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Asymptotic Study on a Soft Thin Layer: The Non-Convex
Case

F. Lebon1 and R. Rizzoni2

1Laboratoire de Mécanique et d’Acoustique, Université Aix-Marseille 1, France
2Dipartimento di Ingegneria, Università di Ferrara, Italy

It is proposed to model the adhesive bonding of elastic bodies
when the adhesive is a phase-transforming material. For this pur-
pose, the (isothermal) Frémond model is adopted, including only
two variants of martensite. In the first part of this paper, asymp-
totic expansions are used to study the asymptotic behavior of the
adhesive as its thickness and elastic coefficients tend toward zero.
In the second part, the energy minimization approach is used and
the equilibrium of a one-dimensional bar is studied in detail. The
simplified one-dimensional context adopted here makes it possible
to compute contact laws taking nucleation and the kinetics of the
phase transformation explicitly into account.

Keywords soft thin layers, asymptotic studies, non-convex energy

1. INTRODUCTION
Modeling adhesive bonding between elastic bodies often re-

quires taking several parameters, typically the thickness and the
rigidity of the adhesive layer, into account. An interesting case
arises when both these parameters tend to zero. In the limit case,
the thin layer is replaced by a sharp interface and an asymptotic
contact law is obtained, linking the stress to the jump in the dis-
placement occuring at the interface. The behaviour of several
types of materials forming the adherent and adhesive bodies has
been previously investigated [1–6, 25].

The aim of this study was to determine the contact law for
an adhesive having a non-monotonous stress-strain relation. In
particular, we consider the constitutive equation proposed by
Frémond, which corresponds to a piecewise quadratic (but glob-
ally non convex) energy [7]. Since the pioneering study by
Ericksen [8], non-convex energy densities have been used to
model phase changes, and each domain of convexity is taken to
correspond to a different phase of the material. Is is well known
that as the result of the non-convexity of the energy, solutions
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to the equilibrium problem may either not exist or not have the
properties of uniqueness or regularity [22].

To obtain the contact law in present case, we first adopt
a classical approach based on matched asymptotic expan-
sions. We obtain a non-monotonous contact law linking the
stress vector to the jump in the displacement occuring at the
interface.

In studies on the equilibrium of phase transforming materi-
als, it is customary, however, to adopt the energy minimization
approach. A method of computing the �-limit of the energy
when the thickness and the rigidity of the adhesive tend towards
zero has been presented in [9]. It has recently been pointed
out however, that local minimizers play a key role in model-
ing equilibrium problems [9–11]. It is not possible to perform
asymptotic studies directly on the behavior of the local energy
minimizers, due to the complexity and non-uniqueness of the
micro-structures involved.

To explore this issue, we adopted a highly simplified context:
that of one-dimensional elasticity. Here we study the equilib-
rium problem in the case of an elastic bar subjected to Dirich-
let boundary conditions, which is composed of two adherent
linearly elastic parts separated by a thin adhesive layer having
a non-monotonous stress-strain relation. Since a complete de-
scription of the equilibrium deformations is available in this
case, it is possible to discuss in detail how they act as of global
and (weak) local total energy minimizers. The corresponding
contact laws can then be obtained quite logically by taking the
thickness and the elastic constant of the adhesive to tend to
zero. The constant law corresponding to a global minimizer
is determined, but the local minimizers yield a whole set of
contact laws because of their non-uniqueness in the original
problem. The approach described by Abeyaratne and Knowles
[9, 12, 13] is then adopted and a criterion to select preferred
equilibrium configurations among local minimizers is intro-
duced. This enables us to obtain various contact laws taking
nucleation and the kinetics of the phase transformation into
account.

This paper is organized as follows. In Section 2, the main no-
tations and the equilibrium problem are presented. In Section 3,
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FIG. 1. A sketch of the composite structure modeled in this paper.

the contact law is determined using the matched asymptotic
expansions method. The problem of the total energy minimiza-
tion in the one-dimensional framework is addressed is Section 4,
and the conclusions are presented in Section 5.

2. THE EQUILIBRIUM PROBLEM
In this section, we present the mechanical problem and give

the notations used in this study. We consider a body occupying
an open bounded set � of R

2, with a smooth boundary ∂�,
which consists of three parts, �ε

± and Bε as shown in Figure 1.
Bε is the part occupied by the adhesive and �ε

± are the parts
occupied by the adherents. Sε

± are the (plane) interfaces between
the adhesive and the adherents, and ε > 0 is the thickness of
the adhesive. Introducing an orthonormal frame (O, x1, x2) with
its origin at the center of the adhesive midplane and its x2-axis
running perpendicular to the interfaces Sε

±, we have

Bε =
{

(x1, x2) ∈ � : |x2| <
ε

2

}
,

�ε
± =

{
(x1, x2) ∈ � : ±x2 >

ε

2

}
,

�ε = �ε
+ ∪ �ε

−, (1)

Sε
± =

{
(x1, x2) ∈ � : ±x2 = ε

2

}
.

As ε tends to zero, we take �0 to denote the geometrical limit
of �ε and S to denote the surface to which the adhesive and Sε±

tend geometrically:

�± = {(x1, x2) ∈ � : ±x2 > 0},
�0 = �+ ∪ �−, (2)

S = {(x1, x2) ∈ � : x2 = 0}.

Let uε: �ε �→ R2 denote a displacement field starting from �ε.
The adhesion between the adherents and the adhesive is assumed
to be perfect, that is

[uε]± = 0 or Sε
±. (3)

where

[uε]± = uε

(
x1,

(
± ε

2

)+)
− uε

(
x1,

(
± ε

2

)−)
. (4)

are the jumps in the displacements on the interfaces Sε
±.1

The adherents are assumed to show linearly elastic behav-
ior starting from �ε, and we take ai jkl to denote the compo-
nents of the elastic tensor, which are assumed to satisfy the
usual symmetry and ellipticity conditions. Taking σε to denote
the stress tensor and defining the strain tensor e = (ei j ) as
follows

ei j (u
ε) = 1

2

(
uε

i, j + uε
j,i

)
(5)

we obtain

σεi j = ai jkhekh in �ε
± (6)

To model the constitutive behavior of the adhesive, we adopt the
Frémond modelling procedure, which involves three phases, the
austenite and two variants of martensite [7]:




σi j = λekkδi j + 2µei j + αχi j , if αχi j ei j ≤ −c

σi j = λekkδi j + 2µei j , if |αχi j ei j | ≤ c in Bε

σi j = λekkδi j + 2µei j − αχi j , if αχi j ei j ≥ c.

(7)

For the sake of simplicity, the phases are taken to consist of
isotropic materials with the same elastic constants. The constants
α and c are two material parameters. The coefficient α, which
is non-negative depends the thermal dilatation, and 2c gives the
amplitude of the austenite phase. The tensor χ is a given symmet-
ric orientation tensor associated with the austenite-martensite
transformation. The stress-strain diagrams for an extension test
are shown in Figure 2. In case (a), corresponding to c ≤ 0,
two variants of martensite are present, one undergoes positive
strains and the other, negative strains. In case (b), where c > 0,
the austenite exists in the strain range (−c(αχ11)−1, c(αχ11)−1)
and the martensite variants act at strains outside this interval.

A body force density φ is applied to �ε and a surface
force density g to �g ⊂ ∂�ε. On the complementary part

1Here uε(x1, ( ε

2 )+)(resp. uε(x1, ( ε

2 )−) indicates the limit of uε(x1, x2)
when x2 tends to ( ε

2 ), x2 ≥ ( ε

2 )(resp. x2 ≤ ( ε

2 )).
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FIG. 2. Stress-strain diagrams obtained in an extension test on the adhesive:
(a) c ≤ 0, (b) c > 0.

�u = ∂�ε\�g , the following homogeneous boundary condi-
tions are prescribed:

uε = 0 or �u . (8)

The equilibrium problem as regards the composite can be
stated as follows:

(Pε)




Find (uε, σ ε) such that :

σ ε
i j = −ϕi in �

σ ε
i j = ai jkhekh(uε) in �ε



σi j = λekkδi j + 2µei j + αχi j ,

if αχi j ei j ≤ −c

σi j = λekkδi j + 2µei j , if |αχi j ei j | ≤ c

σi j = λekkδi j + 2µei j − αχi j ,

if αχi j ei j ≥ c,

in Bε

uε = 0 on �u

σ εn = g on �g

[uε]± = [σ εn]± = 0 on Sε
±

(9)

Due to the non-monotony of the constitutive equation of the
adhesive, the existence of equilibrium solutions is still an open
problem.

3. MATCHED ASYMPTOTIC EXPANSIONS APPROACH

3.1. General Comments
In order to develop a two-dimensional approach, the fol-

lowing matched asymptotic expansions method was used. This
method consists in finding two expansions of the displacement
uε and the stress σ ε in terms of power of ε (an external expansion
in the bodies and an internal one in the joint), and to combine
these two expansions in order to obtain the same limit [14, 22].

3.2. External Expansions
The external expansion is a classical expansion:

uε(x1, x2) = u0(x1, x2) + εu1(x1, x2) + · · ·
σ ε

i j (x1, x2) = σ 0
i j (x1, x2) + εσ 1

i j (x1, x2) + · · ·

ei j (u
ε)(x1, x2) = e0

i j + εe1
i j + · · ·

el
i j = 1

2

(
∂ui

j

∂x j
+ ∂ui

j

∂xi

)
(10)

3.3. Internal Expansions
In the internal expansion, a blow-up of the second variable is

performed. Let y2 = x2
ε

. The internal expansion gives

uε(x1, x2) = v0(x1, y2) + εv1(x1, y2) + · · ·
σ ε

i j (x1, y2) = ε−1τ−1
i j (x1, y2)+τ 0

i j (x1, y2)+ετ 1
i j (x1, y2) + · · ·

ei j (u
ε)(x1, y2) = ε−1e−1

i j + e0
i j + εe1

i j + · · ·
(11)

el
11 = ∂vl

1

∂x1

el
22 = ∂vl+1

2

∂y2

el
12 = 1

2

(
∂vl

2

∂x1
+ ∂vl+1

1

∂y2

)

3.4. Continuity Conditions
The third step in the method consists of combining the two

expansions. In particular, we observe that when ε tends to zero,
x2 tends to 0± and y2 tends to ±∞. Combining the two expan-
sions gives

v0(x1, ±∞) = u0(x1, 0±)

τ−1(x1, ±∞) = 0 (12)

τ 0(x1, ±∞) = σ 0(x1, 0±)

3.5. Behavior in the Thin Layer
In the thin layer, the constitutive equation gives

• c < 0

ε−1τ−1
i j + τ 0

i j + ετ 1
i j + · · ·

= λ
(
ε−1e−1

kk + e0
kk + εe1

kk + · · · )δi j

+ 2µ
(
ε−1e−1

i j + e0
i j + εe1

i j + · · · ) + αχi j

if αχ : e ≤ 0
(13)

ε−1τ−1
i j + τ 0

i j + ετ 1
i j + · · ·

= λ
(
ε−1e−1

kk + e0
kk + εe1

kk + · · · )δi j

+ 2µ
(
ε−1e−1

i j + e0
i j + εe1

i j + · · · ) − αχi j

if αχ : e ≥ 0,
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• c ≥ 0

ε−1τ−1
i j + τ 0

i j + ετ 1
i j + · · ·

= λ
(
ε−1e−1

kk + e0
kk + εe1

kk + · · · )δi j

+ 2µ
(
ε−1e−1

i j + e0
i j + εe1

i j + · · · ) + αχi j

if αχ : e ≤ −c,

ε−1τ−1
i j + τ 0

i j + ετ 1
i j + · · ·

= λ
(
ε−1e−1

kk + e0
kk + εe1

kk + · · · )δi j

+ 2µ
(
ε−1e−1

i j + e0
i j + εe1

i j + · · · ) (14)

if |αχ : e| ≤ c,

ε−1τ−1
i j + τ 0

i j + ετ 1
i j + · · ·

= λ
(
ε−1e−1

kk + e0
kk + εe1

kk + · · · )δi j

+ 2µ
(
ε−1e−1

i j + e0
i j + εe1

i j + · · · ) − αχi j

if αχ : e ≥ c, .

In what follows, we assume that χ does not depend on ε.
The identification of the various orders depends on the scaling
of coefficients λ, µ and α with ε. In what follows, we take λ̄

(resp. µ̄, ᾱ) to denote the limits of the ratios between λ (resp.
µ, α) and ε. We thus obtain 18 cases corresponding to the three
different limits of λ

ε
and µ

ε
, i.e., zero, a non-zero bounded value

and infinity and the two different limits of α
ε

, i.e., infinity or a
constant limit not equal to zero. Since the sign of c determines
two different material responses, we will obtain 36 different
contact laws. In what follows, only the case ᾱ = ∞ will be
examined. In the other cases, a previously established result [1]
is obtained. To simplify, we examine only 1 of the 18 possible
values of the coefficients. The other cases can be obtained in the
same way. Therefore, taking

λ = ελ̄, µ = εµ̄, α = εηᾱ (η < 1) (15)

we have

τ−1
i j = 0,

τ 0
i j = λ̄e−1

kk δi j + 2µ̄e−1
i j + ᾱχi j , if αχi j ei j ≤ −c,

τ 0
i j = λ̄e−1

kk δi j + 2µ̄e−1
i j , if |αχi j ei j | ≤ c,

τ 0
i j = λ̄e−1

kk δi j + 2µ̄e−1
i j − ᾱχi j , if αχi j ei j ≥ c,

(16)

3.5.1. Equilibrium Order −2
In this paragraph, we deal with the equilibium equation at

order −2. We obtain

∂τ−1
i2

∂y2
= 0 (17)

Therefore, τ−1
i2 does not depend on y2. Due to the limit of τ−1

i2
in ±∞, which is zero, we have

τ−1
i2 = 0 (18)

In the thin layer and in the bodies, τ−1
i j depends only on e−1

i2 . In
the bodies, we have

τ−1
i2 (x1, y2) = ai2 f 2

∂υ0
f

∂y2
, τ−1

11 (x1, y2) = a11 j1

∂υ0
f

∂y2
(19)

Therefore, for |y2| > 1
2 , we have

∂υ0
i

∂y2
= 0, υ0

j (x2, y2) = υ0
j (x1) (20)

We obtain τ−1
i j = 0 in the bodies, and due to the conditions

involved in the combination, υ0
j (x1, y2) = u0

j (x1, 0±). The same

arguments give τ−1
i j = 0 in the adhesive.

3.5.2. Equilibrium Order −1
In this paragraph, we consider the equilibium equation at

order −1, and since τ−1
i j is equal to zero, we obtain

∂τ 0
i2

∂y2
= 0 (21)

Therefore, τ 0
i2(x1, y2) does not depend on y2. Using the condi-

tions involved in the combination, we have

τ 0
i2 = σ 0

i2(x1, 0) (22)

We have

• If αχi j ei j ≤ −c

τ 0
11 = λ̄

∂υ0
2

∂y2
+ ᾱχ11,

τ 0
12 = µ̄

∂υ0
1

∂y2
+ ᾱχ12,

τ 0
22 = (λ̄ + 2µ̄)

∂υ0
2

∂y2
+ ᾱχ22

(23)

• If
∣∣αχi j ei j

∣∣ ≤ c

τ 0
11 = λ̄

∂υ0
2

∂y2
,

τ 0
12 = µ̄

∂υ0
1

∂y2
,

τ 0
22 = (λ̄ + 2µ̄)

∂υ0
2

∂y2

(24)
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• If αχi j ei j ≥ c

τ 0
11 = λ̄

∂υ0
2

∂y2
− ᾱχ11,

τ 0
12 = µ̄

∂υ0
1

∂y2
− ᾱχ12,

τ 0
22 = (λ̄ + 2µ̄)

∂υ0
2

∂y2
+ ᾱχ22

(25)

Because of the perfect adhesion to S±
e , we have

• If αχi j ei j ≤ −c

σ 0
12(x1, 0) = KT

[
u0

1

] + K PT χ12

σ 0
22(x1, 0) = KN

[
u0

2

] + K PT χ22
(26)

• If
∣∣αχi j ei j

∣∣ ≤ c

σ 0
12(x1, 0) = KT

[
u0

1

]
σ 0

22(x1, 0) = KN
[
u0

2

]
(27)

• If αχi j ei j ≥ c

σ 0
12(x1, 0) = KT

[
u0

1

] − K PT χ12

σ 0
22(x1, 0) = KN

[
u0

2

] − K PT χ22
(28)

where KT = µ̄, KN = λ̄ + 2µ̄ and K PT = ᾱ.

3.5.3. Computation of αχi j ei j

To complete the analysis, we need to compute αχi j ei j .

αχi j ei j = α

(
χ12

∂υ0
1

∂y2
+ χ22

∂υ0
2

∂y2

)
(29)

Integrating along the thickness of the adhesive, the term
αχi j ei j becomes α(χ12[u0

1] + χ22[u0
2]). Note, that this term is

of the order −1. If we assume that c = c̄ε−1, we have to com-
pare α(χ12[u0

1] + χ22[u0
2]) with c̄.

3.6. Two-Dimensional Contact Laws
Let S, T denote the diagonal 2 × 2 matrices with S11 = KT ,

S22 = KN and T11 = T22 = K PT . Let x be the vector with
x1 = χ12 and x2 = χ22. Note that the coefficients of S (resp. T )
can be equal to infinity, zero or a non-zero bounded value (resp.
infinity or a non-zero bounded value). Using these notations, we
obtain the following family of contact laws

• c̄ ≤ 0

σn = S[u] + T x if αxi [ui ] ≤ 0,

σn = S[u] + T x if αxi [ui ] ≥ 0,
(30)

FIG. 3. Contact laws for c ≤ 0: (a) normal contact law for χ22 = 0; (b)
tangential contact law.

• c̄ > 0

σn = S[u] + T x if αxi [ui ] ≤ −c̄,

σn = S[u] if |αxi [ui ]| ≤ c̄,

σn = S[u] − T x if αxi [ui ] ≥ c̄,

(31)

An interesting case arises when χ22 = 0. We obtain a normal
compliance law and a non monotonous friction law, which is
given in Figure 3 for c ≤ 0 and in Figure 4 for c > 0. Reviews
of laws of this kind can be found in [15–17].

4. CONTACT LAWS ARISING FROM ENERGY
MINIMIZATION

In this Section, it is proposed to study the contact laws that
can be found by considering the asymptotic behavior of (global
or local) minimizers of the total energy. Since it was established
in [18] that the minimum energy principle is not equivalent to
the mechanical problem (9), we do not expect to find the same
contact laws as those obtained in Section 3. In studying the min-
imum problem, we restrict ourselves to the one-dimensional
case, because this is the case where it is possible to give a com-
plete description of the minimizers. We begin by studying the
equilibrium problem, in terms of energy minimization, of a one-
dimensional composite bar with Dirichlet boundary conditions.

FIG. 4. Contact laws for c > 0: (a) normal contact law for χ22 = 0; (b) tan-
gential contact law.
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4.1. Equilibrium Problem in the Case of a
One-Dimensional Bar

Let us take a one-dimensional bar occupying a reference un-
stressed space configuration � = (0, l), starting from which
there are displacement fields u = u(x), x ∈ (0, l) which are
continuous, with the piecewise continuous derivative u′ ≥ 0.
The bar is fixed at the extremity x = 0, and is subjected to a
prescribed displacement δ > 0 at x = L .

The bar is assumed to be made of two different elastic ma-
terials. In the range 0 ≤ x ≤ εL , the bar is composed of an
adhesive layer characterized by the piecewise quadratic stored
energy density

wa(e) = min
e>0

{
k

2
e2;

k

2
e2 − αχe + c

}
, (32)

where k > 0 is the elasticity of the adhesive. The stress-strain
diagram which was discussed in Section 3, is given in Figure 2
(where e = e11, etc.).

In the range εL ≤ x ≤ L , the bar is composed of a material
with quadratic stored energy density having an elastic modulus
K

wb(e) = K

2
e2. (33)

The total energy of the bar is given by

E(u) =
∫ eL

0
wa(u′)dx +

∫ L

εL
wb(u′)dx, (34)

where u ∈ U is the class of displacements continuous with the
piecewise continuous derivative satisfying the boundary condi-
tions. In the energy minimization problem (34), we are interested
in finding the global minimizer ū ∈ U :

E(ū) ≤ E(u) ∀u ∈ U (35)

and in finding the weak local minimizers ū ∈ U for which
Eq. (35) holds at all the values of u ∈ U such that

sup
x∈(0,L)

|u(x) − ū(x)| + sup
x∈(0,L)

|u′(x) − ū′(x)| < η (36)

for some η > 0 [19]. For ū ∈ U to be a global or relative
minimizer, it is necessary that the first variation of E(u) should
vanish at ū:

[
d

dh
E(ū + hV )

]
h=0

= 0, (37)

under all admissible perturbations v : [0, L] → R which are
continuous with a piecewise continuous derivative and such that

v(L) = 0 = v(0). This leads to the system of equilibrium equa-
tions:

∂wa

∂e
(ū′) = σε, x ∈ (0, εL),

∂wb

∂e
(ū′) = σε, x ∈ (εL , L),

(38)
where σε is the (constant) stress in the bar. In view of Eqs. (32)
and (33), this system admits the following possible solutions
[20].

i) If 0 ≤ σε < kc(αχ)−1 − αχ, then, Eqs. (38) are satisfied
by

ū =




σe

k
x x ∈ [0, εL],

σε

K
x + σεεL

(
1

k
− 1

K

)
x ∈ (εL , L],

(39)

with σε = k̂εδL−1, and k̂−1
ε := εk−1 + (1 − ε)K −1. Using

the expression for σε, it is easy to see that this solution is
possible whenever 0 ≤ δ < (kc(αχ)−1−αχ)Lk−1

ε . Since δ

is positive, this solution exists only if c > 0 and corresponds
to the case of adhesive consisting of only austenite.

i i) If c > 0 and kc(αχ)−1 − αχ ≤ σε < kc(αχ)−1, then
the adhesive is a mixture of austenite and martensite. Let
λ ∈ (0, 1) denote the austenite volume fraction. As λ varies
in [0, 1], we obtain a set of equilibrium solutions:

ū =




σe
k x x ∈ [0, λεL],
σe + αχ

k x − αχελL
k x ∈ (λεL , εL],

σε
K x+εL

(
σε + (1−λ)αχ

k
−σε

K

)
x ∈ (εL , L],

(40)
with

σε = k̂ε

(
δ

L
− ε(1 − λ)

σχ

k

)
. (41)

Using this expression for σε, it turns out that the two-phase
solution exists whenever

((kc(αχ)−1 − αχ)k̂−1
ε + εαχ(1 − λ)k−1)L ≤ δ

≤ (kc(αχ)−1k̂−1
ε + εαχ(1 − λ)k−1)L . (42)

Since the value of the volume fraction λ is within the 0 <

λ < 1 range, this condition can be further extended as
follows

(kc(αχ)−1 − αχ) k̂−1
ε L ≤ δ ≤ (kc (αχ)−1 + εαχk−1)L .

(43)
Therefore, given any λ∈ (0, 1), if the prescribed elongation
δ lies in the above range, then there will exist in the adhesive
a two-phase solution involving a mixture of both phases.
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i i i) If σε ≥ kc(αχ)−1, then the solution is

ū =




σε + αχ

k
x x ∈ [0, εL],

σε

K
x + εL

(
σε + αχ

k
− σε

K

)
x ∈ (εL , L],

(44)

with σε = k̂ε(δL−1 − αχεk−1). This solution which is
possible for δ > kc(αχ)−1 Lk−1

ε + αχεLk−1 when c > 0
and for any positive δ when c ≤ 0, describes the case of
adhesive consisting entirely of martensite.

In [20] it is established that the configurations described by
the solutions (39), (40) and (44) correspond to weak local mini-
mizers. It is also established that the following equilibrium con-
figurations correspond to a global minimizer:

a) if 0 ≤ δ < (kc(αχ)−1 − αχ/2)Lk̂−1
ε , then solution (39) is a

global minimizer;
b) if (kc(αχ)−1 − αχ/2)Lk̂−1

ε ≤ δ < (kc(αχ)−1 − αχ/2)
Lk̂−1

ε + εαχLk−1, then the solution (40) with σε given by
the Maxwell stress σM = kc(αχ)−1 − αχ/2 is a global min-
imizer, Substituting σM into Eq. (41), we find the austenite
volume fraction determined solely for the given δ:

λglo = 1 + K

εαχ

(
k

k̂ε

c(αχ)−1 − αχ

2k̂ε

− δ

L

)
. (45)

Note that when δ = (kc(αχ)−1 −αχ/2)Lk̂−1
ε we have λglo =

1, i.e. the adhesive is still in the austenite phase. If δ is contin-
uously increased, the austenite volume fraction decreases and
the stress in the bar remains constant and equal to the Maxwel
stress. When δ = (kc(αχ)−1 − αχ/2)Lk̂−1

ε + εαχLk−1, we
have λglo = 0, and the adhesive has completed the transfor-
mation from austenite to martensite.

c) if δ ≥ (kc(αχ)−1−αχ/2)Lk̂−1
ε +εαχLk−1, then the solution

(44) is a global minimizer.

4.2. Contact Laws
To obtain the contact law we study the asymptotic behavior

of the above equilibrium solutions when both the parameters
(ε, k) tend to zero and the thin adhesive layer is replaced by a
point. To be able to compare the result we are going to get with
the contact laws obtained in Section 3, we set

k = k̄ε. (46)

Our aim here is to study the relations between the limits

σ = lim
ε→0

σε, [u] = lim
ε→0

(ū(εL) − ū(0)), (47)

where σε and ū correspond to the equilibrium configurations de-
termined in the previous subsection. This study leads to defining
an asymptotic contact law linking the limit stress in the bar, σε

to the jump in the displacement occuring at the adhesive inter-
face, [u]. This contact law describes the limit behavior of the
adhesive.

In addition to Eq. (46), we need to specify the scaling to the
material parameters with ε. To make the limits (47) finite, we
take

c = c̄ε−1, α = ᾱ, χ = χ̄, (48)

where k̄, c̄, ᾱ and χ̄ are independent of ε. Note that the sealing
of α is different to that assumed in Section 3 (Eq. (15)).

Substituting Eqs. (46) and (48) into the expressions for σε and
ū listed in Section 2 in (a), (b) and (c), taking the limit ε → 0+

and eliminating δ between σε and [u], we obtain the following
contact law:

σglo =




k̄
[u]

L
, 0 ≤ [u] < L

(
c̄(ᾱχ̄)−1 − ᾱχ̄

2k

)
,(

k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2

)
, L

(
k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2k

)
≤ [u]

< L

(
k̄c̄(ᾱχ̄)−1 + ᾱχ̄

2k

)
,

k̄
[u]

L
− ᾱχ̄, [u] ≥ L

(
k̄c̄(ᾱχ̄)−1 + ᾱχ̄

2k

)
,

(49)

corresponding to global minimizers of the original equilibrium
problem. In the same way, taking σε and ū as in (i), (i i) and (i i i),
we can calculate the limit contact law corresponding to local
minimizers. Note that this law turns out to be undefined, because
of the lack of information available due to the non uniqueness
of the local minimizers. Indeed, we obtain

σloc =




k̄
[u]

L
, 0 ≤ [u] < L

(
c̄(ᾱχ̄)−1 − ᾱχ̄

2k

)
,

�̄, L

(
k̄c̄(ᾱχ̄)−1 − ᾱχ̄

2k

)
≤ [u]

< L

(
k̄c̄(ᾱχ̄)−1 + ᾱχ̄

2k

)
,

k̄
[u]

L
− ᾱ, [u] ≥ L

(
k̄c̄(ᾱχ̄)−1 + ᾱχ̄

2k

)
,

(50)

where �̄ can take any value in [k̄c̄(ᾱχ̄)−1−ᾱχ̄, k̄c̄(ᾱχ̄)−1+ᾱχ̄].
Therefore, local minimizers give rise to multiple contact laws,
all of which are included in the dashed parallelogram depicted
in Figure 5.

4.3. The Role of Nucleation and the Kinetics
One way of overcoming the stress indeterminacy associated

with metastable equilibrium solutions consists in adopting a cri-
terion for selecting a path between local minimizers. In line with
Aberayatne and Knowles [9, 12, 13, 20], we introduce nucleation
and kinetic conditions into the equilibrium problem for the bar.
In this section we briefly outline these conditions. In the context
of the dynamic problem involving elastic bars. Aberayatne and
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FIG. 5. Contact law obtained by energy minimization. To make the figure
clearer, we have defined ζ = c(ᾱχ̄)−1, κ = ᾱχ̄k̄−1, β = k̄(ᾱχ̄)−1 − ᾱχ̄/2,
ω = ᾱχ̄/2. The shaded region is the contact law domain corresponding to local
minimizers. Contact law corresponding to global minimizers (Maxwell line):
- -. Contact laws corresponding to local minimizers: — linear kinetic, — pinning
kinetic, - - convex decomposition.

Knowles assume that the nucleation and propagation of a phase
boundary are governed by a relation between the normal speed
on the phase boundary and the driving force fe acting on it. As
discussed in [9]. one could adopt a quasi-static context in which
the inertial effects are neglected and the boundary datum δ is
taken as a time parameter. All possible energy minimizing solu-
tions are again described by (i), (i i) and (i i i). We now write the
dissipation inequality, which states that the dissipation, given
by the rate of change in the total energy (the sum of the poten-
tial energy and the kinetic energy) minus the power of the work
done at the boundary must be non negative at each equilibrium
displacement. In the present context, since the total energy coin-
cides with the potential energy, the dissipation inequality takes
the form

D = d E(ū)

dt
− σε

dδ

dt
≥ 0. (51)

Here ū is given by Eq. (40). Substituting Eq. (40) into the above
dissipation inequality and differentiating, we get

D = ṡ

(
ωα

(
σε

k

)
− ωα

(
σε + α

k

)
+ σεα

k

)
(52)

where ṡ = dλ
dδ

εL plays the role of the velocity of the phase
boundary at x = λεL . The driving force fε exerted on the phase
boundary is defined as the quantity which multiplies ŝ:

fε =
(

wα

(
σε

k

)
− wα

(
σε + α

k

)
+ σεα

k

)

= α

k
(σε − σM ). (53)

Then, according to Aberayatne and Knowles, a phase boundary
nucleates provided that the driving force exerted on it, shortly
after it nucleates, exceeds some critical value fnuc(>0):

fε ≥ fnuc. (54)

This condition determines the relative displacement δ at which
the point (σε, u′(εL)) leaves the first ascending branch of the
stress-strain diagram. Once a phase boundary has nucleated.
it propagates according to the kinetic (or evolution) condition,
which relates the driving, force to the velocity of the phase
boundary

fe = φ(ṡ). (55)

The restriction zφ(z) ≥ 0 is imposed by the dissipation inequal-
ity (51). Condition (55) rules out most of the local minimizers
and uniquely determines a path in the stress-strain plane between
them. Different paths arise, depending on the type of kinetic
function φ involved.

Here we adopt the classical linear kinetics φ(z) = mz and the
pinning kinetics φ(z) = m

√
(ax2 − b)+z . The latter models the

presence of defects slowing down the phase boundary motion
[10]. This gives the following evolution of parameter s:

s(δ) = (s(0) + K2)e−K3δ + K1δ − K2 (linear), (56)

m
√

(aṡ2 − b) = K4 + K5δL−1 + K6s (pinning). (57)

The constants Ki are given in terms of the material parameters.
To study the asymptotic behavior of these equations, we assume
m = m̄ε−1. Taking s̄ to denote the limit of s as ε tends to zero,
we obtain the contact laws given by Eq. (69) with

�̄ = k̄[u]/L − s̄ᾱ (58)

s̄(δ) = (s̄(0) + L2)e−L3δ + L1δ − L2 (linear), (59)

m̄
√

(a ˙̄s2 − b) = L4 + L5c̄(ᾱχ̄)−1δL−1 + L6s̄ (pinning). (60)

The new constants Li are again completely given in terms of
ᾱ, χ̄, etc. These contact laws are outlined in Figure 5.

4.4. Convex Decomposition
Another approach consists of selecting a particular solution

numerically between the set of local energy minimizers. In this
section, we present the convex decomposition procedure (DC)
[18]. First of all, we note that the energy in the thin layer can be
decomposed as follows:

wa(e) = φ1(e) − φ2(e) (61)

φ1(e) = k

2
e2 + c (62)

φ2(ε) = max(α|ε| − c, 0) (63)
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The minimization of the energy wa(e) leads to the minimization
of the following Lagrangian of the second kind:

L2(e, τ ) =
∫ L

εL
wb(e)dl +

∫ εL

0
φ1(e)dl + φ∗

2(τ ) −
∫ εL

0
eτdl (64)

φ∗
2(τ ) = sup

e

(∫ εL

0
eτdl −

∫ εL

0
φ2(e)dl

)
(65)

This problem can be solved by performing a sequence of
minimizations on each variable e and τ (this method is described
in detail in [18].) In our case, the solution of this minimization
problem is obtained in a single iteration except for the two limit
values of σε, kc(αχ)−1 and kc(αχ)−1 + αχ, which require two
iterations. The solution of the minimization problem has three
branches, the first two of which correspond to bars made entirely
of austenite and martensite, respectively,

δ/L ≤ kc(αχk̂ε)−1 + αεk−1, σε = k̂ε(δL−1 − αεk−1). (66)

δ/L ≥ kc(αχk̂ε)−1, σε = k̂εδL−1. (67)

The third branch corresponds to a mixture.

kc(αχk̂ε)−1 ≤ δL−1 ≤ kc(αχk̂ε)−1 + αεk−1,

σε = kc(αχ)−1. (68)

Assuming that ε tends to zero, we obtain the following contact
law, which is plotted in Figure 5:

σDC =




k̄
[u]

L
, 0 ≤ [u] < Lc̄(ᾱχ̄)−1,

k̄
c̄

ᾱχ̄
, Lc̄(ᾱχ̄)−1 ≤ [u]< L

(
c̄(ᾱχ̄)−1+ ᾱχ̄

k

)
,

k̄
[u]

L
− ᾱχ̄, [u] ≥ L

(
c̄(ᾱχ̄)−1 + ᾱχ̄

k

)
.

(69)

5. CONCLUSIONS
In this study, the asymptotic behavior of a thin layer character-

ized by a nonconvex, piecewise quadratic energy and bounded
by two linearly elastic bodies is analyzed. To obtain the con-
tact law which describes the behavior of a layer with a van-
ishing thickness, two different approaches were tested. First,
we have dealt with a two-dimensional equilibrium problem and
performed matched asymptotic expansions of both stress and
displacement fields. After a suitable rescaling of the material pa-
rameters (see Eq. (15)), we obtained the contact laws described
by Eq. (30), (31), and which are shown in Figures (3) (4). We
then considered the possibility of obtaining the contact law by
performing energy minimization. A detailed study of the com-
putation of the �– limit of the energy when the thickness and
the rigidity of the adhesive tend to zero has been previously pub-
lished in [21]. In the one-dimensional setting, it is possible to
completely solve the minimization problem and to calculate the
corresponding contact laws. Although this approach consists of
simply solving an example, it is the first attempt ever made to

model one-dimensional contact laws, as shown in Figure 5, tak-
ing nucleation and the kinetics of the martensite transformation
process into account.
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