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Abstract

The Fano-Snowflake, a specific non-unimodular projective lattice configuration associated with
the smallest ring of ternions R♦ (arXiv:0803.4436 and 0806.3153), admits an interesting parti-
tioning with respect to the Jacobson radical of R♦. The totality of 21 free cyclic submodules
generated by non-unimodular vectors of the free left R♦-module R3

♦ are shown to split into three
disjoint sets of cardinalities 9, 9 and 3 according as the number of Jacobson radical entries in the
generating vector is 2, 1 or 0, respectively. The corresponding “ternion-induced” factorization
of the lines of the Fano plane sitting in the middle of the Fano-Snowflake (6 – 7 – 3) is found to
differ fundamentally from the natural one, i. e., from that with respect to the Jacobson radical
of the Galois field of two elements (3 – 3 – 1).
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Projective lattice geometries over unital associative rings R (see, e. g., [1] and references therein)
represent a very important generalization of classical (field) projective spaces, being endowed
with a number of remarkable features not exhibited by the latter. One of the most striking
differences is, for certain R, the existence of free cyclic submodules generated by non-unimodular
vectors of the free left R-module Rn, n ≥ 1. In a couple of recent papers [2, 3], an in-depth
analysis has been performed of such non-unimodular portions of the lattice geometries for R

being the ring of ternions, i. e., a ring isomorphic to that of upper triangular 2 × 2 matrices
with entries from an arbitrary commutative field F . It has been found that for any n ≥ 2 these
non-unimodular free cyclic submodules of Rn can be associated with the lines of PG(n, F ), the
n-dimensional projective space over F sitting in the middle of such non-unimodular world. In
the finite case, F = GF(q), basic combinatorial properties of such configurations have been
derived and illustrated in exhaustive detail on the simplest, n = q = 2 case — dubbed the Fano-
Snowflake geometry. In the present paper we shall have another look at the Fano-Snowflake
and show that this geometry admits an intriguing decomposition with respect to the Jacobson
radical of the ring in question.

To this end in view, we first collect the necessary background information from [2, 3]. We
consider an associative ring with unity 1(6= 0), R, and denote the free left R-module on n + 1
generators over R by Rn+1. The set R(r1, r2, · · · , rn+1), defined as follows

R(r1, r2, · · · , rn+1) :=
{

(αr1, αr2, · · · , αrn+1)|(r1, r2, · · · , rn+1) ∈ Rn+1, α ∈ R
}

, (1)

is a left cyclic submodule of Rn+1. Any such submodule is called free if the mapping α 7→
(αr1, αr2, · · · , αrn+1) is injective, i. e., if (αr1, αr2, · · · , αrn+1) are all distinct. Next, we shall
call a vector (r1, r2, · · · , rn+1) ∈ Rn+1 unimodular if there exist elements x1, x2,· · ·, xn+1 in R

such that

r1x1 + r2x2 + · · · + rn+1xn+1 = 1. (2)
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Table 1: Addition (left) and multiplication (right) in R♦.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 6 7 5 4 2 3
2 2 6 0 4 3 7 1 5
3 3 7 4 0 2 6 5 1
4 4 5 3 2 0 1 7 6
5 5 4 7 6 1 0 3 2
6 6 2 1 5 7 3 0 4
7 7 3 5 1 6 2 4 0

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 1 3 7 5 6 4
3 0 3 5 3 6 5 6 0
4 0 4 4 0 4 0 0 4
5 0 5 3 3 0 5 6 6
6 0 6 6 0 6 0 0 6
7 0 7 7 0 7 0 0 7

It is a very well-known fact (see, e. g., [4]–[7]) that if (r1, r2, · · · , rn+1) is unimodular, then
R(r1, r2, · · · , rn+1) is free; any such free cyclic submodule represents a point of the n-dimensional
projective space defined over R [5]. The converse statement, however, is not generally true.
That is, there exist rings which also give rise to free cyclic submodules featuring exclusively
non-unimodular vectors. The first case when this occurs is the smallest (non-commutative) ring
of ternions, R♦:

R♦ ≡

{(

a b

0 c

)

| a, b, c ∈ GF (2)

}

. (3)

From this definition it is readily seen that the ring contains two maximal (two-sided) ideals,

I1 =

{(

0 b

0 c

)

| b, c ∈ GF (2)

}

(4)

and

I2 =

{(

a b

0 0

)

| a, b ∈ GF (2)

}

, (5)

which give rise to a non-trivial (two-sided) Jacobson radical J ,

J = I1 ∩ I2 =

{(

0 b

0 0

)

| b ∈ GF (2)

}

. (6)

As for our further purposes it will be more convenient to work with numbers than matrices, we
shall relabel the elements of R♦ as follows

0 ≡

(

0 0
0 0

)

, 1 ≡

(

1 0
0 1

)

, 2 ≡

(

1 1
0 1

)

, 3 ≡

(

1 1
0 0

)

,

4 ≡

(

0 0
0 1

)

, 5 ≡

(

1 0
0 0

)

, 6 ≡

(

0 1
0 0

)

, 7 ≡

(

0 1
0 1

)

. (7)

The addition and multiplication in the ring is that of matrices over GF (2), which in our compact
notation reads as shown in Table 1. The two maximal ideals now acquire the form

I1 := {0, 4, 6, 7} (8)

and

I2 := {0, 3, 5, 6} , (9)

and the Jacobson radical reads,

J = I1 ∩ I2 = {0, 6} . (10)
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There exist altogether 21 free cyclic submodules of R3
♦ which are generated by non-unimodular

vectors. Taking their complete list from [2] one sees that they can be separated into the following
three disjoint sets

R♦(6, 6, 7) = R♦(6, 6, 4) = {(0, 0, 0), (6, 6, 7), (6, 6, 4), (6, 6, 0), (0, 0, 4), (6, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(6, 7, 6) = R♦(6, 4, 6) = {(0, 0, 0), (6, 7, 6), (6, 4, 6), (6, 0, 6), (0, 4, 0), (6, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 6) = R♦(4, 6, 6) = {(0, 0, 0), (7, 6, 6), (4, 6, 6), (0, 6, 6), (4, 0, 0), (6, 6, 6), (6, 0, 0), (7, 0, 0)},
R♦(0, 6, 7) = R♦(0, 6, 4) = {(0, 0, 0), (0, 6, 7), (0, 6, 4), (0, 6, 0), (0, 0, 4), (0, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(0, 7, 6) = R♦(0, 4, 6) = {(0, 0, 0), (0, 7, 6), (0, 4, 6), (0, 0, 6), (0, 4, 0), (0, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(6, 0, 7) = R♦(6, 0, 4) = {(0, 0, 0), (6, 0, 7), (6, 0, 4), (6, 0, 0), (0, 0, 4), (6, 0, 6), (0, 0, 6), (0, 0, 7)},
R♦(7, 0, 6) = R♦(4, 0, 6) = {(0, 0, 0), (7, 0, 6), (4, 0, 6), (0, 0, 6), (4, 0, 0), (6, 0, 6), (6, 0, 0), (7, 0, 0)},
R♦(6, 7, 0) = R♦(6, 4, 0) = {(0, 0, 0), (6, 7, 0), (6, 4, 0), (6, 0, 0), (0, 4, 0), (6, 6, 0), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 0) = R♦(4, 6, 0) = {(0, 0, 0), (7, 6, 0), (4, 6, 0), (0, 6, 0), (4, 0, 0), (6, 6, 0), (6, 0, 0), (7, 0, 0)},

R♦(4, 6, 7) = R♦(7, 6, 4) = {(0, 0, 0), (4, 6, 7), (7, 6, 4), (6, 6, 0), (4, 0, 4), (0, 6, 6), (6, 0, 6), (7, 0, 7)},
R♦(4, 7, 6) = R♦(7, 4, 6) = {(0, 0, 0), (4, 7, 6), (7, 4, 6), (6, 0, 6), (4, 4, 0), (0, 6, 6), (6, 6, 0), (7, 7, 0)},
R♦(6, 4, 7) = R♦(6, 7, 4) = {(0, 0, 0), (6, 4, 7), (6, 7, 4), (6, 6, 0), (0, 4, 4), (6, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(4, 4, 6) = R♦(7, 7, 6) = {(0, 0, 0), (4, 4, 6), (7, 7, 6), (6, 6, 6), (4, 4, 0), (0, 0, 6), (6, 6, 0), (7, 7, 0)},
R♦(4, 6, 4) = R♦(7, 6, 7) = {(0, 0, 0), (4, 6, 4), (7, 6, 7), (6, 6, 6), (4, 0, 4), (0, 6, 0), (6, 0, 6), (7, 0, 7)},
R♦(6, 4, 4) = R♦(6, 7, 7) = {(0, 0, 0), (6, 4, 4), (6, 7, 7), (6, 6, 6), (0, 4, 4), (6, 0, 0), (0, 6, 6), (0, 7, 7)},
R♦(0, 4, 7) = R♦(0, 7, 4) = {(0, 0, 0), (0, 4, 7), (0, 7, 4), (0, 6, 0), (0, 4, 4), (0, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(4, 0, 7) = R♦(7, 0, 4) = {(0, 0, 0), (4, 0, 7), (7, 0, 4), (6, 0, 0), (4, 0, 4), (0, 0, 6), (6, 0, 6), (7, 0, 7)},
R♦(4, 7, 0) = R♦(7, 4, 0) = {(0, 0, 0), (4, 7, 0), (7, 4, 0), (6, 0, 0), (4, 4, 0), (0, 6, 0), (6, 6, 0), (7, 7, 0)},

R♦(4, 4, 7) = R♦(7, 7, 4) = {(0, 0, 0), (4, 4, 7), (7, 7, 4), (6, 6, 0), (4, 4, 4), (0, 0, 6), (6, 6, 6), (7, 7, 7)},
R♦(4, 7, 4) = R♦(7, 4, 7) = {(0, 0, 0), (4, 7, 4), (7, 4, 7), (6, 0, 6), (4, 4, 4), (0, 6, 0), (6, 6, 6), (7, 7, 7)},
R♦(7, 4, 4) = R♦(4, 7, 7) = {(0, 0, 0), (7, 4, 4), (4, 7, 7), (0, 6, 6), (4, 4, 4), (6, 0, 0), (6, 6, 6), (7, 7, 7)},

according as the number of Jacobson radical entries in the generating vector(s) is two, one or
zero, respectively. Employing the picture of the Fano-Snowflake given in [2] (reproduced, for
convenience, in Figure 1), the structure of and relation between the three sets can be represented
diagrammatically as shown in Figure 2. As each submodule answers to a single line of the
associated core Fano plane, the decomposition of the Fano-Snowflake induces an intriguing
factorization of the lines of the plane itself. This is depicted in Figure 3, bottom panel, and it is
seen to fundamentally differ from the corresponding partitioning of the Fano plane with respect
to the Jacobson radical of its ground field GF(2)({0}), namely

GF(2)(1, 0, 0) = {(0, 0, 0), (1, 0, 0)},
GF(2)(0, 1, 0) = {(0, 0, 0), (0, 1, 0)},
GF(2)(0, 0, 1) = {(0, 0, 0), (0, 0, 1)},

GF(2)(1, 1, 0) = {(0, 0, 0), (1, 1, 0)},
GF(2)(1, 0, 1) = {(0, 0, 0), (1, 0, 1)},
GF(2)(0, 1, 1) = {(0, 0, 0), (0, 1, 1)},

GF(2)(1, 1, 1) = {(0, 0, 0), (1, 1, 1)},

as displayed in Figure 3, top panel.
The origin of the factorization of the Fano plane when related to its ground field GF(2) is

easy to understand: the number of the Jacobson radical entries (i. e., only zeros in this case) in
the coordinates of a line (and, by duality, of a point as well) has a clear meaning with respect to
the triangle of base points of the coordinate system. Something similar holds obviously for the
factorization of the Fano-Snowflake with respect to its ternionic coordinates, but passing to the
embedded Fano plane this link seems to be lost or substantially distorted. Figure 2 illustrates
this fact quite nicely: in the top figure all the polygons pass through the three corners/vertices
of the basic triangle, in the middle figure all branches go through the points on each side of the
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Figure 1: The Fano-Snowflake — a diagrammatic illustration of a very intricate relation between
the 21 free left cyclic submodules generated by non-unimodular vectors of R3

♦. Each circle
represents a vector of R3

♦ (in fact, of I3
1 ), its size being roughly proportional to the number of

submodules passing through the given vector. As the (0, 0, 0) triple is not shown, each submodule
is represented by seven circles (three big, two medium-sized and two small) lying on a common
polygon. The small circles stand for the vectors generating the submodules. The big circles
represent the vectors whose all the three entries are from J ; these vectors correspond to the
points of the Fano plane. The seven colors were chosen in such a way to make also the lines of
the Fano plane, i. e., the intersections of the submodules with J3, readily discernible. See [2]
and/or [3] for more details.
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Figure 2: A sketchy illustration of the 9 – 9 – 3 decomposition of the set of free cyclic submodules
comprising the Fano-Snowflake with respect to the Jacobson radical of R♦ according as the
number of radical entries in the submodule’s generating vector(s) is two (top), one (middle) or
zero (bottom), respectively.
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Figure 3: A comparison of the “ternion-induced” 6 – 7 – 3 factorization of the lines of the Fano
plane (bottom) with the ordinary 3 – 3 – 1 one (top). Note a principal qualitative difference
between the two factorizations as the three sets (factors) are pairwise disjoint in the latter case
but not in the former one.

triangle which are not vertices, whereas in the bottom figure all the branches share the only
point which is off the reference triangle. It is the intersections of the branches/polygons with
the core Fano plane which behave “strange” and give rise to the fundamental difference between
the two factorizations of the Fano plane shown in Figure 3.

The above-described observations clearly demonstrate that there is more to the algebraic
structure of the Fano plane than meets the eye. The plane when considered of its own is found
to “reveal” quite different aspects compared with the case when being embedded into a more gen-
eral, non-unimodular projective lattice setting. This difference is likely to get more pronounced,
and more intricate as well, as we pass to higher order rings giving rise to more complex forms of
Fano-Snowflakes. A key question is to find out whether the Snowflakes’ decomposition patterns
and their induced factorizations of the lines of the core Fano planes remain qualitatively the
same as in the ternionic case; our preliminary analysis of such structures over a particular class
of non-commutative rings of order sixteen and having twelve zero-divisors indicates that this
might be so. Another worth-pursuing line of exploration is to stay with ternions but focus on
higher-order (q > 2) and/or higher-dimensional (n > 2) “Snowflake” geometries and their core
projective planes and/or spaces. Finding, however, a general build-up principle for these re-
markable geometrical structures with respect to the properties of defining rings currently seems
a truly difficult, yet extremely challenging task due to “ubiquity” of the Fano plane in various
mathematical and physical contexts (see, e. g., [8]).
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