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We bound the j-invariant of integral points on a modular curve in terms of the congruence group defining the curve. We apply this to prove that the modular curve X split (p 3 ) has no non-trivial rational point if p is a sufficiently large prime number. Assuming the GRH, one can replace p 3 by p 2 .

Introduction

Let N ≥ 2 be an integer and X(N ) the principal modular curve of level N . Further, let G a subgroup of GL 2 (Z/N Z) and let X G be the corresponding modular curve. This curve is defined over Q(ζ N ) det (G) , so in particular it is defined over Q if det(G) = (Z/N Z) × . (Through all this paper, we say that an algebraic curve is defined over a field if it has a geometrically integral model over this field.) As usual, we denote by Y G the finite part of X G (that is, X G deprived of the cusps). If X G is defined over a number field K, the curve X G has a natural (modular) model over O = O K that we still denote by X G . The cusps define a closed subscheme of X G over O, and we define the relative curve Y G over O as X G deprived of the cusps. If S is a finite set of places of K containing the infinite places, then the set of S-integral points Y G (O S ) consists of those P ∈ Y G (K) for which j(P ) ∈ O S , where j is, as usual, the modular invariant and O S = O K,S is the ring of S-integers.

In its simplest form, the first principal result of this article gives an explicit upper bound for j(P ) ∈ Z under certain Galois condition on the cusps. More precisely, we prove the following.

Theorem 1.1 Assume that X G is defined over Q, and assume that the absolute Galois group Gal( Q/Q) acts non-transitively on the cusps of X G . Then for any P ∈ Y G (Z) we have log |j(P )| ≤ 30|G|N 2 log N.

(

) 1 
This result was announced in [START_REF] Yu | Integral j-invariants and Cartan structures for elliptic curves[END_REF]. Because of an inaccuracy in the proof given in [START_REF] Yu | Integral j-invariants and Cartan structures for elliptic curves[END_REF], the log N factor is missing therein (which, however, does not affect the arithmetical applications of this theorem).

Actually, we obtain two versions of Theorem 1.1. One (Theorem 1.2 below) is quite general, applies to any number field and a ring of S-integers in it, but the bound is slightly weaker. The other (see Section 7) is less general than Theorem 1.1, and applies only to certain particular groups G (the normalizers of split tori), but the bound is sharper.

To state Theorem 1.2, we need to introduce some notation. We denote by h(•) the usual absolute logarithmic height (see Subsection 1.1). For P ∈ X G ( Q) we shall write h(P ) = h j(P ) . For a number field K we denote by C = C(G) the set of cusps of X G , and by C(G, K) the set of Gal( K/K)-orbits of C. Theorem 1.2 Let K be a number field and S a finite set of places of K (including all the infinite places). Let G be a subgroup of GL 2 (Z/N Z) such that X G is defined over K. Assume that |C(G, K)| > |S| (the "Runge condition"). Then for any P ∈ Y G (O S ) we have h(P ) ≤ s s/2+1 |G|N 2 s N (R + 30), [START_REF] Bombieri | On Weil's "théorème de décomposition[END_REF] where s = |S| and R = R(N, S) = p|N v|p for some v∈S

log p p -1 , (3) 
the sum being over all the prime divisors of N below the (finite) places from S (in particular R = 0 if S consists only of infinite places).

While this theorem applies in the set-up of Theorem 1.1, it implies a slightly weaker result, with 30|G|N 3 on the right. Mention also that the constant 30 is not best possible for the method and can be easily reduced, at least for large N .

These theorems are proved in Sections 5 and 6 by a variation of the method of Runge, after some preparation in Sections 2, 3 and 4. In Section 7 we obtain an especially sharp version of Theorem 1.1 for the case of split tori. For a general discussion of Runge's method see [START_REF] Bombieri | On Weil's "théorème de décomposition[END_REF][START_REF] Levin | Variations on a theme of Runge: effective determination of integral points on certain varieties[END_REF].

In Section 8 we apply these results to the arithmetic of elliptic curves. We are motivated by a question of Serre, who proved [START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF] that for any elliptic curve E without complex multiplication (CM in the sequel), there exists a constant p 0 (E) such that for every prime p > p 0 (E) the natural Galois representation ρ E,p : Gal( Q/Q) → GL(E[p]) ∼ = GL 2 (F p ) is surjective. Masser and Wüstholz [START_REF] Masser | Galois properties of division fields of elliptic curves[END_REF] gave an effective version of Serre's result; see also the more recent work of Cojocaru and Hall [START_REF] Cojocaru | On the surjectivity of the Galois representations associated to non-CM elliptic curves (with an appendix by Ernst Kani)[END_REF][START_REF] Cojocaru | Uniform results for Serre's theorem for elliptic curves[END_REF].

Serre asks whether p 0 can be made independent of E:

does there exist an absolute constant p 0 such that for any non-CM elliptic curve E over Q and any prime p > p 0 the Galois representation ρ E,p is surjective?

The general guess is that p 0 = 37 would probably do. We obtain several results on Serre's question. One knows that, for a positive answer, it is sufficient to bound the primes p such that a non-CM curve may have a Galois structure included in the normalizer of a (split or nonsplit) Cartan subgroup of GL 2 (F p ). Equivalently, one would like to prove that, for large p, the only rational points of the modular curves X split (p) and X nonsplit (p) are the cusps and CM points, in which case we will say that the rational points are trivial (for the precise definition of these curves see Section 7). In [START_REF] Parent | Towards the triviality of X + 0 (p r )(Q) for r > 1[END_REF][START_REF] Rebolledo | Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires[END_REF] it was proved, by very different techniques, that X split (p)(Q) is trivial for a (large) positive density of primes; but the methods of loc. cit. have failed to prevent a complementary set of primes from escaping them. Here we consider Cartan structures modulo some higher power of a prime, and we prove the following. Theorem 1.3 For large enough prime p, every point in X split (p 3 )(Q) is either a CM-point or a cusp. Assuming the Generalized Riemann Hypothesis for the zeta functions of number fields (GRH in the sequel), the same holds true for X split (p 2 )(Q).

Equivalently, for large enough p and for any non-CM elliptic curve E defined over Q, the image of the Galois representation ρ E,p 3 is not contained in the normalizer of a split Cartan subgroup of GL 2 (Z/p 3 Z) (and p 3 can be replaced by p 2 assuming GRH).

The second part, where one assumes GRH, was sketched in [START_REF] Yu | Integral j-invariants and Cartan structures for elliptic curves[END_REF], with level p 5 . Here we manage to reduce to level p 2 thanks to the refined bound from Section 7, and we prove the first, unconditional assertion of Theorem 1.3 by applying the isogeny estimate of Masser and Wüstholz [START_REF] Masser | Estimating isogenies on elliptic curves[END_REF], made explicit by Pellarin [START_REF] Pellarin | Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques[END_REF].

Call a prime number p deficient for an elliptic curve E if ρ E,p is not surjective; we call p a (non-)split Cartan deficient prime if the image of ρ E,p is contained in the normalizer of a (non) split Cartan subgroup. Following a suggestion of L. Merel and J. Oesterlé, we prove that the split Cartan deficiencies are bounded, with at most 2 exceptions. Theorem 1.4 There exists an absolute effective constant p 0 such that for any non-CM elliptic curve E/Q, all but 2 split Cartan deficient primes do not exceed p 0 .

Notation, conventions

Everywhere in this article log and arg stand for the principal branches of the complex logarithm and argument functions; that is, for any z ∈ C × we have -π < Im log z = arg z ≤ π. We shall systematically use, often without special reference, the estimates of the kind

| log(1 + z)| ≤ | log(1 -r)| r |z|, |e z -1| ≤ e r -1 r |z|, (1 + z) A -1 -Az ≤ 1 + εr) A -1 -εAr r 2 |z| 2 (ε = sign A), (4) 
etc., for |z| ≤ r < 1. They can be easily deduced from the Schwarz lemma. Let H denote the upper half-plane of the complex plane:

H = {τ ∈ C : Im τ > 0}. For τ ∈ H we put q τ = e 2πiτ . We put H = H ∪ Q ∪ {i∞}. If Γ is a pull-back of G ∩ SL 2 (Z/N Z) to SL 2 (Z), then
the set X G (C) of complex points is analytically isomorphic to the quotient X Γ = H/Γ, supplied with the properly defined topology and analytic structure [START_REF] Lang | Introduction to modular forms[END_REF][START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF].

We denote by D the standard fundamental domain of SL 2 (Z) (the hyperbolic triangle with vertices e πi/3 , e 2πi/3 and i∞, together with the geodesic segments [i, e 2πi/3 ] and [e 2πi/3 , i∞]). Notice that for τ ∈ D we have |q τ | ≤ e -π √ 3 < 0.005, which will be systematically used without special reference.

For

a = (a 1 , a 2 ) ∈ Q 2 we put ℓ a = B 2 a 1 -⌊a 1 ⌋ where B 2 (T ) = T 2 -T + 1/6
is the second Bernoulli polynomial. The quantity ℓ a is Z 2 -periodic in a and is thereby well-defined for a ∈ (Q/Z) 2 as well: for such a we have ℓ a = B 2 ( a 1 ), where a 1 is the lifting of the first coordinate of a to the interval [0, 1). Obviously, |ℓ a | ≤ 1/12; this will also be often used without special reference.

We fix, once and for all, an algebraic closure Q of Q, which is assumed to be a subfield of C. In particular, for every a ∈ Q we have the well defined root of unity e(a) = e 2πia ∈ Q. Every number field used in this article is presumed to be contained in the fixed Q. If K is such a number field and v is a valuation on K, then we tacitly assume than v is somehow extended to Q = K; equivalently, we fix an algebraic closure Kv and an embedding Q ֒→ Kv . In particular, the roots of unity e(a) are well-defined elements of Kv .

For a number field K we denote by M K the set of all valuations (or places) of K normalized to extend the usual infinite and p-adic valuations of Q:

|2| v = 2 if v ∈ M K is infinite, and |p| v = p -1
if v extends the p-adic valuation of Q. In the finite case we sometimes use the additive notation v(•), normalized to have v(p) = 1. We denote by M ∞ K and M 0 K the subsets of M K consisting of the infinite (archimedean) and the finite (non-archimedean) valuations, respectively.

Recall the definition of the absolute logarithmic height h(•). For α ∈ Q we pick a number field K containing α and put h

(α) = [K : Q] -1 v∈MK [K v : Q v ] log + |α| v
, where the valuations on K are normalized to extend standard infinite and p-adic valuations on Q and log + x = log max{x, 1}. The value of h(α) is known to be independent on the particular choice of K. As usual, we extend the definition of the height to P 1 ( Q) = Q ∪ {∞} by setting h(∞) = 0. If α is a rational integer or an imaginary quadratic integer then h(α) = log |α|.

Estimates for Modular Functions at Infinity

The results of this section must be known, but we did not find them in the available literature, so we state and prove them here. Most of the results of this section are stronger than what we actually need, but we prefer to state them in this sharp form for the sake of further applications.

Estimating the j-Function

Recall that the modular j-invariant j : H → C is defined by j(τ ) = (12c 2 (τ )) 3 /∆(τ ), where

c 2 (τ ) = (2πi) 4 12 1 + 240 ∞ n=1 n 3 q n τ 1 -q n
(see, for instance, [8, Section 4.2]) and ∆(τ ) = (2πi) 12 q ∞ n=1 (1 -q n ) 24 (here q = q τ = e 2πiτ ). Also, j has the familiar Fourier expansion j(τ ) = q -1 + 744 + 196884q + . . .. Proposition 2.1 For τ ∈ H such that |q τ | ≤ 0.005 (and, in particular, for every τ ∈ D) we have

j(τ ) -q -1 τ -744 ≤ 330000|q τ |. (5) 
(Recall that D is the standard fundamental domain for SL 2 (Z).)

Proof We write q = q τ . Using the estimate n 3 ≤ 3 n for n ≥ 3, we find that for |q| < 1/3

12 (2πi) 4 c 2 (τ ) -1 -240q ≤ 240 |q| 2 1 -|q| + ∞ n=2 n 3 |q| n 1 -|q| n ≤ 240 1 -|q| |q| 2 + 8|q| 2 + ∞ n=3 |3q| n = 2160 (1 -|q|)(1 -3|q|) |q| 2 ,
and for |q| ≤ 0.005 we obtain

12 (2πi) 4 c 2 (τ ) -1 -240q ≤ 2204|q| 2 . ( 6 
)
Further, using (4), we obtain, for |q| ≤ 0.005, log (2πi) 12 q(1 -q) 24 ∆(τ ) = 24

∞ n=2 log (1 -q n ) ≤ 24.1 ∞ n=2 |q| n ≤ 24.3|q| 2 . Hence (2πi) 12 q ∆(τ ) -1 -24q ≤ (1 -q) -24 (2πi) 12 q(1 -q) 24 ∆(τ ) -1 + (1 -q) -24 -1 -24q ≤ 1.13 log (2πi) 12 q(1 -q) 24 ∆(τ ) + 314|q| 2 ≤ 342|q| 2 .
Combining this with (6), we obtain (5) after a tiresome, but straightforward calculation. 

Estimating Siegel's Functions

For a rational number a we define q a = e 2πiaτ . Let a = (a 1 , a 2 ) ∈ Q 2 be such that a / ∈ Z 2 , and let g a : H → C be the corresponding Siegel function [7, Section 2.1]. Then, putting z = a 1 τ + a 2 and q z = q a1 τ e(a 2 ), where e(a) = e 2πia , we have the following infinite product presentation for g a [7, page 29] (where B 2 (T ) is the second Bernoulli polynomial):

g a (τ ) = -q B2(a1)/2 τ e a 2 (a 1 -1) 2 (1 -q z ) ∞ n=1 (1 -q n τ q z ) (1 -q n τ /q z ) . (7) 
We also have [7, pages 29-30] the relations

g a • γ = g aγ • (a root of unity) for γ ∈ Γ(1), (8) 
g a = g a ′ • (a root of unity) when a ≡ a ′ mod Z 2 . ( 9 
)
Remark that the roots of unity in ( 8) and ( 9) are of order dividing 12N ; this will be used later.

The order of vanishing of g a at i∞ (that is, the only rational number ℓ such that the limit lim τ →i∞ q -ℓ τ g a (τ ) exists and is non-zero) is equal to the number ℓ a , defined in Subsection 1.1, see [7, page 31].

Proposition 2.3 Assume that a 1 / ∈ Z and let N be a denominator of a 1 (that is, a positive integer satisfying N a 1 ∈ Z). Then for |q τ | ≤ 10 -N we have

log |g a (τ )| -ℓ a log |q τ | ≤ 3|q τ | 1/N . ( 10 
)
Further, assume that a 1 ∈ Z. Then for |q τ | ≤ 0.1 we have

log |g a (τ )| -ℓ a log |q τ | -log |1 -e(a 2 )| ≤ 3|q τ |. ( 11 
)
Proof Due to (8), we may assume that 0 ≤ a 1 < 1 and distinguish between the cases 0 < a 1 < 1 and a 1 = 0. Assume first that 0 < a 1 < 1. According to [START_REF] Kubert | Modular units, Grund. math. Wiss[END_REF], the left-hand side of ( 10) is equal to

log |1 -q z | + log |1 -q τ /q z | + ∞ n=1 log |1 -q n τ q z | + ∞ n=2 log |1 -q n τ /q z | .
Since 0 < a 1 < 1, both |q z | and |q τ /q z | are bounded by |q τ | 1/N , which does not exceed 0.1 because |q τ | ≤ 10 -N . (One can say even more: one of these numbers is bounded by |q τ | 1/N and the other by |q τ | 1/2 , which will be used later.) Hence, using (4) with r = 0.1, we obtain log |1 -

q z | + log |1 -q τ /q z | ≤ 2 • 1.1|q τ | 1/N . (12) 
Similarly, each of |q n τ q z | and |q n τ /q z | does not exceed 0.1, whence

∞ n=1 log |1 -q n τ q z | + ∞ n=2 log |1 -q n τ /q z | ≤ 1.1 |q τ q z | + q 2 τ /q z 1 -|q τ | ≤ 3|q τ | • |q τ | 1/N , (13) 
which does not exceed 0.3|q τ | 1/N . This proves [START_REF] Levin | Variations on a theme of Runge: effective determination of integral points on certain varieties[END_REF].

When a 1 = 0 then a 2 / ∈ Z and ζ = e(a 2 ) = 1. Further, we have q z = ζ and the left-hand side of ( 10) is

∞ n=1 log |1 -q n τ ζ| + ∞ n=1 log |1 -q n τ /ζ|
. Estimating the sums using (4), we obtain [START_REF] Masser | Estimating isogenies on elliptic curves[END_REF]. Since Siegel's functions has no poles nor zeros on the upper half plane H, it should be bounded from above and from below on any compact subset of H. In particular, it should be bounded where j is bounded. Here is a quantitative version of this.

Proposition 2.4 Let a ∈ Q 2 be of order N > 1 in (Q/Z) 2 . Then for any τ ∈ H we have log |g a (τ )| ≤ 1 12 log |j(τ )| + 2200 + log N + 0.1. ( 14 
)
Proof Replacing τ by γτ and g a by g aγ -1 with a suitable γ ∈ Γ(1), we may assume that τ ∈ D, and in particular |q τ | < e -π √ 3 . We may also assume that 0 ≤ a 1 < 1. Now we argue as in the previous proof, the only difference being that in the case 0 < a 1 < 1, we replace [START_REF] Masser | Isogeny estimates for abelian varieties and finiteness theorems[END_REF] by

log |1 -q z | + log |1 -q τ /q z | ≤ log 1 -e -π √ 3/N + log 1 -e -π √ 3/2 ≤ log N + 0.07. (15)
Indeed, among the numbers |q z | and |q τ /q z | one is bounded by |q τ | 1/N and the other is bounded by |q τ | 1/2 , which implies [START_REF] Merel | Normalizers of split Cartan subgroups and supersingular elliptic curves[END_REF].

Estimate [START_REF] Masser | Galois properties of division fields of elliptic curves[END_REF] holds again, the right-hand side being bounded by 3|q τ | ≤ 0.02. Thus, in the case 0

< a 1 < 1 we have log |g a (τ )| -ℓ a log |q τ | ≤ log N + 0.1. ( 16 
)
In the case a 1 = 0 we can use estimate [START_REF] Masser | Estimating isogenies on elliptic curves[END_REF] 

Non-archimedean versions

We also need non-archimedean versions of some of the above inequalities. In this subsection K v is a field complete with respect to a non-archimedean valuation v and Kv its algebraic closure. Let

q ∈ K v satisfy |q| v < 1. Put j(q) = q -1 + 744 + 196884q + . . . Further, for a = (a 1 , a 2 ) ∈ Q 2 such that a / ∈ Z 2 put q z = q a1 e(a 2
) and define

g a = g a (q) = -q B2(a1)/2 e a 2 (a 1 -1) 2 (1 -q z ) ∞ n=1 (1 -q n q z ) (1 -q n /q z ) .
This expression is not well-defined because we use rational powers of q. However, if we fix q 1/2N 2 ∈ Kv , where N is the order of a in (Q/Z) 2 , then everything becomes well-defined, and, moreover, we again have [START_REF] Lang | Elliptic Functions[END_REF] and [START_REF] Lang | Introduction to modular forms[END_REF]. The statement of the following proposition is independent on the particular choice of q 1/2N 2 . Recall that ℓ a = B 2 a 1 -⌊a 1 ⌋ /2.

Proposition 2.5 In the above set-up, when a 1 / ∈ Z we have log |g a (q)| v = ℓ a log |q| v , and when

a 1 ∈ Z we have log |g a (q)| v = ℓ a log |q| v + log |1 -e(a 2 )| v .
Proof This is obvious when 0 ≤ a 1 < 1, and the general case reduces to this one using (9).

Corollary 2.6

In the above set-up, we have

|log |g a (q)| v | ≤ 1 12 log |j(q)| v + 0 if v(N ) = 0 log p p-1 if v(N ) > 0 and p is the prime below v. Proof It suffices to notice that |j(q)| v = |q| -1 v , that |ℓ a | ≤ 1/12, that |1 -e(a 2 )| v = 1 if v(N ) = 0, and that 1 ≥ |1 -e(a 2 )| v ≥ p -1/(p-1) if v | p | N .

Locating the "nearest cusp"

Let N be a positive integer, G a subgroup of GL 2 (Z/N Z) and X G the corresponding modular curve, defined over a number field K. In this section we fix a valuation v of K. We denote by O the ring of integers of K and by K v the v-completion of K. When v is non-archimedean, we denote by O v the ring of integers of K v , and by k v its residue field at v. As usual ζ N will denote a primitive N -th root of unity. Recall that when we say that a curve "is defined over" a field, it means that this curve has a geometrically integral model over that field.

Let P be a point on X G (K v ) such that |j(P )| is "large". Then it is intuitively clear that, in the v-adic metric, P is situated "near" a cusp of X G . The purpose of this section is to make this intuitive observation precise and explicit. We shall locate this "nearest" cusp and specify what the word "near" means.

We first recall the following description of the cuspidal locus of X(N ) (for more details see e.g. [5, Chapitres V and VII)]). The cusps of X(N ) define a closed subscheme of the smooth locus of the modular model of

X(N ) over Z[ζ N ]. Fix a uniformization X(N )(C) ≃ H/Γ(N )
, let c ∞ be the cusp corresponding to ∞ ∈ H, and write q 1/N = e 2iπτ /N the usual parameter. If c = γ(c ∞ ), for some γ ∈ SL 2 (Z), is another cusp, denote by q c := q • γ -1 the parameter on X(N )(C) at c. It follows from [5, Chapitre VII, Corollaire 2.5] that the completion of the curve X(N ) over

Z[ζ N ] along the section c is isomorphic to Spec Z[ζ N ] [[q 1/N c ]] .
In other words, the parameter q 

1/N c at c on X(N )(C) is actually defined over Z[ζ N ], that is q 1/N c
ǫ 0 a ǫ : (q 1/N , ζ N ) → (q ǫ/N ζ a N , ζ ǫ N )
, where ǫ = ±1 and a ∈ Z/N Z. We may, for instance, interpret c ∞ as the orbit (C, (

q ǫ/N ζ a N , ζ ǫ N )), ǫ ∈ {±1}, a ∈ Z/N Z of enhanced Néron polygons over Z[ζ N ].
Next we describe the cusps on an arbitrary X G . For each cusp c of X G we obtain a parameter at c on X G by picking a lift c of c on X(N ) and taking the norm q

1/N c
• γ, where γ runs through a set of representatives of Γ/Γ(N ) (recall that Γ := {γ ∈ SL 2 (Z), (γ mod N ) ∈ G}). We denote by t c this parameter in the sequel. Note that it is defined over a (possibly strict) subring of Z[ζ N ]. The modular interpretation of X G associates to each cusp an orbit of our enhanced Néron polygon C, (q 1/N , ζ N ) under the action of the group generated by G and ±U given by Therefore if v(N ) = 0, the subscheme of cusps is étale over O v , but this may not be the case if v(N ) > 0. In the latter case, however, the ramification is well controlled. Indeed, with the preceding notations, set π

:= (1 -ζ p n ). Any two different p n -th roots of unity ζ a p n and ζ b p n satisfy (ζ a p n -ζ b p n ) = π p k α with α a v-invertible element and 0 ≤ k ≤ n -1. It follows that Néron polygons enhanced with a level-N structure are distinct over Z[ζ N ]/(π p n-1 +1
). The modular interpretation shows more precisely that if two different cusps c 1 and c 2 have same reduction at v, then t c1 (c 2 ) has v-adic valuation less or equal to 1/(p -1) (if we normalize v to have v(p) = 1). This remark will be used later on.

To illustrate all this with a familiar example, letting G := 1 0 * * ⊂ GL 2 (Z/N Z), which gives rise to the modular curve X 1 (N ), one finds that there are |(Z/N Z) × | cusps, with modular interpretation corresponding to {(C, ζ ǫa N ) : ǫ ∈ {±1}} where a runs through (Z/N Z) × / ± 1, and

{(C, q ǫa/N ζ α N ) : ǫ ∈ {±1}, α ∈ (Z/N Z)}
, where a runs through the same set. The curve X 1 (N ) is defined over Q and has a modular model over Z. The cusps in the former subset above have values in

Z ζ N + ζ -1
N , and the cusps in the latter subset have values in Z. In other words, the closed subscheme of cusps over Z is isomorphic to the disjoint union of Spec

Z ζ N + ζ -1 N and |(Z/N Z) × | /2 copies of Spec(Z).
It is clear from the definition that the above parameter t c defines a v-analytic function on a v-adic neighborhood of c ∈ X G (K v ) which satisfies the initial condition t c (c) = 0. Further, if e c is the ramification index of the covering X G → X(1) at c (clearly, e c divides N ) then, setting q c := t ec c , the familiar expansion j = q c -1 + 744 + 196884q c + . . . holds in a v-adic neighborhood of c, the right-hand side converging v-adically.

To be precise, t c and q c are defined and analytic on the set Ω c = Ω c,v defined as follows. If v is archimedean then Ω c = Y G ( Kv ) ∪ {c}; in other words, Ω c is X G ( Kv ) with all the cusps except c taken away. If v is non-archimedean, then Ω c consists of the points from X G ( Kv ) having reduction c at

v. Notice that X G ( Kv ) = c∈C Ω c if v ∈ M ∞ K , and P ∈ X G ( Kv ) : |j(P )| v > 1 = c∈C Ω c if v ∈ M 0 K . More generally, since |j(q c )| = |q c | -1 v
for a non-archimedean v, for any R ≥ 1 and any v ∈ M 0 K we have

P ∈ X G ( Kv ) : |j(P )| v > R = c∈C P ∈ Ω c : |q c (P )| v < R -1 , (17) 
which will be used later.

If v is non-archimedean and v(N ) = 0, the sets Ω c are pairwise disjoint, as in this case the cusps define a finite étale scheme over O v . In general however the sets Ω c are not disjoint, so we need to refine them in order to be able to define the notion of "v-nearest cusp". Put

R v =      2500 if v ∈ M ∞ K , 1 if v ∈ M 0 K and v(N ) = 0, p N/(p-1) if v ∈ M 0 K and v | p | N , r v = 0.001 if v ∈ M ∞ K , R -1 v if v ∈ M 0 K .
Finally, put

X G ( Kv ) + = P ∈ X G ( Kv ) : |j(P )| v > R v , Ω + c = Ω + c,v = {P ∈ Ω c : |q c (P )| v < r v }. Notice that Ω + c = Ω c if v is non-archimedean and v(N ) = 0.
Proposition 3.1 In the above set-up, the sets Ω + c are pairwise disjoint and we have

X G ( Kv ) + ⊆ c∈C Ω + c ( 18 
)
with equality for the non-archimedean v.

The proposition implies that for every P ∈ X G ( Kv ) + there exists a unique cusp c such that P ∈ Ω + c . We call it the v-nearest cusp (or simply the nearest cusp) to P .

Proof Assume first that v is archimedean, so that Kv = C. As above, let Γ be the pull-back of SL 2 (Z/N Z) ∩ G to Γ(1) = SL 2 (Z), and D be the usual fundamental domain for Γ [START_REF] Yu | Integral j-invariants and Cartan structures for elliptic curves[END_REF]. Notice that Γ(1) acts naturally on the set C of cusps, and that q γ(c) = q c • γ -1 for γ ∈ Γ(1), which implies that γ(Ω + c ) = Ω + γ(c) . Fix P ∈ X G (C) = H/Γ, and pick a representative τ ∈ H for P . Then there exists γ ∈ Γ(1) such that γ(τ ) ∈ D, where we put D = D ∪ {i∞}. With the common abuse of notation, we denote by j both the j-invariant on H and on X G , so that j γ(τ ) = j(τ ) = j(P ). Now if P ∈ X G (C) + then j γ(τ ) = |j(P )| > 2500, and Corollary 2.2 implies that P γ ∈ Ω + c∞ . Hence P ∈ Ω + c , where c = γ -1 (c ∞ ). This proves [START_REF] Rebolledo | Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires[END_REF]. We now assume that v is non-archimedean. In this case (18) holds, with equality, as a particular case of ( 17), and we only need to show that the sets Ω + c are pairwise disjoint. If v(N ) = 0 then, as already mentioned, the cusps of X G define a finite étale closed subscheme of X G over O v , so the sets Ω c = Ω + c are obviously pairwise disjoint. Now assume v(N ) > 0. Let p be the residue characteristic of v and p n N be the largest power of p dividing N = p n N ′ . As we have seen, the scheme of cusps on X G may be no longer étale over O v . We can however still partition it into connected components, which totally ramify in the fiber at v. More precisely, setting as above

O ′ v := (O[ζ N ′ ]) v , each connected component over O ′ v is schematically a Spec(R) for R a subring of O ′ v [ζ p n ].
Each set Ω c contains exactly one such connected component of cusps, so when R does ramify nontrivially at v, then Ω c is clearly "too large" (one has Ω c1 = Ω c2 exactly when c 1 and c 2 have same reduction at v). We want to show that, nevertheless, the refined sets Ω + c are pairwise disjoint. If the cusps c 1 and c 2 belong to distinct connected components, then already Ω c1 and Ω c2 are disjoint, so Ω + c1 and Ω + c2 are disjoint a fortiori. Now assume that c 1 and c 2 belong to the same component, i.e. have same reduction at v. In this case, as explained before the proposition, one may write

t c1 (c 2 ) = π p k a ∈ O ′ v [ζ p n ],
for π a certain uniformizer (e.g. π := (ζ p n -1)), where the element a is v-invertible and 0 1) , we see that c 2 does not belong to Ω + c1 , which implies that the sets Ω + c1 and Ω + c2 are disjoint. This completes the proof of the proposition. Now Propositions 2.1 has the following consequence. Proposition 3.2 If v is archimedean then for P ∈ X G (K v ) + with the nearest cusp c we have j(P ) -q c (P ) -1 -744 v ≤ 330000|q c (P )| v . In particular, j(P ) -q c (P ) -1 v ≤ 1100 and

≤ k ≤ n -1. As v(π) = 1/p n-1 (p -1) and Ω + c1 is contained in P ∈ X G ( Kv ) : |t c1 (P )| v < p -1/(p-
3 2 |j(P )| v ≥ q c (P ) -1 v ≥ 1 2 |j(P )| v . (19) 

Modular Units

In this section we recall the construction of modular units on the modular curve X G . By a modular unit we mean a rational function on X G having poles and zeros only at the cusps.

Integrality of Siegel's Function

For a ∈ Q 2 \ Z 2 Siegel's function g a (see Subsection 2.2) is algebraic over the field C(j): this follows from the fact that g 12 a is automorphic of level 2N 2 [7, page 29]. Since g a is holomorphic and does not vanish on the upper half-plane H, both g a and g -1 a must be integral over the ring C[j]. Actually, a stronger assertion holds.

Proposition 4.1 Both g a and (1 -ζ N ) g -1 a are integral over Z[j].
Here N is the exact order of a in (Q/Z) 2 and ζ N is a primitive N -th root of unity. This is, essentially, established in [START_REF] Kubert | Modular units, Grund. math. Wiss[END_REF], but is not stated explicitly therein. Therefore we briefly indicate the proof here. Recall that a holomorphic and Γ(N )-automorphic function f : H → C admits the infinite q-expansion f

(τ ) = k∈Z a k q k/N , (20) 
where q = q τ = e 2πiτ . We call the q-series (20) algebraic integral if the following two conditions are satisfied: the negative part of (20) has only finitely many terms (that is, a k = 0 for large negative k), and the coefficients a k are algebraic integers. Algebraic integral q-series form a ring. The invertible elements of this ring are q-series with invertible leading coefficient. By the leading coefficient of an algebraic integral q-series we mean a m , where m ∈ Z is defined by a m = 0, but a k = 0 for k < m.

Lemma 4.2 Let f be a Γ(N )-automorphic function such that for every γ ∈ Γ(1) the q-expansion of f • γ is algebraic integral. Then f is integral over Z

[j].
Proof This is, essentially, Lemma 2.1 from [7, Section 2.2]. Since f is Γ(N )-automorphic, the set {f • γ : γ ∈ Γ(1)} is finite. The coefficients of the polynomial F (T ) = (T -f • γ) (where the product is taken over the finite set above) are Γ(1)-automorphic functions with algebraic integral q-expansions. By the q-expansion principle, the coefficients of F (T ) belong to Z[j], where Z is the ring of all algebraic integers. It follows that f is integral over Z[j], hence over Z[j].

Proof of Proposition 4.1 The function g 12 a is automorphic of level 2N 2 and its q-expansion is algebraic integral (as one can easily see by transforming the infinite product (7) into an infinite series). By [START_REF] Lang | Elliptic Functions[END_REF], the same is true for for every (g a • γ) 12 . Lemma 4.2 now implies that g 12 a is integral over Z[j], and so is g a .

Further, the q-expansion of g a is invertible if a 1 / ∈ Z and is 1 -e(a 2 ) times an invertible q-series if a 1 ∈ Z. Hence the q-expansion of g -1 a is algebraic integral when a 1 / ∈ Z, and if a 1 ∈ Z the same is true for (1 -e(a 2 )) g -1 a . In the latter case N is the exact order of a 2 in Q/Z, which implies that (1 -ζ N )/ (1 -e(a 2 )) is an algebraic unit. Hence, in any case, (1 -ζ N )g -1 a has algebraic integral q-expansion, and the same is true with g a replaced by g a • γ for any γ ∈ Γ(1) (we again use [START_REF] Lang | Elliptic Functions[END_REF] and notice that a and aγ have the same order in (Q/Z) 2 ). Applying Lemma 4.2 to the function

(1 -ζ N )g -1 a
12 , we complete the proof.

Modular Units on X(N)

From now on, we fix an integer N > 1. Recall that the curve X(N ) is defined over the field

Q(ζ N ). Moreover, the field Q X(N ) = Q(ζ N ) X(N ) is a Galois extension of Q(j), the Galois group being isomorphic to GL 2 (Z/N Z). The isomorphism Gal Q X(N ) Q(j) ∼ = GL 2 (Z/N Z) (21) 
is defined up to an inner automorphism; once it is fixed, we have the well-defined isomorphisms

Gal Q X(N ) Q(ζ N , j) ∼ = SL 2 (Z/N Z), Gal Q(ζ N )/ Q ∼ = (Z/N Z) × , (22) 
and we may identify the groups on the left and on the right in (21 and 22). Our choice of the isomorphism (21) will be specified in Proposition 4.3.

According to Theorem 1.2 from [7, Section 2.1], given a = (a 1 , a 2 ) ∈ (N -1 Z) 2 \ Z 2 , the function g 12N a is Γ(N )-automorphic of weight 0. Hence g 12N a defines a rational function on the modular curve X(N ), to be denoted by u a . Since the root of unity in ( 9) is of order dividing 12N , we have u a = u a ′ when a ≡ a ′ mod Z 2 . Hence u a is well-defined when a is a non-zero element of the abelian group (N -1 Z/Z) 2 , which will be assumed in the sequel. We put A = (N -1 Z/Z) 2 \ {0}.

The functions u a have the following properties. 

-ζ Na ) 12N u -1 a are integral over Z[j],
where N a is the exact order of a in (N -1 Z/Z) 2 . In particular, u a has zeros and poles only at the cusps of X(N ). 

∈ GL 2 (Z/N Z) is such that σ(c) = c ∞ .
The group generated by the principal divisors (u a ), where a ∈ A, is contained in the group of cuspidal divisors on X(N ) (that is, the divisors supported at the set C(N ) = C(Γ(N )) of cusps). Since principal divisors are of degree 0, the rank of the former group is at most |C(N )| -1. It is fundamental for us that this rank is indeed maximal possible. The following proposition is Theorem 3.1 in [7, Chapter 2]. We also need to know the behavior of the functions u a near the cusps, and estimate them in terms of the modular invariant j. In the following proposition K is a number field containing ζ N and v is a valuation of K, extended somehow to K. We use the notation of Section 3.

Proposition 4.5 (a) Let c be a cusp of X(N ). If v ∈ M ∞ K then log |u a (P )| v -ord c u a log |t c (P )| v ≤ 36N |q c (P )| 1/N v when a 1 = 0, log |u a (P )| v -ord c u a log |t c (P )| v -12N log |1 -e(a 2 )| v ≤ 36N |q c (P )| v when a 1 = 0 for any P ∈ Ω c,v such that |q c (P )| v < 10 -N . If v ∈ M 0 K then log |u a (P )| v = ord c u a log |t c (P )| v when a 1 = 0, ord c u a log |t c (P )| v + 12N log |1 -e(a 2 )| v when a 1 = 0 for any P ∈ Ω c,v . (b) If v ∈ M ∞ K then log |u a (P )| v ≤ N log |j(P )| v + 2200 + 14N log N for any P ∈ X(N )(K v ). If v ∈ M 0 K then log |u a (P )| v ≤ N log |j(P )| v + log R v for any P ∈ X(N )(K v ) such that |j(P )| v > 1.
Proof When c = c ∞ this is an immediate consequence of Propositions 2.3, 2.4, 2.5 (notice that log |q c |v = N log |t c | v for every cusp c) and Corollary 2.6. The general case reduces to the case c = c ∞ by applying a suitable Galois automorphism.

K-rational Modular Units on X G

Now let K be a number field, and let G be a subgroup of GL 2 (Z/N Z). Let det G be the image of G under the determinant map det : GL

2 (Z/N Z) → (Z/N Z) × = Gal(Q(ζ N )/Q) (recall
that we have a well-defined isomorphism ( 22)). In the sequel we shall assume that

K ⊇ Q(ζ N ) det G , where Q(ζ N ) det G is the subfield of Q(ζ N ) stable under det G. This assumption implies that the curve X G is defined over K. Then G ′ := Gal K X(N ) K (X G ) is a subgroup of G.
For every a ∈ A we put w a = σ∈G ′ u aσ . Since u aσ = u σ a , the functions w a are contained in K(X G ). They have the following properties. 

c) If v ∈ M ∞ K then log |w a (P )| v ≤ |G ′ |N log |j(P )| v + 2200 + 14|G ′ |N log N for any P ∈ X G (K v ). If v ∈ M 0 K then log |w a (P )| v ≤ |G ′ |N log |j(P )| v + |G ′ | log R v for any P ∈ X(N )(K v ) such that |j(P )| v > 1.
(d) For every a ∈ A and every cusp c there exists an algebraic integer

β = β(a, c) ∈ Z[ζ N ], which is a product of at most |G ′ | factors of the form (1 -e(a)
) 12N , where a ∈ N -1 Z/Z and a = 0, such that for any v ∈ M K and for any P ∈ Ω c,v we have the following. If v is archimedean and

|q c (P )| v ≤ 10 -N then log |w a (P )| v -ord c w a log |t c (P )| v -log |β| v ≤ 36|G ′ |N |q c (P )| 1/N v . If v is non-archimedean then log |w a (P )| v = ord c w a log |t c (P )| v + log |β| v .
(e) The group generated by the principal divisors

(w a ) is of rank |C(G, K)| -1.
Proof Items (a) and (b) follow from Proposition 4.3, items (c) and (d) follow from Proposition 4.5. Finally, item (e) follows from Proposition 4.4 and Lemma 4.7 below. On should apply the lemma (whose proof is left to the reader) with A as the group of degree 0 cuspidal divisors on X(N ), with B as the group of all cuspidal divisors on X(N ) generated by the principal divisors (u a ), and with G as G ′ .

Lemma 4.7 Let G be a finite group, and let A be a torsion-free finitely generated (left) Gmodule. For a ∈ A put a G = g∈G ga and denote by A G the submodule of the G-invariant elements. Further, let B be a finite index subgroup of A.

Then B G = {b G : b ∈ B} is a finite index submodule of A G .

A Unit Vanishing at the Given Cusps

Item (e) of Proposition 4.6 implies that for any proper subset of C(G, K) there is a K-rational unit on X G vanishing at this subset. In this subsection we give a quantitative version of this fact. We shall use the following simple lemma, where we denote by • 1 the ℓ 1 -norm.

Lemma 4.8 Let M be an s × t matrix of rank s with entries in Z . Assume that the entries of M do not exceed A in absolute value. Then there exists a vector b ∈ Z t such that b 1 ≤ s s/2+1 A s-1 , and such that all the s coordinates of the vector M b (in the standard basis) are strictly positive.

Proof Assume first that s = t. Let d be the determinant of M . Then the column vector (|d|, . . . , |d|) can be written as M b, where b = (b 1 , . . . , b s ) with b k being (up to the sign) the determinant of the matrix obtained from M upon replacing the k-th row by (1, . . . , 1). Using Hadamard's inequality, we bound

|b k | by √ s ( √ sA) s-1
. This proves the lemma in the case s = t.

The general case reduces to the case s = t by selecting a non-singular s × s sub-matrix, which gives s entries of the vector b; the remaing t -s entries are set to be 0. Now let G, K and G ′ be as in Subsection 4.3.

Proposition 4.9 Let Σ be a proper subset of C(G, K). Assume that |Σ| ≤ s, and put B = s s/2+1 |G ′ |N 2 s-1 . Then there exists a K-rational modular unit w on X G with the following properties.

(a) If c is a cusp such that the orbit of c is in Σ then ord c w > 0.

(b) For every cusp c we have

|ord c w| ≤ B|G ′ |N 2 . (23) 
(c) There exists an algebraic integer λ, which is a product of at most |G ′ |B factors of the form

(1 -ζ N ′ ) 12N , where N ′ | N , such that λw is integral over Z[j]. (d) If v ∈ M ∞ K then for any P ∈ X G (K v ) we have log |w(P )| v ≤ B|G ′ |N log |j(P )| v + 2200 + 14B|G ′ |N log N. If v ∈ M 0 K then for any P ∈ X(N )(K v ) such that |j(P )| v > 1 we have log |w(P )| v ≤ B|G ′ |N log |j(P )| v + B|G ′ | log R v .
(e) For every cusp c there exists an algebraic number

β = β(c) ∈ Z[ζ N ] which is a product of at most |G ′ |B factors of the form (1 -e(a)
) ±12N , where a ∈ N -1 Z/Z and a = 0, such that for any v ∈ M K and for any P ∈ Ω c,v we have the following. If v is archimedean and 5 Proof of Theorem 1.2

|q c (P )| v ≤ 10 -N then log |w(P )| v -ord c w log |t c (P )| v -log |β| v ≤ 36B|G ′ |N |q c (P )| 1/N v . If v is non-archimedean then log |w(P )| v = ord c w log |t c (P )| v + log |β| v . Proof The K-rational
We use the notation of Section 3. We put

R ′ v = 50 N for archimedean v and R ′ v = R v for non- archimedean v. Since N ≥ 2, we have R ′ v ≥ R v . We use the notation d v = [K v : Q v ] and d = [K : Q].
We fix an extension of every v ∈ M K to K and denote this extension by v as well.

We shall use the estimate

R ≤ p|N log p p -1 ≤ ω(N ) log 2 ≤ log N, (24) 
for the quantity R, defined in [START_REF] Cojocaru | On the surjectivity of the Galois representations associated to non-CM elliptic curves (with an appendix by Ernst Kani)[END_REF]. (Here ω(N ) is the number of prime divisors of N .) Of course, much sharper estimates for R are possible as well, but (24) is plainly sufficient for us.

The Runge Unit

Fix P ∈ Y G (O S ). Let S 1 consist of the places v ∈ M K such that |j(P )| v > R ′ v . Plainly, S 1 ⊂ S. Since R ′ v ≥ R v , Proposition 3.
1 applies to our P and every v ∈ S 1 . Thus, for v ∈ S 1 let c v be the v-nearest cusp to P , and let Σ be the set of all Gal( K/K)-orbits of cusps containing some of the c v . Then |Σ| ≤ |S 1 | ≤ |S|, and since |S| < |C(G, K)| by the assumption, Σ is a proper subset of C(G, K). Let w and B be as in Proposition 4.9, where we may put s = |S|. Then ord cv w > 0 for every v ∈ S 1 , and the other statements of this proposition are satisfied.

Since w is a modular unit and P is not a cusp, we have w(P ) = 0, ∞, and the product formula gives v∈MK d v log |w(P )| v = 0. We want to show that this is impossible when h(P ) is too large.

Partitioning the Places of K

We partition the set of places M K into three pairwise disjoint subsets: M K = S 1 ∪ S 2 ∪ S 3 , where S i ∩ S j = ∅ for i = j. The set S 1 is already defined. The set S 2 consists of the archimedean places not belonging to S 1 and the non-archimedean places v not belonging to S 1 and such that |j(P )| v > 1. (Obviously, S 2 ⊂ S.) Finally, the set S 3 consists of the places not belonging to S 1 ∪ S 2 ; in other words, v ∈ S 3 if and only if v is non-archimedean and |j(P )| v ≤ 1.

We will estimate from above the three sums Ξ i = v∈Si d v log |w(P )| v . We will show that Ξ 1 ≤ -N -1 dh(P ) + O [START_REF] Yu | Integral j-invariants and Cartan structures for elliptic curves[END_REF], where the O(1)-term is independent of P (it will be made explicit). Further, we will bound Ξ 2 and Ξ 3 independently of P . Since

Ξ 1 + Ξ 2 + Ξ 3 = 0, ( 25 
)
(which is a different writing of the product formula), this would bound h(P ).

Estimating Ξ 1

For v ∈ S 1 we have P ∈ Ω cv,v , we may apply item (e) of Proposition 4.9. Since ord cv w > 0 and log q cv (P ) = e log t cv (P ) with e | N , we have, for an archimedean v ∈ S 1 [START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF] and ( 23)) ( 26) 

log |w(P )| v ≤ ord cv w e log |q cv (P )| v + log |β(c v )| v + 36B|G ′ |N |q cv (P )| 1/N v ≤ - ord cv w N log |j(P )| v + log |β(c v )| v + 2B|G ′ |N (we use
≤ -N -1 log |j(P )| v + log |β(c v )| v + 2B|G ′ |N. (27) 
(c v )| v ≤ 12dB|G ′ |N (log N + R) ≤ 24dB|G ′ |N log N, ( 29 
)
where R is defined in (3) and is estimated using (24). Thus, combining (27), ( 28) and (29), we obtain

Ξ 1 ≤ -N -1 v∈S1 d v log |j(P )| v + v∈S1 log |β(c v )| v + 2dB|G ′ |N ≤ -N -1 v∈S1 d v log |j(P )| v + 27dB|G ′ |N log N. Further, since |j(P )| v ≤ R ′ v for v ∈ S \ S 1 , we have v∈S\S1 d v log |j(P )| v ≤ v∈MK d v log R ′ v ≤ dN (log 50 + R) ≤ dN log(50N ),
by (24), and we obtain 

Ξ 1 ≤ -N -1 v∈S d v log |j(P )| v + dN 27|G ′ |B log N + log(50N ) ≤ -N -1 v∈S d v log |j(P )| v + 32dB|G ′ |N log N.
(P )| v ≤ B|G ′ |N log R v + B|G ′ | log R v . Us- ing (24), we obtain Ξ 2 ≤ 10dB|G ′ |N 2 + dB|G ′ |(N 2 + N )R ≤ dB|G ′ |N 2 (R + 11). (31) 
Futher, let λ be from item (c) of Proposition 4.9. Then h(λ) ≤ 12B|G ′ |N log 2 ≤ 9B|G ′ |N , because h(1 -ζ) ≤ log 2 for a root of unity ζ. For v ∈ S 3 the number j(P ) is a v-adic integer. Hence so is the number λw(P ). It follows that |w

(P )| v ≤ |λ -1 | v for v ∈ S 3 , and Ξ 3 ≤ v∈S3 d v log λ -1 v ≤ dh λ -1 = dh(λ) ≤ 9dB|G ′ |N. (32) 
Combining this with (25), ( 30) and (31), we obtain h(P ) ≤ B|G ′ |N 3 (R + 30), which is (2) with |G| replaced by |G ′ |.

6 Proof of Theorem 1.1

It is similar and simpler than that of Theorem 1.2. In this case d = 1 and S consists of the infinite place of Q, whence s = 1, B = 1 and R = 0. We may take as the Runge unit w one of the functions w ±1 a . We may assume that S 1 = S and S 2 = ∅; otherwise we would have the estimate log |j(P )| ≤ N log 50, which is much sharper than (1). We denote by c the nearest cusp to P with respect to the infinite place. 

A Special Case

When passing from (26) to (27), we used the trivial estimate ord c w ≥ 1. One can improve our results by using a more elaborate lower bound for ord c w. In this section we apply this approach to the case when G is the normalizer of a split torus of prime level, which is important for the subsequent applications. Of course, similar strategy can be used in many different cases as well.

We start by recalling definitions and notations that will be in force for the rest of the article. Recall that a Cartan subgroup of the algebraic group GL 2 over some ring is a maximal subtorus, which can be either (totally) split or nonsplit. More precisely, fix a prime number p. The subgroup of diagonal matrices in GL 2 (Z p ) is a split Cartan subgroup, whose normalizer consists in diagonal and antidiagonal matrices. Given an integer n ≥ 0, the normalizer of a split Cartan subgroup is the image in GL 2 (Z/p n Z) of a group conjugate to the above subgroup of GL 2 (Z p ). If G is such a group mod p n , we denote by X split (p n ) the corresponding modular curve over Q, and by Y split (p n ) its finite part. On the other hand, let Z p 2 be the ring of integers of the unramified quadratic extension of Q p . By making the group Z × p 2 act on Z p 2 by multiplication, the choice of a Z p -basis of Z p 2 defines an embedding of Z × p 2 into GL 2 (Z p ). The image of such an embedding is by definition a non split Cartan subgroup of GL 2 (Z p ); it has index 2 in its normalizer. For n any positive integer, reduction mod p n similarly defines (normalizer of) nonsplit Cartan subgroups in GL 2 (Z/p n Z). Those subgroups define in the usual way modular curves over Q, which we denote by X nonsplit (p n ). Now we focus on the case where N = p is an odd prime number, and we let G be the normalizer of a split Cartan subgroup of GL 2 (F p ). The curve X split (p) has (p + 1)/2 cusps, among which one (the cusp at infinity c ∞ ) is defined over Q and the other (p -1)/2 are conjugate over Q, so that we have exactly 2 Galois orbits of cusps over Q. The covering X(p) → X split (p) is unramified at the cusps, and the covering X split (p) → X(1) has ramification p at every cusp.

We shall use the following lemma.

Lemma 7.2 Let G be the normalizer of a split Cartan subgroup of GL 2 (F p ) and c a cusp of X G = X split (p). Then for any a ∈ A we have

|ord c w a | ≥ 2p(p -1) 2 = p|G|. (33) 
Proof The proof relies on the identity

N -1 k=1 B 2 (k/N ) = -(N -1)/6N
, where B 2 (T ) is the second Bernoulli polynomial. We may assume that G is the normalizer of the diagonal subgroup of GL 2 (F p ). Also, replacing a by aσ with a suitable σ ∈ GL 2 (F p ), we may assume that c = c ∞ . Since the covering X(p) → X G is unramified at the cusps, we have, according to item (c) of Proposition 4.3, ord c∞ w a = σ∈G ord c∞ u aσ = 12p 2 σ∈G ℓ aσ . Now we have two cases. If the entries of a = (a 1 , a 2 ) are non-zero, then every non-zero element of F p occurs exactly 2(p -1) times as the first coordinate of aσ, when σ runs over G (and 0 does not occur at all). Hence, by the definition of ℓ a , we have 

Split Cartan Structures in the Torsion of Elliptic Curves

In this section we prove Theorems 1.3 and 1.4. We need several auxiliary results. First of all, recall the results of Masser, Wüstholz and Pellarin on the isogenies of elliptic curves. Masser and Wüstholz obtained an explicit upper bound for the degree of the minimal isogeny between two isogenous elliptic curves [START_REF] Masser | Estimating isogenies on elliptic curves[END_REF] and abelian varieties [START_REF] Masser | Isogeny estimates for abelian varieties and finiteness theorems[END_REF]; see also [START_REF] Masser | Galois properties of division fields of elliptic curves[END_REF]. Pellarin [START_REF] Pellarin | Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques[END_REF] obtained a totally explicit version of this result for the case of elliptic curves. We use the result of Pellarin in the following form, which is a direct combination of Théorème 2 from [START_REF] Pellarin | Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques[END_REF] and inequality (51) on page 240 of [START_REF] Pellarin | Sur une majoration explicite pour un degré d'isogénie liant deux courbes elliptiques[END_REF].

Proposition 8.1 (Masser-Wüstholz, Pellarin). Let E be an elliptic curve defined over a number field K of degree d. Let E ′ be another elliptic curve, defined over K and isogenous to E.

Then there exists an isogeny ψ : E → E ′ of degree

deg ψ ≤ 10 82 d 4 max{1, log d} 2 (1 + h(j E )) 2 . ( 34 
)
Corollary 8.2 Let E be a non-CM elliptic curve defined over a number field K of degree d, and admitting a cyclic isogeny over K. Then the of this isogeny is bounded by the right-hand side of (34).

Proof Let φ be a cyclic isogeny from E to E ′ , and let φ D : E ′ → E be the dual isogeny. Let ψ : E → E ′ be a isogeny of degree bounded by the right-hand side of (34) which, without loss of generality, may be assumed to be cyclic. As E has no CM, the composed map φ D • ψ must be multiplication by some integer, so that φ = ±ψ.

Next we establish several simple properties of twists of elliptic curves.

Lemma 8.3 Let E be an elliptic curve over Q with j-invariant j E = 0, 1728. Then there is a twist E ′ of E over Q, such that if ℓ ≥ 5 is a prime number dividing the conductor of E ′ then ord ℓ (j E (j E -1728)) = 0.

Proof Consider the Weierstrass equation

y 2 + xy = x 3 - 36 j E -1728 x - 1 j E -1728 . ( 35 
)
It is known to have discriminant j 2 E /(j E -1728) 3 , and that the elliptic curve E ′ it defines over Q has j-invariant equal to j E . It follows that E ′ is a twist of E over Q and as j = 0, 1728, this twist is necessarily quadratic. For a prime ℓ ≥ 5 such that ord ℓ (j E (j E -1728)) = 0, equation (35) defines a smooth model for E ′ over Z ℓ . Therefore the minimal Weierstrass equation for E ′ over Z defines a scheme which is smooth over Z ℓ , which means that ℓ does not divide the conductor of E ′ .

We now fix a prime power p n . Let G be a subgroup of GL(E[p n ]) ≃ GL 2 (Z/p n Z). We say that an elliptic curve E defined over Q is endowed with a G-level structure if the image of the natural Galois representation ρ E,p n : Gal( Q/Q) → GL(E[p n ]) is conjugate to G. Lemma 8.4 Assume that G contains ±1. Let E be an elliptic curve over Q with j E = 0, 1728, endowed with a G-level structure. Then any twist of E over Q is endowed with a G-level structure as well.

Proof If E ′ is the twist E ⊗ χ of E by a character χ, and ρ E is the Galois representation associated to the p-adic Tate module of E, then the similar object ρ E ′ for E ′ is the tensor product ρ E ⊗ χ. Since χ has values in {±1} ⊂ G, the curve E is endowed with a G-level structure if and only if the same is true for E ′ .

The following proposition is instrumental in the proof of Theorem 1.3.

Corollary 2 . 2

 22 For any τ ∈ D we have either |j(τ )| ≤ 2500 or |q τ | < 0.001.

  comes from an element of the completed local ring ÔX(N),c of the modular model of X(N ) over Z[ζ N ], along the section c. Moreover the modular interpretation associates with each cusp a Néron polygon C with N sides on Z[ζ N ], endowed with its structure of generalized elliptic curve, and enhanced with a basis of C[N ] ≃ Z/N Z × µ N = q 1/N , ζ N such that the determinant of this basis is 1, and two bases are identified if they are conjugate by the subgroup ±U = ± 1 0 * 1 of GL 2 (Z/N Z), the action being

  C, (q 1/N , ζ N ) → C, (q a/N ζ b N , q c/N ζ d N ) . It follows from the above that the cusps of X G have values in a subring of Z[ζ N ]. Moreover, assume that X G is defined over K, of which v is a place of characteristic p, with N = p n N ′ and p ∤ N ′ . Extending v to a place of O v [ζ N ′ ] if necessary, and setting O ′ v := (O[ζ N ′ ]) v , one sees that the closed subscheme of cusps over O ′ v may be written as a sum of connected components of shape Spec(R) where R is a subring of O ′ v [ζ p n ].

  Now let us prove that the sets Ω + c are pairwise disjoint. For τ ∈ H the condition |q τ | < 0.001 implies that Im τ > 1. Hence {τ ∈ H : |q τ | < 0.001} ⊂ γ∈Γ(1) γ(i∞)=i∞ γ D . It follows that the pull-back of Ω + c to H is contained in the set ∆ c = γ∈Γ(1) γ(c∞ )=c γ D . By the definition of D, for γ = ±1 we have γ( D) ∩ D = {i∞} if γ(i∞) = i∞, and γ( D) ∩ D = ∅ otherwise. It follows that the sets ∆ c are pairwise disjoint. Hence so are the sets Ω + c . This completes the proof for archimedean v.

Proposition 4 . 3

 43 (a) The functions u a and (1

  (b) The functions u a belong to the field Q X(N ) , and the Galois action on the set {u a } over Q(j) is compatible with the (right) linear action of GL 2 (Z/N Z) on A in the following sense:the isomorphism (21) can be chosen so that for anyσ ∈ Gal Q X(N ) Q(j) = GL 2 (Z/N Z)and any a ∈ A we have u σ a = u aσ .(c) For the cusp c ∞ at infinity we have ord c∞ u a = 12N 2 ℓ a , where ℓ a is defined in Subsection 1.1. For an arbitrary cusp c we have |ord c u a | ≤ N 2 . Proof Item (a) follows from Proposition 4.1. Item (b) is Proposition 1.3 from [7, Chapter 2]. We are left with item (c). The order of vanishing of u a at i∞ is 12N ℓ a . Since the ramification index of the covering X(N ) → X(1) at every cusp is N , we obtain ord c∞ u a = 12N 2 ℓ a . Since |ℓ a | ≤ 1/12, we have |ord c∞ u a | ≤ N 2 . The case of arbitrary c reduces to the case c = c ∞ upon replacing a by aσ where σ

Proposition 4 . 4

 44 The group generated by the set {(u a ) : a ∈ A} is of rank |C(N )| -1.

Proposition 4 . 6

 46 (a) The functions w a have zeros and poles only at the cusps of X G . If c is such a cusp, then |ord c w a | ≤ |G ′ |N 2 . (b) For every a ∈ A there exists an algebraic integer λ a ∈ Z[ζ N ], which is a product of |G ′ | factors of the form (1 -ζ N ′ ) 12N , where N ′ | N , such that the functions w a and λ a w -1 a are integral over Z[j].

(

  

  Galois orbit of a cusp c has [K(c) : K] elements. Fix a representative in every such orbit and consider the |C(G, K)| × |A| matrix (ord c w a ), where c runs over the set of selected representatives. According to item (e) of Proposition 4.6, this matrix is of rank |C(G, K)| -1, and the only (up to proportionality) linear relation between the rows is c [K(c) : K]ord c w a = 0 for every a ∈ A. It follows that any proper subset of the rows of our matrix is linearly independent. In particular, if we select the rows corresponding to the set Σ, we get a sub-matrix of rank |Σ|. Applying to it Lemma 4.8, where we may take A = |G ′ |N 2 due to item (a) of Proposition 4.6, we find integers b a such that a∈A |b a | ≤ B and such that the function w = a∈A w ba a is as wanted.

For a non-archimedean v ∈ S 1

 1 we have log |w(P )| v ≤ N -1 log |q c (P )| v + log |β(c)| v = -N -1 log |j(P )| v + log |β(c v )| v . (28) Next, we want to estimate v∈S1 log |β(c v )| v . Recall that β(c) is a product of at most 12B|G ′ |N numbers of the type 1 -e(a), where a is a non-zero element of N -1 Z/Z. For such a we have 1/N ≤ 1 -e(a) v ≤ 2 if v is archimedean, p -1/(p-1) ≤ 1 -e(a) v ≤ 1 if v is non-archimedean and v | p | N , and 1 -e(a) v = 1 if v is non-archimedean and v(N ) = 0. It follows that v∈S1 log |β

Finally, since

  j(P ) is an S-integer, we haveh(P ) = h(j(P )) = d -1 v∈S d v log + |j(P )| v ≥ d -1 v∈S d v log |j(P )| v ,and we obtainΞ 1 ≤ d -N -1 h(P ) + 31B|G ′ |N log N .(30) 5.4 Estimating Ξ 2 , Ξ 3 and Completing the Proof Item (d) of Proposition 4.9 implies that for an archimedean v ∈ S 2 log |w(P )| v ≤ B|G ′ |N log 50 N + 2200 + 14 log N ≤ 10B|G ′ |N 2 , and for a non-archimedean v ∈ S 2 we have log |w

  Thus, Ξ 1 = log |w(P )|, and (27) now reads log |w(P )| ≤ -N -1 log |j(P )| + log |β(c)| + 2|G ′ |N . Estimating log |β(c)| by 12|G ′ |N log N , we obtain Ξ 1 ≤ -N -1 log |j(P )| + 15|G ′ |N log N . Further, Ξ 2 = 0, and Ξ 3 can be estimated by 9|G ′ |N , according to (32). Since Ξ 1 + Ξ 3 = 0, we obtain (1) with |G| replaced by |G ′ |.

Theorem 7 . 1

 71 For any P ∈ Y split (p)(Z) we have log |j(P )| ≤ 23p log p. (Note that Theorem 1.1 with N = p gives the bound log |j(P )| ≤ 60p 2 (p -1) 2 log p.)

Since p ≥ 3 ,

 3 ord c∞ w a = 12p 2 • 2(p -1) (p -1) 2 = -|G|p, because |G| = 2(p -1)2 . And if either a 1 or a 2 is 0, then each non-zero element occurs exactly p -1 times, while 0 occurs (p -1) 2 times. Hence ord c∞ w a = 12p 2 (p -1) we have (33) in any case. Proof of Theorem 7.1 We argue as in the proof of Theorem 1.1. In particular, we again have w of the form w ±1 a . Further, Ξ 1 = log |w(P )| and Ξ 2 = 0. But now, instead of (27) we use (26), which gives log |w(P )| ≤ -ord c w p log |j(P )| + log |β(c)| + 2|G|p ≤ -ord c w p log |j(P )| + 14|G|p log p (we estimate log |β(c)| by 12|G|p log p). Hence Ξ 1 ≤ |G| (-log |j(P )| + 14p log p) due to Lemma 7.2. We again use (32), which gives Ξ 3 ≤ 9|G|p. Since Ξ 1 + Ξ 3 = 0, the result follows.

  , which implies log |g a (τ )| -ℓ a log |q τ | ≤ log 2 + 0.02, and a fortiori (16). Finally, Proposition 2.1 implies that log |q τ | ≤ log |j(τ )| + 2200 . Combining this (16), and using the inequality |ℓ a | ≤ 1/12, we obtain (14).
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 Proposition 8.5There exists an absolute effective constants κ such that the following holds. Let E be a non-CM elliptic curve over Q, endowed with a structure of normalizer of split Cartan subgroup in level p n . Then

Assuming GRH, we also have

where N E is the conductor of E.

Proof By the assumption,

). Let χ be the quadratic character of Gal( Q/Q) defined by G/G 0 , and let K be the corresponding number field (which is at most quadratic over Q). Then ρ E,p n Gal( Q/K) is contained in the split torus G 0 , which implies that E admits a cyclic isogeny of degree p n over K (and even two distinct cyclic isogenies). This implies (36) by Corollary 8.2. Now let us assume GRH and prove (37). We apply the argument of Halberstadt and Kraus [START_REF] Halberstadt | Sur les modules de torsion des courbes elliptiques[END_REF], which makes use of Serre's explicit version of the Chebotarev theorem [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF]. Let E ′ be the twist of E by χ. The conductors of E ′ and E are equal by [START_REF] Halberstadt | Sur les modules de torsion des courbes elliptiques[END_REF]Théorème 1]. For any prime number ℓ not dividing pN E , the traces a ℓ and a ′ ℓ of a Frobenius substitution Frob ℓ acting on the p-adic Tate modules of E and E ′ satisfy a ℓ = a ′ ℓ χ(ℓ). The curve E being endowed with a K-rational isogeny of degree p, it follows from Mazur's theorem on rational isogenies [14, Theorem 1] that, if p > 163, we have K = Q and, consequently, χ = 1. (One can replace here 163 by 37, because, as Mazur indicates in the introduction of [START_REF] Mazur | Rational isogenies of prime degree (with an appendix by D. Goldfeld)[END_REF], all curves with rational isogenies of order exceeding 37 have complex multiplication.) Since E has no complex multiplication, E and E ′ are not Q-isogenous, so we have a ℓ = a ′ ℓ for infinitely many ℓ. Théorème 21 from [START_REF] Serre | Quelques applications du théorème de densité de Chebotarev[END_REF] implies that, assuming GRH, one finds such ℓ satisfying ℓ ≤ c(log N E ) 2 (log log 2N E ) 12 . Since a ℓ = a ′ ℓ , we have a ℓ = 0 and χ(ℓ) = -1, which means that ρ E,p n (Frob ℓ ) belongs to G \ G 0 . Since all elements from G \ G 0 have trace 0, we obtain p n | a ℓ . Now Hasse's bounds imply that p n ≤ |a ℓ | ≤ 2 √ ℓ, which yields (37).

Proof of Theorem 1.3 Assume that X split (p n )(Q) has a non-CM and non-cuspidal point P .

We want to show that, for sufficiently large p, we have n ≤ 2, and even n ≤ 1 assuming GRH.

Our point P gives rise to a non-CM elliptic curve E. Since P induces a point in X split (p)(Q), the results of Momose and Merel [START_REF] Merel | Normalizers of split Cartan subgroups and supersingular elliptic curves[END_REF]Theorem 3.1] imply that either p ≤ 13 or j(P ) = j E belongs to Z. Now Theorem 7.1 yields

which, together with (36) gives p n ≤ c(p log p) 2 for some constant c (since j E ∈ Z we have h(j E ) = log |j E |). Hence n ≤ 2 for sufficiently large p, proving the first (unconditional) statement. Now let us prove the second statement. Lemmas 8.3 and 8.4 allow us to assume (replacing E, if necessary, by a quadratic twist) that every prime ℓ ≥ 5 dividing N E , divides either j E or j E -1728.

The curve E has potential good reduction at all primes, so ord ℓ (N E ) = 2, and the exponents of the conductor at 2 and 3 are at most 8 and 5 respectively. Therefore

Combining this with (37) and (38), we obtain, assuming GRH, that p n ≤ cp(log p) 7 for some constant c. Therefore n ≤ 1 for sufficiently large p.

Proof of Theorem 1.4 The proof is very similar to that of the first part of Theorem 1.3. Let p, q and r be distinct split Cartan deficient primes for a non-CM elliptic curve E/Q. We assume 11 ≤ p < q < r. Again applying the results of Momose and Merel, we obtain j E ∈ Z. Hence E gives rise to a point on Y split (p)(Z), and Theorem 7.1 yields (38).

On the other hand, over some quadratic field E admits a cyclic isogeny of degree p, and the same is true for q and r. Hence over some field of degree (at most) 8 the curve E admits a cyclic isogeny of degree pqr. Using Corollary 8.2 and (38) we obtain p 3 ≤ pqr ≤ c(p log p) 2 , which is impossible when p exceeds certain p 0 .