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1 IntrodutionCohlear Implants (CI) [Nih89℄ allow totally deaf people to hear again pro-vided their auditory nerve and ohlear are still funtional: a omputer proessessounds piked up from a mirophone, to stimulate diretly the auditory nervethrough several eletrodes inserted inside the ohlea (f. �g. 1).As one an imagine, there are hundreds of parameters that an be tuned,and in the same time the patient has to learn to �hear� using new informationsprovided to his auditory nerve. The tuning of suh a devie is thus extremelyomplex, and highly dependent on the patient. This proess is urrently done�by hand� by medial pratitioners, and looks like an optimisation proess basedon �trial and error.� This proess is so deliate that sometimes, no satisfatory�tting an be found for some patients.Hene, it seems interesting to use an interative evolutionary algorithm (IEA)to help �nding the best values for implant parameters. This is the main topiof the HEVEA projet, whih is a ollaboration between omputer sientists,signal proessing experts and medial researhers. The aim is atually twofold: tofailitate the initial �tting of ohlear implants, and to automatise the adaptationof ohlear implants to various sound environments. A simple IEA was developedwith this in mind, and tested on a very basi feature, the range of intensitiesthat a spei� eletrode an take when stimulating the auditory nerve. The IEAhas been implemented on a PDA and tests have been performed on volunteeringpatients with satisfying results.The paper is organised as follows: setion 2 presents ohlear implants, andsetion 3 desribes how they are urrently tuned by medial pratitioners. Theapproah of the HEVEA projet is developed in setion 4, and a �rst implemen-tation of an IEA is detailed in setion 5. Experiments on several patients arereported in setion 6, yielding good results as well as important onlusions onmanual �tting proedures. This �rst validation step is important: an analysisof the suess and failures raises new questions that are developed in setion 7,related to the well-known �user fatigue� problem of IEAs, and to the fat thatdi�erent sound environments have an important in�uene on implants �tting.Automati adaptation of the devie to sound has been investigated, based ona sound signal lassi�ation sheme, whih is detailed in setion 7. Conlusionsand perspetives are desribed in setion 8.2 Cohlear ImplantsA ohlear implant is a surgially implantable devie [GFM+98℄ that provideshearing sensations to individuals with severe to profound hearing loss, and an-not bene�t from hearing aids. In a normal ear, sound energy is onverted tomehanial energy by the middle ear, whih is then onverted to eletrial im-pulses by the inner ear (see �gure 1). In order to perform this last stage, theohlea (part of the inner ear) ontains a �uid whih is set into motion by theoval window whih is onneted to the middle ear. Within the ohlea, sen-sory ells (inner and outer hair ells) are sensitive transduers that onvert the



mehanial �uid motion into eletrial impulses onveyed to the brains by theauditory nerve. Cohlear implants are designed to be a substitute for the middleear, ohlear mehanial motion, and sensory ells, transforming diretly soundenergy into eletrial energy that will initiate impulses in the auditory nerve[B.C95℄, [Coh89℄ thanks to a digital signal proessor.

Fig. 1.All implant devies have the following features in ommon : sound is olleted bya mirophone (1) and sent to eletroni omponents within a speeh proessor (2). Thespeeh proessor analyzes the input signal (sound) and onverts it into an eletronisignal (eletrial). This ode travels along a able (3) to the transmitting oil (4) andis sent aross the skin via frequeny modulated (FM) eletro-magneti waves to theimplant pakage (5). Based on harateristis of the ode transmitted to the internaldevie, eletrode ontats within the ohlea (6) provide eletrial stimulation to thespiral ganglion ells and dendrites extending into the modiolus. Eletrial impulsesthen travel along the auditory nerve (7), asending auditory pathways to the brain.Cohlear implants have been very suessful in restoring partial hearing toprofoundly deaf people [ALM95℄, [Osb97℄. In 2006, around 70 000 deaf peopleare implanted with suh devies around the world. E�ieny is quite variable,ranging from totally deaf patients that have fully reovered their audition andare apable to follow telephone onversations and enjoy musi, to others whohear strange sounds they an't bene�t from, to a point where they prefer toswith o� the implant [COM94℄, [GTBVC01℄, [BTE04℄, [Rom98℄.For many people, it is still di�ult to fully take advantage of the deviebeause it is not easy to tune the parameters of digital signal proessor andadjust them for the harateristis for eah patient, sine all patients are di�erent(ause of deafness, number of years between total deafness and implantation, age,depth of eletrode insertion,. . . ).Researh has been going on sine nearly 50 years ago on how to eletriallystimulate the auditory nerve to give a totally deaf patient sound sensations



[LPD00,Loi01℄. Even though the early devies stimulated the auditory nervewith one eletrode only, some luky patients managed to hear again and evenunderstand speeh. Nowadays, it is tehnologially possible to use more than oneeletrode, in order to stimulate more of the thousands of neurons the auditorynerve is made of [PCMF79℄ [CFML83℄. However, the more eletrodes, the moreparameters to tune.The ohlea is used to interfae eletrodes and the auditory nerve. Theohlea is a biologial devie that mainly allows to map di�erent sound frequen-ies onto di�erent neurons. It is shaped like a snail shell. Only long wavelengths(low frequeny sounds) an reah the far end of the ohlea, while short wave-lengths (high frequeny sounds) are stopped at the entrane of the ohlea. Theidea is then for surgeons to use this frequeny disriminator and insert into theohlea a thin silion wire, bearing several eletrodes.Stimulating an eletrode on the far end of the wire will therefore make thepatient hear a low pith sound, while stimulating an eletrode near the entraneof the ohlea will result in the patient hearing a high pith sound.3 Cohlear Implant �tting3.1 Complexity of the problemBeing able to use more than one eletrode to stimulate di�erent neuron areasis indeed a great improvement, but the number of parameters to tune inreasesdrastially. Conerning eletrodes only, many questions arise, among whih:� Whih frequenies should be mapped to whih eletrodes ?� Whih range of intensities should be applied to whih eletrodes ?� How many eletrodes should be stimulated simultaneously ?� Should the proessor prohibit neighbour eletrodes to be stimulated simul-taneously in order to avoid diaphony (rosstalk between nearby eletrodes) ?Finding good answers to these questions is a di�ult optimisation problem.This not only due to the extremely large size of the searh spae but to severalother reasons. First of all, the quality of a �tting is a two stage proess wheresubjetivity plays a large role: the pratitioner has to interpret the quality of the�tting (�rst subjetive proess) from the answers given by the patient (seondsubjetive proess). The disparity of patient behaviour with respet to languageand sensitivity to various thresholds, as well as the harater of the pratitionerdeeply in�uenes the results. For example the well known psyhologial �Pyg-malion� e�et biases answers of the patient, who often unonsiously tries tosatisfy the pratitioner's expetations.The sound environment is another ause of variability of results, as the �ttingsession usually takes plae in a small room at hospital with the pratitioner.However the ohlear implant must also be used in real life, and a orret �ttingat hospital may reveal very unomfortable or unuseful when in the street, or ina restaurant.



Fatigue and brain adaptation are also other soures of trouble: it is impossibleto test many possible parameter sets during a single session, so the proess isvery long and needs sometimes weeks to obtain a satisfying result. In the sametime, a �tting that may not appear immediately as satisfying, may improve whentesting it on a longer period (brain has a plastiity that annot be negleted).There are many fators that make this problem highly irregular. However,it has been proved that an aeptable or even good �tting is reahable by amanual searh onduted by an experiened pratitioner. We desribe belowthis manual �tting tehnique, whih is mainly a human-guided �trial and error�proess, resembling a loal searh.3.2 Manual �ttingNowadays, depending on the manufaturer, the number of eletrodes varies be-tween 8 and 22. Cohlear implant ��tting� is performed by an expert pratitioner,who proeeds in the following way:� Right after the surgial intervention, the pratitioner tries to determinewhih eletrodes are funtional (an eletrode is funtional if the patient hearsa sound when urrent is applied to the eletrode).� For eah funtional eletrode, the pratitioner tries to determine the rangeof intensities that an be used. The lowest intensity above whih the patientpereives a sound is alled T (for Threshold). The maximum onfortableintensity (loudest sound the patient an bear for a reasonable amount oftime) is alled C (for Comfort threshold).Determining the T and C values for eah eletrode takes time (ommuni-ation with a deaf patient, a young hild, or with an old patient an bedi�ult), and due to the inreasing number of eletrodes, some manufa-turers now advise to determine T and C values for one every three or foureletrodes, and extrapolate the values for the other eletrodes. See [Rou01℄,[Hes02℄ for more informations on this topi.Other manufaturers even set average values for T and C, based on neuralresponse or even statistis.� Then, one the C − T range is maximised for all the eletrodes, the �real��tting begins. The pratitioner uses his expertise to map frequeny bandslogarithmially onto the di�erent funtional eletrodes, and starts to tune thegain and sensitivity depending on sound frequenies, then tunes the numberof simultaneously ative eletrodes,. . . while at the same time asking thepatient whether they understand better or worse, whether the sound qualityis omfortable or not, a.s.o.. In ertain ases, the pratitioner will slightlyredue the C−T range for some eletrodes, when he has the feeling that the�neurologi� bandwidth is limited, and that the neurons faing the eletrodeare getting saturated at only moderate auditory levels.Results are variable, but often good. Usually, a �tting session starts with thepratitioner asking whether the urrent �tting is better or worse than the previ-ous one. The best of the reent �ttings is taken as a basis that the pratitionerwill try to improve, resulting in some sort of hill limbing proess.



The patient tries to desribe the quality of his audition, and the pratitionertries to modify some parameters to help solving the problems. Two or threeparameters an be hanged during a 30 to 90 minutes �tting session. Then, thepatient leaves with the new settings that he keeps for a ouple of months, beforehe omes bak for another �tting session. The whole proess is therefore verylong (several years for problemati patients).4 Desription of the ProblemAs seen above, �tting ohlear implants is done through a set of orrelated pa-rameters [LPD00℄, and pereption and omfort thresholds are linked to histopatho-logial fators spei� to the patient [KSC+98℄. In most ases, the �tting strategysimply onsists in maximising the number of eletrodes and maximising their dy-nami range [BPG+92℄. This often gives good results, but for some patients thisapproah does not work. Moreover, the following observations have also beenreported:� Better results might be obtained by dereasing the dynami range [FXP03℄.� Only using a subset of eletrodes might improve speeh reognition [ZCW97℄.� Holes in spetral representation an exist in tonotopi representation (map-ping of the sound frequenies on the eletrodes) and spetral informationredistribution around the holes does not inreases results [SGD02℄.Moreover:� Most of the patients do not use all the information given by the eletrodes[Fis96℄.� All the eletrodes are not neessary to obtain maximal speeh pereptionperformane in silent [DDML89,LWZF96,Fis96,KVR+00℄ and noisy environ-ments [FSBW01℄ (part of this ould be due to eletrial interation betweenhannels [SLM+06℄).These published observations show that hoosing a good subset of eletrodesan have an in�uene on speeh understanding, as well as the dynami rangeon the eletrodes. Finally, taking into aount a real sound environment ouldinrease speeh understanding for some patients.The work presented in this paper will try to address both problems.5 Desription of the Interative Evolutionary AlgorithmIt seems that many patients who are not satis�ed with their ohlear implant arestuk in a loal optimum: no modi�ation proposed by the expert would bringany improvement.This triggered the idea to use evolutionary algorithms, that are both quitegood at optimising parameters and not easily trapped in loal optima. The ge-neti loop is the following: the EA �suggests� a set of parameters that are diretlyuploaded into the Cohlear Implant's proessor, and waits for an evaluation.



Other works have been onduted on interatively �tting hearing aids withevolutionary algorithms, [Dur02,Tak01,Tak02℄, but they onern only onven-tional hearing aids, with a relatively small number of parameters that an betuned. To our knowledge, nobody has tried to apply evolutionary algorithms toCohlear Implants �tting.5.1 Managing the runsIn an interative evolutionary algorithm, a human user evaluates the di�erentindividuals proposed by the algorithm.Thomas Bäk's results ([Bae05℄), suggest that an evolutionary algorithm maydo as well (if not better) than a human expert on a number of evaluations ofthe same order than the number of real parameters to optimise. Therefore, if theproblem has around 100 parameters to tune, performing only 100 evaluationsshould already allow to obtain interesting results. If it is possible to �nd anevaluation proedure that takes around 5mn, a run would last around 8 hours.However, it is also important to take psyhology and human fatigue intoaount: a well tuned onvergene speed over 100 evaluations ould seem dis-ouraging for a human patient, who may think that improvement is too slow.Besides, sine it is not possible to have an 8 hour run in one go, an elegantsolution onsists in frationing the experimentation into several partial fast-onverging runs, with a restart at the end of eah run [Jan02℄. Dividing the 8hour run into 5 makes for 5 1h30 runs, that are quite manageable.Rather than �nding ways to avoid premature onvergene, it is on the on-trary a very fast onvergene that is sought on these short runs of approximately20 runs. This is quite nie, sine evolutionary algorithms are known to onvergequite fast, if no ounter-measures are taken.This poliy allows to use a very fast onverging algorithm trying to exploitloal minima, rather than a slow onverging algorithm trying to widely explorethe searh spae, looking for the global minimum. The onsequenes of prematureonvergene are dealt with thanks to the periodial restarts. During the last run,one an restart the algorithm with the best individuals found in the 4 �rst runs,so as to bene�t from the results previously found.Population size and number of hildren per generation. For an identialnumber of evaluations, two possibilities exist: either many hildren per gener-ation and a small number of generations, or a small number of hildren pergeneration and many generations.Out of these two possibilities, it is the algorithm that maximises the numberof generations that will favour most onvergene. This suggests a SteadyState re-plaement poliy, or a (µ+λ) with a very redued λ (number of hildren) [Bae95℄.Then in order to not spend too many evaluations in the initial population, onean also redue it as is done in miro-GAs [Kri89℄.Extremely low values an be used, suh as 3 to 6 individuals for the initialpopulation, with 1 to 3 hildren per generation. For the �fth run, 4 individuals



ould be used for the initial population, taken from the best individuals of the4 previous runs.The algorithm hosen for this spei� interative optimisation will thereforebe a modern evolutionary algorithm, in the sense that it does not take after anyof the four usual paradigms (Evolution Strategies, Geneti Algorithm, GenetiProgramming, Evolutionary Programming) [DJ05℄.Aording to Bäk [Bae05℄, using an Evolution Strategie paradigm for 100evaluations should allow to optimise up to 100 real variables. In Cohlear Im-plants �tting, however, one an start with trying to �nd the best T and C valuesfor eah eletrode. With the MXM 15 eletrodes CI used for this experiment, thegenome is therefore an array of only 30 real values, meaning that the hanes to�nd a good �tting are muh higher.5.2 InitialisationOne hard onstraint needs to be respeted: the algorithm should not go beyondthe maximum intensity for eah of the eletrodes for fear of destroying some ofthe patient's auditory neurons. Therefore, for eah new patient, a �rst sessionwith a pratitioner is realised to determine the maximum admissible intensity foreah eletrode, that is alled a psyhophysial test. In order to redue the searhspae, a minimal intensity below whih the patient does not hear anything isalso determined.The initialisation of eah individual therefore simply onsists, for eah ofthe 15 eletrodes, to pik up two random values within the [min,max] intervaldetermined during the psyhophysial test, and to take the lower value as a Tthreshold, and the higher value as a C threshold for the eah of the 15 eletrodes.5.3 Seletion of the parentsParents seletion is di�erent from the replaement stage, in that it an seletan individual several times. Whenever a hild must be reated, two di�erentindividuals are seleted among the parent's population, that an be seletedagain to reate another hild.Sine the seletion pressure of proportional seletion depends on the �tnesslandsape of the problem to be solved (whih is unknown), a stohasti tour-nament is seleted [BT97℄, with a 90% probability, that onsists in randomlyseleting 2 individuals and to take the best of the two with a 90% probability.5.4 CrossoverThe genes are real values, whih ould have suggested some kind of baryentrirossover (suh as used in Evolution Strategies), where eah gene of the hild isan average between the two genes of his parents. But sine it is intervals thatmust be evolved, this type of rossover would have led to reduing the intervalsprogressively.



The hosen rossover is that of geneti algorithms, whih exhange the par-ent's genes after a rossover point (lous) hosen randomly. A mono-point rossoverwas hosen, as a multiple rossover would have had a tendeny to break e�ientgenomes, and would have turned the rossover in a kind of maro-mutation.In this same attempt to not break good on�gurations, the determinationof the lous is made eletrode by eletrode (the two T and C values are notseparated). Sine we are using a (µ+ λ) evolutionary engine, with a number ofhildren smaller than the size of the population, the rossover is alled to reateeah hild (100% probability).5.5 MutationMutation is also alled with a 100% probability on eah reated hild. In theproposed algorithm, eah gene has a 10% probability to be mutated. Sine thereare 30 genes, eah hild undergoes 3 mutations in average. This may seem impor-tant, but due to the large epistasis, modifying a threshold on the global genomeonly has a limited in�uene on the global evaluation. This high mutation rateallow to keep a reasonable exploratory harater to the algorithm, in spite of thevery small number of evaluations.5.6 ReplaementA Steady State-like replaement is used, i.e. with a very small number of hildrenper generations, in order to promote a fast onvergene. During a strit SteadyState replaement, only one hild would be reated, that would replae the worstof both parents. Sine we deided to have several hildren per generation, itis a (µ + λ) replaement sheme that is used, with only 2 or 3 hildren pergeneration (where Evolution Strategies usually reate more hildren than thereare individuals in the population).5.7 EvaluationIt is possible to memorize 2 or 3 �ttings on modern ohlear implant proessors(alled P1, P2, P3). Until this researh was onduted, the evaluation of thepatient's understanding was done by two di�erent ways. Either the patient wassent home with the new �tting on P1 and the previous �tting on P2, whihallowed him to ompare both �ttings in his environment, or an evaluation wasdone by an orthophonist with intensive tests during more than one hour.Even though an interative evolutionary algorithm requires a redued numberof evaluations [Tak98℄ none of these methods were suitable for an interativeevolutionary algorithm, so various evaluation protools have been devised andwill be desribed in details in setion 6.



5.8 ExeutionThe evolutionary algorithm has been implemented both on a regular PersonalComputer and on a PDA so that it is possible for a patient to tune his ohlearimplant in a real environment (in a train station, for instane, if the patientworks there and really needs a spei� �tting for this partiular environment).The graphial interfaes are presented in �gures 2 and 3.

Fig. 2. Graphial Interfae on a standard PC omputer.The �rst versions have been implemented using the EASEA2 language [CLSL00℄in ombination with the GALib library [Wal℄. Later versions have been om-pletely re-implemented from srath in C++ beause apparently, the GALiblibrary did not use the �rst evaluations for the initial population, and for thisspei� appliation, eah evaluation ounts.6 ExperimentsThe �rst three sub-setions present results obtained with patient A, that wereonduted by Claire Bourgeois-République, as part of her PhD. thesis of theUniversité de Bourgogne. These results have already been presented in severalpapers [BR04,BRVC05,BRFC05℄.The following experiments have been onduted by Vinent Péan and PierrikLegrand within the RNTS HÉVÉA projet, funded by the Frenh Ministry ofHealth.2 http://soureforge.net/projets/easea orhttp://omplex.inria.fr/gi-bin/twiki/view/Complex/SoftwareEASEA



Fig. 3. Graphial Interfae for poket PC6.1 Presentation of Patient APatient A has reeived an MXM ohlear implant 10 years ago in 1994. Unfor-tunately, he has not reovered a perfet audition (he understands some wordsquite well, but not others), although he is able to hold a onversation over thetelephone, whih is already quite a feat.He was initially given a waist proessor (alled �boîtier�) to be arried at-tahed to his belt, until MXM reently ame up with a tiny �Behind The Ear�BTE proessor. In 2003, patient A has reeived a BTE with the hope that newtehnology would allow him to hear better.Unfortunately, this is not the ase. After many disappointing �tting sessionswith an expert pratitioner, he still feels unomfortable with the BTE and ap-parently annot follow a onversation with it. He therefore keeps the BTE in adrawer and uses the old Boîtier for every day life.The automati �tting algorithm desribed in this paper was developed withthe latest MXM tehnology, i.e. BTEs. It was thought that Patient A ould bea nie patient to test the evolutionary algorithm, with the remote hope to �ndparameters that would allow him to hear with his state of the art BTE at leastas well as with his old Boîtier.To start with, Patient A ame to the hospital for yet another �tting sessionwith a pratitioner, with the aim to determine the minimum and maximum(C and T) intensity values for eah of the eletrodes for his BTE, to feed theevolutionary algorithm (f. table 1).Eletrodes 10 11 and 12 have C and T values of 0 beause the auditory neu-rons they fae have apparently been damaged (Patient A does not hear anythingwhatever intensity is applied to these eletrodes).In order to be able to ompare �ttings, evaluations were done with the best�ttings on the Boîtier and the BTE. The results orresponded to his laims.With the 78%/22% evaluation desribed above:



Eletrode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Min 6 6,5 6,5 9 9 9 8 8 8 0 0 0 7 6 5Max 9,5 13 13 18 20 21,5 21,5 18 16,5 0 0 0 12 10 9Table 1. Minimum and maximum intensity (C and T values) for eah eletrode forPatient A.� The boîtier obtained an evaluation of 53/100 (slightly more than 50% of the78 words were understood).� The BTE obtained an evaluation of 48.5/100 (fewer words were understoodand the BTE is less onfortable).6.2 First set of experimentsEvaluation for the Patient A. A new evaluation protool have been devised,using alibrated sentenes extrated from a list of �ohlear� sentenes elaboratedby Pr. Lafon [Laf64℄, that are supposed to ontain representative syllable of theFrenh language allowing to evaluate pathologial ohlea. Ten sentenes wereseleted, for a total of 78 words, that would give 78 points if all words wereorretly understood.A omfort mark between 0 and 10 ompletes the evaluation, as an unomfort-able �tting will not be used by the patient. The omfort mark is multiplied by2.2 so that the global evaluation is made of 78 points oming from the reognisedwords + 22 points oming from the omfort of the tested �tting.Tests have shown that this evaluation proedure takes slightly less than 4minutes. This is learly not enough to obtain a �ne evaluation of the auditionof the patient, but it allows to perform 100 evaluations in 6h40mn only (i.e.1h20mn per run if the 100 target evaluations are deomposed in 5 runs). If thisredued protool is enough to guide the evolutionary algorithm and allow it toimprove the �tting over 100 suh evaluation, the aim is reahed.Suh an aim is di�erent from the aim of the omplete evaluation of a standardpratitioner, beause due to the very small number of �ttings they an performin a year (about 10 �tting sessions per year and per patient), they need a verypreise evaluation proedure in order to test the quality of the audition of thepatient.Experiment 1 and results. For the �rst experiment with patient, the size ofthe population was limited to 3 individuals and the evolutionary algorithm wasasked to reate 3 hildren per generation. Mutation rate was 0.1 and rossoverrate was 1.On the �rst evaluation (of a randomly reated individual) 42 words wereunderstood on a total of 78. Patient A gave an evaluation mark of only 1 (over10) beause even though he ould understand more than half of the words, the



BTE sound was resonating and feeling unomfortable. The global evaluation wastherefore of 42+1×2.2=42.2.On this �rst experiment, 12 evaluations were performed, whih is a largenumber, knowing that preparation and evaluation of one �tting takes between15 and 20 mn for an experiened pratitioner. With the evolutionary algorithm,only 4 mn were needed per �tting.The result of the evaluation is given in the table below :Fitting 1 2 3 4 5 6 7 8 9Evaluation 44,2 21,2 9,2 31,4 55,6 46,4 74,8 74,8 58,4Fitting 10 11 12Evaluation 81 81 79,8Table 2. Experiment 1 -patient AThe �rst three evaluations (44.2, 21.2, 9.2) orrespond to random individuals.Arti�ial evolution starts on �tting number 4, with 3 hildren per generation(generations are marked with a double vertial bar).>From the 5th evaluation onwards, obtained results are better or equivalentto the best �tting performed by the medial pratitioner (48.5).Fittings 7 and 8 are nearly idential, as well as �ttings 10, 11 and 12. Theseresults have never been approahed by the expert neither with the BTE nor withthe Boîtier.Patient A is enthusiasti, and a seond experiment is started with 6 individ-uals, to avoid premature onvergene.Experiment 2 and results. The only hanges that have been made are apopulation size of 6 individuals and 4 hildren per generation (generations aremarked with double vertial bars).Fitting 1 2 3 4 5 6 7 8 9 10Evaluation 24 17 30 19 53.2 37.4 22.6 24 33.4 32Fitting 11 12 13 14 15 16 17 � � �Evaluation 9 27.4 34 34.5 12 27 32 � � �Table 3. Experiment 2 - patient AThe �rst four random individuals get poor results. Then, rossover and mu-tations have di�ulties reating better individuals, with some really poor indi-viduals (�ttings 11 and 15).



Patient A gets tired and disappointed. The test is stopped after the 17th�tting.Experiment 3 and results. For the 3rd test, the population is redued bak tothree individuals, but with 2 hildren per generation. Mutation rate is inreasedto 0.6 and roulette-wheel is used as a seletor in order to inrease the seletivepressure when hoosing parents.Fitting 1 2 3 4 5 6 7 8 9 10 11Evaluation 54 33 26.5 48 52 51.6 54.6 62.8 59.6 65.6 60.1Fitting 12 13 14 15 16 17 18 19 20 21 22Evaluation 60 72 69.4 53.4 73 67 50.1 62 68.3 67.3 65Table 4. Experiment 3 - patient A
The three initial individuals obtain great values (54, 33 and 26.5). The seondgeneration obtains values near 50. Then evaluations inrease towards 60s and 70swithout dropping below 50 again.Around generation 10 or 11 (�ttings 20, 21, 22), evaluations seem to stabilisenear 70 without beating value 73 of �tting 16.Experiment 4 and results. For the fourth experimentation, population size isset to four individuals and four hildren per generation. Mutation rate is broughtbak to 0.1 and parents seletion is set bak to Tournament.Fitting 1 2 3 4 5 6 7 8 9 10 11 12Evaluation 59.4 62.2 57.3 58.9 57 62.3 65 73 75.3 65.2 83.1 68Fitting 13 14 15 16 17 18 19 20 21 22 23 24Evaluation 75.4 91 91.5Table 5. Experiment 4 - patient AIn average, the �rst four individuals present an average evaluation of 59.5and all subsequent values are above 56.5.Values of 91 and 91.5 are obtained at the end of generation 4. Patient A istired but extremely satis�ed and surprised by suh results. He leaves for lunhwith the BTE.



However, when he returns a ouple of hours later, he says that the �tting isnot very e�ient in noisy environments, and feels like he still prefers his Boîtier,as it feels muh more omfortable to wear, as he has used it for the past 10 years.Experiment 5 and results. Population is now of 5 individuals, with twohildren per generation, a tournament seletor and a mutation probability of0.1. Fitting 1 2 3 4 5 6 7 8 9 10 11Evaluation 18.6 53 70.1 9 71.9 58.4 60.3 58 51 57.3 48.2Fitting 12 13 14 15 16 17 18 19 20 21 22 23Evaluation 36 36.2 50 29 33.5 50.3 40.2 44.5 48.3 49.3 45.2 50Table 6. Experiment 5 - patient AAmong the �rst �ve random individuals, two show a surprising evaluation of70.1 and 71.9, whih raises questions on the original �tting of the expert for theBTE, whih only gets 48.5.However, evolution does not seem to �nd any better individuals.Disussion on obtained resultsFitness evolution: The evolution of the best individual for the �ve runs Theevolution of the best individual for eah of the runs is shown �gure 4. Fitnessinreases on all experiments but exp. 2, whih is a nie result for suh a smallnumber of evaluations, meaning that the eduated guesses made on the IEAimplementation were probably good. It seems that the orret population size is3 or 4 individuals, with 2 to 4 hildren per generation.Analysis of the best obtained individual: Analysis of the T/C values of the bestindividual is intriguing �gure 5: (Eletrodes 10, 11 and 12 have been omittedas they are not funtional.) Sometimes, experts redue the C -T range for someeletrodes when they feel that the neural "bandwidth" is too narrow and thereis a possibility of saturation if the auditory information is too important. In the�tting found by the IEA, however, many of the C-T ranges are redued downto 1.5, 1, 0.5 and even 0. In fat, only eletrodes 1, 7 and 9 have signi�antranges (over 2.5). Other good �ttings show wider ranges for eletrodes 7 and 9and narrower ranges for the other eletrodes, whih raises a hypothesis: Whatif, for this preise patient, some eletrodes had a negative in�uene on speehunderstanding ? If this were the ase, the urrent pratie (that has been goingon for many years) of maximising the range of as many eletrodes as possiblewould also maximise the range of "wrong" eletrodes that prevent the patient of



Fig. 4. Evolution of the best individuals per evaluations, for eah experimentation.under- standing speeh. After this �rst evolutionary �tting session, the patientwent bak home with the original settings in his CI.

Fig. 5. Absissa: Eletrodes, Ordinate: Intensity. Maximum allowed envelope and thebest obtained individual.This poses several questions:� Is minimising the T −C interval equivalent to shutting down an eletrode ?� Could there be a diaphony problem (rosstalk) between the eletrodes ?� Could the problem be ombinatorial ?6.3 Seond set of experiments.A seond set of experiments has been onduted in order to verify some hypothe-ses that arose after the �rst set of experiments. The tests have been onduted



with the same patient and with the same evaluation protool, but one monthlater. It is important to note that between the two sets of experiments, the pa-tient has used his old �boîtier,� meaning that neuronal plastiity annot havetaken plae. The evaluation basis are therefore omparable. In the text below,the �rst set of experiments is noted C1 while the seond set is noted C2.Experiment 7. Surprisingly enough, the best individual obtained during thefourth run was virtually using only three of the 12 funtional eletrodes (ele-trodes 1, 7 and 9), that ould be redued to only 2, sine eletrode 1 was mappedonto very low frequeny sounds that are not disriminant for speeh. In orderto on�rm this strange result, the �rst deterministi test maximises eletrodes 7and 9 only (using the maximum C-T range of table 1), giving only a small rangeto eletrode 1 �gure 7. For all the other eletrodes, T and C values are set to 1and 1.5, i.e. muh below the The threshold, in order to anel them totally. Thissetting obtains an evaluation of 82, whih is muh better than with all ativatedeletrodes (best �tting of 48.5 obtained by the expert). Nearly 90the words wereunderstood, and the �tting was rated as not very omfortable. This allows toonlude that for this patient, using only three eletrodes out of 15 allows himto understand speeh better than with all funtional eletrodes set to nearlymaximum range.
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 6. Expérimentation 7. Absissa: Eletrodes, Ordinate: Intensity. Testing with ele-trodes 1, 7 and 9 only. The bold urves represent the envelope (T and C) for eaheletrode.Experiment 8: on the in�uene of eletrode 8. In the C1 set of exper-iments, the evolutionary algorithm seems to hesitate a bit on eletrode 8. Inorder to test its real ontribution, the eletrode 8 is added to the 1, 7 and 9eletrodes, by maximising its C − T interval (using the values of table 1). Theobtained evaluation is 81, and the patient �nds that the �tting is slightly lessomfortable than the previous one. Speeh understanding is omparable. Theeletrode 0 does not seem to have an important role in speeh understanding.



Experiment 9: is there any diaphony between the eletrodes ? In orderto explore this hypothesis, even eletrodes are suppressed (by setting T and Cvalues below the T liminary values for the patient), and the odd eletrodes aremaximised (using the values of table 1), so as to spae ative eletrodes (f.�gure 7).
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 7. Experiment 9. Absissa: Eletrodes, Ordinate: Intensity. Cheking for diaphony.This �tting obtains an evaluation of 78.8, and is judged less omfortableby the patient. The result is therefore not as good as those obtained duringexperiments 7 and 8. Adding other eletrodes does not seem to add muh. Theresult is however still muh better than the one obtained by the pratitionerwith the BTE (48.5).Experiment 10: spaing eletrodes even more. This time, 2 eletrodesout of 3 are aneled, by setting their T and C values to 1 and 1.5 (f. �gure8). Therefore, eletrodes 1, 4, 7 are ativated. It was hosen to keep eletrode 9ative, so as to keep a ommon omparison basis with the previous experiments.Finally, eletrode 15 is maximised �gure 8. This �tting obtains an evaluation ofonly 58.5, i.e. learly not as good as the previous ones, and the patient rates itas quite unomfortable. This is very surprising, as the only di�erene with the�rst test (that had obtained an evaluation of 82) is that eletrodes 4 and 15have been added. Clearly, not only is there no diaphony problem (spaing ativeeletrodes did not improve evaluation), but it an be onluded that for thispatient, eletrodes 4 and 15 ontribute negatively to speeh understanding. Thefat that funtional eletrodes an ontribute negatively to speeh understandingis a totally new onept in the ohlear implant medial �eld.Experiment 11 : evaluation of the best individual of C1. In order totest the evaluation proedure, the best individual of the set of experiments C1is tested again, one month later, and without telling anything to the patient.
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1 2 3 4 5 6 7 8 9 13 14 15Fig. 8. Experiment 10. Absissa: Eletrodes, Ordinate: Intensity. Cheking for di-aphony by seleting only one every 3 eletrodes, and keeping eletrode 9.The speeh understanding test is again very good (94% of the words areunderstood, whih is even better than one month before) but the omfort is notas good, resulting in a slightly lower evaluation of 86.2%. All in all, this value isslightly lower than the one obtained during C1, but it is the best value obtainedduring C2.Experiment 12 : evaluation of the pratitioner's �tting. This time, it isthe pratitioner's original �tting that is tested again (the one that more or lessmaximised all eletrodes, and that had obtained 48.5 during C1).Here again, the number of reognised words is very low (only 33%) andomfort gets a bad 4/10 evaluation. The global evaluation is 41.8, whih is alsoslightly worse than during C1.All in all, in one month, the best �tting found by the IEA went down from91.5 to 86.2, while at the same time, the pratitioner's �tting also went downfrom 48.5 to 41.8. This suggests that the proposed quik 4mn evaluation is quitereliable, as the results seem to be reproduible one month later, while the patientused his old �boîtier� in the meantime.Other tests. In order to verify that values obtained by the evolutionary algo-rithm are better than random ones, other experiments have been onduted withrandom values for T and C for all eletrodes. Evaluations range from average tobad, although often greater than those obtained by the pratitioner (48.5). Thepatient �nds that these �ttings are not omfortable.6.4 Third set of experiments with others patientsTo verify the gain obtained with omputer-aided CI �tting, and develop its useat hospital, new experiments have been arried out with others patients. Thisset of experiments C3 is onduted with 2 new patients: Patient B and patient



C. For these experiments, the parameters of the IEA are the following:Population 3Children 2Mutation rate 0.1Crossover rate 1The new population is obtained by taking the best individuals of the inter-mediate population onsisting of the 3 parents and the 2 hildren (i.e. in thestyle of a (3+2)ES).Corpus and methodology. Patients have reeived MXM ohlear implantssome years ago, but they are not satis�ed with their devie and have no good re-sults (general evaluation by the pratitioner is less than 50%). The IEA has beenused to try to determine optimal C (Comfortable) and T (Threshold intensity)values for eah of the eletrodes of the CI.To start with, the patients ame to the hospital for a �tting session with apratitioner, and minimum and maximum intensity values for eah eletrodes oftheir BTE have been determined, to give boundaries to the evolutionary algo-rithm.For these 2 patients (B and C), the same proedure that was used for patientA (a set of alibrated sentenes) has been tested. Unfortunately, the results aredisappointing as patients B and C reognise but a few words, meaning that thistest is too hard for them.Therefore, a new evaluation proedure was set up, based on a weighted eval-uation of the results of:� A disrimination test (ASSE) on 7 items. The ASSE test onsists in emittinga sound n times (an [i℄ for instane), and within these ourenes, replaingone of the [i℄ with an [a℄ (for the following sequene: i i i i a i i). The patientneeds to detet that one of the sounds was di�erent. The ASSE test ountsfor 20% of the evaluation.� A VCV (Vowel/Consonant/Vowel) test ([APA℄, [ATA℄, . . . ), where the pa-tient must reognise the onsonant between the two vowels. In one VCV test,eah VCV is repeated 3 times, meaning that 48 VCVs are proposed to thepatient (beause in Frenh, there are 16 di�erent phoneti onsonants. Thistest ounts for 50% of the evaluation.� A omfort evaluation with a mark from 0 to 10, that ounts for 30% of theevaluation.Unfortunately, the omplete evaluation takes a long time (muh more than 4minutes), and the patients are less ompliant than patient A, so it is impossibleto get around 100 evaluations (as for patient A).After the �rst sessions, the P1 and P2 settings of the CI were loaded withrespetively the �tting obtained with the IEA, and the manual �tting of the



pratitioner, after whih the patients were sent home with the instrution to usethe best �tting of P1 or P2.After two weeks, the patients ame bak for new tests:1. a disrimation test with P1 and with P2,2. a VCV reognition test with P2 and with P1,3. a sentene reognition test with 10 sentenes using the P1 setting (IEA).Third set of experimentations with patients B and C� First session for Patient B (02/09/05):Eval Nb Manual 1 2 3 4 5 6ASE Result 4/7 5/7 5/7 5/7 6/7 5/7 7/7VCV Result 33% 31% 25% 18% 29% 31% 31% fatigueComfort 7/10 6/10 7/10 5/10 5.5/10 6/10 8/10Evaluation 5 5 4 5 5 6� Seond session for Patient B 3 days later (05/09/05):Setting Manual 1 2 3 4 5 6 7ASE Result 6/7 7/7 7/7 7/7 6/7 5/7 5/7VCV Result 35% 25% 27% 10% 18% 18% 20% 27% fatigueComfort 5/10 6/10 6/10 5/10 5/10 5/10 5/10Notation 4 5 4 4 4 4 4Best �tting loaded in memory P1 of the BTE: �tting N◦6 of 02/09/05.� First session for Patient C (15/09/05).A �rst set of independent random tests has been performed, to be omparedto the manual �tting results, in the table below:Setting Manual RandomASE Result 5/7 6/7 5/7 5/7 5/7 5/7 4/7 5/7 6/7 5/7VCV Result 45% 33% 29% 22% 39% 31% 18% 29% 39% 35%Comfort 4/10 5/10 5/10 5/10 5/10 4/10 5/10 5/10 5/10Notation 5 4 4 5 4 3 4 5 4Then the IEA is used, but only based on a VCV evaluation, to shorten thetime of evaluation.Setting 1 2 3 4 5 6 7VCV Result 35% 41% 39% 33% 20% 43% 37% FatigueNotation 4 4 4 3 2 4 4Patient C is sent bak home with �tting X of run Y in P1, and manual �ttingin P2.



After two weeks, patients B and C ome bak to hospital with the followingresults for patient B: Test ASE VCV Words/list ComfortAuto 3/7 33% 7 n/aManual 5/7 27% 10 n/aand for Patient C:Test ASE VCV Words/list ComfortAuto 3/7 52% 1 8/10Manual 4/7 37% 2 8/10Remarks:1. Both patients preferred to use the P1 �tting (IEA) !2. Random �tting an do really well, sometimes slightly better than what thepratitioners do when they maximise the number of eletrodes and theirdynami.3. Eah evaluation is muh too long so the patients gets tired very rapidly.4. Comfort is too di�ult to evaluate aurately for the patients.These results again question the maximisation of the number of eletrodesand the maximisation of their dynami range.Random tests also show that the ranges of possible parameters values iswell hosen, providing a searh spae having many �average good� solutions, butwith a rather ��at� searh landsape. In these onditions, and onsidering theparameter setting of the IEA (a (3+2)ES), time for onvergene is too shortto really obtain the beginning of a onvergene. One again, one bloks on theproblem of user fatigue. Additionally it an be argued that the evaluation is notenough disriminant to provide an e�ient �tness landsape to the IEA.New tests have been designed, taking these results into aount.6.5 Fourth set of experimentsThe same patients (Patient B and C) were tested. The parameters of the IEAare the following: Population 4Children 3Mutation rate 0.8Crossover rate 1The new population is obtained by an elitist binary tournament between apopulation made by the parents + the hildren. The elitism is "soft," in thesense that it is the best individual of the 7 individuals that is taken to be partof the next generation (and not the best of the parents only). The three otherindividuals are seleted by a standard binary tournament.



Corpus and methodology. Eah trial was based on the results of a VCVreognition test with [APA℄, [ATA℄ . . . The patient has to reognise the onso-nant in the VCV. Eah VCV is proposed one, meaning that there are only 17items in a test. The result over the 17 VCV ounts for 100% of the evaluation.Experiments� Patient BResult of the previous IEA �tting: 2 of the 17 VCV were reognised.Result of the manual �tting: 2 of the 17 VCV were reognised.Evaluation 1 2 3 4 5 6 7 8 9 10VCV Result 2 3 3 2 3 4 3 4 4 31 hour break and restart.Evaluation 1 2 3 4 5 6 7 8 9VCV Result 4 2 3 2 4 2 2 3 3� Patient CResult of the previous IEA �tting: 8 of the 17 VCV were reognised.Evaluation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18VCV Result 6 5 5 5 4 7 5 7 7 8 7 4 6 4 4 7 5 4Lunh break and restart of the algorithm with the initialisation of two indi-viduals to the IEA �tting the patient had been using for the previous week,and to the best �tting of the previous run (�tting 10).Evaluation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16VCV Result 3 5 6 6 7 8 7 7 6 3 5 8 6 6 6 4Break, and restart of the algorithm.Evaluation 1 2 3 4 5VCV Result 6 3 7 6 8



Conlusions on the fourth set of experiments� The IEA was working �ne, although no real improvement ould be seen, evenduring the longest runs (like the �rst run of patient C, i.e. 18 evaluations,i.e. evolution during �ve generations). But� The probable explanation is that the hosen VCV evaluation is too di�ultfor both patients, and the algorithm annot �nd any �tting leading to astable improvement of the audition of the patients.Guidelines for future experimentation have therefore been de�ned.7 Atual work and perspetivesConerning the evolutionary runs, the evaluation funtion is very important. Iffor these patients, the VCV test is really too hard, the IEA will not be able to�nd any improvements (the �tness landsape is too �at to give a diretion forimprovement to the algorithm).It seems important to spend some time to set up an evaluation funtionspei� to eah patient, that an return an average value, neither too low, like3/17 or 5/17 (beause this would mean that the test is too di�ult) or too high,like 15/17 or 16/17 (beause this would not leave any room for improvement).The evaluation funtion must be quik. If it is too slow, the patient will gettired before any signi�ative number of evaluations are done (set of experiments3). Finally, until the IEA proedure is routinely giving good enough results, itmay be interesting to hoose �easier� patients, i.e. patients for whom the ohlearimplantation works slightly better...

Fig. 9. Best �tting found by the pratitioner for patient C: eah retangle representsthe [T, C] interval for eah eletrode.



Even though the sets of experiments 3 and 4 have not been really satisfyingevolutionary-wise, the results are very interesting on a medial point of view,sine it has on�rmed that narrower intervals (or even removal of one or severaleletrodes) an lead to better speeh understanding.In all tested patients (of whih A B C were a subset), it was possible to�nd �ttings that were working at least as well as manual �ttings maximisingthe dynamis for all eletrodes, and in many ases, these �ttings were simplyrandom �ttings !

Fig. 10. Best �tting found at random for patient C, that beats the best �tting foundby the pratitioner: eah retangle represents the [T, C] interval for eah eletrode.In order to have a visual example, �g. 9 shows the intervals for all the ele-trodes of patient C on the best �tting found by the pratitioner, while �g. 10shows the best �tting obtained. . . randomly, that give better results than thepratitioner's. Please note the skinny intervals ompared to those of �g. 9. Insome ases, some eletrodes are virtually aneled (eletrodes 5, 8, 11, 12 and13), whih goes against reason (and against what is advoated by the ohlearimplants manufaturers).7.1 Classi�ation of sound environmentsMany users of ohlear implants or hearing aids �nd that the parameter settingof their devie is not perfetly adapted to all situations of their everyday life:in restaurants, they �nd liking utlery aggressive, and they have a hard timefollowing a onversation, in the street, some noises are nearly unbearable,. . .Some patients may need a setting for a quiet environment (suh as home) butmay work in a noisy environment (metal industry, garage, . . . ) so there is nomirale solution.



The aim of the HEVEA projet is to improve hearing with ohlear implantsby several means. One is to help the expert �nd good �ttings using an interativeevolutionary algorithm [BRC05℄, and another is to integrate into the proessora small signal analysis software that would be able to reognise the sound envi-ronment and automatially selet a �tting aordingly, among a set of available�ttings orresponding to di�erent situations.In order to ahieve this seond task, several stages must be performed :1. The medial team must determine with the patient a number of ommonenvironments for whih the patient would need a spei� �tting, for instane:home, work, supermarket, inema, . . .The number of spei� environments should be limited, beause for eah ofthe spei�ed environments, a speial set of parameters needs to be found forthe ohlear implant, and �nding a good set of parameters an be a long anddi�ult task (even with the help of an evolutionary algorithm).2. For eah of the spei�ed environments, the patient must take a number ofsound samples to bring bak to hospital.3. Spei� parameters must be found, to deal with eah of the spei�ed envi-ronments (possibly with the help of an interative evolutionary algorithm).4. In parallel, the di�erent samples must be analysed to extrat some om-mon features, so that a lassifying algorithm an determine them in whihategory falls the sound environment that is surrounding the patient.5. Finally, the harateristis and parameters for the di�erent environmentsmust be uploaded into the ohlear implant proessor, along with a signalproessing program that will automatially hoose the orret parameters tomath the environment in whih the patient is evolving.The result is an �intelligent� ohlear implant that an automatially swithbetween potentially di�erent sets of parameters, depending of the sound envi-ronment surrounding the patient.This setion presents the sound sampling, haraterization and lassi�ationstage. It starts with a desription of the spei� sound sampler developed forthis appliation, followed by a sub-setion realling the wavelet theory on whihthe sienti� work is based. Then, a third sub-setion desribes how the energyontent of a sample an haraterise a sound environment. Finally, results arepresented on the lassi�ation of di�erent environments using a standalone pieeof software.Development of an a posteriori sound sampler. In this appliation, soundsampling is essential to provide aurate data for two orthogonal needs:1. The sound environment must be aurately reorded so that it an be reog-nised in the future by the proessor with su�ient on�dene to swithbetween di�erent sets of parameters.2. Partiularities must be also reorded so that a spei� �tting an be foundthat will help to ope with the urrent environment.



This distintion must be made beause it is neessary to tune the CohlearImplant (CI) on possibly puntual noises that are not representative of thegeneral sound environment. For instane, one patient urrently swithes o� hisohlear implant whenever yling to work, beause the sound of a motorbikepassing by is too stressful to be bearable with his usual CI �tting. Choosing toswith o� his CI (and beoming totally deaf) in a street environment is quiteradial, but shows how muh an adaptive and �intelligent� CI would be neededfor this patient.So it would be neessary for the adaptive CI to reognise a street environment,in order to hoose for a �tting that would allow to ope with passing motorbikes,although passing motorbikes are exeptional in a street. One must therefore �nda �tting adapted to an exeptional event, that should be seleted when a soundenvironment (that has nothing to do with the exeptional event) is deteted.Sampling the regular environment for haraterization. The sampling must beas aurate as possible, so that the proessor an selet the orret parameterswithout making any mistakes. Therefore, reording a sound environment on anold tape reorder may not be su�ient. A small jak plug has been added to theproessor of the CI so that it ould output diretly the sound piked up by themirophones of the CI to a digital sampler.Then, a sampling software has been developed on a PDA (Personal DigitalAssistant) that the patient plugs diretly onto the CI proessor in order to samplethe exat sound that is reeived by the proessor (f. �g. 11).

Fig. 11. A sampling software has been developed on a PDA that the patient plugsdiretly onto the CI proessor in order to sample the exat sound that is reeived bythe proessor.Sampling the exeptional event for CI �tting. Then, another problem arises:whenever an exeptional event ours for whih the CI should be tuned, it is often



too late (the unbearable motorbike sound has vanished before the patient ouldreord it, or in a rowded restaurant, the words that have not been understoodannot be repeated in exatly the same manner). A solution ould be to samplethe street (or the restaurant) for a long enough time, but here again, it is di�ultdo predit when the right motorbike will appear (or when the waiter will speakin an unintelligible way), and this ould result in hours of reording, and hoursto replay the reords to �nd the relevant information.A speial sampling software has therefore been developed that onstantlyreords the urrent sound for a period of n seonds (When the patient hits thereord button, whatever happened during the previous n seonds is stored in a�le, for future use. 30 seonds seems to be a orret duration, so that when thepatient uses the PDA to reord preise sounds, he has 30 seonds to press onthe button after he realised that some interesting sound has ourred.These very puntual samples (motorbike) have a di�erent ontent than thesamples that are used to haraterise the general environment (�standard� streetnoise).Charaterisation of a sound environment. We distinguish two steps in theproblem of �sound environment lassi�ation�. The �rst step is the extration ofthe harateristis, in order to build the representation's spae. The seond stepis to �nd a lassi�ation method whih allows to �t eah point of this spae witha probability of being in a spei�ed family. We an extrat a lot of informationfrom a sound in order to make a lassi�ation. For example, one an use thefrequential ontent, the epstral harateristis, the loudness, the pith...The harateristis motivated by the human pereption suh as the spetralharateristis, the loudness or the pith an desribe all the kind of soundbeause the human brain use the same harateristis in our daily life.For this work we will analyse the frequential ontent at eah dyadi salebeause the implant perform the same kind of analysis. We will use a wavelettransform in order to perform a multisale analysis (see [Dau92℄ and [Mey90℄).We ould use a simple Fourier Transform but we prefer keep the possibility touse the time loalisation provided by the wavelet transform for a future work.In fat, Wavelet analysis allows to adjust the width of analysis windows, andahieves a perfet loalisation in time and frequeny. Logially, temporally ex-tended windows are used to study low frequenies, while narrower windows areused for higher frequenies. This loalisation property makes wavelet theory pre-dominant in several areas of signal proessing.Continuous Wavelet Transform (CWT). A wavelet is a �wave loalised in time.�More preisely, it is a funtion ψ ∈ L2(R) suh that ∫R ψ(t)dt = 0. If ∫R ψ(t)2dt =
1, then we use normalized wavelets.The ontinuous wavelet transform of a signal f is given by:

CWT (a, b) =
1
√
a

∫

∞

−∞

f(t)ψ

(

t− b

a

)

dt



In this expression, a is a sale fator and b is a translation parameter (tem-poral shift). Variable a represents the inverse of the frequeny: the smaller a, the(temporally) narrower the wavelet (i.e. the analysing funtion).Therefore, one an see this expression as the projetion of the signal on afamily of analysing funtions:
ψa,b =

1
√
a
ψ

(

t− b

a

)onstruted by widening + translation from the original ψ wavelet.Disrete Wavelet Transform. In this work we use a disrete wavelet transformwhih is faster than the ontinuous transform. The Disrete Wavelet Transforman be obtained thanks to the disretization of the parameters of resolution (a)and position (b). Let a = am
0 with m an integer, a0 a resolution step greaterthan 1 and b = nb0a

m
0 with n an integer and b0 > 0.Furthermore, if a = 2 and b = 1, the transform is alled �dyadi.� One thenhas:
Cj,k = 2−

j

2

∫

∞

−∞

f(t)ψ(2−jt− k)dtIf ψj,k = 2−
j

2ψ(2−jt − k) we get a tiling of the time-frequeny spae alled adyadi grid (see �g 12).

Fig. 12. Dyadi grid. Absissa: Time, Ordinate: Frequeny. At the bottom, eah pointis a point of the signal. The mathing disret wavelet oe�ients are the irle inthe grid. At low frequenies, the omputation of the wavelet oe�ient uses largewindows in time, then we only have few oe�ients. Oppositely, at high frequeniesthe omputation uses small windows.Energy of a signal. For a given sale, if we use a normalized wavelet, the energyof the signal an be obtained from the ontinuous wavelet transform. More pre-isely: one an ompute the energy of the a sale by adding the squares of thewavelet oe�ients of the ontinuous transform at this sale:



Ea2 =

∫

[CWT (a, b)]2db (1)where Ea2 is the energy at sale a. If we use the disrete wavelet transform, weget:
Ej2 =

2
j−1

∑

k=1

[C(j, k)]2 (2)where Ej2 is the energy at sale j.Charaterisation of a lass by its energy ontent. As said above, we'll hara-terise a lass by its energy ontent. Let us onsider a sound environment S1.The patient reords a olletion of *.wav �les, that are hopped into a familyof n1 subsignals of 214 points (almost 3 seonds for eah subsignal). If one om-putes the disrete wavelet transform of theses signals and the energy of eah ofthe obtained frequeny bands during multi-resolution analysis, one then gets n1vetors of 14 oordinates. We hoose to haraterize a lass by the mean valueof these vetors. We obtain for eah lass a value at eah dyadi bandwidthfrequeny (see �g 13).Classi�ation of sound environments. The aim is to reate a lass for aspei� environment, by using a olletion of .wav �les as input.When the patient is in a new environment, he uses the sound sampler andreords a sample of this environment. A .wav �le is imported and hoppedinto 214 miro-samples. When liking on ompute, eah of the mini-samples isassoiated with the family that mathes the sample best.A ratio is then displayed, that presents the number of samples that orre-sponded to eah family, and the results are displayed in a bar-hart. The bar-hart provides us the mathing family with a ertain on�dene. For example if80% of the miro-sample are lassi�ed in the lass S1, then the sample will belassi�ed in the lass S1 with a on�dene of 80%.Results. For eah family, available .wav �les have been hopped into mini-samples of 214 points. 66% of the mini-samples hosen randomly are used for thelearning set, and 33% for the test set. The results are presented in the followingtable: Family Learning set Test set mathing family Con�deneCar-radio 16 8 Car-radio 100%Cross-roads 24 13 Crossroads 84 %Birds 12 7 Birds 100%Shool-yard 22 11 Shool-yard 100%Supermarket 35 15 Supermarket 100%Lawn-mower 10 5 Lawn-mower 80%
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Fig. 13. Absissa: frequeny, Ordinate: Energy. Left up: "Car-radio" environment.Right up: "Birds" environment. Left middle: "Supermarket" environment. Right mid-dle : "road orner" environment. Left down: "Shool-yard" environment . Right down:"Lawn mower" environment. Set of values of the energy for eah frequeny (�ne lines),enveloppe and mean riterion (thik lines).



Fig. 14. Graphial Interfae for the lassi�ation toolbox.All samples have been orretly lassi�ed. For Car-radio, Bird, Shool-yard,and Supermarket environments we have 100% of on�dene. The worst resultsare for the Crossroad and Lawn-mower environments, the sample have beenorretly lassi�ed with a on�dene of respetively 84% and 80% (on the 13Crossroad test samples, one is identi�ed as a Supermarket environment andanother one as a lawn-mower, and on the lawn-mower, one out of 5 samples islassi�ed as being a rossroad).Future work. What needs now to be done for the sheme to be fully funtionalis to onnet the PDA to the ohlear implant, so that if the PDA is ableto lassify an environment with a on�dene rate greater than 50%, it seletsautomatially the orresponding CI �tting adapted to this sound environmentand it uploads it into the CI.If, on the ontrary, the on�dene rate is less than 50%, the sound environ-ment is sampled and memorized, so that it an be lassi�ed later on (whih mayrequire to reate a new sound lass).8 ConlusionThe problem of ohlear implants �tting belongs to a lass of very di�ultproblems, impossible to solve in a deterministi way in a limited time, for atleast two reasons:� The funtion to be optimised annot be modeled. It is extremely variable,beause it is dependent on the patient and linked to a subjetive evaluationof his auditive sensations.� The searh spae is very large, therefore, strit optimality is out of reah.



The work presented in this paper desribes an approah of this problem,based on an interative evolutionary algorithmwith a miro-population. The �rstresults with patient A are promising: evolution has taken plae (as the urvesshow in �g. 4) and the obtained results were far better than those obtained byan expert pratitioner.However, this experiment showed that it was possible to obtain good �ttingsby simply seleting values at random, whih questions the usual aim, that is tomaximise the number and range of eletrodes to improve audition and ompre-hension. A number of other experiments has been onduted that shows thatindeed, the strategy advoated by CI manufaturers may not be the best, whihis a new result in the medial �eld.But this work is obviously a preliminar one, that needs to be on�rmedwith additional experimental analysis on other patients, having various pro�les.Moreover, the aim of this projet is to make ohlear implants more adaptiveto patients and to their environments: The adaptation to audio environmentthat has been skethed in setion 7, needs now to be tested by patients in realenvironments.Other points of improvements are more tehnial and relate to the heartof the interative optimisation method. The real experiments presented in thispaper atually prove the importane of user fatigue, whih is a general problemin IEAs. But in the ase of audio interation this problem is even more ruial,for two reasons: only one signal an be evaluated at one (on the ontrary tovisual evaluations), and the attention needed to orretly evaluate a �tting isextremely demanding for implanted patients.Usually, one opes with user fatigue in three ways: [PC97,Tak98,Ban97℄ :� redue the size of the population and the number of generations,� hoose spei� models to onstrain the researh in a priori �interesting� areasof the searh spae,� perform an automati learning (based on a limited number of harateristiquantities) in order to assist the user and only present to him the mostinteresting individuals of the population, with respet to previous votes ofthe user.In this paper we have used the �rst item, i.e. a miro-EA. The experimentalanalysis that has been presented proves the neessity to try other strategies.Aording to the third item above, experiments have been onduted on anotherappliation (image denoising) with a �tness map tehnique [LPLV05℄, where the�tness rating has been extended to individuals of a larger population via theanalysis of the user judgment on a small sample of individuals. Future workon ohlear implants ould use a similar strategy, in order to evolve a largerpopulation of parameter settings while keeping a low number of user evaluations.Additionally, other strategies to better exploit the user interations shouldbe onsidered, suh as using partial evaluations (shorter audio tests), and re�ne-ments of audition, understanding and omfort evaluations only on areas of thesearh spae that have been identi�ed as promising by the IEA.
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