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STOCHASTIC 2D HYDRODYNAMICAL TYPE SYSTEMS:
WELL POSEDNESS AND LARGE DEVIATIONS

IGOR CHUESHOV AND ANNIE MILLET

ABSTRACT. We deal with a class of abstract nonlinear stochastic models, which covers
many 2D hydrodynamical models including 2D Navier-Stokes equations, 2D MHD models
and 2D magnetic Bénard problem and also some shell models of turbulence. We first
prove the existence and uniqueness theorem for the class considered. Our main result is
a Wentzell-Freidlin type large deviation principle for small multiplicative noise which we
prove by weak convergence method.

1. INTRODUCTION

In recent years there has been a wide-spread interest in the study of qualitative proper-
ties of stochastic models which describe cooperative effects in fluids by taking into account
macroscopic parameters such as temperature or/and magnetic field. The corresponding
mathematical models consists in coupling the stochastic Navier-Stokes equations with
some transport or/and Maxwell equations, which are also stochastically perturbed.

Our goal in this paper is to suggest and develop a unified approach which makes it
possible to cover a wide class of mathematical coupled models from fluid dynamics. Due
to well-known reasons we mainly restrict ourselves to spatially two dimensional models.
Our unified approach is based on an abstract stochastic evolution equation in some Hilbert
space of the form

Oru + Au + B(u,u) + R(u) = o(t,u) W, (1.1)
where o(t,u) W is a multiplicative noise white in time with spatial correlation. The hy-
potheses which we impose on the linear operator A, the bilinear mapping B and the oper-
ator R are true in the case of 2D Navier-Stokes equation (where R = 0), and also for some
other classes of two dimensional hydrodynamical models such as magneto-hydrodynamic
equations, the Boussinesq model for the Bénard convection and 2D magnetic Bénard prob-
lem. They also cover the case of regular higher dimensional problems such as the 3D Leray
a-model for the Navier-Stokes equation and some shell models of turbulence. See a further
discussion in Sect.R.]] below.

For general abstract stochastic evolution equation in infinite dimensional spaces we refer
to [[1]]. However the hypotheses in [[[J]] do not cover our hydrodynamical type model. We
also note the stochastic Navier-Stokes equations were studied by many authors (see, e.g.,

B, 7, P71, B3] and the references therein).

Our first result states existence, uniqueness and provides a priori estimates for a weak
(variational) solution to the abstract problem of the form ([L.1]) where the forcing term also
includes a stochastic control term with a multiplicative coefficient (see Theorem B.1]). As
a particular case, we deduce well posedness when the Brownian motion W is translated
by a random element of its Reproducing Kernel Hilbert Space (RKHS), as well a priori
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2 I. CHUESHOV AND A. MILLET

bounds of the solution with constants which only depend on an a.s. bound of the RKHS
norm of the control. In all the concrete hydrodynamical examples described above, the
diffusion coefficient may contain a small multiple of the gradient of the solution. Thus, this
result contains the corresponding existence and uniqueness theorems and a priori bounds
for 2D Navier-Stokes equations (see, e.g. [, BJ]), for the Boussinesq model of the Bénard
convection (see [Id], [13]), and also for the GOY shell model of turbulence (see [[l] and
Bd]). Theorem B.1] generalizes the existence result for MHD equations given in [ff] to the
case of multiplicative noise and also covers new situations such as the 2D magnetic Bénard
problem, the 3D Leray a-model and the Sabra shell model of turbulence.

Our argument mainly follows the local monotonicity idea suggested in [R7, B1]. However,
since we deal with an abstract hydrodynamical model with a forcing term which contains
a stochastic control under a minimal set of hypotheses, the argument requires substantial
modifications compared to that of [BI]| or [R]. It relies on a two-step Gronwall lemma (see
Lemma B.9 below and also [L3]).

Our main result (see Theorem [£.2) is a Wentzell-Freidlin type large deviation principle
(LDP) for stochastic equations of the form ([L.1) with o := \/z¢ as € — 0, which describes
the exponential rate of convergence of the solution u := u¢ to the deterministic solution u°.
As in the classical case of finite-dimensional diffusions, the rate function is described by
an energy minimization problem which involves deterministic controlled equations. The
LDP result is that which would hold true if the solution were a continuous functional of
the noise W. Our proof consists in transferring the LDP satisfied by the Hilbert-valued
Brownian motion /eW to that of a Polish-space valued measurable functional of /eW
as established in [{]; see also [{], [[J] and [[4]. This is related to the Laplace principle.
This approach has been already applied in several specific infinite dimensional situations
(see, e.g, [B] for 2D Navier-Stokes equations, [[[J] for 2D Bénard convection, [H] for sto-
chastic reaction-diffusion system, [P4] for stochastic p-Laplacian equation, [Rf] for the
GOY shell model of turbulence). Our result in Theorem .3 comprehends a wide class
of hydrodynamical systems. In particular, in addition to the 2D Navier-Stokes equations
and the Boussinesq model mentioned above, Theorem [L.] also proves LDP for 2D MHD
equations, 2D magnetic Bénard convection, 3D Leray a-model, the Sabra shell model and
dyadic model of turbulence. Note that unlike BI] and [P, in order to give a complete
argument for the weak convergence (Proposition [L.F) and the compactness result (Propo-
sition [L.§), we need to prove a time approximation result (Lemma [I.J). This requires to
make stronger assumptions on the diffusion coefficient ¢, which should have some Hoélder
time regularity, and in the explicit hydrodynamical models, no longer can include the
gradient of the solution (see also [[L3]).

Note that recently [P4] a LDP has been proved for a class of abstract equations with
monotone dissipative nonlinearity, and with multiplicative noise. The main PDE model
for this class is a reaction-diffusion equation with a nonlinear monotone diffusion term
perturbed by globally Lipschitz sub-critical nonlinearity. This class does not contains the
hydrodynamical systems considered in this paper. The technique used in [24] to prove both
weak convergence and compactness is slightly different from ours; it relies on integration
by parts and also requires that the diffusion coefficient does not include the gradient of the
solution. See also [f] for large deviation results in the case on non-Lipschitz coefficients.

The paper is organized as follows. In Section || we describe our mathematical model with
details and provide the corresponding motivations from the theory of (coupled) models
of fluid dynamics. In this section we also formulate our abstract hypotheses. In Section
B we study well posedness of the abstract stochastic equation which also may contain

some random control term. We need properties (such as a priori bounds and localized
time increment estimates) of this stochastic control system as a preliminary step in order
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to apply the general LDP results from [f, [ in our situation. Note that these technical
preliminaries will be proved in a more general framework than what is needed to establish
the large deviation principle. Indeed, we will need them in a forthcoming paper where
we characterize the support of the distribution of the solution to the stochastic hydrody-
namical equations. We formulate and prove the large deviations principle by the weak
convergence approach in Section .

2. DESCRIPTION OF THE MODEL

Let (H,|.|) denote a separable Hilbert space, A be an (unbounded) self-adjoint positive

linear operator on H. Set V = Dom(A%). For v € V set |jv]| = ]A%v\. Let V' denote
the dual of V' (with respect to the inner product (.,.) of H). Thus we have the triple
V. c H C V'. Let (u,v) denote the duality between v € V and v € V'’ such that
(u,v) = (u,v) for u € V, v € H, and let B : V x V — V'’ be a continuous mapping
(satisfying the condition (C1) given below).

The goal of this paper is to study stochastic perturbations of the following abstract
model in H

du(t) + Au(t) + B(u(t),u(t)) + Ru(t) = f, (2.1)

where R is a linear bounded operator in H. We assume that the mapping B : V xV — V'
satisfies the following antisymmetry and bound conditions:

Condition (C1):

e B:V xV — V'is a bilinear continuous mapping.
o Foru; €eV,i=1,2,3,

<B(U1,UQ), U3> = — <B(U1,U3), UQ>. (22)
e There exists a Banach (interpolation) space H possessing the properties
(i) V CHC H,
(ii) there exists a constant ag > 0 such that
[l < aolvl|v]|  for any v € V; (2.3)
(iii) for every n > 0 there exists Cy, > 0 such that
[(B(u1,uz), ug)| < nllugl® + Cy luall3 uzll,  foru €V, i=1,2,3. (2.4)
Remark 2.1. (1) The relation in (P-4) obviously implies that
[(B(u1,u2), u)| < Cullus]|® + Ca [lua |3 lual3, for w; €V, i=1,2,3, (2.5)

for some positive constants C; and Cy. On the other hand, if we put in (£F) anlu;g,
instead of uz, then we recover (B4) with C, = C;Con~! Thus the requirements (2:4)
and(R.5) are equivalent. If for ug # 0 we put now 1 = ||uy||x||uzl2||us|| = in (R.4) with
C,, = C1Con~ !, then using (R.2) we obtain that for some constant C' > 0,

(B(u1,u2), uz)| < Clutlln ||uz|l |usllz, for u; €V, i=1,2,3. (2.6)

It is also evident that (R.6) and (2.9) imply (R.4). Thus the conditions in (R.4), (B.J) and
(.4) are equivalent to each other.

(2) To lighten notations for u; € V, set B(uy) := B(u1,u;); relations (2.9), (B.3) and
(B.9) yield for every 1 > 0 the existence of C;, > 0 such that for uy,uy € V,

[(B(ur), uz)| < nlludl® + Cy lual? - (2.7)

Relations (R.4) and (R.7) yield
[(B(u1) = B(ug) , ur —ug)| = [(B(u1 —u2),u2)| < nllur —ua|* + Cy |ur —uo|* [[uz 3. (2.8)
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2.1. Motivation. The main motivation for the condition (C1) is that it covers a wide
class of 2D hydrodynamical models including the following ones. An element of R? is
denoted u = (ul,u?).

2.1.1. 2D Nawvier-Stokes equation. Let D be a bounded, open and simply connected do-
main of R2. We consider the Navier-Stokes equation with the Dirichlet (no-slip) boundary
conditions:

ou —vAu+uVu+Vp=f, divu=0 in D, u=0 on 9D, (2.9)

where u = (u!(x,t),u?(x,t)) is the velocity of a fluid, p(w, t) is the pressure, v the kinematic
viscosity and f(x,t) is an external density of force per volume. Let n denote the outward
normal to D and let

Hqy={f¢€ [LQ(D)]zzdivf:()in Dand f.n=0o0n 0D}

be endowed with the usual L? scalar product. Here above we set div f = Zi:m 0; [,
Projecting on the space H(yy of divergence free vector fields, problem (@) can be written
in the form (R.1) (with R = 0) in the space Hy) (see e.g. [BJ]), where A is the Stokes
operator defined by the bilinear form

2
a(ui,ug) = VZ/ Vul - Vil da, (2.10)
j=17P
with uj,u0 € V=V, = [H(%(D)]2 N Hgy. Themap B= By : Vi x Vi — V/ is defined by

2
[ui(x)Vua(x)] us(z)dr = Z / w) Ojub ufdr, w; € V4. (2.11)
ij=17D

(Bi(ur,uz), us) = /

D

Using integration by parts, Schwarz’s and Young’s inequality, one checks that this map
B satisfies the conditions of (C1) with H = [L4(D)]2 N Hy). The inequality in (R.3) is
the well-known Ladyzhenskaya inequality (see e.g. [d] or [B)).

We can also include in (R.9) a Coriolis type force by changing f into f — Ru, where
R(u!,u?) = co(—u?,u'), for some constant cp. In this case we get (B-J]) with R # 0.

The case of unbounded domains D (including D = R?) can be also considered in our
abstract framework. For this we only need to shift the spectrum away from zero by
changing A into A + Id and introducing R = —Id.

2.1.2. 2D magneto-hydrodynamic equations. We consider magneto-hydrodynamic (MHD)
equations for a viscous incompressible resistive fluid in a 2D domain D, which have the
form (see, e.g., [29)):

O = viAu+uVu =~V (p+ g]b]2> + sbVb + f, (2.12)
Ob — 19 Ab+uVb=bVu+ g, (2.13)
divu=0, divb=0 (2.14)

where u = (u!(x,t),u?(x,t)) and b = (b'(x,t),b*(x,t)) denote velocity and magnetic fields,
p(z,t) is a scalar pressure. We consider the following boundary conditions
u=0, b.n=0, 0b> b =0 ondD (2.15)

In equations above v; is the kinematic viscosity, vo is the magnetic diffusivity (which
is determined from magnetic permeability and conductivity of the fluid), the positive
parameter s is defined by the relation s = Ha’v 1o, where Ha is the so-called Hartman
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number. The given functions f = f(x,t) and g = g(z,t) represent external volume forces
and the curl of external current applied to the fluid. We refer to [P3], [[3] and BJ] for the
mathematical theory for the MHD equations.

Again, the above equations are a particular case of equation (P-1) for the following
spaces and operators which satisfy (C1). To see this we first note that without loss of
generality we can assume that s = 1 in (R.19) (indeed, if s # 1 we can introduce a new
magnetic field b := /sb and rescale the curl of the current g := /sg). For the velocity
part of the MHD equations, we use the same spaces H(;) and V; and the Stokes operator
generated by the bilinear form defined by (2.10) with v = 1. Now we denote this operator
by Al.

As for the magnetic part we set H(y) = H(j) and Vo = [Hl(D)]2 N Hy and define
another Stokes operator Az as an unbounded operator in H(y) generated by the bilinear
form (R.1() with v = v, when considered on the space V5.

As in the previous case we can write (R.13)—(R.1) in the form (R.I]) in the space H =
H1y x Hegy with A = Ay x Ay, R=0. We also set V' = Vi x V5 and define B : VxV =V
by the relation

(B(21, 22), 23) = (B1(u1,u2),u3) — (B1(b1,b2), u3) + (Bi(us, b2), bs) — (B (b1, u2), b3)
for z; = (u;, b)) € V = Vi x Vi, where By is given by (R.11). The conditions in (C1) are
satisfied with H = ([L4(D)]* x [L4(D)]*) N H.

2.1.3. 2D Boussinesq model for the Bénard convection. The next example is the following
coupled system of Navier-Stokes and heat equations from the Bénard convection problem
(see e.g. [[[§ and the references therein). Let D = (0,1) x (0,1) be a rectangular domain
in the vertical plane, (ej,es) the standard basis in R? and 2 = (2!, 2?) an element of R2.
Denote by p(z,t) the pressure field, f, g external forces, u = (u!(x,t),u?(x,t)) the velocity
field and 6 = 0(x,t) the temperature field satisfying the following system

ou+uVu —vAu+Vp = fes+ f, divu =0, (2.16)
010 +uVeh —u® — kAO = g, (2.17)
with boundary conditions
u=0& =0 on 22 =0and 2? =1,

u, p,0,u,1,0,1 are periodic in ' with period 1.}

Here above v is the kinematic viscosity, x is the thermal diffusion coefficient. Let

H(3) = {u € [LQ(D)]2’ divu = 0, u2|x2:0 = u2|12:1 =0, u1|11=0 = u1|mlzl}

and Hy = L*(D). We also denote
Vs = {u € HiyN [Hl(D)]Q, U] p2—g = ul2—; = 0, wis l-periodic in xl} ,
Vi={6¢ HY(D), 6|,2—¢ = 0,21 = 0, 6 is I-periodic in xl} .

Let A3 be the Stokes operator in H(z) generated by the bilinear form (R.10) considered on
V3 and Ay be the operator in H 4y generated by the Dirichlet form

a(91,92) = Ii/ Vo1 -VOydzx, 601,00 € V.
D

Here and below this means that @|p1—¢g = P|y1—; for the corresponding function.
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Again, the above equations are a particular case of equation (R.]) for the following spaces
and operators which satisfy (C1). Let H = H(z x Hyy and V = V3 x Vi. We set
A(u,0) = (Azu, A40), R(u,0) = —(fez, u?), and define the mapping B: V x V — V' by
the relation
(B(21, 72), 28) = (Bu(ur, u2), ug) + 3 / 00 05 d
i=1,27D
for z; = (u;,0;) € V. = V3 x Vy, where By is given by (.11)). With these notations,

the Boussinesq equations for (u, ) are a particular case of (2.1]) with condition (C1) for

H = ([L4(D))? x LY(D)) N H.

2.1.4. 2D magnetic Bénard problem. This is the Boussinesq model coupled with magnetic
field (see [Ig]). As above let D = (0,1) x (0,1) be a rectangular domain in the vertical
plane, (e1,e2) the standard basis in R%2. We consider the equations

8tu+uVu—u1Au+V(p+§\b\2)—stb — fGey+ f, divu=0,

00 +uVe —u? — kAN = f,
Ot — v Ab+uVb—bVu = h, divb=0,
with boundary conditions
u=0& =0 & > =0, ' =0 on z> =0and 2> =1,
u, p,0,b,u,1,0,1,b,1 are periodic in 2! with period I.
As for the MHD case we can assume that s = 1. In this case we have (R.1)) for the variable

z = (u,0,b) with H = H3) x Hyy x Hs), where H(3y and H(y are the same as in the
previous example and H, 5) = Hz). We also set V = V3 x V4 x V5, where V3 and Vj are

the same as above and V5 = H(3) N [H 1(D)] ®. The operator A is generated by the bilinear
form

2 2
a(zl,ZQ):ulz/ Vu{-Vugdx—Hs/ VHl-VHde—l—VQZ/ Vbl - Vb, dx
i=1’D D i=1’D

for z; = (u;,0;,b;) € V. The bilinear operator B is defined by
(B(z1,22),23) = (B1(u1,uz2),u3) — (B1(b1,b2),u3)

+ <B1(ul,b2),b3> — <B1(61,UQ),b3> + Z / ull 0; 05 03 dx
i=127D

for z; = (u;,0;,b;) € V, where By is given by (B1T). We also set R(u, 0,b) = —(fez, u?,0).
It is easy to check that this model is an example of equation (R.]) with (C1), where
H = ([L4(D))? x L4(D) x [L4D)]*) N H.

2.1.5. 3D Leray a-model for Navier-Stokes equations. The theory developed in this paper
can be also applied to some 3D models. As an example we consider 3D Leray a-model (see
BJ); for recent development of this model we refer to [[§, § and to the references therein).
In a bounded 3D domain D we consider the following equations:

oyu — vAu +vVu+ Vp = f, (2.18)
(1-aA)w=u, divu=0, divv=0 in D, (2.19)
v=u=0 on JOD. (2.20)
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where u = (u',u?,u3) and v = (v!,v?,0?) are unknown fields, p(x,t) is the pressure. In
the space
H={ue [LQ(D)]3 cdivu=0in Dand u.n=0on 9D}
problem (R.1§)—(R.2() can be written in the form
us + Au + B(Gou,u) = f,
where A is the corresponding 3D Stokes operator (defined as in the 2D case by the form
a(uy,ug) = 1/2;’:1 Jp Vui Vubdz on V.= Hn [Hé(D)]s), Go = (Id+ auflA)fl is the

Green operator and

3
(B(ui,u2), ug) = Z / w| Ojuly ufdr, w; €V =HnN [Hé(D)]g.
ij=17D
Note that the embedding H'/?(D) c L?(D) implies that the inequality (B:3) holds true for
H= [L?’(D)]3 N H. Furthermore, Holder’s inequality and the embedding H!(D) C L%(D)
imply that for uy,us,us € V,
[(B(Gaui,uz), uz)| < Clluall[Gautlpspy luslpspy < Clluall |Gavall |us|psp
< Cllug| [wlpspy uslzspy,

where the last inequality comes from the fact that A%Ga is a bounded operator on H, so
1

that [|Gour || = [A2Gaur| < Clug| < Clug|ps(py. By Remark R|(1) this implies condition

(C1) for By (uy,u2) :== B(Gau1,us).

2.1.6. Shell models of turbulence. Let H be a set of all sequences u = (uj,us,...) of
complex numbers such that > |u,|? < co. We consider H as a real Hilbert space endowed
with the inner product (-,-) and the norm |- | of the form

o0 [e.e]
(u,v) = Re Zunv,’;, lu|? = Z | |2,
n=1 n=1

where v denotes the complex conjugate of v,,. In this space H we consider the evolution
equation (B.1]) with R = 0 and with linear operator A and bilinear mapping B defined by
the formulas

o
(Au), = vk2u,, n=1,2,...,  Dom(A) = {u €H : Y kplunl* < oo} ,
n=1
where v > 0, k,, = kou™ with kg > 0 and g > 1, and
[B(u,v)],, = —i (akn+1u2+11}2+2 + bkntiy, 1Vny — akp1ty, qv, o — bknflu;iav;ifl)
for n =1,2,..., where a and b are real numbers (here above we also assume that u_; =

ug = v—1 = vg = 0). This choice of A and B corresponds to the so-called GOY-model
(see, e.g., 29]). If we take
[B(u7 U)]n = —i (akn+1u2+1vn+2 + bknu;—lvn—i—l + akp_1Up—1Vp—2 + bkn—lun—Zvn—l) )

then we obtain the Sabra shell model introduced in [RJ]. In both cases the equation (R.1))
is an infinite sequence of ODEs.

One can easily show (see [fl] for the GOY model and [[[d] for the Sabra model) that the
trilinear form

(B(u,v),w) = Re Z[B(u,v)]n wy
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possesses the property (B.2) and also satisfies the inequality
|(B(u,v),w)| < Clul]|AY?v||w|, Yu,w e H, Yve Dom(AY?).

Thus by Remark R.J)(1) the condition (C1) holds with H = Dom(A®) for any choice of
s €[0,1/4].

We can also consider the so-called dyadic model (see, e.g., [R0] and the references therein)
which can be written as an infinite system of real ODEs of the form

Oty + VAN* My, — )\"ui_l + XNt = fn, n=1,2,..., (2.21)

where v,a > 0, A > 1, ug = 0. Simple calculations show that under the condition
a > 1/2 the system (R21)) can be written as (R.I]) and that condition (C1) holds for
[B(u,v)]n = —AN"Up_10n_1 + N uy v, 41 and (Au), = v A2 u,,.

2.2. Stochastic model. We will consider a stochastic external random force f of the
equation in (R.1]) driven by a Wiener process W and whose intensity may depend on the
solution u. More precisely, let () be a linear positive operator in the Hilbert space H which

belongs to the trace class, and hence is compact. Let Hy = Q%H . Then Hy is a Hilbert
space with the scalar product

(6, 9)0 = (Q 26, Q2%), Yo, 4 € H,

together with the induced norm |- |g = 1/(+,:)o. The embedding i : Hy — H is Hilbert-
Schmidt and hence compact, and moreover, i i* = Q). Let Lo = Lo(Hy, H) be the space
of linear operators S : Hy — H such that SQ% is a Hilbert-Schmidt operator from H to
H. The norm in the space Lg is defined by |S|%Q = tr(SQS™), where S* is the adjoint
operator of §. The Lg-norm can be also written in the form

[SI2,, = tr([SQ2)[SQ?1") = Y 1SQ"*uul* = Y [[SQY*] ¢l (2.22)
k=1 k=1

for any orthonormal basis {¢x} in H.

Let W (t) be a Wiener process defined on a filtered probability space (2, F,F;,P),
taking values in H and with covariance operator (). This means that W is Gaussian, has
independent time increments and that for s,t > 0, f,g € H,

E(W(s), ) =0 and E(W(s), )(W(t),9) = (s At)(Qf.9).

We also have the representation

n
W(t) = lim W,(t) in L*(Q;H) with Wy(t) = S a8ty (2.23)
j=1

where (3; are standard (scalar) mutually independent Wiener processes, {e;} is an or-
thonormal basis in H consisting of eigen-elements of @, with Qe; = gje;. For details
concerning this Wiener process we refer to [[LJ], for instance.

The noise intensity o : [0,7] x V' — Lg(Ho, H) of the stochastic perturbation which we
put in (R.1]) is assumed to satisfy the following growth and Lipschitz conditions:

Condition (C2): o € C([0,T] x V;Lg(Ho, H)), and there exist non negative constants
K; and L; such that for every t € [0,T] and u,v € V:

() lo(t,w)lZ,, < Ko+ Ki|u® + Kflul/?,

(i) [o(t,0) — o(t, 0)2,, < Lalu — o] + Lallu — o]
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Remark 2.2. Assume that o € C([0,T] x Dom(A*); Lg(Ho, H)) for some s < 1/2 is such
that
ot w2, < Kb+ KJAP,  lo(t,u) — oft, 0)[2,, < L|4%(u - v)]?

for every t € [0,T] and u,v € Dom(A®) with some positive constants K, K{ and L’. By
interpolation we have that for some constant ¢y > 0:

|ASul? < co AV 2w |40 (2.24)

< AVl + Cylul®>, ¥ >0, YueV.

Therefore in this case the conditions in (C2) are valid with positive constants Ky and Lo

which can be taken arbitrary small. This observation is important because in Theorem [.]
below we impose some restrictions on the values of the parameters Ky and Lo.

Recall that for v € V, B(u) = B(u,u). Consider the following stochastic equation
du(t) + [Au(t) + B(u(t)) + Ru(t)] dt = o(t,u(t)) dW (). (2.25)

For technical reasons, in order to prove a large deviation principle for the law the solution
to (R.2H), we will need some precise estimates on the solution of the equation deduced
from (R.25) by shifting the Brownian W by some random element (see e.g. [B1] and [1J]).
This cannot be deduced from similar ones on u by means of a Girsanov transformation
since the Girsanov density is not uniformly bounded when the intensity of the noise tends
to zero (see [[I]). Thus we also need to consider the corresponding shifted problem.

To describe a set of admissible random shifts we introduce the class A as the set of
Hy—valued (F;)—predictable stochastic processes h such that fOT |h(s)|3ds < o, a.s. Let

T
Sy = {h € L*(0,T; Hy) : / |h(s)|3ds < M}.
0

The set Sy endowed with the following weak topology is a Polish space (complete separable
metric space) [{: di(h k) = Y oo, % fOT (h(s) — k:(s),él-(s))odsL where {€;(s)}?2, is an
orthonormal basis for L?(0,T; Hp). Define

Ay ={h € A: h(w) € Sy, a.s.}. (2.26)

In order to define the stochastic control equation, we introduce another intensity coefficient
& and also nonlinear feedback forcing R (instead of R) which satisfy

Condition (C3): (i) & € C([0,T] x V;L(Ho, H)) and there exist constants Ky, K;
and flj, fori=0,1 and j = 1,2 such that

56 0) By < Ko+ Ralul? + Boglullly, W€ [0.T), Vae v, (227)
lo(t,u) — 6(75,1))\%([{07}]) < Liju—vf + Lojlu —v|?, Vte[0,T], Vu,v €V,  (2.28)

where | - |, ) denotes the (operator) norm in the space L(Ho, H) of all bounded linear
operators from Ho into H.
(ii) R: [0,T] x H — H 1is a continuous mapping such that

|R(t50)| SROa |R(t,u)—}~2(t,v)| §R1|u—’0|, \V/U,UGH, Vt € [OaT]’
for mon-negative constants Ry and R;.

Remark 2.3. In contrast with Condition (C2) our hypotheses concerning the control
intensity coefficient ¢ involve a weaker topology (we deal with the operator norm |- | L(Ho,H)
instead of the trace class norm |- |,). However we require in (227) a stronger bound
(in the intermediate space H). One can see that any noise intensity o satisfies Condition
(C3)(i) provided Condition (C2) holds with Ky = 0. However the class of intensities
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satisfying both Condition (C2) and Condition (C3)(i) is wider. We also note that we
need the generalization R of the operator R to prepare further considerations related to
the support theorem for the system considered.

Let M > 0, h € Ay and € € H. Under Conditions (C2) and (C3) we consider the
nonlinear SPDE with initial condition uy(0) = &:

dup, () + [Aup (8)+ B (up () + R(t, up ()] dt = o (t,up(t)) AW (£)+6 (¢, up (£))h(t) dt. (2.29)

3. WELL POSEDNESS AND A PRIORI BOUNDS

Fix T > 0 and let X := C([O,T]; H) N L2 (O,T; V) denote the Banach space with the
norm defined by

T 1
full = { sup [P + [ uts) s} (3)

The aim of this section is to prove that equation (R.2§), as well as (R-29), has a unique
solution in X, and to provide a priori bounds for the X norm of the solution uy, to (R.29)
only depending on M when h € Aj;. Recall that an (F;)-predictable stochastic process
up(t,w) is called a weak solution in X for the stochastic equation (R.29) on [0, 7] with
initial condition ¢ if u € X = C([0,T]; H) N L?((0,T); V), a.s., and satisfies

(un).0) = (€0)+ [ [fun (). 40) + (Bl (5)) . ) + (Rls.uns). o)l
:/ (U(s,uh(s))dW(s),v)—i—/ (5(s,un(s))h(s), v)ds, as.,
0 0

for all v € Dom(A) and all ¢t € [0,7]. Note that this solution is a strong one in the
probabilistic meaning, that is written in terms of stochastic integrals with respect to the
given Brownian motion W. The main result of this section is the following

Theorem 3.1. Assume that Conditions (C1)-(C3) are satisfied. Then for every M > 0
and T > 0 there exists Ky := Ko(T, M) > 0, (which also depends on K;, K; and R;, i =
0,1, and on Ky) such that under conditions IE|£|4 <00, h € Ay, Ko € [0, Kof and Ly < 2
there exists a weak solution up, in X of the equation () with initial data up,(0 )=¢€ H.
Furthermore, for this solution there exists a constant C := C(K;, L;, K, K f/ ,R;, T, M)
such that for h € Ay,

T T
B( swp @+ [ @l de+ [ @) <00+ B 62)
0<t<T 0 0

If the constant Lo is small enough, the equation (R29) has a unique solution in X. If
one only requires Ly < 2, then equation (P-29) has again a unique solution in X if either
& = o which satisfy both conditions (C2) and (C3) (cf. Remark P-3), or if the function h
possesses a deterministic bound, i.e., there exists a (deterministic) scalar function ¥(t) €
L2(0,T) such that |h(t)|o < ¥(t) a.s

The proof is similar to that given in [[J] for 2D Boussinesq model (R.16) and (R.17) (see
also [BI] for the case of 2D Navier-Stokes equations (R.9)). Let F : [0,7] x V — V' be
defined by

F(t,u) = —Au — B(u,u) — R(t,u), VYte[0,T], Yue V.

To lighten notations, we suppress the dependence of o, &, R and F on t. The inequality
(B.§) implies that any n > 0 there exists C,, > 0 such that for u,v € V,

(Fu) = F(v), u—v) < =1 =n)u—vl* + (B + Cyllvllz) lu—vf*. (3.3)
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Let {¢n}n>1 be an orthonormal basis of the Hilbert space H such that ¢, € Dom(A).
For any n > 1, let H, = span(¢1,--- ,n) C Dom(A) and P, : H — H, denote the
orthogonal projection from H onto H,, and finally let o,, = P, and &, = P,&. Since P,
is a contraction of H, from (R.29) we deduce that ]an(u)\%Q < ]a(u)]%@.

For h € Ay, consider the following stochastic ordinary differential equation on the
n-dimensional space H,, defined by u, ,(0) = P&, and for v € Hy:

At (1), 0) = [(F(tn,n (), v) + (& (unn(£)h(t), v)]dt + (0 (tn p(£))dWn (t),v),  (34)
where W, (t) is defined in (2.23)). Then for k =1, --- , n we have

d(unn(t),or) = [(Funn(t),or) + (3 (unn(t)h(t), or)] dt
3 @ (o (unn(®))es , ox)dii (1),
j=1

Note that for v € H,, the map u € H, — (Au + R(u), v) is globally Lipschitz uniformly
in ¢, while using (R.7) we deduce that the map u € H,, — (B(u), v) is locally Lipschitz.
Furthermore, since there exists some constant C'(n) such that ||v]| < C(n)|v| for v € H,,
Conditions (C1) and (C2) imply that the map u € Hy, — ((on(u)e;, o) : 1 < j, k <n),
respectively u € Hy,, — ((6n(w)h(t), ¢x) : 1 < k < n), is globally Lipschitz from H, to
n X n matrices, respectively to R™ uniformly in ¢. Hence by a well-known result about
existence and uniqueness of solutions to stochastic differential equations [PJ]], there exists
a maximal solution u,, ; = ZZ:1(un,h7 cpk) i to (@), i.e., a stopping time 7, 5 < T such
that (B4) holds for ¢t < 7,,, and as t T 7, < T, |ty n(t)] — o0.

The following proposition shows that 7, ;, = T" a.s. It gives estimates on u,,;, depending
only on T, M, K;, L; and E|¢[?, which are valid for all n and all Ky € [0, K3] for some
Ky > 0. Its proof depends on the following version of Gronwall’s lemma.

Lemma 3.2. Let X, Y, I and ¢ be non-negative processes and Z be a mon-negative
integrable random variable. Assume that I is non-decreasing and there exist non-negative
constants C', a, 3,7, with the following properties

/T p(s)ds < C a.s., 26e¢ <1, 26e¢ < a, (3.5)
0
and such that for 0 <t <T,
Xt)+aY(t) < Z+ /t o(r) X(r)dr + I(t), as., (3.6)
0
E(I(t) < BE(X(t)) —i—’y/o E(X(s))ds + 6 E(Y () + C, (3.7)

where C > 0 is a constant. If X € L>([0,T] x ), then we have
E[X(t) + aY ()] <2 exp (C + 2t7e%) (E(Z) + C), t € [0,T]. (3.8)
Proof. Let ®(t) = f(f ©(r) X (r)dr. Ignoring Y in (B.4) we get that for almost every ¢

%@(t) — o) (1) < (1) Z + (1)),

Thus integrating and using the monotonicity of I(¢) we obtain that for every t € [0, 7],

D(t) < /Ot o(s) [Z + 1(s)] efst‘P(T)dr ds < [Z + I(t)] efg o(r)dr 1] .
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Consequently (B.q) and (B.§) yield
X(t) +aY (t) < [Z + I(t)] eo ¢ < (7 4 1(1)] € as.
Taking expected values and using (B-7) and (B.H), we deduce
t
E(X(t) +aY (1) < 2e° [E(Z) + C] +2~e” / EX (r) dr.

0
As above this implies

t

2760/ EX(r)dr < 2¢C [E(Z) + C [e“eCt - 1}
0

for ¢ € [0,7], which leads to (B.g). O

The following proposition provides the (global) existence and uniqueness of approximate
solutions and also their uniform (a priori) estimates. This is the main preliminary step in
the proof of Theorem B.]. We can made this step under less restrictive growth conditions

concerning & than (R.27) in (C3).
Proposition 3.3. Fizx M > 0, T > 0 and let Conditions (C1)-(C3) be in force with the
assumption

16 (t, W) (11, ry < Ko + Kilu® + Kallul|*, Vt€[0,T], VueV, (3.9)

instead of (R-27). For any integer p > 1 there exists Ko = Ko(p, T, M) (which also depends
on K;, K; and R;, i = 0,1, and on Ky if Ky # Ks5) such that the following result holds.
Let h € Ay, 0 < Ko < Ky and € € L?P(Q, H). Then equation (B.4) has a unique solution
on [0,T] (i.e. o, =T a.s.) with a modification uy,p € C([0,T], Hy,) and satisfying

T
supE (( sup funn(07 + [ Juna(s)|P funa ()20 s ) < CBEF +1)  (3.10)
n 0<t<T 0
for some positive constant C' (depending on p, K, K;,i=0,1,2, R;,j=0,1,T,M).
Proof. Let u, p(t) be the approximate maximal solution to (B.4) described above. For
every N > 0, set
T~ = inf{t : |u,p(t)] > N} AT.
Let II,, : Hy — Hy denote the projection operator defined by IL,u = > (u, ek) €k,

where {eg, k > 1} is the orthonormal basis of H made by eigen-elements of the covariance

operator @ and used in (P.23).
[td’s formula and the antisymmetry relation in (2.3) yield that for ¢ € [0, 77,

tIATN tATN
(A )2 = [ Pat]? + 2 / (0t () AW (5), i (s)) — 2 / lm(s) P ds
0 0

IANTN tIATN 5
_ 2/ (R(un,h(s)) — On(Un,p(5))h(s), un,h(s)) ds + / | (Un,n(s)) Hn|LQ ds.
0 0

(3.11)
Apply again Ito’s formula for f(z) = 2P when p > 2 and z = |u,, »(t A 7y)|?. This yields

for t € [0,7], and any integer p > 1 (using the convention p(p — 1)zP~2 =0 if p = 1)

tATN
!Un,h(MTN)IQPJr?P/ [ w ()P g ()P dr < [Pl + Y Ty(0), (3.12)
0 1<5<5

where

tATN
Ti(t) = 2 / (Ro+ Raftnn(r)]) [t ()P~ dr,
0
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tATN , :
To(t) = 2p ‘/ (on(tnp (1) AWy (r), unn(r)) [tnp(r)| (p=1),
0
tATN , X
L) = 2])/ |(5n(un7h(r)) h(r),un7h(r))| |Un,h(7“)| (r— )dr,
0
tATN
Tyt) = p/o |0 (U, n (1)) HM%Q Iun,h(r)lz(”_l)dr,

IATN
T5(t) = 2p(p—1) /O L0 (e (1)) o (P)[§ [t () PP

Since h € Ay, the Cauchy-Schwarz inequality and condition (B.9) imply that

tATN ~ ~ ~ oy 1
2 [ (VEo+ VR im0+ VR Jan0)]) (o0l ()Pl

0
P tIATN 5 5 1 _ tIATN 5 5
< 2 s IR PO dr b 2p Ry [ ()P

0 0

~ INTN — tATN
Lop\/R /0 1)l [t (7) 2P+ 20 Ko /0 () ot ()22 -

Therefore using the inequality |u|??~! <1+ |u|? to bound the last term we obtain
p [N 2 2(p—1 = [
(0 < 5 [ lunn )P )PV dr 20Ky [ Ihirloar
0 0

+2p /OWNK\/I?O + \/;1> |h(r)o + f(2|h(r)|g] |t 1 (1) [PP . (3.13)

Using condition (C2), relation (P.22) and also the fact that

T35(t)

IN

oWl (o, my = o™ (Wl ca,mo0) < lo(w)lLg,

we deduce that
tATN
T+ T5(0) < (20 ~p) Ko [ (DI ()P0 dr
0
tATN
+ (2p2 -p) / <K1 \umh(?“)]Qp + Kolun,h(r)lz(pfl)) dr
0
tATN
<P D [ )P ()P0 dr
0
tATN
+ Cp / [KO + (Ko + Kl) ]un,h(r)]%] dr.
0
Consequently (B-13) for Ko < (4p — 2)~! yields
tATN
[t (8 A7) [P +p/ [ty o (1) PP ([t 1o () || i (3.14)
0

" T tATN
< IR +6 (Kot B T4y R [ holoar| + [ o0lunn(r)P dr + 100

for ¢ € [0,T], where I(t) = supy<s<;|T2(s)| and

o) = (Foc+ Buo+ Ko Ko+ [VRo+ R Ilo + Ralh(o)
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for some constant ¢, > 0. The Burkholder-Davies-Gundy inequality, (C2) and Schwarz’s
inequality yield that for ¢ € [0, 7] and 3 > 0,

EI(t) =E( sup |T: < il [ 22p=1) IL,[3  d
) =E{ gup, 2] < GpEY [ Juna(MFF lonwnn(r) Talzg dr

NI

9 2K tATN B
<OE( _swp fenn@P) + P2 E [ )P )P0V

0<s<tATN g 0
9 2 K K tIATN 9 2K

+ p(O—ME/ g 1 (r)[2Pdr + 20 T (3.15)

g 0 g
Thus we can apply Lemma B.9 for
2 AT 2 2(p—1
X(t) = sup |unn(s)|™, V() = / et (7)1 [ o ()PP~ Ve (3.16)
0<s<tATN 0

All inequalities for the parameters (see (B3) can be achieved by choosing K3 small enough.
Thus there exists K5 such that for 0 < Ky < K9 we have

™
supE( sup \umh]Qp—i-/ [t o (8) || |t (5) 2P~ ds> < C(p)
n 0<s<ty 0

for all n and p, where the constant C(p) is independent of n.

Now we are in position to conclude the proof of Proposition B.3 As N — oo, 7n T Tns
and on the set {7, < T}, we have supg<s<,, [Unn(s)| — oo. Hence P(7,; < T) = 0 and
for almost all w, for N(w) large enough, Ty, (w) =T and u,4(.)(w) € C([0,T], H,). By
the Lebesgue monotone convergence theorem, we complete the proof. O

Remark 3.4. If f(Q < 2 — 6 for some § > 0 then the bound K5 does not depend on f(g.
Indeed, one may slightly change the proof by replacing the inequality in (B.13) by the
following

_ tIATN
Ty(t) < pKo /O e ()2 [t () 2P~ i

var [V Rl ([VEo+ ] o+ 100 ) ]

Therefore we can exclude the first term of right hand side and obtain relation (B.14) with
coefficients independent of K.

Remark 3.5. If the control (shift) function h admits a deterministic bound () from
L?(0,T), then we can improve Proposition B.3 in the way that the constant K would only
depend on p. The point is that in this case we do not need to apply a two steps procedure
in the Gronwall type argument (see Lemma B.J). Then the function ¢ is deterministic.
Therefore by taking first sup, in (B.19) and then taking expected values, we obtain that

for X and Y given by (B.14):

t
(1-B)EX(t) + (371) — cpsFK2)EY (t) < E|PE* + ¢, 5T + cp,g/go(r)EX(r) dr
0

for t € [0, T, for arbitrary § > 0 and some positive constant ¢, g. Choosing # = 1/2 and
K5 such that 3p/2 — ¢, gKs > 0 after application of the standard Gronwall lemma, we
obtain the desired result.

We now prove the main result of this section.
Proof of Theorem @:
Let Q7 = [0,T] x £ be endowed with the product measure ds ® dP on B([0,7]) ® F. Let
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K be defined by Proposition B3 with p = 2. The inequalities (B10) and (P-J) imply that
for Ky € [0, K3] we have the following additional a priori estimate

T
supE/ lunn(s)[[4ds < Co(1 + EJ[4). (3.17)
n 0

The proof consists of several steps.

Step 1: The inequalities (B.I0) and (B.I7) imply the existence of a subsequence of
(tn,h)n>0 (still denoted by the same notation), of processes
up € X == L*(Qp, V)0 LY(Qp, H) N LY (Q, L>([0,T), H)),

F, € L*(Qp, V') and S),,S), € L*(Qr, Lg), and finally of random variables iy (T) €
L?(Q, H), for which the following properties hold:
(i) wn.p — up weakly in L*(Qg, V),
(ii) wunp — up weakly in LY (Qr, H),
(iii) up p, is weak star converging to uy, in L4(Q2, L>([0,T), H)),
(iv) unn(T) — 4 (T) weakly in L?(Q, H),
(v) F(unp) — Fy weakly in L*(Qp, V'),
(vi) o (tunp)IL, — Sy, weakly in L2(Qr, Lg),
(vii) G (tn ) — S weakly in L3 (Qr, H).

Indeed, (i)-(iv) are straightforward consequences of Proposition B.3, of (B.17), and of
uniqueness of the limit of E fOT (un,n(t),v(t))dt for appropriate v. Furthermore, given v €

L?(Qr,V), we have Av € L?(Qp,V'). Since for u,v € L*(Qr, V), EfOT(Au(t), v(t)) dt =
E [y (ult), Av(t)) dt,

T T
E /0 (Aupp(8),0(8)) dt — E /0 (Aun(t) , v(t) dt. (3.18)

Using (B.10) with p = 2, (.4), (B.17), condition (C3), the Poincaré and the Cauchy-
Schwarz inequalities, we deduce

T ~
suplEjé (Bt n(5), 0(8)) + (Rt (), 0(8))] dt

n
T

T T
CNW{E/H%Mmﬁ+E/rwﬂm%@+0ﬂ/<rwwmmﬁ
n 0 0 0

IN

IN

T
Cs (1 + ElE* + E/ Hv(t)Hth) < +00.
0

Hence {B(up 1 (t))+R(u, 1(t)), n > 1} has a subsequence converging weakly in L?(Qz, V'),
which completes the proof of (v).

Since II,, contracts the | - | norm, (C2), (£.23) and (B.1() for p = 2 prove that (vi) is a
straightforward of the following

T T
supE/ |0n(un7h(t))Hn|%th < KoT + supE/ (K1|un7h(t)|2 + K2\|un7h(t)\|2) dt < oo.
n 0 n 0

Finally, using (R.27) in (C3), Hélder’s inequality, (B.10) with p = 2 and (B.17), we deduce

T T ~ » » 4 4
E/!%Wm®m@ﬁ@SE/ [V o+ Rilunn(3)] +  Brallunalln] * 1h(s)I3 ds
0 0

<a(s [ Ineias) (& [ 1+l luna@lidas) < oo

for every integer n > 1. This completes the proof of (vii).
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Step 2: For § > 0, let f € H' (=4, T + J) be such that ||f||cc = 1, f(0) = 1 and for
any integer j > 1 set g;(t) = f(t)p;, where {¢;};>1 is the previously chosen orthonormal
basis for H. The It6 formula implies that for any j > 1, and for 0 <t < T,

(un,h(T)’ g](T)) = (un,h(o)’ gj(o)) + ZIZ,]" (319)
where

T T
I, = /0 (unn(s),05)f (s)ds,  I2, = /0 (00 (i, ()T dW (5), g5 (5)),

T T
13, = /0 (Flunp(s)), i (s))ds, T2, = /0 (Gntin n(5))A(5), g (5)) ds.

Since f' € L?([0,T]) and for every X € L*(Q), (tw) — @;X(w) f'(t) € L*(Qr, H),
(i) above implies that as n — oo, I nj — fo (un(s), ) f'(s)ds weakly in L*(2). Similarly,
(v) implies that as n — oo, I nj — fo (Fn(s),g;(s))ds weakly in L?(£2), while (vii) implies
that Ié’j — fOT (Sh(s),g]( ))ds weakly in LS( )

To prove the convergence of IZJ», as in [BI] (see also [[J]), let Pr denote the class of

predictable processes in L*(Qr, Lo(Ho, H)) with the inner product

T T
(G, J)p, = E/o (G(s),J(s))Lst = E/O trace(G(s)QJ(s)")ds

The map 7 : Pr — L%*(Q) defined by 7(G)(t) = fOT (G(s)dW (s),g;(s)) is linear and
continuous because of the Itd isometry. Furthermore, (vi) shows that for every G € Pr,
as n — oo, (Jn(umh)ﬂn,G)PT — (Sh, G)p, weakly in L?(9).

Finally, as n — oo, P,§ = uj, ,(0) — £ in H and by (iv), (un,n(T), g;(T)) converges to
(in(T), g;(T)) weakly in L?(Q2). Therefore, as n — oo, (B.19) leads to

T T
(ah(T)a(Pj) f(T) = (57 ij) +A (uh(s)a()oj)fl(s)ds +/0 (Sh(s)dw(s)agj(s))
T T
" /0 (Fu(s), 9;(s))ds + /O (84(s). 95(5)) ds. (3.20)

For § >0, k> 1,t€[0,T], let f, € H(—6,T + &) be such that || fi]cc =1, fxr =1 on
(=6,t — %) and f =0 on (t,T + 5). Then f, — 1(_sy in L? and f; — —d; in the sense
of distributions. Hence as k — oo, (B.20]) written with f := f;, yields

0= (¢~ unlt)py) + /0 (Sh(s)dW (s),5) + /0 (Fa(s), 05)ds + /O (8n(s). 0y)ds

for almost all ¢ € [0,7]. This relation makes it possible to suppose (after some modifi-
cation) that wuy(t) is weakly continuous in H for almost all w € Q. Now note that j is

arbitrary and EfOT \Sh(s)]%st < oo; we deduce that for 0 <t < T,

t) =&+ /t Sh(s)dW (s) + /t Fn(s)ds + /t Sy(s)ds € H. (3.21)

Moreover fo Fn(s)ds € H. Let f = 1(—s1+6); using again (B20) we obtain

T T
:§+/0 Sh(s)dW(s)—i—/O Fh(s)ds—i—/o Sh(s)ds

This equation and (B.21)) yield that @, (T) = up(T) as.
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Step 3: In (B.2]) we still have to prove that ds ® dP a.s. on Qp, one has
Si(s) = o(up(s)), Fu(s) = F(up(s)) and Sy(s) = &(un(s)) h(s).

To establish these relations we use the same idea as in [BI]|. Let

ve X =LYQr, H)N L4(Q L>([0,T], H)) N L*(Qp,V) .

Suppose that Ly < 2 and let 0 < < 2=22; for every t € [0, 7], set

t i
~ L
)= [ [2R+ 20, o)+ Lo+ 24/ Lafulo)lo + 2] ds  (322)
0

where C), is a function of 7 such that (B-J) holds. Then almost surely, 0 < r(¢) < oo for
all ¢ € [0,T]. Moreover, we also have that

re LYQ,L®(0;T)), e € L™®(Q), v’ € LY(Qr), v'e™" € L=(Q, LY ((0,T)).  (3.23)
Weak convergence in (iv) and the property P,§ — £ in H imply that
E(Jun(T)|* e ") — E[¢[? < lim inf [E(yun,h(T)R e (M) - Eypngﬂ . (3.24)

We now apply Itd’s formula to |u(t)[?e " for u = uj, and u = w, . This gives the
relation

T T
IE(\u(T)]2 e*T(T)) — IE]u(O)]2 = E/O e*”(s)d{]u(s)lz} — E/O r’(s)e*r(s)\u(s)\st,

which can be justified due to (B.2J) and the property |u*> € L'(Q, L>°((0,T)). Using
B-21), (B4) and letting u = v + (u — v) after simplification, from (B.24) we obtain

T
B [ [ (o) un(s) = o(6)* + 2(un(s) = 0(s), 0(5))} + 2F).un)
+ |Sh(s)|%Q + Q(Sh(s) , up(s))] ds < limniann, (3.25)
where
T 2
X, = IE/O e () [ =" (8){|unn(s) = v(s)|” + 2(unn(s) —v(s), v(s))}
+ 2(F (un 1 (5)), tn,i(5)) + [0 (tnp ()| 7, + 2(5 (wn,p(5))h(s) s wnn(s))] ds.
The inequalities in (B.3), (C2), (C3), and also (B.29) and Schwarz’s inequality imply that
T
Vo im B[O )lunals) - o(s)f
0
+ 2(F (unn(s)) = F(v(s)), unn(s) —v(s)) + |0n(un,h(8)) I, — on(v(s)) Mal7,,
+2({Gn(unn(s)) — Gn(v(s))} h(s),unn(s (s))}ds <0. (3.26)
Furthermore, X,, = Y;, + 37, Zfl, with
T
2 = B [ 0] =209 una(5) = 0(5),0(5) + AP (5)) ()
+2(F(v(s)), unn(5)) = 2(F (0(s)), v(s)) + 2(on(un.n(s))n , o(v(s))
+ 2(5n (umh(s))h(s),v(s)) + 2(5(1}(5)) h(s),unn(s)) — 2(Pn5(v(s))h(s),v(s)) ] ds,
T
72 =E /O e [2 (0t (N, (0T — 0(0(5))) |~ [Paor(w(s) T3, ] ds

Lq



18 I. CHUESHOV AND A. MILLET

The weak convergence properties (i)-(vii) imply that, as n — oo, Z} — Z! where

T
Z' = E / e )] = 2 (s) (un(s) — v(s), v(s)) + 2(Fh(s), 0(s)) + 2 (0(s)), un(s))

0
= 2(F(v(s)),v(s)) +2(Sn(s), o(v(s))) 1, +2(Sn(s), v(s))
+2(5(v(s)) h(s),un(s)) —2(c(v(s))h(s),v(s)) |ds. (3.27)
As for Z2 we note that the Lebesgue dominated convergence theorem implies that
T
E/O e "o (v(s)) (11, — IdHO)\%st — 0 as n — oc.
Using once more the dominated Lebesgue convergence theorem, we deduce that
T
72 — —E/ e_r(s)|a(v(s))|%st as n — 0o. (3.28)
0

Thus, (B:28)-(B:2§) imply that for any v € X,

T
E/O 67"(5){ —1'(s)[un(s) = v(s)|* + 2(Fn(s) = F(v(s)), un(s) — v(s))

+15u(s) — o(v(s))[3,, + 2<Sh(s) — &(v(s))h(s), up(s) — v(s)) }ds <0.  (3.29)
Let v = up, € X; we conclude that Sp(s) = o(up(s)), ds ® dP a.e. For A € R, © €

L®(Qp, V), set vy = uj, — A0 ; then it is clear that vy € X. Applying (B.29) to v := vy
and neglecting |o(up(s)) — 0(1))\(5))|%Q, yields

T
B[ e[ = @liR + 2{(Fu(s) = Floa(9).5(5)
v (Sh(s) - 5(1))\(8))h(8),27(8)) H ds < 0, (3.30)
where r)(s) is given by (B.29) with v, instead of v. Using (C3) we obtain

T
E/ e ([ (va(s)) = 6 (un(s))] h(s), B(s))|ds
0

< WE [ 6ot (Vo) + yEa o)) ds -0

as A — 0. Hence, by the dominated convergence theorem,

lim E /0 "o (3(5) — Sor((s), 7(5))ds

A—0
T
~E /0 e~T0(®) (Sh(s) — & (un(s))h(s), 17(5)>d5.
Furthermore, (B.3) yields for A # 0 and s € [0, 7]
[(F(ox(5)) = F(un(s)),5()| < CIA[[o()* + [15()I* + [9(5)] llun(s)[24] -

Thus we deduce as A — 0,

T T
B [ OB (s) - Flor®)o(e)ds — B [ e OEL(s) - Flun(s). ()i
0 0
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Thus, dividing (B.3() by A > 0 (resp. A < 0) and letting A — 0 we obtain that for every
v € L>®(Qr, V), which is a dense subset of L?(Qr, V),

T
E / e "0(s) [(Fh(s) — F(un(s)), 5(s)) + (Sn(s) — &(un(s))h(s) @(s))} ds = 0.
0

Hence a.e. for t € [0,7], (B:2]]) can be rewritten as

up(t) =&+ /0 o(up(s))dW (s) + /0 [F(un(s)) + & (un(s))h(s)]ds. (3.31)

Furthermore, (i)-(iii) imply that
T T
B( [ lu®l?at) < swk [ Jun(o)d < O+ Elgl),
0 n 0

E( sup [un®') < swpB( sup fu,u(t)') < C (1+ Bl
0<t<T n 0<t<T

T T
E(/O Jun(t) [ dt) < sng/O lunn ()4 dt < C(1+ BllY).  (3.32)

This completes the proof of (B.J).

Step 4: Now we prove that u;, € C([0,T], H) almost surely. We first note that (B.31])
yields that e~%4w;, € C([0,T], H) a.s. for any § > 0. Indeed, since for § > 0 the operator
e~ maps H to V and V' to H, we deduce that e %[5 F'(uy(s)) ds belongs to C([0,T1], H).
Condition (C3) implies that e % [ &(up(s)) h(s)ds also belongs to C([0,T], H). Finally,
condition (C2) implies EfOT]e*‘SAJ(uh)(s)]%Q ds < +oo. Thus [;e %o(uy(s))dW(s)
belongs to C([0,T], H) a.s. (see e.g. [LI], Theorem 4.12). Therefore it is sufficient to
prove that

lmE < sup |up(t) — e uy ()2 3 = 0. (3.33)
6—0 0<t<T

Let Gs = Id — %4 and apply Itd’s formula to |Gsuy(t)|?. This yields
t t
Goun(OF = [Gag ~2 [Grun()Pds +20(0) + [ Goo(un(s)), ds
0 0

+2/0 (B(un(s)) + R(un(s)) + 6 (un(s))h(s), GFup(s)) ds, (3.34)

where I(t) = f(f (Gso(un(s))dW (s),Gsun(s)). By the Burkholder-Davies-Gundy and
Schwarz inequalities we have
T 1/2
B sup 10 < CE ([ [Gsun(s)PIGs olun(s) s
0<t<T 0
1 5 02 T )
< 5 B sup [Gup(t)]" + B [ |Gso(un(s))lL, ds.
0<t<T 0

Hence for some constant C, (B-34) yields

T
E sup |Gsun(t)|? < 2|Gsél’ + CE / Gsor(un(s) 2, ds
0

0<t<T

T,
+ 4E/0 ((B(uh(s)) + R(un(s)) + 5(uh(s))h(s),G§uh(s)>‘ ds.
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Since for every u € H, |Gsu| — 0 as § — 0 and sups~ |Gs|rqr,m) < 1, we deduce that if

{¢r} denotes an orthonormal basis in H, then |Gso(up(s))Q'2px*> — 0 for every k and
almost every (w,t) € Q x [0,T]. Since

sup |Gso(up)|7, < Y sup|Gso(un) QP orl* < Clo(un)l7,, € L'(Q x [0,T]),
>0 r 0>0

the Lebesgue dominated convergence theorem implies that E fOT ]G(;a(uh(s))]%st — 0.
Furthermore, given u € V we have [|GFul| — 0 as § — 0 and sups~q |Gs|rv,v) < 2. Hence
(B(un(s)) + R(up(s)) + & (up(s))h(s), G3up(s)) — 0 for almost every (w, s). Therefore, as
above, the Lebesgue dominated convergence theorem concludes the proof of (B-33).

Step 5: To complete the proof of Theorem B.1], we show that the solution uy, to (B-3]) is
unique in X := C([0,T], H) N L?([0,T],V). Let v € X be another solution to (B-31]) and

T~ =inf{t > 0: |up(t)] > N} Ainf{t > 0: |v(t)| > N} AT.

Since |up(.)| and |v(.)| are a.s. bounded on [0,7], we have 7y — T a.s. as N — oo.
Let U = up, — v. By Itd’s formula we have

=0 o N Il OB g )2 = /OWN U(s)ds + O(t A Tn), (3.35)
where
U(s) = e~ o lun@ldr | _ g0, (s)14|U(s))2
= 2||U(s)[I” = 2(B(un(s)) = B(v(s)),U(s)) + |o(un(s)) — a(v(s))2,
+2([G(un(s)) — 3 (v(s)h(s), U(s)) — 2(R(un(s)) — R(v(s)), U(S))}
and

O(r) =2 /O "o i O () (o (un(s)) — o(o(s))] AW (s)).

Now we set a = 2C,, where C,, is defined by (.§). Then using (R.§) and Conditions (C2)
and (C3) we obtain that for some non negative constant C(n) which depends on 7, Ry,
L1, L;, i = 1,2, and is independent of Lo,

W(s) < oI5 et [ (2 — 3y — L) |U(s)]?

+ (2R Lo+ Zh(o) +2 VEAl(s)o) U (s)P]
< IOl [ (2 gy — Ly) U ()| + Ol (L + [h(s)R) [U(s)P]- (3:36)

First consider the case of a general (random) control function h. Below we use the notations

fs/\TN

tATN s
X(t) = sup {eme 5 IO (s p )2} V() = / e 5 lun IR 7 () 2.
0

0<s<t
Then it follows from (B.35) and (B.34) that for 3n < 2 — Lo,

X(t)+(2—=3n— L)Y (t) < C(n) /O (1+1h(s)[5) X (s)ds + 1(2),

where I(t) = supgcs<; |P(s A7y)|. An argument similar to that used to prove (B.1Y),
based on the Burkholder-Davies-Gundy inequality, (C2) and Schwarz’s inequality, yields
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that for t € [0,7] and 3 > 0,

IATN s 4 1/2
EI(t) < 6E [ [ e O ) o un(5) — a(w()
0

Ly [* L
< BEX(t) + 24 IEX(s)d + 22 gy,
B g
Now we are in position to apply Lemma B.2. If we choose n = 1/3, 23 = exp{—C(1/3)(T +
M)}, then (B.H) holds under the condition Ly (1 + 36 exp{2C(1/3)(T + M)}) < 1. There-
fore, since supg< <7 {efafoww lFun (M) ler |07 (5 A TN)\Q} < 2N, relation (B.§) implies that

EX(t) = 0 for all ¢ and hence,

E sup {efafoWN lenlidedr |75 A TN)\Q} = 0. (3.37)
0<s<T

Since limy oo 73y = T a.s., and by (B.3) we have a.s. fOT |un(s)|[f,ds < oo, we deduce
that |U(s,w)| = 0 a.s. on Q7. Thus, we conclude that uy(t) = v(t), a.s., for every t € [0, 7T
which yields the uniqueness statement in Theorem B.]] for a general control function.

Suppose now that we only have Ly < 2 and that h possesses a deterministic bound

¥(t) € L2(0,T); let n €]0, 2522]. Then it follows from (B39) and (B-39) that

V(1) < C(n) /0 t [1+\¢(s)\2}vN(s)ds with  Vi(t) = Ee=Jo len@lidr|gr g o ry)[2.

Since the function s +— [1|? belongs to L'(0,T), we can apply the Gronwall lemma to
obtain (B.37) and to conclude the proof for the case considered.

Let Ly < 2, suppose ¢ = o satisfy both conditions (C2) and (C3). For h # 0 let
W, = Wy + fo s)ds and let P be the probability defined on (€, F;) by & d]P = exp<

fo 5)dW, — 5 fo \h(s)|3 ds). The Girsanov theorem implies that 1 is a P Brownian

motion with the same covariance operator (). Furthermore, under P, one has

w(®) =+ [ Flun()ds+ [ oluno)ai

Thus the previous argument (with = 0) implies that |U(s,w)| = 0 P a.s. on Qp, and
since P and P are equivalent, this completes the proof of Theorem B.1. O

Remark 3.6. The result similar to Theorem B.]] can be established if instead of the
boundedness hypothesis (R.27) for ¢ in Condition (C3) we assume that there exists 0 <
s < 1/2 such that

16 (8 W7 (110.10) < Ko + Kiful® + Ko A%ul*, Vit €[0,T], Vue V. (3.38)

Indeed, using Remark .3, we deduce that this inequality implies (B.9) with arbitrary small
K, and thus the conclusion of Proposition B is in force. Furthermore, it follows from
the consideration above that we only need the requirement (.27) concerning the growth
of 6 in order to obtain weak compactness of the sequence Gy, (u, (s))h(s) in LP(Qp; H)
for p = 4/3 > 1. This weak compactness makes it possible to pass to the limit in the
term E fOT (6n (wn,n (1)) h(7),v(7)) dr in the expression for Z} for v from the class X which
contains the limiting function uy(t). However the same conclusion would be true for v
from an appropriate class (containing up(t)), if we could prove uniform boundedness of
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& (Unp(s))h(s) in LP(Qp; H) for some p > 1 such that uy, € LP/P=Y(Qp; H). On the
other hand, one can see from (£.24) and (B.3§) and from Proposition B.J that

T T _1
supE/ ‘5n(un7h(r))h(r)‘p dr < cg sup (/ |h(7“)|2 dr) e
0 n 0

n
T 1 %
(] M) )22 ) ™ < o,
0

and supnIEfOT [y, (T)|? dT < o0 for p = ﬁ, g=t = -, and an initial data ¢ such
that the property & € L?7 (Qp; H) holds for some integer ¢* > 1——125 \% 2_15 This observation

allows us to prove that Z! converges to Z! defined by (B:27) and concludes the proof.

Remark 3.7. If the control (shift) function h admits a deterministic bound and o satisfies
conditions in Remark R.3, then Theorem B.1] holds without any restrictions on the bounds
of the constants used in upper estimates of o and & (see Remark B.H).

4. LARGE DEVIATIONS

We consider large deviations using a weak convergence approach [f, fl], based on vari-
ational representations of infinite dimensional Wiener processes. Let ¢ > 0 and let u®
denote the solution to the following equation

duf (t) + [Au®(t) + B(uf(t)) + R(t, v (t))] dt = Ve o(t,u(t))dW (t),u(0) =€ € H. (4.1)
Theorem B.1 shows that for a any choice of Ky and Ly, for € small enough the solution
of ([J) exists and is unique in X := C([0,7], H) N L*([0,T],V); it is denoted by u® =
G¢(y/eW) for a Borel measurable function G* : C([0,T], H) — X.
Let B(X) denote the Borel o—field of the Polish space X endowed with the metric asso-

ciated with the norm defined by (B.I]). We recall some classical definitions; by convention
the infimum over an empty set is +oo.

Definition 4.1. The random family (u) is said to satisfy a large deviation principle on
X with the good rate function I if the following conditions hold:

I is a good rate function. The function function I : X — [0,00] is such that for
each M € [0,00] the level set {¢p € X : I(¢p) < M} is a compact subset of X.
For A € B(X), set I(A) = inf,ca I(u).

Large deviation upper bound. For each closed subset F of X :

limsup elogP(u® € F) < —I(F).
e—0

Large deviation lower bound. For each open subset G of X :
lim infO elogP(u® € G) > —I(G).
£—

For all h € L?([0,T], Hy), let uj, be the solution of the corresponding control equation
(D) with initial condition uy(0) = &:

dup (t) + [Aup () + Bup(t)) + R(t, up(t))]dt = o (t, up(t))h(t)dt. (4.2)

Let Co = {f; h(s)ds : h € L*([0,T],Ho)} C C([0,T],Hp). Define G° : C([0,T], Hy) — X

by G%(g) = uy, for g = Js h(s)ds € Cp and G%g) = 0 otherwise. Since the argument below

requires some information about the difference of the solution at two different times, we
need an additional assumption about the regularity of the map o(., u).

Condition (C4) (Time Holder regularity of o): There exist constants v > 0 and C' > 0
such that for ¢1,t2 € [0,7] and v € V:

oty u) = o(ta, u)|lLg < C (1+ [ul]) [tr — 2]
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The following theorem is the main result of this section.

Theorem 4.2. Suppose the conditions (C1) and (C2) with Ko = Ly = 0 are satisfied.
Suppose furthermore that the conditions (C3 (ii)) and (C4) hold. Then the solution (uf)
to (B.1)) satisfies the large deviation principle in X = C([0,T); H)NL?((0,T); V), with the
good rate function

17 )
1, = inf — h dsy. 4.3
§(U) {heL? (O,T;Ho):HzlL:gO(fO‘ h(s)ds)} { 2 /0 | (S)|O S} ( )

We at first prove the following technical lemma, which studies time increments of the
solution to a stochastic control problem extending both ({.1) and ({.9). When o, & and
R satisfy (C2) and (C3), h € Ay, the stochastic control problem is defined as in (:29):
uf (0) = ¢ and

duj, (1) + [Auj, (1) + B(u (1)) + R(t, uf, (1) dt = VEo(t,uj, () dW (£) + 6 (¢, uf, (1)) h(t) dt.

(4.4)
To state the lemma mentioned above, we need the following notations. For every integer
n, let ¢, : [0,T] — [0,T] denote a measurable map such that for every s € [0,7], s <
Un(s) < (s + 27™) AT for some positive constant c¢. Given N > 0, h € Ay, and for
t €1[0,7], let

ant)={w: ( sup Jui(s) / i (s)(@)[ds) < N}.

0<s<t

Similarly to Proposition B.J, we can use a relaxed form of condition (C2) in order to
perform calculations in the following lemma.

Lemma 4.3. Let ¢g, M, N > 0, o satisfy condition (C2) and & satisfy condition (B.9)
and (R28). Assume that ¢ € L*(Q;H) and let up(t) be solution of (E4) satisfying
the conclusion of Theorem [3.]. Then there exists a positive constant C (depending on
K, Ki,i=0,1,2,L;,L;,j = 1,2, Ry, T, M, N,&0) such that for any h € Ay, € € [0, 0],

T
T(s) = Efigury [ i) —uiln()P ds] < 02 7%, (45)
0
Proof. The proof is close to that of Lemma 4.2 in [[J]. However we deal with a class of
more general functions 1, (s) and do not assume that Ky = Ly = Ky = Ly = 0. As above,

to lighten the notation we skip the time dependence of o, & and R. Let h € Ay, € > 0;
for any s € [0, 7], Ito’s formula yields

Pn(s) Pn(s)
[uf, (Yn () — uj(s)]” = 2/ (u,(r) = uj(s), duj (r)) + 6/ jor (i, (1) |7
Therefore I (h,€) = > 1 <;<q Ini, Where

1= 2VEE(loun | s / " DA ) 30) - 05 (5) ),
Ly = E(lg,q / ds / " )3 dr),

25 (leuir [ ds / o (6<uz<r>>h<r>,ui(r)—ui(s))dr),
b = 2B (g [ s [T A0, w0 - wio0) ar).

:’\4
—
I

=
w
I
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T Yn(s)
I, = —2E(1GN(T)/O ds/ <B(u2(r)), ui(r)—ui(s»dr),
T Yn(s) _
s = —2E(1gym /0 ds / (R(ui (), i (r) = ui(s)) dr ).

Clearly Gn(T) C Gn(r) for r € [0,T)]. In particular this means that |u5 (r)| +|u5 (s)] < N

on Gy(r) for 0 < s <r <T. We use this observation in the considerations below.
The Burkholder-Davis-Gundy inequality and (C2) yield for 0 < e < g9

T '¢'n(5) 5 2 %
Tal < 6VE [ asB( [ loth0) gl i)~ wilo) dr)
T ¥n(s)
< 6\/250N/ dsIE(/
0 s

Schwarz’s inequality and Fubini’s theorem as well as (B.2), which holds uniformly in € €
10, &9] for fixed gy > 0 since the constants K; and L; are multiplied by at most g, imply

1
[Ko + K [, (r)” + Ko [Jug, (r)]|] d?“) g

IN

T T 1
61/2coNT [E/O (Ko + Ko [, (r) 2 + Ko [, ()2) (/( o ds) dr] :

< 01272 (4.6)

|In,1|

for some constant C depending only on K;, K;,i = 0,1,2, L;, f/j,j =1,2, Ry, M, g9, N
and T. The property (C2) and Fubini’s theorem imply that for 0 < e < g,

’In,Z‘

IN

T Pn(s)
5E<1GN(T)/O ds [ (0o + Kl ) + Kallui ) ) ar)

T
< EQE/ 1GN(T) (KO—|—K1N—|—K2Hu2(7")|]2)027" dr < (27" (47)
0

for some constant Cs depending on K;, i = 0,1,2, g9, N and T. Schwarz’s inequality,
Fubini’s theorem, (C2) and the definition (2.26)) of A yield

T
|In73| <2 E(lGN(T)/O ds

Yn(s) _ ~ ~ 1
< [ (Ro Rl (0P + Rl 0)IP) 11l () — w )] o)

T r
< 4\/N E/ 1GN(T)|h(T)|0(K0 + K1N + KQHUZ(’I“)‘P)% (/ dS) dr
0 VO

(r—c2=m)v
T 1

< 4\/N02_n\/ ME(lG’N(T) / (KO + K1N + KZHUZ(T)HQ) d’l“) : < (Cjy 2—n’ (48)
0

for some constant Cs depending on K;, i = 0,1,2, M and N. Using Schwarz’s inequality
we deduce that

Un 5)
ha < 2 (g [as [ a - GO + E@E@N)
Yn(s)
< 2E(loye )/ ds [|us (s )”2/ dr) < ¢ N2, (4.9)
0 s

The antisymmetry relation (2.3) and inequality (P7]) yields
[(B(uf,(r) , uj(r) = uj(s))| = [(Bui(r), ui ()| < g, (r)]* + Clag, ()1, (5) |-
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Therefore,
T ¥n(s) . 9
sl < 2B (1aen [ ds [ ar Jad o))
T Un(s)
<+2CE<kmu7£dﬂhi@Nﬁ{/ drlus (n[?) = 10+ 135 (4.10)

Fubini’s theorem implies

T T
1 < 2 (loy [ dr GO [ ds)
0 (r—c2=m)V0
T
< 202"E<1GN(T)/ dr Hu;(r)H?) < ON2 ™ (4.11)
0

Using (R.3), we deduce that on Gn(T) we have

T
[ s < a8 swp Wi [ Tuico)Pas < &N
0

se O T
Thus
9 T
1% < 20NE<1GN(T) /0 ds||u}i(s)\|;1{)02_" < 2a2CN3c2™. (4.12)

Finally, Schwarz’s inequality implies that

T Pn(s)
sl < 2E[lgyqmy [ s [ (Ro+ Ralui)) (ui (0] + i () ] < CN%27,

(4.13)
Collecting the upper estimates from (f.6)-(.1J), we conclude the proof of (f£F). O

Remark 4.4. The preceding lemma has been formulated in a general framework to be
used in a forthcoming paper about the support characterization of the solution to the
stochastic equation (R.25). In the setting of large deviations, we will use it in the case
when then o = & satisfies Condition (C2) with K5 = Ly = 0 (so by Remark .3 both
Conditions (C2) and (C3)(i) are in force) and with the following choice of the function
ty. For any integer n define a step function s+ 8, on [0,T] by the formula

Sp =t = (k+1)T27" for se[kT27", (k+1)T27"[. (4.14)
Then the map ¥, (s) = 5, clearly satisfies the previous requirements with ¢ =T .

Now we return to the setting of Theorem [£.2.

Let 9 > 0, (he,0 < € < g¢) be a family of random elements taking values in the set A,
given by (2.26). Let uy_, or strictly speaking, uj,_, be the solution of the corresponding
stochastic control equation with initial condition uy, (0) =& € H:

dup, + [Aup, + B(up.) + R(t,up,)]dt = o(t, up)he(t)dt + Ve ot up )dW (). (4.15)
Note that up, = G° <\/E(W + % IN he(s)ds)) due to the uniqueness of the solution. The

following proposition establishes the weak convergence of the family (uy_) as ¢ — 0. Its
proof is similar to that of Proposition 4.3 in [[J], but allows time dependent coefficients

R and o.

Proposition 4.5. Suppose that the conditions (C1) and (C2) are satisfied with Ko =
Ly = 0. Suppose furthermore that R and o satisfy the conditions (C3)(ii) and (C4). Let
& be Fo-measurable such that E]f\‘}q < 400, and let he converge to h in distribution as
random elements taking values in Apy, where this set is defined by (R.26) and endowed
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with the weak topology of the space L2(0,T; Hy). Then ase — 0, the solution up,, of ([L.17)
converges in distribution to the solution uy, of (D) in X = C([0,T]; H) N L*((0,T);V)

endowed with the norm (B.1). That is, as € — 0, G° (\/E(W + % I he(s)ds)> converges
in distribution to Qo(fo' h(s) ds) in X.

Proof. Since Ay is a Polish space (complete separable metric space), by the Skorokhod
representation theorem, we can construct processes (hg, h W) such that the joint distri-
bution of (he, W) is the same as that of (he, W), the distribution of h coincides with
that of h, and h. — h, a.s., in the (weak) topology of Sps. Hence a.s. for every
t €10,T] fo s)ds — fo ds — 0 weakly in Hy. To lighten notations, we will write
(he,h, W) (hg,h, W). Let U. = up, — up; then U-(0) = 0 and

dU: + [AUE + B(uhs) — B(uh) + R(t, uhg) - R(t, uh)] dt
= [o(t,up.)he — o(t, up)h|dt + Ve o (t, up, )dW (¢). (4.16)

On any finite time interval [0,¢] with ¢ < 7', Ito’s formula, (E:§) with = 3 and condition
(C2) yield for € > 0:

UOF +2 [ [0 ds = =2 [ (Blun.(9) = Blus(). Va()ds
- 2/ (R(S,uhg(s)) — R(s,up(s)), Ud(s)) ds
0
2 [ (ol ()he(s) = ol un(5)) (e). U (s)) s
—1—2\/—/ (s,up.(s))dW (s) +€/ lo(s, up_(s ))\LQ ds

/ 0. (s \|2d5+ZT £e) +2/(01 lun(s)l + Ry + V/Iilhe(s)|o) [U-(s) s,
=1
where

Ti(te) = 2VE / o (s, un, () AW (5)),

Tyte) = ¢ /0 (Ko + K un () 2)ds,

Ts(t,e) = 2/0t (a(s,uh(s)) (he(s) — h(s)), Ue(s)> ds.

This yields the following inequality

t 3 t
UOF + [ 10s)Pds < STi(ke) +2 [ [0y lun()le+ B v Ealhe(o)l] (o) .
i=1

(4.17)
We want to show that as ¢ — 0, |U:||x — 0 in probability, which implies that uj, — wuy
in distribution in X. Fix N > 0 and for ¢ € [0, 7] let

Gy(t) = { sup |un(s)[% < N} N { /Ot l[un(s)]|2ds < N},

0<s<t

Gne) = Gnn{ sup (P <N} /Ot Jun, (9)]%ds < N},

0<s<t
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The proof consists in two steps.
Step 1: For any ¢y €]0,1]0, sup  sup P(Gn(T)°) = 0as N — oo.
0<e<eo h,he€AN
Indeed, for € €]0,&0], h, he € Ay, the Markov inequality and the a priori estimate (8.9),

which holds uniformy in € €]0, gg], imply

P(Gne(T)°) < ]P’( sup \uh(s)]2 > N) +IP’< sup \uhs(s)IQ > N)
0<s<T 0<s<T

+P (/OT lun(s)[ds > ) +]P’(/OT Jun. (5)[)ds > N

1 T
< sup E( sup_|up(s)]> + sup fup, (s )|2+/ (Huh(S)H2+Huhg(S)HQ)dS)
h,he €A 0<s<T 0<s<T 0

<CQ+ElE*HNT, (4.18)
for some constant C' depending on 1" and M.

Step 2: Fix N > 0, h, h. € Aps such that as ¢ — 0, h. — h a.s. in the weak topology of
L?(0,T; Hp); then one has as ¢ — 0:

T
E 1y sup (V0P + [ 007 at)] - 0. (419)
0<t<T 0
Indeed, ([£17) and Gronwall’s lemma imply that on Gy (T),
sup |U-(t)> < [ sup (Th(t,e) + Ts(t,e)) + EC*] exp <2aOC;N2 + 2R T + 2\/L1]\4T)7
0<t<T 0<t<T ?
where C, = T(Ky + K1N). We also use here the fact that by (2.3)

T
[l ts < a0 s (o) [ unts)1Pds < ao® - on Gl
s€[0,T 0
Using again (f.17) we deduce that for some constant C' = C(T', M, N), one has for every
e>0:

E(lgy. ) IU:l%) < C(e+E[lg, .y sup (Ti(te) + Ty(t,e))] ). (4.20)
0<t<T

Since the sets Gy () decrease, E(1q, (1) supo<i<7 [T1(t,€)]) < E(A:), where

t

A i= 24/ sup ‘/ Loy (s) (Ug(s),a(s,uhs(s))dW(s)>‘.
o<t<T ' Jo

The scalar-valued random variables ). converge to 0 in L' as ¢ — 0. Indeed, by the

Burkholder-Davis-Gundy inequality, (C2) and the definition of G .(s), we have

T 1
B < OVEE] [ ey [V lols, () s}

1

<6y EH4N /OT Loy (o) (Ko + Kl\uhE(S)P)ds} 2} < CO(T,N)ve.  (421)

In further estimates we use Lemma [[.J with t,, = §,, where 5, is the step function
defined in Remark [[.4. For any n, N > 1, if we set ¢, = kKT27" for 0 < k < 2", we
obviously have

4
B(1gw.m sup [Ts(t2)l) <2 3 Ti(Non.e) + 2 B(Ts(Nom2), - (422
i=1
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where

]

T1(N,n,¢) :E[lGN @ Oi%‘ / (s, un(s)) (he(s) — h(s)) , [Us(s) —Ue(gn)])ds

TQ(Na n, 6) =K |:1GN,E (T)

< s | [ (1) = o)) = ). U5 ) s

0<t<T

T?)(Nv n, 8) =E |:1GN,5 (T)

X sup (/ (5 1 (5)) — (5, un(5n))] (hs(s)—h(s)),Ue(En))ds

0<t<T

|

(stemn(t) [ o) = o) s, )|

tk—1

T4(N, n, 6) =E |:1GN,E (T) sup sup
1<k<2m b1 <t<ty

T5(N,n,¢) =lay.(1) i ‘(0(7519,%(7519)) /tk (he(s) = h(s)) ds Ue(tk)) ‘
k=1 b1

Using Schwarz’s inequality, (C2) and Lemma B3 with 4, = 5, we deduce that for some
constant C := C(T, M, N) and any ¢ €]0, o],

- T 1
T(N.n.€) < E[Lgy () /0 (Ko + Kiun(3)?)  [he(s) = h(s)lo|Us(s) = Ua(5,)| ds|

NI

< (B[10s.r) | " {un ) = . 5D+ funs) — s} ]
’ T 1
2(Ko + K1 N) <E/0 Ihe(s) — h(s)2 ds> 2 <0yt (4.23)

A similar computation based on (C2) and Lemma [ yields for some constant Cj :=
C(T,M,N) and any ¢ €]0, g]

T 1
T3(N,n,) < \/2NL; <E{1GN’E(T)/ lun(s) — un(50) 2 ds / e (s yods>
0
<(C3277%, (4.24)

The Hélder regularity (C4) imposed on o(.,u) and Schwarz’s inequality imply that
~ T p—
Ty(N,n,e) < CVN 2—"%(1%5@ / (1 + [Jun(s)|) \ha(s)—h(s)]ds) < CH27™ (4.25)
0

for some constant Cy = C(T, M, N). Using Schwarz’s inequality and (C2) we deduce for
Cy = C(N,M) and any ¢ €]0, g¢]

- 1 [tk
TV, < B[y snp (Kot Kalun()? [ 1) = ho)lods 0:(00)
Sk<2n t—1

tr B n
< 2/N (Ko + K1 N) E< 1<s;1<an/t Ihe(s) — 1(s)]o ds) <4Cy 275, (4.26)
= > k—1

Finally, note that the weak convergence of he to h implies that for any a,b € [0,T], a < b,
the integral f he(s)ds — f h(s)ds in the weak topology of Hy. Therefore, since for the
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operator o (tx, up(tx)) is compact from Hy to H, we deduce that for every k,

‘a(tk,uh(tk))</tk he(s)ds — /tk h(s)ds) ‘H —0 as ¢ — 0.

th—1 th—1
Hence a.s. for fixed n as ¢ — 0, T5(N,n,e,w) — 0. Furthermore, T5(N,n,c,w) <
C (Ko, K1, N, M) and hence the dominated convergence theorem proves that for any fixed
n, N, E(T5(N,n,e)) — 0 as € — 0.
Thus, ({.22)-(}.26) imply that for any fixed N > 1 and any integer n > 1
lim supE[lGNE(T) sup |T3(t,g)|] <COnrM 9—n(YA7)
e—0 ' 0<t<T
Since n is arbitrary, this yields for any integer N > 1:
limE{lgNs(T) sup |T3(t,6)|} =0.
e—0 ’ 0<t<T
Therefore from (f£20) and ([.21)) we obtain ([.19). By the Markov inequality
1
P(IU1x > 6) < PGxo(T)) + 55E 1oy IUEI% ) for any 3> 0.
Finally, ([.18) and ([.19) yield that for any integer N > 1,
limsup P(||U.||x > §) < C(T, M)N~ !,
e—0

for some constant C(T', M) which does not depend on N. This implies lim._.o P(||U:||x >
0) =0 for any § > 0, which concludes the proof of the proposition. O

The following compactness result is the second ingredient which allows to transfer the
LDP from /W to uf. Its proof is similar to that of Proposition [l.§ and easier; it will be
sketched (see also [[J], Proposition 4.4).

Proposition 4.6. Suppose that (C1) and (C2) hold with Ky = Lo = 0 and that conditions
(C3)(ii) and (C4) hold. Fiz M >0, £ € H and let Ky = {up, € X : h € Sy}, where uy,
is the unique solution of the deterministic control equation ([.9) and X = C([0,T]; H) N
L2(0,T;V). Then Ky is a compact subset of X.

Proof. Let {u,} be a sequence in Ky, corresponding to solutions of ([.J) with controls
{hn} in SM:
dun (t) + [Aun(t) + Bun(t)) + R(t, un(t))]dt = o(t,u, (t))hn(t)dt, u,(0) = &.
Since Sy is a bounded closed subset in the Hilbert space L?(0, T’; Hy), it is weakly compact.
So there exists a subsequence of {h,}, still denoted as {h,, }, which converges weakly to a
limit h in L?(0,T; Hp). Note that in fact h € Sy as Sy is closed. We now show that the
corresponding subsequence of solutions, still denoted as {u, }, converges in X to u which
is the solution of the following “limit” equation
du(t) + [Au(t) + B(u(t)) + R(t,u(t))]dt = o(t,u(t))h(t)dt, u(0) = &.

This will complete the proof of the compactness of Kj;. To ease notation we will often
drop the time parameters s, t, ... in the equations and integrals.

Let U, = u, — u; using (R.§) with n = %, (C2) and Young’s inequality, we deduce that
for t € [0, 77,

(1) + 2 /O U ()]s =

-2 / (B(un(s)) — B(u(s)), Un(s)) ds — 2/ (R(s,un(s)) — R(s,un(s)), Un(s))ds
0 0
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v 2/0 {([J(s,un(s)) - J(s,u(s))]hn(s),Un(s)>
+ (o(s,u(5)) (hn(5) = h(s)) , Un(s)) }ds
/HU ) ds+2/ V() (Cy () [ + Ry + V/Tx [a(s)lo) ds
49 /0 (o5 u() [ha(s) — A(s)] . Un(s)) ds. (4.27)

The inequality (B-3) implies that there exists a finite positive constant C' such that

T _
sup [ sup (WO + a(®) + [ (1) + o)+ o (D]2)as] = €. 0.29)

n 0<t<

Thus Gronwall’s lemma, implies that

T 5
sup |Uy (1) |2 +/ U, ()] dt < exp (2(0%0 +R T+ \/LlMT)) S Iy, (429)
t<T 0 i=1

where, as in the proof of Proposition [L.§, we have:
T
Ly = /0 (o5, () [on(s) — B(3)], Un(s) — Un(5) | ds,
T
2y = /0 ([, uls)) = r(anu(s)] (an(s) = h(s)], Un(sw) ) | ds,

B = [ (oo ~ ot ue] i) ~ ats). Uato) s,

v = s sup (ol u(t) /t:_l<h€<s>—h<s>>ds, Unlt)) .
By = 3 (othntn) [ )~ nisias , ().
k=1 te—1

Schwarz’s inequality, (C2) and Lemma [.J imply that for some constants C;, which do
not depend on n and N,

ix < Cof / () = hs) ) / (un(s) — w5 + fu(o) — uox)P)ds)
<0y 2T, (4.30)
By < co(/OT [us) = u(sw) %ds) : (/OT |h(s) — h(s)[3 ds)é <Cy27h,  (431)
'y < G [1 + (02% |u(t)|) s (Ju(t)] + |un(t)|)] % <0 2%, (4.32)

Furthermore, condition (C4) implies that

T
I n < Co2™™ sup (Ju(t)] + [un(t)]) /0 (1 + llu(s)ID(A(s)lo + [ha(s)lo) ds < C2 277

0<t<T
(4.33)
For fixed N and k = 1,--- , 2" as n — oo, the weak convergence of h,, to h implies that of

ti’“_l(hn(s) — h(s))ds to 0 weakly in Hy. Since o(u(ty)) is a compact operator, we deduce

that for fixed k the sequence o (u(ty)) [** (hn(s) — h(s))ds converges to 0 strongly in H

le—1
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as n — oo. Since sup,, ;. [Un(tr)| < 2V/C, we have lim, I? \, = 0. Thus (29)-([E33) yield
for every integer N > 1

T
lim sup sup|Un(t)|2—|—/ U (&)||2 dt p < C2- NN,
t<T 0

n—oo

Since N is arbitrary, we deduce that ||[Up|[x — 0 as n — oco. This shows that every
sequence in Kj; has a convergent subsequence. Hence Kj; is a sequentially relatively
compact subset of X. Finally, let {u,} be a sequence of elements of Kj; which converges
to v in X. The above argument shows that there exists a subsequence {uy, ,k > 1} which
converges to some element uy, € Kj; for the same topology of X. Hence v = up, Ky is a
closed subset of X, and this completes the proof of the proposition. O

Proof of Theorem [.2: Propositions [£.6 and [L.§ imply that the family {u°} satisfies
the Laplace principle, which is equivalent to the large deviation principle, in X with the
rate function defined by ([.3); see Theorem 4.4 in [§] or Theorem 5 in [[]. This concludes
the proof of Theorem [.3. O
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