn(s) s (u ε h (r) -u ε h (s), du ε h (r)) + ε ψn(s) s |σ(u ε h (r))| 2 L Q dr.
Therefore I n (h, ε) = 1≤i≤6 I n,i , where

I n,1 = 2 √ ε E 1 G N (T ) T 0 ds ψn(s) s σ(u ε h (r))dW (r) , u ε h (r) -u ε h (s) , I n,2 = ε E 1 G N (T ) T 0 ds ψn(s) s |σ(u ε h (r))| 2 L Q dr , I n,3 = 2 E 1 G N (T ) T 0 ds ψn(s) s σ(u ε h (r)) h(r) , u ε h (r) -u ε h (s) dr , I n,4 = -2 E 1 G N (T ) T 0 ds ψn(s) s A u ε h (r) , u ε h (r) -u ε h (s) dr , I n,5 = -2 E 1 G N (T ) T 0 ds ψn(s) s B(u ε h (r)) , u ε h (r) -u ε h (s) dr , I n,6 = -2 E 1 G N (T ) T 0 ds ψn(s) s R(u ε h (r)) , u ε h (r) -u ε h (s) dr . Clearly G N (T ) ⊂ G N (r) for r ∈ [0, T ]. In particular this means that |u ε h (r)| + |u ε h (s)| ≤ N on G N (r) for 0 ≤ s ≤ r ≤ T .
We use this observation in the considerations below.

The Burkholder-Davis-Gundy inequality and (C2) yield for 0

≤ ε ≤ ε 0 |I n,1 | ≤ 6 √ ε T 0 ds E ψn(s) s |σ(u ε h (r))| 2 L Q 1 G N (r) |u ε h (r) -u ε h (s)| 2 dr 1 2 ≤ 6 2ε 0 N T 0 ds E ψn(s) s [K 0 + K 1 |u ε h (r)| 2 + K 2 u ε h (r) 2 ] dr 1 2 .
Schwarz's inequality and Fubini's theorem as well as (2.31), which holds uniformly in ε ∈]0, ε 0 ] for fixed ε 0 > 0 since the constants K i and L i are multiplied by at most ε 0 , imply

|I n,1 | ≤ 6 2ε 0 N T E T 0 K 0 + K 1 |u ε h (r)| 2 + K 2 u ε h (r) 2 r (r-c2 -n )∨0
ds dr

1 2 ≤ C 1 2 -n 2 (3.7)
for some constant C 1 depending only on K i , Ki , i = 0, 1, 2, L j , Lj , j = 1, 2, R 1 , M , ε 0 , N and T . The property (C2) and Fubini's theorem imply that for 0

≤ ε ≤ ε 0 , |I n,2 | ≤ ε E 1 G N (T ) T 0 ds ψn(s) s K 0 + K 1 |u ε h (r)| 2 + K 2 u ε h (r) 2 dr ≤ ε 0 E T 0 1 G N (T ) (K 0 + K 1 N + K 2 u ε h (r) 2 ) c2 -n dr ≤ C 2 2 -n (3.8)
for some constant C 2 depending on K i , i = 0, 1, 2, ε 0 , N and T . Schwarz's inequality, Fubini's theorem, (C2) and the definition (2.26) of A M yield

|I n,3 | ≤ 2 E 1 G N (T ) T 0 ds × ψn(s) s K0 + K1 |u ε h (r)| 2 + K2 u ε h (r) 2 1 2 |h(r)| 0 | u ε h (r) -u ε h (s)| dr ≤ 4 √ N E T 0 1 G N (T ) |h(r)| 0 ( K0 + K1 N + K2 u ε h (r) 2 ) 1 2 r (r-c2 -n )∨0
ds dr

≤ 4 √ N c2 -n √ M E 1 G N (T ) T 0 ( K0 + K1 N + K2 u ε h (r) 2 ) dr 1 2 ≤ C 3 2 -n , (3.9) 
for some constant C 3 depending on Ki , i = 0, 1, 2, M and N . Using Schwarz's inequality we deduce that

I n,4 ≤ 2E 1 G N (T ) T 0 ds ψn(s) s dr -u ε h (r) 2 + u ε h (r) u ε h (s) ≤ 1 2 E 1 G N (T ) T 0 ds u ε h (s) 2 ψn(s) s dr ≤ c N 2 -(n+1) . (3.10)
The antisymmetry relation (2.2) and inequality (2.7) yields

B(u ε h (r)) , u ε h (r) -u ε h (s) = B(u ε h (r)) , u ε h (s) ≤ u ε h (r) 2 + C|u ε h (r)| 2 u ε h (s) 4 H . Therefore, |I n,5 | ≤ 2E 1 G N (T ) T 0 ds ψn(s) s dr u ε h (r) 2 + 2CE 1 G N (T ) T 0 ds u ε h (s) 4 H ψn(s) s dr|u ε h (r)| 2 ≡ I (1) 
n,5 + I

Fubini's theorem implies

I (1) n,5 ≤ 2E 1 G N (T ) T 0 dr u ε h (r) 2 r (r-c2 -n )∨0 ds ≤ 2c 2 -n E 1 G N (T ) T 0 dr u ε h (r) 2 ≤ CN 2 -n . (3.12)
Using (2.3), we deduce that on G N (T ) we have

T 0 u ε h (s) 4 H ds ≤ a 2 0 sup s∈[0,T ] |u ε h (s) 2 T 0 u ε h (s) 2 ds ≤ a 2 0 N 2 .
Thus

I (2) n,5 ≤ 2CN E 1 G N (T ) T 0 ds u ε h (s) 4 H c2 -n ≤ 2a 2 0 CN 3 c2 -n . (3.13) 
Finally, Schwarz's inequality implies that Let ε 0 > 0, (h ε , 0 < ε ≤ ε 0 ) be a family of random elements taking values in the set A M given by (2.26). Let u hε , or strictly speaking, u ε hε , be the solution of the corresponding stochastic control equation with initial condition u hε (0) = ξ ∈ H:

|I n,6 | ≤ 2 E 1 G N (T ) T 0 ds ψn(s) s (R 0 + R 1 |u ε h (r)|) (|u ε h (r)| + |u ε h (s)|) dr ≤ CN 2 2 -n . ( 3 
du hε + [Au hε + B(u hε ) + R(t, u hε )]dt = σ(t, u hε )h ε (t)dt + √ ε σ(t, u hε )dW (t). (3.16) Note that for W ε . = W . + 1 √ ε . 0 h ε (s)ds we have that u hε = G ε √ εW ε .
The following proposition establishes the weak convergence of the family (u hε ) as ε → 0. Its proof is similar to that of Proposition 4.3 in [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF], but allows time dependent coefficients R and σ. Proposition 3.4. Suppose that the conditions (C1) and (C2) are satisfied with K 2 = L 2 = 0. Suppose furthermore that R and σ satisfy the conditions (C3)(ii) and (C4). Let ξ be F 0 -measurable such that E|ξ| 4 H < +∞, and let h ε converge to h in distribution as random elements taking values in A M , where this set is defined by (2.26) and endowed with the weak topology of the space L 2 (0, T ; H 0 ). Then as ε → 0, the solution u hε of (3.16) converges in distribution to the solution u h of (3.2) in X = C([0, T ]; H) ∩ L 2 ((0, T ); V ) endowed with the norm (2.30). That is, as

ε → 0, G ε √ ε W . + 1 √ ε . 0 h ε (s)ds converges in distribution to G 0 .
0 h(s)ds in X. Proof. Since A M is a Polish space (complete separable metric space), by the Skorokhod representation theorem, we can construct processes ( hε , h, W ε ) such that the joint distribution of ( hε , W ε ) is the same as that of (h ε , W ε ), the distribution of h coincides with that of h, and hε → h, a.s., in the (weak) topology of S M . Hence a.s. for every t ∈ [0, T ], t 0 hε (s)ds -t 0 h(s)ds → 0 weakly in H 0 . To lighten notations, we will write ( hε , h, W ε ) = (h ε , h, W ).

Let U ε = u hεu h ; then U ε (0) = 0 and

dU ε + AU ε + B(u hε ) -B(u h ) + R(t, u hε ) -R(t, u h ) dt = σ(t, u hε )h ε -σ(t, u h )h dt + √ ε σ(t, u hε )dW (t).
(3.17)

On any finite time interval [0, t] with t ≤ T , Itô's formula, (2.8) with η = 1 2 and condition (C2) yield for ε ≥ 0:

|U ε (t)| 2 + 2 t 0 U ε (s) 2 ds = -2 t 0 B(u hε (s)) -B(u h (s)) , U ε (s) ds -2 t 0 R(s, u hε (s)) -R(s, u h (s)) , U ε (s) ds + 2 t 0 σ(s, u hε (s))h ε (s) -σ(s, u h (s)) h(s), U ε (s) ds + 2 √ ε t 0 U ε (s), σ(s, u hε (s))dW (s) + ε t 0 |σ(s, u hε (s))| 2 L Q ds ≤ t 0 U ε (s) 2 ds + 3 i=1 T i (t, ε) + 2 t 0 C 1 2 u h (s) 4 H + R 1 + L 1 |h ε (s)| 0 |U ε (s)| 2 ds,
where

T 1 (t, ε) = 2 √ ε t 0 U ε (s), σ(s, u hε (s)) dW (s) , T 2 (t, ε) = ε t 0 (K 0 + K 1 |u hε (s)| 2 )ds, T 3 (t, ε) = 2 t 0 σ(s, u h (s)) h ε (s) -h(s) , U ε (s) ds.
This yields the following inequality

|U ε (t)| 2 + t 0 U ε (s) 2 ds ≤ 3 i=1 T i (t, ε) + 2 t 0 C 1 2 u h (s) 4 H + R 1 + L 1 |h ε (s)| 0 |U ε (s)| 2 ds.
(3.18) We want to show that as ε → 0, U ε X → 0 in probability, which implies that u hε → u h in distribution in X. Fix N > 0 and for t ∈ [0, T ] let

G N (t) = sup 0≤s≤t |u h (s)| 2 ≤ N ∩ t 0 u h (s) 2 ds ≤ N , G N,ε (t) = G N (t) ∩ sup 0≤s≤t |u hε (s)| 2 ≤ N ∩ t 0 u hε (s) 2 ds ≤ N .
The proof consists in two steps.

Step 1: For any ε 0 ∈]0, 1]0, sup

0<ε≤ε 0 sup h,hε∈A M P(G N,ε (T ) c ) → 0 as N → ∞.
Indeed, for ε ∈]0, ε 0 ], h, h ε ∈ A M , the Markov inequality and the a priori estimate (2.31), which holds uniformly in ε ∈]0, ε 0 ], imply

P(G N,ε (T ) c ) ≤ P sup 0≤s≤T |u h (s)| 2 > N + P sup 0≤s≤T |u hε (s)| 2 > N + P T 0 u h (s) 2 ds > N + P T 0 u hε (s) 2 ds > N ≤ 1 N sup h,hε∈A M E sup 0≤s≤T |u h (s)| 2 + sup 0≤s≤T |u hε (s)| 2 + T 0 ( u h (s) 2 + u hε (s) 2 )ds ≤ C 1 + E|ξ| 4 N -1 , (3.19) 
for some constant C depending on T and M .

Step 2: Fix N > 0, h, h ε ∈ A M such that as ε → 0, h ε → h a.s. in the weak topology of L 2 (0, T ; H 0 ); then one has as ε → 0:

E 1 G N,ε (T ) sup 0≤t≤T |U ε (t)| 2 + T 0 U ε (t) 2 dt → 0. (3.20)
Indeed, (3.18) and Gronwall's lemma imply that on G N,ε (T ),

sup 0≤t≤T |U ε (t)| 2 ≤ sup 0≤t≤T T 1 (t, ε) + T 3 (t, ε) + εC * exp 2a 0 C 1 2 N 2 + 2R 1 T + 2 L 1 M T ,
where C * = T (K 0 + K 1 N ). We also use here the fact that by (2.3)

T 0 u h (s) 4 H ds ≤ a 0 sup s∈[0,T ] |u h (s)| 2 T 0 u h (s) 2 ds ≤ a 0 N 2 on G N,ε (T ).
Using again (3.18) we deduce that for some constant C = C(T, M, N ), one has for every ε > 0:

E 1 G N,ε (T ) U ε 2 X ≤ C ε + E 1 G N,ε (T ) sup 0≤t≤T T 1 (t, ε) + T 3 (t, ε) . (3.21) Since the sets G N,ε (.) decrease, E 1 G N,ε (T ) sup 0≤t≤T |T 1 (t, ε)| ≤ E(λ ε )
, where

λ ε := 2 √ ε sup 0≤t≤T t 0 1 G N,ε (s) U ε (s), σ(s, u hε (s))dW (s) .
The scalar-valued random variables λ ε converge to 0 in L 1 as ε → 0. Indeed, by the Burkholder-Davis-Gundy inequality, (C2) and the definition of G N,ε (s), we have

E(λ ε ) ≤ 6 √ ε E T 0 1 G N,ε (s) |U ε (s)| 2 |σ(s, u hε (s))| 2 L Q ds 1 2 ≤ 6 √ ε E 4N T 0 1 G N,ε (s) (K 0 + K 1 |u hε (s)| 2 )ds 1 2 ≤ C(T, N ) √ ε. (3.22)
In further estimates we use Lemma 3.3 with ψ n = sn , where sn is the step function defined in (3.15). For any n, N ≥ 1, if we set t k = kT 2 -n for 0 ≤ k ≤ 2 n , we obviously have

E 1 G N,ε (T ) sup 0≤t≤T |T 3 (t, ε)| ≤ 2 4 i=1 Ti (N, n, ε) + 2 E T5 (N, n, ε) , (3.23) 
where

T1 (N, n, ε) =E 1 G N,ε (T ) sup 0≤t≤T t 0 σ(s, u h (s)) h ε (s) -h(s) , U ε (s) -U ε (s n ) ds , T2 (N, n, ε) =E 1 G N,ε (T ) × sup 0≤t≤T t 0 [σ(s, u h (s)) -σ(s n , u h (s))](h ε (s) -h(s)) , U ε (s n ) ds , T3 (N, n, ε) =E 1 G N,ε (T ) × sup 0≤t≤T t 0 σ(s n , u h (s)) -σ(s n , u h (s n )) h ε (s) -h(s) , U ε (s n ) ds , T4 (N, n, ε) =E 1 G N,ε (T ) sup 1≤k≤2 n sup t k-1 ≤t≤t k σ(t k , u h (t k )) t t k-1 (h ε (s) -h(s)) ds , U ε (t k ) T5 (N, n, ε) =1 G N,ε (T ) 2 n k=1 σ(t k , u h (t k )) t k t k-1 h ε (s) -h(s) ds , U ε (t k ) .
Using Schwarz's inequality, (C2) and Lemma 3.3 with ψ n = sn , we deduce that for some constant C1 := C(T, M, N ) and any ε ∈]0, ε 0 ],

T1 (N, n, ε) ≤ E 1 G N,ε (T ) T 0 K 0 + K 1 |u h (s)| 2 1 2 |h ε (s) -h(s)| 0 U ε (s) -U ε (s n ) ds ≤ E 1 G N,ε (T ) T 0 |u hε (s) -u hε (s n )| 2 + |u h (s) -u h (s n )| 2 ds 1 2 × 2(K 0 + K 1 N ) E T 0 |h ε (s) -h(s)| 2 0 ds 1 2 ≤ C1 2 -n 4 . ( 3 

.24)

A similar computation based on (C2) and Lemma 3.3 yields for some constant C3 := C(T, M, N ) and any ε ∈]0,

ε 0 ] T3 (N, n, ε) ≤ 2N L 1 E 1 G N,ε (T ) T 0 |u h (s) -u h (s n )| 2 ds 1 2 E T 0 |h ε (s) -h(s)| 2 0 ds 1 2 ≤ C3 2 -n 4 . (3.25)
The Hölder regularity (C4) imposed on σ(., u) and Schwarz's inequality imply that

T2 (N, n, ε) ≤ C √ N 2 -nγ E 1 G N,ε (T ) T 0 (1 + u h (s) ) |h ε (s)-h(s)| ds ≤ C2 2 -nγ (3.26)
for some constant C2 = C(T, M, N ). Using Schwarz's inequality and (C2) we deduce for C4 = C(N, M ) and any ε ∈]0,

ε 0 ] T4 (N, n, ε) ≤ E 1 G N,ε (T ) sup 1≤k≤2 n K 0 + K 1 |u h (t k )| 2 1 2 t k t k-1 |h ε (s) -h(s)| 0 ds |U ε (t k )| ≤ 2 N (K 0 + K 1 N ) E sup 1≤k≤2 n t k t k-1 |h ε (s) -h(s)| 0 ds ≤ 4 C4 2 -n 2 . (3.27)
Finally, note that the weak convergence of h ε to h implies that for any a, b ∈ [0, T ], a < b, the integral b a h ε (s)ds → b a h(s)ds in the weak topology of H 0 . Therefore, since for the operator σ(t k , u h (t k )) is compact from H 0 to H, we deduce that for every k,

σ(t k , u h (t k )) t k t k-1 h ε (s)ds - t k t k-1 h(s)ds H → 0 as ε → 0.
Hence a.s. for fixed n as ε → 0, T5 (N, n, ε, ω) → 0. Furthermore, T5 (N, n, ε, ω) ≤ C(K 0 , K 1 , N, M ) and hence the dominated convergence theorem proves that for any fixed n, N , E( T5 (N, n, ε)) → 0 as ε → 0.

Thus, (3.23)-(3.27) imply that for any fixed N ≥ 1 and any integer n ≥ 1

lim sup ε→0 E 1 G N,ε (T ) sup 0≤t≤T |T 3 (t, ε)| ≤ C N,T,M 2 -n(γ∧ 1 4 ) .
Since n is arbitrary, this yields for any integer N ≥ 1:

lim ε→0 E 1 G N,ε (T ) sup 0≤t≤T |T 3 (t, ε)| = 0.
Therefore from (3.21) and (3.22) we obtain (3.20). By the Markov inequality

P( U ε X > δ) ≤ P(G N,ε (T ) c ) + 1 δ 2 E 1 G N,ε (T ) U ε 2 X
for any δ > 0.

Finally, (3.19) and (3.20) yield that for any integer N ≥ 1,

lim sup ε→0 P( U ε X > δ) ≤ C(T, M )N -1 ,
for some constant C(T, M ) which does not depend on N . This implies lim ε→0 P( U ε X > δ) = 0 for any δ > 0, which concludes the proof of the proposition.

The following compactness result is the second ingredient which allows to transfer the LDP from √ εW to u ε . Its proof is similar to that of Proposition 3.4 and easier; it will be sketched (see also [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF], Proposition 4.4).

Proposition 3.5. Suppose that (C1) and (C2) hold with K 2 = L 2 = 0 and that conditions (C3)(ii) and (C4) hold. Fix M > 0, ξ ∈ H and let

K M = {u h ∈ X : h ∈ S M }, where u h is the unique solution of the deterministic control equation (3.2) and X = C([0, T ]; H) ∩ L 2 (0, T ; V ). Then K M is a compact subset of X.
Proof. Let {u n } be a sequence in K M , corresponding to solutions of (3.2) with controls {h n } in S M :

du n (t) + Au n (t) + B(u n (t)) + R(t, u n (t)) dt = σ(t, u n (t))h n (t)dt, u n (0) = ξ.
Since S M is a bounded closed subset in the Hilbert space L 2 (0, T ; H 0 ), it is weakly compact. So there exists a subsequence of {h n }, still denoted as {h n }, which converges weakly to a limit h in L 2 (0, T ; H 0 ). Note that in fact h ∈ S M as S M is closed. We now show that the corresponding subsequence of solutions, still denoted as {u n }, converges in X to u which is the solution of the following "limit" equation

du(t) + [Au(t) + B(u(t)) + R(t, u(t))]dt = σ(t, u(t))h(t)dt, u(0) = ξ.
This will complete the proof of the compactness of K M . To ease notation we will often drop the time parameters s, t, ... in the equations and integrals. Let U n = u nu; using (2.8) with η = 1 2 , (C2) and Young's inequality, we deduce that for t ∈ [0, T ],

|U n (t)| 2 + 2 t 0 U n (s) 2 ds = -2 t 0 B(u n (s)) -B(u(s)), U n (s) ds -2 t 0 R(s, u n (s)) -R(s, u h (s)), U n (s) ds + 2 t 0 σ(s, u n (s)) -σ(s, u(s)) h n (s), U n (s) + σ(s, u(s)) h n (s) -h(s) , U n (s) ds ≤ t 0 U n (s) 2 ds + 2 t 0 |U n (s)| 2 C 1 2 u(s) 4 H + R 1 + L 1 |h n (s)| 0 ds + 2 t 0 σ(s, u(s)) [h n (s) -h(s)] , U n (s) ds. (3.28)
The inequality (2.31) implies that there exists a finite positive constant C such that

sup n sup 0≤t≤T |u(t)| 2 + |u n (t)| 2 + T 0 u(s) 2 + u(s) 4 H + u n (s) 2 ds = C. (3.29) Thus Gronwall's lemma implies that sup t≤T |U n (t)| 2 + T 0 U n (t) 2 dt ≤ exp 2 C 1 2 C + R 1 T + L 1 M T 5 i=1 I i n,N , (3.30) 
where, as in the proof of Proposition 3.4, we have:

I 1 n,N = T 0 σ(s, u(s)) [h n (s) -h(s)] , U n (s) -U n (s N ) ds, I 2 n,N = T 0 σ(s, u(s)) -σ(s N , u(s)) [h n (s) -h(s)] , U n (s N ) ds, I 3 n,N = T 0 σ(s N , u(s)) -σ(s N , u(s N )) [h n (s) -h(s)] , U n (s N ) ds, I 4 n,N = sup 1≤k≤2 N sup t k-1 ≤t≤t k σ(t k , u(t k )) t t k-1 (h ε (s) -h(s))ds , U n (t k ) , I 5 n,N = 2 N k=1 σ(t k , u(t k )) t k t k-1 [h n (s) -h(s)] ds , U n (t k ) .
Schwarz's inequality, (C2) and Lemma 3.3 imply that for some constants C i , which do not depend on n and N ,

I 1 n,N ≤ C 0 T 0 |h n (s) -h(s)| 2 0 ds 1 2 T 0 |u n (s) -u n (s N )| 2 + |u(s) -u(s N )| 2 ds 1 2 ≤ C 1 2 -N 4 , (3.31) 
I 3 n,N ≤ C 0 T 0 |u(s) -u(s N )| 2 ds 1 2 T 0 |h n (s) -h(s)| 2 0 ds 1 2 ≤ C 3 2 -N 4 , (3.32) 
I 4 n,N ≤ C 0 1 + sup 0≤t≤T |u(t)| sup 0≤t≤T |u(t)| + |u n (t)| 2 -N 2 ≤ C 4 2 -N 2 . (3.33)
Furthermore, condition (C4) implies that

I 2 n,N ≤ C 0 2 -N γ sup 0≤t≤T |u(t)| + |u n (t)| T 0 (1 + u(s) )(|h(s)| 0 + |h n (s)| 0 ) ds ≤ C 2 2 -N γ .
(3.34) For fixed N and k = 1, • • • , 2 N , as n → ∞, the weak convergence of h n to h implies that of

t k t k-1 (h n (s) -h(s))ds to 0 weakly in H 0 . Since σ(u(t k )
) is a compact operator, we deduce that for fixed k the sequence σ(u(t k )) 

t k t k-1 (h n (s) -h(s))ds converges to 0 strongly in H as n → ∞. Since sup n,k |U n (t k )| ≤ 2 √ C,
n→∞ sup t≤T |U n (t)| 2 + T 0 U n (t) 2 dt ≤ C2 -N (γ∧ 1 4 ) .
Since N is arbitrary, we deduce that U n X → 0 as n → ∞. This shows that every sequence in K M has a convergent subsequence. Hence K M is a sequentially relatively compact subset of X. Finally, let {u n } be a sequence of elements of K M which converges to v in X. The above argument shows that there exists a subsequence {u n k , k ≥ 1} which converges to some element u h ∈ K M for the same topology of X. Hence v = u h , K M is a closed subset of X, and this completes the proof of the proposition.

Proof of Theorem 3.2: Propositions 3.5 and 3.4 imply that the family {u ε } satisfies the Laplace principle, which is equivalent to the large deviation principle, in X with the rate function defined by (3.3); see Theorem 4.4 in [START_REF] Budhiraja | A variational representation for positive functionals of infinite dimensional Brownian motion[END_REF] or Theorem 5 in [START_REF] Budhiraja | Large deviations for infinite dimensional stochastic dynamical systems[END_REF]. This concludes the proof of Theorem 3.2. 2

Appendix : Proof of the Well posedness and apriori bounds

The aim of this section is to prove Theorem 2.4. We at first suppose that conditions (C1)-(C3) are satisfied. Let F : [0, T ] × V → V ′ be defined by

F (t, u) = -Au -B(u, u) -R(t, u) , ∀t ∈ [0, T ], ∀u ∈ V.
To lighten notations, we suppress the dependence of σ, σ, R and F on t. The inequality (2.8) implies that any η > 0 there exists C η > 0 such that for u, v ∈ V ,

F (u) -F (v) , u -v ≤ -(1 -η) u -v 2 + R 1 + C η v 4 H |u -v| 2 . ( 4.1) 
Let {ϕ n } n≥1 be an orthonormal basis of the Hilbert space H such that ϕ n ∈ Dom(A).

For any n ≥ 1, let 

H n = span(ϕ 1 , • • • , ϕ n ) ⊂ Dom(A
(u)| 2 L Q ≤ |σ(u)| 2 L Q . For h ∈ A M ,
consider the following stochastic ordinary differential equation on the n-dimensional space H n defined by u n,h (0) = P n ξ, and for v ∈ H n :

d(u n,h (t), v) = F (u n,h (t)), v + (σ(u n,h (t))h(t), v) dt + (σ(u n,h (t))dW n (t), v), (4.2)
where W n (t) is defined in (2.23). Then for k = 1, • • • , n we have

d(u n,h (t), ϕ k ) = F (u n,h (t)), ϕ k + (σ(u n,h (t))h(t), ϕ k ) dt + n j=1 q 1 2 j σ(u n,h (t))e j , ϕ k dβ j (t).
Note that for v ∈ H n the map u ∈ H n → Au + R(u) , v is globally Lipschitz uniformly in t, while using (2.7) we deduce that the map u ∈ H n → B(u) , v is locally Lipschitz. Furthermore, since there exists some constant

C(n) such that v ≤ C(n)|v| for v ∈ H n , Conditions (C1) and (C2) imply that the map u ∈ H n → (σ n (u)e j , ϕ k ) : 1 ≤ j, k ≤ n , respectively u ∈ H n → (σ n (u)h(t) , ϕ k ) : 1 ≤ k ≤ n , is globally Lipschitz from H n to n × n matrices, respectively to R n uniformly in t.
Hence by a well-known result about existence and uniqueness of solutions to stochastic differential equations [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF], there exists a maximal solution u n,h = n k=1 (u n,h , ϕ k ϕ k to (4.2), i.e., a stopping time τ n,h ≤ T such that (4.2) holds for t < τ n,h and as

t ↑ τ n,h < T , |u n,h (t)| → ∞.
The following proposition shows that τ n,h = T a.s. It gives estimates on u n,h depending only on T , M , K i , L i and E|ξ| 2p , which are valid for all n and all K 2 ∈ [0, K2 ] for some K2 > 0. Its proof depends on the following version of Gronwall's lemma (see [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF], Lemma 3.9 for the proof). Lemma 4.1. Let X, Y , I and ϕ be non-negative processes and Z be a non-negative integrable random variable. Assume that I is non-decreasing and there exist non-negative constants C, α, β, γ, δ with the following properties

T 0 ϕ(s) ds ≤ C a.s., 2βe C ≤ 1, 2δe C ≤ α, (4.3) 
and such that for 0 ≤ t ≤ T ,

X(t) + αY (t) ≤ Z + t 0 ϕ(r) X(r) dr + I(t), a.s., E(I(t)) ≤ β E(X(t)) + γ t 0 E(X(s)) ds + δ E(Y (t)) + C, where C > 0 is a constant. If X ∈ L ∞ ([0, T ] × Ω), then we have E X(t) + αY (t) ≤ 2 exp C + 2tγe C E(Z) + C , t ∈ [0, T ]. (4.4) 
The following proposition provides the (global) existence and uniqueness of approximate solutions and also their uniform (a priori) estimates. This is the main preliminary step in the proof of Theorem 2.4. As in Lemma 3.3 we can made this step under less restrictive growth conditions concerning σ than (2.27) in (C3). Proposition 4.2. Fix M > 0, T > 0 and let Conditions (C1)-(C3) be in force with the assumption (3.5) instead of (2.27). For any integer p ≥ 1 there exists K2 = K2 (p, T, M ) (which also depends on K i , Ki and R i , i = 0, 1, and on

K2 if K2 = K 2 ) such that the following result holds. Let h ∈ A M , 0 ≤ K 2 ≤ K2 and ξ ∈ L 2p (Ω, H). Then equation (4.2) has a unique solution on [0, T ] (i.e. τ n,h = T a.s.) with a modification u n,h ∈ C([0, T ], H n ) and satisfying sup n E sup 0≤t≤T |u n,h (t)| 2p + T 0 u n,h (s) 2 |u n,h (s)| 2(p-1) ds ≤ C E|ξ| 2p + 1 (4.5)
for some positive constant C (depending on p, K i , Ki , i = 0, 1, 2, R j , j = 0, 1, T, M ).

Proof. Let u n,h (t) be the approximate maximal solution to (4.2) described above. For every N > 0, set

τ N = inf{t : |u n,h (t)| ≥ N } ∧ T.
Let Π n : H 0 → H 0 denote the projection operator defined by Π n u = n k=1 u , e k e k , where {e k , k ≥ 1} is the orthonormal basis of H made by eigen-elements of the covariance operator Q and used in (2.23).

Itô's formula and the antisymmetry relation in (2.2) yield that for t ∈ [0, T ],

|u n,h (t ∧ τ N )| 2 = |P n ξ| 2 + 2 t∧τ N 0 σ n (u n,h (s))dW n (s), u n,h (s) -2 t∧τ N 0 u n,h (s) 2 ds -2 t∧τ N 0 R(u n,h (s)) -σn (u n,h (s))h(s), u n,h (s) ds + t∧τ N 0 |σ n (u n,h (s)) Π n | 2 L Q ds. (4.6) 
Apply again Itô's formula for f (z) = z p when p ≥ 2 and z = |u n,h (t ∧ τ N )| 2 . This yields for t ∈ [0, T ], and any integer p ≥ 1 (using the convention p(p -1)x p-2 = 0 if p = 1)

|u n,h (t ∧ τ N )| 2p + 2p t∧τ N 0 |u n,h (r)| 2(p-1) u n,h (r) 2 dr ≤ |P n ξ| 2p + 1≤j≤5 T j (t), (4.7) 
where

T 1 (t) = 2p t∧τ N 0 (R 0 + R 1 |u n,h (r)|) |u n,h (r)| 2p-1 dr, T 2 (t) = 2p t∧τ N 0 σ n (u n,h (r)) dW n (r), u n,h (r) |u n,h (r)| 2(p-1) , T 3 (t) = 2p t∧τ N 0 |(σ n (u n,h (r)) h(r), u n,h (r))| |u n,h (r)| 2(p-1) dr, T 4 (t) = p t∧τ N 0 |σ n (u n,h (r)) Π n | 2 L Q |u n,h (r)| 2(p-1) dr, T 5 (t) = 2p(p -1) t∧τ N 0 |Π n σ * n (u n,h (r)) u n,h (r)| 2 0 |u n,h (r)| 2(p-2) dr.
Since h ∈ A M , the Cauchy-Schwarz inequality and condition (3.5) imply that

T 3 (t) ≤ 2p t∧τ N 0 K0 + K1 |u n,h (r)| + K2 u n,h (r) |h(r)| 0 |u n,h (r)| 2p-1 dr ≤ p 2 t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + 2p K2 t∧τ N 0 |h(r)| 2 0 |u n,h (r)| 2p dr + 2p K1 t∧τ N 0 |h(r)| 0 |u n,h (r)| 2p dr + 2p K0 t∧τ N 0 |h(r)| 0 |u n,h (r)| 2p-1 dr.
Therefore using the inequality |u| 2p-1 ≤ 1 + |u| 2p to bound the last term we obtain

T 3 (t) ≤ p 2 t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + 2p K0 t 0 |h(r)| 0 dr + 2p t∧τ N 0 K0 + K1 |h(r)| 0 + K2 |h(r)| 2 0 |u n,h (r)| 2p dr. (4.8)
Using condition (C2), relation (2.22) and also the fact that

σ(u) L(H 0 ,H) = σ * (u) L(H,H 0 ) ≤ |σ(u)| L Q ,
we deduce that 1) u n,h (r) 2 dr (4.9)

T 4 (t) + T 5 (t) ≤ (2p 2 -p) K 2 t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + (2p 2 -p) t∧τ N 0 K 1 |u n,h (r)| 2p + K 0 |u n,h (r)| 2(p-1) dr ≤ (2p 2 -p) K 2 t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + c p t∧τ N 0 K 0 + (K 0 + K 1 ) |u n,h (r)| 2p dr. Consequently (4.7) for K 2 ≤ (4p -2) -1 yields |u n,h (t ∧ τ N )| 2p + p t∧τ N 0 |u n,h (r)| 2(p-
≤ |P n ξ| 2p + c p (K 0 + R 0 ) T + K0 T 0 |h(r)| 0 dr + t∧τ N 0 ϕ(r)|u n,h (r)| 2p dr + I(t)
for t ∈ [0, T ], where

I(t) = sup 0≤s≤t |T 2 (s)| and ϕ(r) = c p R 0 + R 1 + K 0 + K 1 + K0 + K1 |h(r)| 0 + K2 |h(r)| 2 0
for some constant c p > 0. The Burkholder-Davies-Gundy inequality, (C2) and Schwarz's inequality yield that for t ∈ [0, T ] and β > 0, All inequalities for the parameters (see (4.3)) can be achieved by choosing K 2 small enough. Thus there exists K2 such that for 0 ≤ K 2 ≤ K2 we have

EI(t) =E sup 0≤s≤t |T 2 (s)| ≤ 6p E t∧τ N 0 |u n,h (r)| 2(2p-1) |σ n (u n,h (r)) Π n | 2 L Q dr 1 2 ≤ β E sup 0≤s≤t∧τ N |u n,h (s)| 2p + 9p 2 K 2 β E t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + 9p 2 (K 0 + K 1 ) β E t∧τ N 0 |u n,h (r)| 2p dr + 9p 2 K 0 β T. ( 4 
sup n E sup 0≤s≤τ N |u n,h | 2p + τ N 0 u n,h (s) |u n,h (s)| 2(p-1) ds ≤ C(p)
for all n and p, where the constant C(p) is independent of n. Now we are in position to conclude the proof of Proposition 4.2. As N → ∞, τ N ↑ τ n,h , and on the set {τ n,h < T }, we have sup 0≤s≤τ N |u n,h (s)| → ∞. Hence P(τ n,h < T ) = 0 and for almost all ω, for N (ω) large enough, τ N (ω) (ω) = T and u n,h (.)(ω) ∈ C([0, T ], H n ). By the Lebesgue monotone convergence theorem, we complete the proof. Remark 4.3. If K2 ≤ 2δ for some δ > 0 then the bound K2 does not depend on K2 . Indeed, one may slightly change the proof by replacing the inequality in (4.8) by the following

T 3 (t) ≤ p K2 t∧τ N 0 u n,h (r) 2 |u n,h (r)| 2(p-1) dr + c p t∧τ N 0 K0 |h(r)| 0 + K0 + K1 |h(r)| 0 + |h(r)| 2 0 |u n,h (r)| 2p dr.
Therefore we can exclude the first term of right hand side and obtain relation (4.9) with coefficients independent of K2 . The proof consists of several steps.

Step 1:

The inequalities (4.5) and (4.12) imply the existence of a subsequence of (u n,h ) n≥0 (still denoted by the same notation), of processes

u h ∈ X := L 2 (Ω T , V ) ∩ L 4 (Ω T , H) ∩ L 4 (Ω, L ∞ ([0, T ], H)), F h ∈ L 2 (Ω T , V ′ ) and S h , Sh ∈ L 2 (Ω T , L Q ),
and finally of random variables ũh (T ) ∈ L 2 (Ω, H), for which the following properties hold:

(i) u n,h → u h weakly in L 2 (Ω T , V ), (ii) u n,h → u h weakly in L 4 (Ω T , H), (iii) u n,h is weak star converging to u h in L 4 (Ω, L ∞ ([0, T ], H)), (iv) u n,h (T ) → ũh (T ) weakly in L 2 (Ω, H), (v) F (u n,h ) → F h weakly in L 2 (Ω T , V ′ ), (vi) σ n (u n,h )Π n → S h weakly in L 2 (Ω T , L Q ), (vii) σn (u n,h )h → Sh weakly in L 4 3 (Ω T , H).
Indeed, (i)-(iv) are straightforward consequences of Proposition 4.2, of (4.12), and of uniqueness of the limit of E 0 (u n,h (t), v(t))dt for appropriate v. Furthermore, given v ∈ L 2 (Ω T , V ), we have Av ∈ L 2 (Ω T , V ′ ). Since for u, v ∈ L 2 (Ω T , V ),

E T 0 Au(t) , v(t) dt = E T 0 u(t) , Av(t) dt, E T 0 Au n,h (t), v(t) dt → E T 0 Au h (t) , v(t) dt. (4.13) 
Using (4.5) with p = 2, (2.4), (4.12), condition (C3), the Poincaré and the Cauchy-Schwarz inequalities, we deduce

sup n E T 0 B(u n,h (t)), v(t) + ( R(u n,h (t)), v(t)) dt ≤ C 1 sup n E T 0 u n,h (t) 4 H + E T 0 |u n,h (t)| 2 dt + C 2 E T 0 (1 + v(t) 2 )dt ≤ C 3 1 + E|ξ| 4 + E T 0 v(t) 2 dt < +∞.
Hence {B(u n,h (t))+ R(u n,h (t)) , n ≥ 1} has a subsequence converging weakly in L 2 (Ω T , V ′ ), which completes the proof of (v). Since Π n contracts the | • | norm, (C2), (2.22) and (4.5) for p = 2 prove that (vi) is a straightforward of the following

sup n E T 0 |σ n (u n,h (t))Π n | 2 L Q dt ≤ K 0 T + sup n E T 0 K 1 |u n,h (t)| 2 + K 2 u n,h (t) 2 dt < ∞.
Finally, using (2.27) in (C3), Hölder's inequality, (4.5) with p = 2 and (4.12), we deduce

E T 0 |σ n (u n,h (s) h(s)| 4 3 ds ≤ E T 0 K0 + K1 |u n,h (s)| + KH u n,h H 4 3 |h(s)| 4 3 0 ds ≤ C 1 E T 0 |h(s)| 2 0 ds 2 3 E T 0 1 + |u n,h (s)| 4 + u n,h (s) 4 H ds 1 3 ≤ C(M, T )
for every integer n ≥ 1. This completes the proof of (vii).

Step 2: For δ > 0, let f ∈ H 1 (-δ, T + δ) be such that f ∞ = 1, f (0) = 1 and for any integer j ≥ 1 set g j (t) = f (t)ϕ j , where {ϕ j } j≥1 is the previously chosen orthonormal basis for H. The Itô formula implies that for any j ≥ 1, and for 0 ≤ t ≤ T , u n,h (T ) , g j (T ) = u n,h (0) , g j (0) +

4 i=1 I i n,j , (4.14) 
where

I 1 n,j = T 0 (u n,h (s), ϕ j )f ′ (s)ds, I 2 n,j = T 0 σ n (u n,h (s))Π n dW (s), g j (s) , I 3 n,j = T 0 F (u n,h (s)), g j (s) ds, I 4 n,j = T 0 σn (u n,h (s))h(s), g j (s) ds. Since f ′ ∈ L 2 ([0, T ]) and for every X ∈ L 2 (Ω), (t, ω) → ϕ j X(ω) f ′ (t) ∈ L 2 (Ω T , H), (i) above implies that as n → ∞, I 1 n,j → T 0 (u h (s), ϕ j )f ′ (s)ds weakly in L 2 (Ω). Similarly, (v) implies that as n → ∞, I 3 n,j → T 0 F h (s), g j (s) ds weakly in L 2 (Ω), while (vii) implies that I 4 n,j → T 0
Sh (s), g j (s) ds weakly in L 4 3 (Ω). To prove the convergence of I 2 n,j , as in [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF] (see also [START_REF] Duan | Large deviations for the Boussinesq equations under random influences[END_REF]), let P T denote the class of predictable processes in L 2 (Ω T , L Q (H 0 , H)) with the inner product (G, J)

P T = E T 0 G(s), J(s) L Q ds = E T 0 trace(G(s)QJ(s) * )ds.
The map T : P T → L 2 (Ω) defined by T (G)(t) = T 0 G(s)dW (s), g j (s) is linear and continuous because of the Itô isometry. Furthermore, (vi) shows that for every G ∈ P T , as n → ∞, σ n (u n,h )Π n , G P T → (S h , G) P T weakly in L 2 (Ω). Finally, as n → ∞, P n ξ = u ε n,h (0) → ξ in H and by (iv), (u n,h (T ), g j (T )) converges to (ũ h (T ), g j (T )) weakly in L 2 (Ω). Therefore, as n → ∞, (4.14) leads to

(ũ h (T ), ϕ j ) f (T ) = ξ, ϕ j + T 0 u h (s), ϕ j f ′ (s)ds + T 0 S h (s)dW (s), g j (s) + T 0 F h (s), g j (s) ds + T 0 Sh (s), g j (s) ds. (4.15) For δ > 0, k > 1 δ , t ∈ [0, T ], let f k ∈ H 1 (-δ, T + δ) be such that f k ∞ = 1, f k = 1 on (-δ, t -1 k ) and f k = 0 on t, T + δ . Then f k → 1 (-δ,t) in L 2 , and f ′ k → -δ t in the sense of distributions. Hence as k → ∞, (4.15) written with f := f k yields 0 = ξ -u h (t), ϕ j + t 0 S h (s)dW (s), ϕ j + t 0 F h (s), ϕ j ds + t 0 Sh (s), ϕ j ds
for almost all t ∈ [0, T ]. This relation makes it possible to suppose (after some modification) that u h (t) is weakly continuous in H for almost all ω ∈ Ω. Now note that j is arbitrary and This equation and (4.16) yield that ũh (T ) = u h (T ) a.s.

E T 0 |S h (s)| 2 L Q ds < ∞; we deduce that for 0 ≤ t ≤ T , u h (t) = ξ + t 0 S h (s)dW (s) + t 0 F h (s)ds + t 0 Sh (s)ds ∈ H. ( 4 
Step 3: In (4.16) we still have to prove that ds ⊗ dP a.s. on Ω T , one has

S h (s) = σ(u h (s)), F h (s) = F (u h (s)) and Sh (s) = σ(u h (s)) h(s).
To establish these relations we use the same idea as in [START_REF] Sritharan | Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise[END_REF]. Let

v ∈ X = L 4 (Ω T , H) ∩ L 4 Ω, L ∞ ([0, T ], H) ∩ L 2 (Ω T , V ) .
Suppose that L 2 < 2 and let 0 < η < 2-L 2 3 ; for every t ∈ [0, T ], set

r(t) = t 0 2 R 1 + 2 C η v(s) 4 H + L 1 + 2 L1 |h(s)| 0 + L2 η |h(s)| 2 0 ds, (4.17) 
where C η is a function of η such that (4.1) holds. Then almost surely, 0 ≤ r(t) < ∞ for all t ∈ [0, T ]. Moreover, we also have that

r ∈ L 1 (Ω, L ∞ (0; T )), e -r ∈ L ∞ (Ω T ), r ′ ∈ L 1 (Ω T ), r ′ e -r ∈ L ∞ (Ω, L 1 ((0, T )). (4.18)
Weak convergence in (iv) and the property

P n ξ → ξ in H imply that E |u h (T )| 2 e -r(T ) -E|ξ| 2 ≤ lim inf n E |u n,h (T )| 2 e -r(T ) -E|P n ξ| 2 . (4.19) 
We now apply Itô's formula to |u(t)| 2 e -r(t) for u = u h and u = u n,h . This gives the relation

E |u(T )| 2 e -r(T ) -E|u(0)| 2 = E T 0 e -r(s) d |u(s)| 2 -E T 0 r ′ (s)e -r(s) |u(s)| 2 ds,
which can be justified due to (4.18) and the property |u| 2 ∈ L 1 (Ω, L ∞ ((0, T )). Using (4.16), (4.2) and letting u = v + (uv) after simplification, from (4. [START_REF] Foias | Attractors for the Bénard problem: existence and physical bounds on their fractal dimension[END_REF] we obtain

E T 0 e -r(s) -r ′ (s) u h (s) -v(s) 2 + 2 u h (s) -v(s) , v(s) } + 2 F h (s), u h (s) + |S h (s)| 2 L Q + 2 Sh (s) , u h (s) ds ≤ lim inf n X n , (4.20) 
where

X n = E T 0 e -r(s) -r ′ (s) u n,h (s) -v(s) 2 + 2 u n,h (s) -v(s) , v(s) + 2 F (u n,h (s)), u n,h (s) + |σ n (u n,h (s))Π n | 2 L Q + 2 σ(u n,h (s))h(s) , u n,h ( 
s) ds. The inequalities in (4.1), (C2), (C3), and also (4.17) and Schwarz's inequality imply that

Y n := E T 0 e -r(s) -r ′ (s)|u n,h (s) -v(s)| 2 + 2 F (u n,h (s)) -F (v(s)), u n,h (s) -v(s) + |σ n (u n,h (s)) Π n -σ n (v(s)) Π n | 2 L Q + 2 σn (u n,h (s)) -σn (v(s)) h(s), u n,h (s) -v(s) ds ≤ 0. (4.21) Furthermore, X n = Y n + 2 i=1 Z i n , with Z 1 n = E T 0 e -r(s) -2r ′ (s)(u n,h (s)) -v(s), v(s)) + 2 F (u n,h (s)), v(s) + 2 F (v(s)), u n,h (s) -2 F (v(s)), v(s) + 2 σ n (u n,h (s))Π n , σ(v(s) L Q + 2 σn u n,h (s) h(s), v(s) + 2 σ(v(s)) h(s), u n,h (s)) -2(P n σ(v(s))h(s), v(s) ds, Z 2 n = E T 0 e -r(s) 2 σ n (u n,h (s))Π n , [σ(v(s))Π n -σ(v(s)) L Q -|P n σ(v(s))Π n | 2 L Q ds.
The weak convergence properties (i)-(vii) imply that, as n → ∞, Z 1 n → Z 1 where

Z 1 = E T 0 e -r(s) -2r ′ (s) u h (s) -v(s), v(s) + 2 F h (s), v(s) + 2 F (v(s)), u h (s) -2 F (v(s)), v(s) + 2 S h (s) , σ(v(s)) L Q + 2( Sh (s), v(s)) + 2 σ(v(s)) h(s), u h (s) -2 σ(v(s))h(s), v(s) ds. (4.22) 
As for Z 2 n we note that the Lebesgue dominated convergence theorem implies that

E T 0 e -r(s) |σ(v(s))(Π n -Id H 0 )| 2 L Q ds → 0 as n → ∞.
Using once more the dominated Lebesgue convergence theorem, we deduce that

Z 2 n → -E T 0 e -r(s) |σ(v(s))| 2 L Q ds as n → ∞. (4.23) 
Thus, (4.20)-(4.23) imply that for any v ∈ X ,

E T 0 e -r(s) -r ′ (s)|u h (s) -v(s)| 2 + 2 F h (s) -F (v(s)), u h (s) -v(s) + |S h (s) -σ(v(s))| 2 L Q + 2 Sh (s) -σ(v(s))h(s) , u h (s) -v(s) ds ≤ 0. (4.24) Let v = u h ∈ X ; we conclude that S h (s) = σ(u h (s)), ds ⊗ dP a.e. For λ ∈ R, ṽ ∈ L ∞ (Ω T , V ), set v λ = u h -λṽ ; then it is clear that v λ ∈ X . Applying (4.24) to v := v λ and neglecting |σ(u h (s)) -σ(v λ (s))| 2 L Q , yields E T 0 e -r λ (s) -λ 2 r ′ λ (s)|ṽ(s)| 2 + 2λ F h (s) -F (v λ (s)), ṽ(s) + Sh (s) -σ(v λ (s))h(s), ṽ(s) ds ≤ 0, (4.25) 
where r λ (s) is given by (4.17) with v λ instead of v. Using (C3) we obtain T 0 e -r 0 (s) Sh (s)σ(u h (s))h(s) , ṽ(s) ds.

E T 0 e -r λ (s) σ(v λ (s)) -σ(u h (s))] h(s) , ṽ ( 
Furthermore, (4.1) yields for λ = 0 and s ∈ [0, T ]

F (v λ (s)) -F (u h (s)), ṽ(s) ≤ C |λ| |ṽ(s)| 2 + ṽ(s) 2 + |ṽ(s)| 2 u h (s) 4
H . Thus we deduce as λ → 0,

E T 0 e -r λ (s) F h (s) -F (v λ (s)), ṽ(s) ds → E T 0 e -r 0 (s) F h (s) -F (u h (s)), ṽ(s) ds.
Thus, dividing (4.25) by λ > 0 (resp. λ < 0) and letting λ → 0 we obtain that for every ṽ ∈ L ∞ (Ω T , V ), which is a dense subset of L 2 (Ω T , V ),

E T 0 e -r 0 (s) F h (s) -F (u h (s)) , ṽ(s) + Sh (s) -σ(u h (s))h(s) , ṽ(s) ds = 0.
Hence a.e. for t ∈ [0, T ], (4.16) can be rewritten as

u h (t) = ξ + t 0 σ(u h (s))dW (s) + t 0 F (u h (s)) + σ(u h (s))h(s) ds. (4.26) Furthermore, (i)-(iii) imply that E T 0 u h (t) 2 dt ≤ sup n E T 0 u n,h (t) 2 dt ≤ C 1 + E|ξ| 4 , E sup 0≤t≤T |u h (t)| 4 ≤ sup n E sup 0≤t≤T |u n,h (t)| 4 ≤ C 1 + E|ξ| 4 , E T 0 u h (t) 4 H dt ≤ sup n E T 0 u n,h (t) 4 H dt ≤ C 1 + E|ξ| 4 . (4.27) 
This completes the proof of (2.31).

Step 4: Now we prove that u h ∈ C([0, T ], H) almost surely. We first note that (4.26) yields that e -δA u h ∈ C([0, T ], H) a.s. for any δ > 0. Indeed, since for δ > 0 the operator e -δA maps H to V and V ′ to H, we deduce that e -δA . 0 F (u h (s)) ds belongs to C([0, T ], H). Condition (C3) implies that e -δA . 0 σ(u h (s)) h(s) ds also belongs to C([0, T ], H). Finally, condition (C2) implies E T 0 |e -δA σ(u h )(s)| 2 L Q ds < +∞. Thus

. 0 e -δA σ(u h (s)) dW (s) belongs to C([0, T ], H) a.s. (see e.g. [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF] 

|G δ σ(u h )| 2 L Q ≤ k sup δ>0 |G δ σ(u h )Q 1/2 ϕ k | 2 ≤ C|σ(u h )| 2 L Q ∈ L 1 (Ω × [0, T ]),
the Lebesgue dominated convergence theorem implies that E T 0 |G δ σ(u h (s))| 2 L Q ds → 0. Furthermore, given u ∈ V we have G 2 δ u → 0 as δ → 0 and sup δ>0 |G δ | L(V,V ) ≤ 2. Hence B(u h (s)) + R(u h (s)) + σ(u h (s))h(s), G 2 δ u h (s) → 0 for almost every (ω, s). Therefore, as above, the Lebesgue dominated convergence theorem concludes the proof of (4.28).

Step 5: To complete the proof of Theorem 2.4, we show that the solution u h to (4.26) is unique in X := C([0, T ], H) ∩ L 2 ([0, T ], V ). Let v ∈ X be another solution to (4.26) and T 0 u h (s) [ 4 H ds < ∞, we deduce that |U (s, ω)| = 0 a.s. on Ω T . Thus, we conclude that u h (t) = v(t), a.s., for every t ∈ [0, T ] which yields the uniqueness statement in Theorem 2.4 for a general control function.

τ N = inf{t ≥ 0 : |u h (t)| ≥ N } ∧ inf{t
Suppose now that we only have L 2 < 2 and that h possesses a deterministic bound ψ(t) ∈ L 2 (0, T ); let η ∈]0, 2-L The Girsanov theorem implies that W h is a P Brownian motion with the same covariance operator Q. The above arguments prove that under P, the evolution equation

u h (t) = ξ + t 0 F (u h (s)) ds + t 0 σ(u h (s)) d W h s
has a unique solution in X. Thus the Girsanov theorem implies that under P, (2.29) has a unique solution in X. Finally, once well-posedness is proved, computations similar to that used to obtain (4.5) in the case p = 2 can be used to deduce that (2.31) holds; this completes the proof of Theorem 2.4. 2 Note that it follows from the consideration above that we only need the requirement (2.27) concerning the growth of σ in order to obtain weak compactness of the sequence σn u n,h (s) h(s) in L p (Ω T ; H) for p = 4/3 > 1. This weak compactness makes it possible to pass to the limit in the term E T 0 σn u n,h (s) h(s), v(s) ds in the expression for Z 1 n for elements v from the class X which contains the limiting function u h .

. 14 )

 14 Collecting the upper estimates from (3.7)-(3.14), we conclude the proof of (3.6).In the setting of large deviations, we will use Lemma 3.3 in the case when then σ = σ satisfies Condition (C2) with K 2 = L 2 = 0 and with the following choice of the function ψ n . For any integer n define a step function s → sn on [0, T ] by the formulasn = t k+1 ≡ (k + 1)T 2 -n for s ∈ [kT 2 -n , (k + 1)T 2 -n [. (3.15) Then the map ψ n (s) = sn clearly satisfies the previous requirements with c = T . Now we return to the setting of Theorem 3.2.

  we have lim n I 5 n,N = 0. Thus (3.30)-(3.34) yield for every integer N ≥ 1 lim sup

. 10 )

 10 Thus we can apply Lemma 4.1 forX(t) = sup 0≤s≤t∧τ N |u n,h (s)| 2p , Y (t) = t∧τ N 0 u n,h (r) 2 |u n,h (r)|2(p-1) dr. (4.11)

.16) Moreover t 0 F

 0 h (s)ds ∈ H. Let f = 1 (-δ,T +δ) ; using again (4.15) we obtain ũh (T ) = ξ +

E T 0 e

 0 )| 0 |ṽ(s)| L1 |ṽ(s)| + L2 ṽ(s)ds → 0 as λ → 0. Hence, by the dominated convergence theorem, lim λ→0 -r λ (s) Sh (s)σ(v λ (s))h(s) , ṽ(s) ds = E

u h (r) 4 H 4 H 4 H 4 H 2 + 2R 1 + 2 ≤ e -a R s 0 u h (r) 4 H 4 H 4 H

 4444212444 ≥ 0 : |v(t)| ≥ N } ∧ T. Since |u h (.)| and |v(.)| are a.s. bounded on [0, T ], we have τ N → T a.s. as N → ∞.Let U = u hv. By Itô's formula we havee -a R t∧τ N 0 dr |U (t ∧ τ N )| 2 = t∧τ N 0 Ψ(s)ds + Φ(t ∧ τ N ),(4.30)whereΨ(s) = e -a R s 0 u h (r) dra u h (s) 4 H |U (s)| 2 -2 U (s) 2 -2 B(u h (s)) -B(v(s)), U (s) + |σ(u h (s))σ(v(s))| 2 L Q + 2 [σ(u h (s))σ(v(s))]h(s), U (s) -2 R(u h (s)) -R(v(s)) , U (sdr U (s), [σ(u h (s))σ(v(s))] dW (s) .Now we set a = 2C η where C η is defined by (2.8). Then using (2.8) and Conditions (C2) and (C3) we obtain that for some non negative constant C(η) which depends on η, R 1 , L 1 , Li , i = 1, 2, and is independent ofL 2 , Ψ(s) ≤ e -a R s 0 u h (r) dr -(2 -3η -L 2 ) U (s) L 1 + L2 η |h(s)| 2 0 + 2 L1 |h(s)| 0 |U (s)| dr -(2 -3η -L 2 ) U (s) 2 + C(η) 1 + |h(s)| 2 0 |U (s)| 2 . (4.31)First consider the case of a general (random) control function h. Below we use the notationsX(t) = sup0≤s≤t e -a R s∧τ N 0 u h (r) dr |U (s ∧ τ N )| 2 , Y (t) = t∧τ N 0 e -a R s 0 u h (r) dr U (s) 2 ds.

Now we are in position to apply Lemma 4 . 1 .u h (r) 4 H

 414 If we choose η = 1/3, 2β = exp{-C(1/3)(T + M )}, then (4.3) holds under the condition L 2 (1 + 36 exp{2C(1/3)(T + M )}) ≤ 1. Therefore, since sup 0≤s≤T e -a R s∧τ N 0 dr |U (s ∧ τ N )| 2 ≤ 2N , relation (4.4) implies that EX(t) = 0 for all t and hence, E sup 0≤s≤T e -a R s∧τ N 0 u h (r) 4 H dr |U (s ∧ τ N )| 2 = 0. (4.32) Since lim N →∞ τ N = T a.s., and by (4.27) we have a.s.

2 3 ] 1 +u h (r) 4 H 2 .

 3142 . Then it follows from (4.30) and (4.31) thatV N (t) ≤ C(η) t 0 |ψ(s)| 2 V N (s)ds with V N (t) = Ee -a R t∧τ N 0 dr |U (t ∧ τ N )|Since the function s → |ψ| 2 belongs to L 1 (0, T ), we can apply the Gronwall lemma to obtain (4.32) and to conclude the proof for the case considered.Finally suppose that σ = σ where σ satisfies condition (C2) with L 2 < 2. For h = 0 set W h t = W t + t 0 h(s) ds and let P be the probability defined on (Ω, F t ) by d P dP = exp -

  Thus the requirements (2.4) and(2.5) are equivalent. If for u 3

  .31) If the constant L 2 is small enough, the equation (2.29) has a unique solution in X. If one only requires L 2 < 2, then equation (2.29) has again a unique solution in X if either σ = σ or if the function h possesses a deterministic bound, i.e., there exists a (deterministic) scalar function

  ) and P n : H → H n denote the orthogonal projection from H onto H n , and finally let σ n = P n σ and σn = P n σ. Since P n is a contraction of H, from (2.22) we deduce that |σ n

  Proof of Theorem 2.4:Let us at first suppose that condition (C3) is satisfied. Let Ω T = [0, T ] × Ω be endowed with the product measure ds ⊗ dP on B([0, T ]) ⊗ F.

	Let K2 be defined by Proposition 4.2 with p = 2. The inequalities (4.5) and (2.3) imply that for K 2 ∈ [0, K2 ] we have the following additional a priori estimate
	sup n	E	0	T	u n,h (s) 4 H ds ≤ C 2 (1 + E|ξ| 4 ).	(4.12)

  , Theorem 4.12). Therefore it is sufficient to prove that (t)e -δA u h (t)| 2 = 0.(4.28)Let G δ = Ide -δA and apply Itô's formula to |G δ u h (t)| 2 . This yields|G δ u h (t)| 2 = |G δ ξ| 2 -2 (s)) + R(u h (s)) + σ(u h (s))h(s), G 2 δ u h (s) ds,(4.29)whereI(t) = t 0 G δ σ(u h (s))dW (s), G δ u h (s). By the Burkholder-Davies-Gundy and Schwarz inequalities we have|G δ u h (s)| 2 |G δ σ(u h (s))| 2 L Q dsHence for some constant C, (4.29) yieldsE sup 0≤t≤T |G δ u h (t)| 2 ≤ 2 |G δ ξ| 2 + C E (s)) + R(u h (s)) + σ(u h (s))h(s), G 2 δ u h (s) ds.Since for every u ∈ H, |G δ u| → 0 as δ → 0 and sup δ>0 |G δ | L(H,H) ≤ 1, we deduce that if {ϕ k } denotes an orthonormal basis in H, then |G δ σ(u h (s))Q 1/2 ϕ k | 2 → 0 for every k and almost every (ω, t) ∈ Ω × [0, T ]. Since sup δ>0

						0	T |G δ σ(u h (s))| 2 L Q ds
	T				
	+ 4 E	B(u h		
	0				
	lim δ→0	E sup
			0	t	G δ u h (s) 2 ds + 2I(t) +	0	t |G δ σ(u h (s))| 2 L Q ds
		t			
	+2 |I(t)| ≤ CE 0 B(u h E sup 0≤t≤T 0	T	1/2
	≤	1 2	E sup

0≤t≤T |u h 0≤t≤T |G δ u h (t)| 2 + C 2 2 E T 0 |G δ σ(u h (s))| 2 L Q ds.

  Then it follows from (4.30) and (4.31) that for 3η < 2 -L 2 ,X(t) + (2 -3η -L 2 )Y (t) ≤ C(η) = sup 0≤s≤t |Φ(s ∧ τ N )|.An argument similar to that used to prove (4.10), based on the Burkholder-Davies-Gundy inequality, (C2) and Schwarz's inequality, yields that for t ∈ [0, T ] and β > 0,

							0	t	1 + |h(s)| 2 0 X(s)ds + I(t),
	where I(t) EI(t) ≤ 6 E	0	t∧τ N e -2a	0 u h (r) 4 H dr |U (s)| 2 |σ(u h (s)) -σ(v(s))| 2 L Q ds R s	1/2
	≤ β EX(t) +	9L 1 β	0	t	EX(s)ds +	9L 2 β	EY (t).

Here and below this means that φ| x 1 =0 = φ| x 1 =l for the corresponding function.
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