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Abstract. In multifractal denoising techniques, the acuracy of the Hölder
exponents estimations is crucial for the quality of the outputs. In conti-
nuity with the method described in [1], where a wavelet decomposition
was used, we investigate the use of another Hölder exponent estimation
technique, based on the analysis of the local “oscillations” of the signal.
The associated inverse problem to be solved, i.e. finding the signal which
is the closest to the initial noisy one but having the prescribed regular-
ity, is then more complex. Moreover, the associated search space is of a
different nature as in [1], which necessitates the design of ad-hoc genetic
operators.

1 Introduction

In the past years many different signal and image denoising techniques
have been proposed, some of them being even based on artificial evolu-
tion [1, 2]. The basic notations are the following. One observes a signal or
an image Y which is some combination F (X, B) of the signal of interest
X and a noise B. Making various assumptions on the noise, the structure
of X and the function F , one then tries to obtain an estimate X̂ of the
original signal, optimal in some sense. We consider denoising as equiva-
lent to increasing the Hölder function αY (see section 2 for definitions)
of the observations. Indeed, it is generally true that the local regularity
of the noisy observations is smaller than the one of the original image,
so that in any case, αX should be greater than αY .
In this paper, section 2 recalls some basic facts about Hölder regularity
analysis. We describe in section 3 how oscillations are used to provide
an estimator of the Hölderian regularity. The new denoising method is
explained in section 4 and the evolutionary algorithm, with its ad-hoc
genetic operators, are detailed in section 5. Numerical experiments are
presented in section 6.



2 Hölder regularity

To simplify notations, we deal with 1D signals, and we assume that
signals are nowhere differentiable. Generalisation to differentiable signals
simply requires to introduce polynomials in the definitions [3]. Below the
definitions of the pointwise and local Hölder exponents are given.
Let α ∈ (0, 1), and x0 ∈ K ⊂ R. A function f : K → R is in Cα

x0
if for

all x in a neighbourhood of x0, |f(x) − f(x0)| ≤ c|x − x0|
α (2) where c

is a constant. The pointwise Hölder exponent of f at x0, denoted
αp(f, x0), is the supremum of the α for which (2) holds.
Let us now introduce the local Hölder exponent: Let α ∈ (0, 1), Γ ∈ R.

One says that f ∈ Cα
l (Γ ) if ∃C : ∀x, y ∈ Γ : |f(x)−f(y)|

|x−y|α
≤ C (3). Let

αl(f, x0, ρ) = sup{α : f ∈ Cα
l (B(x0, ρ))}. The local Hölder exponent

of f at x0 is αl(f, x0) = lim
ρ→0

αl(f, x0, ρ).

Since αp and αl are defined at each point, we may associate to f two
functions x → αp(f, x) and x → αl(f, x) which are two different ways of
measuring the evolution of its regularity.
The quality of a denoising technique based on these exponents, strongly
relies on the quality of an estimator of these quantities. In [1], the estima-
tion was performed by a wavelet technique. We will see in the sequel that
a better estimation of the Hölder exponent can be obtained by measuring
the oscillations of the function.

3 Estimation by oscillations

The estimation based on oscillations measurements is a direct application
of the local Hölder exponent definition (see [4]). The condition (3) can
be written as: A function f(t) is Hölderian with exponent α ∈ [0, 1] at t

if there exists a constant c, for all τ : oscτ (t) ≤ cτα with
oscτ (t) = sup

|t−t′|≤τ

f(t′) − inf
|t−t′|≤τ

f(t′) = sup
t′,t′′∈[t−τ,t+τ ]

|f(t′) − f(t′′)|.

At each point we estimate the pointwise Hölder exponent as the slope
of the regression of the logarithm of the oscillation versus the size of the
window τ . As we see in figure 1, the estimation by oscillations provides
better results than an estimation by wavelets.

4 Method

According to the notation of section 1, we seek a denoised version X̂ of
the observed signal Y that meets the following constraints:
1) X̂ is close to Y in the L2 sense.
2) The Hölder function of X̂ is prescribed.
If αX is known, we choose αX̂ = αX . In some situations, αX is not known
but can be estimated from Y , see [5]. Otherwise, we just set αX̂ = αY +δ,

where δ is a user-defined positive function, so that the regularity of X̂

will be everywhere larger than the one of the observations. Two problems
have to be solved in order to obtain X̂ . First, a procedure that computes
the Hölder function of a signal from discrete observations is needed.



Second, we need to be able to manipulate the data so as to get a specific
regularity. To solve the first problem, the estimation method of section 3
is used, and for the second problem, an evolutionary algorithm has been
designed.

5 Evolutionary algorithm

We consider that an individual is a signal (1D or 2D). On the contrary
to [1] where an individual was made of a subset of wavelet coefficients,
a direct encoding of the signal in the genome has been used.
Initialisation: As the search space is extremely large, a direct search start-
ing from a random set of initial signals has no chance to provide a good
denoising in a reasonable time. However, many initial guess are avail-
able, including the noisy signal itself. We actually use several determin-
istic denoising methods to provide the initial population. These methods
are the Multifractal Bayesian Denoising[6] and the Multifractal

Pumping[5], and depend from a parameter setting. The parameters are
generated randomly.
Fitness: An important point of the method is that the fitness calculation
is based on two kind of fitness function. A pointwise fitness has been
defined for each point of the signal as a combination between the quality
of the individual in term of regularity and in term of distance to the
noisy signal. As said above, it is based on the estimation by oscillations.
The pointwise fitness is then combined to provide a local fitness. The
local fitness is the sum of the pointwise fitness on a given segment (or
window). The local fitness is used in the crossover and in the mutation
operators. We compute the global fitness when we perform this sum on
the full signal. This fitness is used for the selection and for the ranking.
Crossover: A simple ranking selection mechanism with selective pressure
2 is used to select two individuals. Random crossing points are then
selected. For images, a set of random rows and columns is chosen. The
local fitness on each resulting segment is then used to select the best
parts of the two individuals as the corresponding segment of the child.
Mutation: In a similar way, each segment (or image window) is muted
using a probability law inversely proportional to the local fitness. For
each individual we consider the worst local fitness wlf i.e. the fitness
of the worst segment. Let lf(j, i) the local fitness of the ith segment
of the jth individual. The probability of mutation for this segment is
Pm(j, i) = lf(j,i)

wlf
.

6 Numerical Results

For the first example (see figure 2), the original signal is a Generalized
Weierstrass function with a regularity α(X, t) = t with t ∈ [0, 1]. This
signal is corrupted by a white Gaussian noise (standard deviation equal
to 0.3). We use a synthetic image to perform an experiment in 2 dimen-
sions. The figure 3 shows the original image, the noisy one, a denoising by
Soft Thresholding and by our method. The second row displays the cor-
responding Hölder functions. As in the previous examples, our method



allows to obtain a denoised version of the signal with the prescribed
regularity.

7 Conclusion

We have experimented in this paper a new scheme for a multifractal
denoising technique. It is based on a more precise and more complex-
computation of the Hölder exponent of a signal. This work is actually a
first attempt to use an estimation of Hölder exponent based on oscilla-
tions for signal enhancement. Preliminary experiments yield satisfactory
results, with a more precise control of the reconstructed regularity, which
has to be considered as a major advantage for this type of techniques.
Moreover, the evolutionary engine that has been designed has the follow-
ing interesting characteristics: it performs a basic hybridisation with two
other denoising techniques (Multifractal Bayesian Denoising and Multi-
fractal Pumping for the initialisation step), and uses locally optimised
genetic operators. Further work will first consist in a more precise analy-
sis of the locally optimised genetic operators in comparison with classical
”blind” ones. Second, the hybridisation scheme has to be investigated as
it may be a good solution to reduce computation costs of the method.
Additionally, the availability of a pointwise and local definition of the
fitness opens the way to ”Parisian” evolution implementations for the
genetic engine. This may be another solution to reduce computational
expenses of the method, see for example [7, 8].
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Fig. 1. 10 multifractional Brownian Motions have been built with a regularity H evolv-
ing like a sine. The 2 methods of estimation of the Hölderian regularity have been
applied: a wavelet-based (W1) and the method by oscillations (OSC). After an optimi-
sation of the parameters of the 2 methods in term of risk, the means of the estimated
Hölder functions are displayed.
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Fig. 2. First row: original Generalized Weierstrass Function, noisy version, denoising
with Soft Thresholding, denoising by our method after 10 generations and 50 indi-
viduals, denoising by our method after 500 generations and 200 individuals. Second
row: corresponding Hölder functions. Our method allow to recover almost perfectly
the Hölder function of the original signal.

original noisy Soft Thres. 500 × 100 ind

Fig. 3. Original image, the noisy one, a denoising by Soft Thresholding and by our
method (100 ind, 500 gen). The second row displays the corresponding Hölder functions.


