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Abstract

We consider the problem of determining a pair of functions (u, f) satisfying
the heat equation ut −∆u = ϕ(t)f(x, y), where (x, y) ∈ Ω = (0, 1)× (0, 1) and the
function ϕ is given. The problem is ill-posed. Under a slight condition on ϕ, we
show that the solution is determined uniquely from some boundary data and the
initial temperature. Using the interpolation method and the truncated Fourier
series, we construct a regularized solution of the source term f from non-smooth
data. The error estimate and numerical experiments are given.
Mathematics Subject Classification 2000: 35K05.
Keywords: heat source, ill-posed problem, interpolation method, Fourier series.

1. Introduction

Let T > 0 and let Ω = (0, 1) × (0, 1) be a heat conduction body. We consider the
problem of determining a pair of functions (u, f) satisfying the system





ut − ∆u = ϕ(t)f(x, y),

ux(0, y, t) = ux(1, y, t) = uy(x, 0, t) = uy(x, 1, t) = 0,

u(1, y, t) = 0,

u(x, y, 0) = g(x, y),

(1)

for (x, y) ∈ Ω, t ∈ (0, T ), where g ∈ L1(Ω) and ϕ ∈ L1(0, T ) are given.
This is a case of the problem of finding the source F (ξ, t) satisfying the heat equation

ut − ∆u = F,

where ξ is the spacial variable. This inverse source problem is ill-posed. Indeed, a
solution corresponding to the given data may not exist, and even if the solution exists
(uniquely) then it may not depend continuously on the data. Because the problem is
severely ill-posed and difficult, many presumptions on the form of the heat source are
required. Roughly speaking, the function F can be approximated by

F (ξ, t) ≈
N∑

n=0

ϕn(t)fn(ξ).

1



For simplicity, one reduces this approximation to its first term

F (ξ, t) = ϕ(t)f(ξ),

where one of the two functions ϕ and f is given. Many authors considered the uniqueness
and stability conditions of the determination of the heat source under this separate form
[2, 3, 14, 15, 16, 7, 8, 4]. In spire of the uniqueness and stability results, the regularization
problem for unstable cases is still difficult. For a long time, it has been investigated for
the heat souce which is time-depending only [12, 9, 5] or space-depending only [1, 13, 5].
Recently, the regularization problem for the heat source F (ξ, t) = ϕ(t)f(ξ), where ϕ

is a given function, was regarded for one-dimensional case [10] and two-dimensional
case [11]. However, these authors needed in addition an essential datum, that is the
the final condition u(ξ, T ). Although this condition is unnatural, it gives an explicit
representation of the solution as the inverse Fourier transform of a known term, and
hence ones could use the truncated integral method to construct a regularized solution.

In the present paper, we consider a similar problem to [10, 11], but the final condition
is removed completely. Moreover, the overspecified condition, i.e. u(1, y, t), is slighter
than this one in [11] and is almost optimal to still hold the uniqueness of the solution (see
Remark 3). To our knowledge, no explicit form of the solution of system (1) is available,
and hence it is not easy to solve the problem although one has exact data. Of course,
the problem with approximate data is even more difficult because of the ill-posedness.

Under a slight condition on ϕ, we shall use the variational method and some proper-
ties of analytic functions to show the uniqueness of the solution. In particular, this result
makes a regularization theorem of [11] trivial (see Remark 2). In spite of the uniqueness
result, the problem is still ill-posed. We mention that the existence problem of a solution
is not considered here. Instead, we shall assume that there is a (unique) exact solution
corresponding to the exact data, and our aim is of constructing a regularized solution
from approximate data. Using the interpolation method, we shall seek the coefficients
of the Fourier series expansion of the source term f and then construct a regularized
solution by the truncated Fourier series. The error estimate between the regularized
solution and the exact solution is of order (ln(ε−1))−1, where ε is the error between the
given data and the exact data. We also note that we shall concentrate only on finding
the source term f because we shall get a classical heat problem as soon as we know this
function.

The remainder of the paper is divided into four sections. We shall introduce some
notations and state main results in Section 2. After that, we shall prove the uniqueness
result in Section 3 and the regularization result in Section 4. In Section 5, we shall show
how our method can be numerically implemented and give two examples to illuminate
its effect.

2. Notations and main results

By variational method, we have the following formula to reconstruct the solution of
the system (1).

Lemma 1. Assume that (u, f) ∈ (C1([0, T ]; L1(Ω)) ∩ L2(0, T ; H2(Ω)), L2(Ω)) is a solu-
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tion of the system (1). Then for all (α, n) ∈ C × Z we get

e−(α2−n2π2)T

∫

Ω

u(x, y, T ) cosh(αx) cos(nπy)dxdy

−

∫

Ω

g(x, y) cosh(αx) cos(nπy)dxdy

=

T∫

0

e−(α2−n2π2)tϕ(t)dt.

∫

Ω

f(x, y) cosh(αx) cos(nπy)dxdy.

From Lemma 1, we introduce some useful notations. For w ∈ L1(Ω), ϕ ∈ L1(0, T )
and α, β ∈ C, put

G(w)(α, β) =

∫

Ω

w(x, y) cosh(αx) cos(βy)dxdy,

D(ϕ)(α, β) =

T∫

0

e−(α2−β2)tϕ(t)dt,

H(ϕ, w)(α, β) =





−
G(w)(α, β)

D(ϕ)(α, β)
, if D(ϕ)(α, β) 6= 0,

0, if D(ϕ)(α, β) = 0.

Note that for w ∈ L2(Ω) and integers m, n,

G(w)(imπ, nπ) =

∫

Ω

w(x, y) cos(mπx) cos(nπy)dxdy. (2)

Because
{√

κ(m, n) cos(mπx) cos(nπy)
}

m≥0,n≥0
is an orthonormal basis on L2(Ω), where

κ(m, n) =





1, if m = n = 0,

2, if m > n = 0 or n > m = 0,

4, if m > 0 and n > 0,

we have the following representation

w(x, y) =
∑

m,n≥0

κ(m, n)G(w)(imπ, nπ) cos(mπx) cos(nπy). (3)

This formula allows us to recover f from G(f). From Lemma 1, if (α2 − n2π2) > 0
is large and |D(ϕ)(α, nπ)| is not so small then G(f)(α, nπ) can be approximated by
H(ϕ, g)(α, nπ). To control |D(ϕ)|, we need the following condition (H) on ϕ.

(H) There exist T0 ∈ (0, T ], θ ≥ 0 and Λ > 0 and such that either ϕ(t) ≥ Λtθ for a.e
t ∈ (0, T0), or ϕ(t) ≤ −Λtθ for a.e t ∈ (0, T0).

3



Remark 1. The class of functions satisfying (H) is very broad. This condition holds
with respect to θ = 0, for example, if ϕ is continuous at t = 0 and ϕ(0) 6= 0. To compare,
we refer to the condition ϕ ∈ C1[0, T ] and ϕ(0) 6= 0 in [14, 15].

Under the condition (H), we will obtain the uniqueness of the problem (1).

Theorem 1. Assume that g ∈ L1(Ω) and ϕ satifies (H). Then the system (1) has at
most one solution (u, f) in (C1([0, T ]; L1(Ω)) ∩ L2(0, T ; H2(Ω)), L2(Ω)) .

In spite of the uniqueness, the problem is still ill-posed and hence a regularization is
necessary. Generally, the main ideas of the regularization are divided into three steps.
For each integer n, we first approximate G(f)(α, nπ) by H(ϕ, g)(α, nπ) for some real
numbers α. In the next step we recover G(f)(z, nπ) when z is in a ball of the complex
plane. Finally, we use a truncated series from the formula (3) to construct the regularized
solution.

For each integer n, we shall use the Lagrange interpolation polynomial to handle the
key point of recovering G(f)(., nπ). Recall that if A = {x1, ..., xp} be a set of p mutually
distinct complex numbers and w be a complex function then the Lagrange interpolation
polynomial L[A; w] is

L[A; w](z) =

p∑

j=1

(
∏

k 6=j

z − xk

xj − xk

)
w(xj).

Now we are ready to state the regularization result.

Theorem 2. Let g0 ∈ L1(Ω) and let ϕ0 ∈ L1(0, T ) satisfy (H). Assume that (u0, f0) ∈
(C1([0, T ]; L1(Ω)) ∩ L2(0, T ; H2(Ω)), L2(Ω)) is the exact solution of the system (1) cor-
responding to the exact data g0 and ϕ0. Let ε > 0, ϕε ∈ L1(0, T ) and gε ∈ L1(0, 1)) such
that

‖ϕε − ϕ0‖L1(0,T ) ≤ ε, ‖gε − g0‖L1(0,T ) ≤ ε.

The regularized solution fε is constructed from ϕε and gε as follows

rε ∈ Z ∩

[
ln(ε−1)

50
,
ln(ε−1)

50
+ 1

)
,

B(rε) = {±(4rε + j)|j = 1, 2, ..., 20rε},

Fε(m, n) = L [B(rε); H(ϕε, gε)(., nπ)] (imπ),

fε(x, y) =
∑

0≤m,n≤rε

κ(m, n)Fε(m, n) cos(mπx) cos(nπy).

Then fε ∈ C∞(R2) and lim
ε→0+

fε = f0 in L2(Ω). Moreover, if f0 ∈ H1(Ω) then lim
ε→0+

fε =

f0 in H1(Ω) and there exists a constant ε0 > 0 depending only on the exact data such
that

‖fε − f0‖L2(Ω) ≤
50

π ln(ε−1)
‖f0‖H1(Ω)

for all ε ∈ (0, ε0).
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3. Uniqueness

Proof of Lemma 1.

Proof. Getting the inner product in L2(Ω) of the first equation of the system (1) and
W (x, y) = cosh(αx) cos(nπy), then using the integral by part we have

d

dt

∫

Ω

uWdxdy − (α2 − n2π2)

∫

Ω

uWdxdy = ϕ(t)

∫

Ω

fWdxdy.

Next, we multiply the latter equality with e−(α2−n2π2)t to get

d

dt



e−(α2−n2π2)t

∫

Ω

uWdxdy



 = e−(α2−n2π2)tϕ(t)

∫

Ω

fWdxdy. (4)

Finally, integrating (4) with respect to t from 0 to T we obtain the desired result.

Now we consider some properties of the functions G(w) and D(ϕ).

Lemma 2. Let w ∈ L1(Ω) and n ∈ Z. Then G(w)(., nπ) is an entire function and

|G(w)(z, nπ)| ≤ e|z| ‖w‖L1(Ω) , ∀z ∈ C.

Moreover, if w ∈ L2(Ω) and w 6≡ 0 then there exists an integer n such that

lim sup
r→+∞

ln |G(w)(r, nπ)|

r
≥ −1.

Proof. For each integer n, put Φn(z) = G(w)(z, nπ). Note that z 7→ Φn(iz) is the
cos-Fourier transform of the function

x 7→

1∫

0

w(x, y) cos(nπy)dy, x ∈ [0, 1].

and hence Φn(iz) as well as Φn(z) are entire functions. Moreover,

|Φn(z)| ≤

∫

Ω

|w(x, y) cosh(zx) cos(nπy)| dxdy

≤

∫

Ω

|w(x, y) cosh(z)| dxdy ≤ e|z| ‖w‖L1(Ω) , ∀z ∈ C.

Now assume that w 6≡ 0. Note that

d

dz
Φn(imπ) =

∫

Ω

ixw(x, y) sin(mπx) cos(nπy)dxdy.
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and {sin(mπx) cos(nπy)}m≥1,n≥0 is a orthogonal basis on L2(Ω). Therefore, Φn is not
constant for some integer n, and hence MΦn

(r) > 1 for r > 0 large enough, where
MΦn

(r) = max
|z|=r

|Φn(z)|. We shall show that

lim sup
r→+∞

ln |Φn(r)|

r
≥ −1.

Of course, it is sufficient to consider the case lim sup
r→+∞

ln |Φn(r)| < 0. For r > 0 large

enough, since ln |Φ(r)| < 0 and 1 < MΦn
(r) ≤ er ‖w‖L1(Ω), we have

ln |Φn(r)|

r + ln ‖w‖L1(Ω)

≥
ln |Φn(r)|

ln MΦn
(r)

.

Moreover, according to Beurling theorem (see, e.g., [6], Section 6.1, page 40) we get

lim sup
r→+∞

ln |Φn(r)|

ln MΦn
(r)

≥ −1.

This implies the desired result.

Lemma 3. Let ϕ ∈ L1(0, T ) and (α, n) ∈ R × Z. Then

|D(ϕ)(α, nπ)| ≤ ||ϕ||L1(0,T )

when (α2 − n2π2) > 0. Moreover, if ϕ satisfies (H) then

lim inf
(α2−n2π2)→+∞

(α2 − n2π2)θ+1 |D(ϕ)(α, nπ)| > 0,

where θ is as in (H) corresponding to ϕ.

Proof. The first inequality is obvious. Now assume that ϕ satisfies the condition (H)
corresponding to T0, θ and Λ. We shall prove that

lim inf
λ→+∞

λθ+1

∣∣∣∣∣∣

T∫

0

e−λtϕ(t)dt

∣∣∣∣∣∣
> 0,

which will imply the desired result by choosing λ = α2 − n2π2. We have

λθ+1

∣∣∣∣∣∣

T∫

0

e−λtϕ(t)dt

∣∣∣∣∣∣
≥ λθ+1

∣∣∣∣∣∣

T0∫

0

e−λtϕ(t)dt

∣∣∣∣∣∣
− λθ+1

∣∣∣∣∣∣

T∫

T0

e−λtϕ(t)dt

∣∣∣∣∣∣

≥ Λλθ+1

T0∫

0

e−λttθdt − λθ+1e−λT0 ‖ϕ‖L1(0,T )

for all λ > 0. Since lim
λ→+∞

(
λθ+1e−λT0

)
= 0, it is sufficient to show that

lim inf
λ→+∞

Ψθ(λ) > 0, (5)
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where

Ψθ(λ) = λθ+1

T0∫

0

e−λttθdt, ∀λ > 0.

Using the integral by part we get

Ψθ+1(λ) = −(λT0)
θ+1e−λT0 + (θ + 1)Ψθ(λ).

Therefore, it is enough to prove (5) for all θ ∈ [0, 1). Indeed, by direct calculus we obtain
lim

λ→+∞
Ψ1(λ) = 1, lim

λ→+∞
Ψ2(λ) = 2, and by Holder inequality we get

(Ψθ(λ))
1

2−θ (Ψ2(λ))
1−θ
2−θ ≥ Ψ1(λ), ∀θ ∈ [0, 1).

Thus lim inf
λ→+∞

Ψθ(λ) ≥ 2θ−1 for all θ ∈ [0, 1), and the proof is completed.

Proof of Theorem 1

Proof. Let (u1, f1) and (u2, f2) be two solutions of the system (1). Put u = u1 − u2 and
f = f1 − f2. We have to show that (u, f) = (0, 0).

Assume that f 6= 0. It follows from Lemma 1 that, for all (α, n) ∈ R × Z,

e−(α2−n2π2)T G(u(., ., T ))(α, nπ) = D(ϕ)(α, nπ).G(f)(α, nπ). (6)

Due to Lemma 2, there exist an integer n and a sequence of positive numbers {αm},
which depends on n, such that lim

m→∞
αm = +∞ and, for all m ≥ 1,

|G(f)(αm, nπ)| ≥ e−2αm .

Using Lemma 2 again we get

|G(u(., ., T ))(αm, nπ)| ≤ eαm ‖u(., ., T )‖L1(Ω) .

Moreover, according to Lemma 3, there exist constants θ > 0 and C0 > 0, which depend
on ϕ, such that

|D(ϕ)(αm, nπ)| ≥
C0

(α2
m − n2π2)θ+1

for all m large enough. Therefore, from (6) we obtain that

e−(α2
m−n2π2)T eαm ‖u(., ., T )‖L1(Ω) ≥

C0

(α2
m − n2π2)θ+1

e−2αm

for all m large enough. This is a contradiction.
Thus f = 0. Hence, the equality (4) in the proof of Lemma 1 reduces to

d

dt

(
e−(α2−n2π2)tG(u(., ., t))(α, nπ)

)
= 0.

It follows from u(., ., 0) = 0 that u = 0.
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Remark 2. In Theorem 2 of [11], the authors imposed that u(., ., 0) = 0 and ϕ <

−C0 a.e. for some positive constant C0. However, due to our uniqueness result, these
requirements are so strict that the problem has only the trivial solution.

Remark 3. In comparison to [11], here the datum u(x, 1, t) is omitted. Moreover, if
u(1, y, t) is omitted too then the uniqueness of the solution may not hold even if the final
temperature is given. For example, the system





ut − ∆u = (πcos(πt) + 2π2 sin(πt))f(x, y),

ux(0, y, t) = ux(1, y, t) = uy(x, 0, t) = uy(x, 1, t) = 0,

u(x, y, 0) = 0, u(x, y, 1) = 0,

has the trivial solution (u, f) = (0, 0) and (at least) a non-trivial solution

u(x, y, t) = sin(πt) cos(πx) cos(πy), f(x, y) = cos(πx) cos(πy).

Thus the overspecified condition u(1, y, t) is essential.

4. Regularization

To construct the regularized solution, we first want to solve the problem of recov-
ering the entire function G(f)(., nπ) for each integer n. The key tool is the Lagrange
interpolation polynomial.

Lemma 4. Let r ≥ 1 be an integer and Br = {±(4r + j)|j = 1, 2, ..., 20r}. Let w and
w̃ be two even complex function such that w is an entire function and |w(z)| ≤ Ae|z| for
all z ∈ C, where A is independent on z. Then

sup
|z|≤πr

|w(z) − L(Br; w̃)(z)| ≤ Ae−r + 20re25r sup
z∈Br

|w(z) − w̃(z)|.

Proof. Fix z ∈ C, |z| ≤ πr and denote zj = 4r + j for each j = 1, 2, ..., 20r. We shall use
the triangle inequality

|w(z) − L(Br; w̃)(z)| ≤ |w(z) − L(Br; w)(z)| + |L(Br; w − w̃)(z)|.

We first estimate |w(z)−L(Br; w)(z)|. Let γ = {z ∈ C, |z| = 45r}. Using the residue
theorem, we get the Hermite’s remainder formula

w(z) − L[Br; w](z) =
1

2πi

∫

γ

w(ξ)

ξ − z
·

20r∏

j=1

z2 − z2
j

ξ2 − z2
j

dξ.

Therefore,

|w(z) − L[Br; w](z)| ≤ 45r sup
ξ∈γ

{
|w(ξ)|

|ξ − z|
·

20r∏

j=1

|z2 − z2
j |

|ξ2 − z2
j |

}
. (7)
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For ξ ∈ γ we have |w(ξ)| ≤ Ae45r, |ξ − z| ≥ (45 − π)r and

20r∏

j=1

|z2 − z2
j |

|ξ2 − z2
j |

≤
20r∏

j=1

|z|2 + z2
j

|ξ|2 − z2
j

≤
20r∏

j=1

(πr)2 + z2
j

(45r)2 − z2
j

. (8)

We shall show that

20r∏

j=1

(πr)2 + z2
j

(45r)2 − z2
j

≤
45 − π

45
e−46r, ∀r = 1, 2, ... (9)

We can check (9) by direct computations for r = 1, 2, ..., 54. Now we consider when
r ≥ 55. Since the real function

ϑ(x) = ln

(
(πr)2 + x

(45r)2 − x

)
.

is increasing and concave in [0, (24r)2], we can apply Jensen’s inequality to get

20r∑

j=1

ϑ(z2
j ) =

5∑

k=1




4kr∑

j=4(k−1)r+1

ϑ(z2
j )


 ≤ 4r

5∑

k=1

ϑ


 1

4r

4k∑

j=4(k−1)r+1

z2
j




= 4r
5∑

k=1

ϑ

((
16k2 + 16k +

16

3

)
r2 + (4k + 2)r +

1

6

)

≤ 4r
5∑

k=1

ϑ

((
16k2 + 16k +

16

3

)
r2 + (4k + 2)

r2

55
+

r2

6 × 552

)

= 4r
5∑

k=1

ϑ

((
16k2 +

884

55
k +

32487

6050

)
r2

)

= 4r
5∑

k=1

ln

(
π2 +

(
16k2 + 884

55
k + 32487

6050

)

452 −
(
16k2 + 884

55
k + 32487

6050

)
)

= 4r × (−11.51809713) < −46r + ln

(
45 − π

45

)
, r ≥ 55.

Thus (9) holds for all r = 1, 2, .... From (8) and (9), we reduce (7) to

|w(z) − L(Br; w)(z)| ≤ Ae−r, ∀r = 1, 2, ... (10)

We shall now estimate |L(Br; w − w̃)(z)|. Since

L(Br; w − w̃)(z) =
20r∑

j=1

(
∏

k 6=j

z2 − z2
k

z2
j − z2

k

)
(w(zj) − w̃(zj)) ,

we obtain

|L(Br; w − w̃)(z)| ≤ 20rσ sup
1≤j≤20r

∏

k 6=j

|z|2 + z2
k

|z2
j − z2

k|
, (11)
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where σ = sup
1≤j≤20r

|w(zj) − w̃(zj)|. We have

∏

k 6=j

|z|2 + z2
k∣∣z2

j − z2
k

∣∣ =
∏

k 6=j

|z|2 + z2
k

(zj + zk)zk
×

zk

|zj − zk|
≤
∏

k 6=j

zk

|zj − zk|

≤

20r∏
k=2

zk

∏
k 6=j

|zj − zk|
=

(4r + 2).(4r + 3)...(24r)

(j − 1)!(20r − j)!

≤
(4r + 2).(4r + 3)...(24r)

(10r − 1)!(10r)!
=: J(r).

Note that J(1) < e25 and

J(r + 1)

J(r)
=

(24r + 1).(24r + 2)...(24r + 24)

(4r + 2)...(4r + 5) × (10r) × [(10r + 1)...(10r + 9)]2 × (10r + 10)
+

<
2424

44 × 1020
< e25.

Here, the latter inequality can checked by direct expansion

2424 × (4r + 2)...(4r + 5) × (10r) × [(10r + 1)...(10r + 9)]2 × (10r + 10)

−44 × 1020 × (24r + 1)(24r + 2)...(24r + 24)

to get a polynomial of degree 23 in term of r, which is obviously positive for r ≥ 1. Thus
J(r) < e25r for each integer r ≥ 1. Therefore, we can reduce (11) to

|L(Br; w − w̃)(z)| ≤ 20re25rσ. (12)

From (10) and (12) we have the desired result.

In our application of Lemma 4, we shall choose w = G(f0)(., nπ), an unknown
function, and w̃ = H(ϕε, gε)(., nπ), which is known from data. We have the following
error estimate between these functions.

Lemma 5. Let u0, f0, ϕ0, g0, ϕε, gε, rε, B(rε) be as in Theorem 2 and θ be as in the
condition (H) corresponding to ϕ0. Then there exists ε1 > 0 depending only on the
exact data such that

|G(f0)(α, nπ) − H(ϕε, gε)(α, nπ)| ≤
(
ln(ε−1)

)4θ+5
e|α|ε.

provided ε ∈ (0, ε1), 0 ≤ n ≤ rε and α ∈ B(rε).

Proof. Note that if α ∈ B(rε) then 4rε ≤ |α| ≤ 24rε. Hence, for ε > 0 small enough one
has

ln(ε−1)

T
≤ α2 − n2π2 ≤

(
ln(ε−1)

)2
.

Thus, according to Lemma 3, there exists C(ϕ0) > 0 depending only on ϕ0 such that

|D(ϕ0)(α, nπ)| ≥
C(ϕ0)

(α2 − n2π2)θ+1
≥
(
ln(ε−1)

)−2(θ+1)
,
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and consequently,

|D(ϕε)(α, nπ)| ≥ |D(ϕ0)(α, nπ)| − |D(ϕ0)(α, nπ) − D(ϕε)(α, nπ)|

≥
(
ln(ε−1)

)−2(θ+1)
− ε ≥

1

2

(
ln(ε−1)

)−2(θ+1)
.

It follows from Lemma 1 and Lemma 2, for ε > 0 small enough, that

|G(f0)(α, nπ) − H(ϕ0, g0)(α, nπ)| = e−(α2−n2π2)T .

∣∣∣∣
G(u0(., ., T ))(α, nπ)

D(ϕ0)(α, nπ)

∣∣∣∣

≤ e−(α2−n2π2)T .
e|α| ‖u0(., ., T )‖L1(Ω)

(ln(ε−1))−2(θ+1)
≤

1

2
ε.e|α|

(
ln(ε−1)

)4θ+5
.

Moreover, for ε > 0 small enough,

|H(ϕ0, g0)(α, nπ) − H(ϕε, gε)(α, nπ)|

=

∣∣∣∣
G(g0(., ., T ))(α, nπ)

D(ϕ0)(α, nπ)
−

G(gε(., ., T ))(α, nπ)

D(ϕε)(α, nπ)

∣∣∣∣

≤
|G(g0(., ., T ))(α, nπ)| . |D(ϕε)(α, nπ) − D(ϕ0)(α, nπ)|

|D(ϕ0)(α, nπ)D(ϕε)(α, nπ)|

+
|D(ϕ0)(α, nπ)| . |G(gε(., ., T ))(α, nπ) − G(g0(., ., T ))(α, nπ)|

|D(ϕ0)(α, nπ)D(ϕε)(α, nπ)|

≤
e|α| ‖g0‖L1(Ω) .ε

(ln(ε−1))−2(θ+1)
.2 (ln(ε−1))−2(θ+1)

+
‖ϕ0‖L1(0,T ) .e|α|ε

(ln(ε−1))−2(θ+1)
.2 (ln(ε−1))−2(θ+1)

≤
1

2

(
ln(ε−1)

)4θ+5
e|α|ε.

The desired result follows the two latter inequalities and the triangle inequality.

For w ∈ L2(Ω) and an integer M ≥ 1, put

ΓM(w)(x, y) =
∑

0≤m,n≤M

κ(m, n)G(imπ, nπ) cos(mπx) cos(nπy).

The formula (3) means lim
M→+∞

ΓM(w) = w in L2(Ω). However, to prove Theorem 2 we

shall need a sharper estimate for the remainder of the Fourier series.

Lemma 6. If w ∈ H1(Ω) then lim
M→+∞

ΓM(w) = w in H1(Ω) and

‖ΓM(w) − w‖L2(Ω) ≤
1

π(M + 1)
‖w‖H1(Ω) .

Proof. From 2, using the integral by part we get

πmG(w)(imπ, nπ) = −

∫

Ω

wx(x, y) sin(mπx) cos(nπy)dxdy,

πnG(w)(imπ, nπ) = −

∫

Ω

wy(x, y) cos(mπx) sin(nπy)dxdy,

11



and hence

π2(m2 + n2)κ(m, n) |G(w)(imπ, nπ)|2

= κ(m, n)




∫

Ω

wx(x, y) sin(mπx) cos(nπy)dxdy




2

+κ(m, n)



∫

Ω

wy(x, y) cos(mπx) sin(nπy)dxdy




2

.

Since {sin(mπx) cos(nπy)}m≥1,n≥0 and {cos(mπx) sin(nπy)}m≥0,n≥1 are orthogonal bases

on L2(Ω), it follows from Parseval equality that

∑

m,n≥0

κ(m, n)



∫

Ω

wx(x, y) sin(mπx) cos(nπy)




2

= ‖wx‖
2
L2(Ω) ,

∑

m,n≥0

κ(m, n)




∫

Ω

wy(x, y) cos(mπx) sin(nπy)




2

= ‖wy‖
2
L2(Ω) .

Thus
∑

m,n≥0

π2(m2 + n2)κ(m, n) |G(w)(imπ, nπ)|2

= ‖wx‖
2
L2(Ω) + ‖wy‖

2
L2(Ω) ≤ ‖w‖2

H1(Ω) .

Using Parseval equality again, from the latter inequality we have

‖ΓM(w) − w‖2
L2(Ω)

=
∑

max{m,n}>M

κ(m, n) |G(w)(imπ, nπ)|2

<
1

π2(M + 1)2

∑

max{m,n}>M

π2(m2 + n2)κ(m, n) |G(w)(imπ, nπ)|2

≤
1

π2(M + 1)2
‖w‖2

H1(Ω) ,

and

‖ΓM(w) − w‖2
H1(Ω)

=
∑

max{m,n}>M

(
1 + π2(m2 + n2)

)
κ(m, n) |G(w)(imπ, nπ)|2 → 0

as M → +∞.

Proof of Theorem 2.
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Proof. We shall first get the error between Γrε
(f0) and fε, and then use the approxima-

tion between Γrε
(f0) and f0 to get the results. Note that

G(fε)(imπ, nπ) =

{
Fε(m, n) = L [Bε; H(ϕε, gε)(., nπ)] (imπ), if 0 ≤ m, n ≤ rε,

0, otherwise.

Let us consider 0 ≤ m, n ≤ rε. By Lemma 2, G(f0)(., nπ) is an entire function and
|G(f0)(z, nπ)| ≤ ‖f0‖L1(Ω) e|z|, z ∈ C. Moreover, for ε > 0 small enough, Lemma 5 gives

sup
α∈B(rε)

|G(f0)(α, nπ) − H(ϕε, gε)(α, nπ)| ≤ (ln(ε−1))4θ+5e24rεε.

Therefore, it follows from Lemma 4 that

|G(f0)(imπ, nπ) − G(fε)(imπ, nπ)|

= |G(f0)(imπ, nπ) − L [Bε; H(ϕε, gε)(., nπ)] (imπ)|

≤ ‖f0‖L1(Ω) e−rε + 20rεe
25rε
(
ln(ε−1)

)4θ+5
e24rεε, 0 ≤ m, n ≤ rε,

for ε > 0 small enough. Note that erε ≤ eε−1/50, the above inequality reduces to

|G(f0)(imπ, nπ) − G(fε)(imπ, nπ)| ≤ ε1/51, 0 ≤ m, n ≤ rε,

for ε > 0 small enough. Therefore,

‖Γrε
(f0) − fε‖

2
H1(Ω)

=
∑

0≤m,n≤rε

(
1 + π2(m2 + n2)

)
κ(m, n) |G(f0)(imπ, nπ) − G(fε)(imπ, nπ)|2

≤ (1 + rε)
2
(
1 + 2π2r2

ε

)
4ε2/51 ≤ ε1/26

for ε > 0 small enough.
Thus lim

ε→0+
(Γrε

(f0) − fε) = 0 in H1(Ω). Hence it follows from lim
ε→0+

Γrε
(f0) = f0 in

L2(Ω) that lim
ε→0+

fε = f0 in L2(Ω).

Now assume in addition that f0 ∈ H1(Ω). Then Lemma 6 leads to lim
ε→0+

Γrε
(f0) = f0

in H1(Ω) , and hence lim
ε→0+

fε = f0 in H1(Ω). Moreover, using Lemma 6 again we get

‖fε − f0‖L2(Ω) ≤ ‖Γrε
(f0) − fε‖L2(Ω) + ‖Γrε

(f0) − f0‖L2(Ω)

≤ ε1/52 +
1

π(rε + 1)
‖f0‖H1(Ω)

≤
50

π ln(ε−1)
‖f0‖H1(Ω)

for ε > 0 small enough.

5. Numerical experiments
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In this section, for simplicity we shall choose T = 1 and ε = k−1, where ε is the error
of the data and k is an integer. The regularized scheme in Theorem 2 can be rewritten as
the following procedure, where k, ϕk, gk are given data and fk is the regularized solution.

r := ceil

(
ln(k)

50

)
; fk := 0;

for n from 1 to 20r do

for j from 1 to 20r do

zj := 4r + j; Hj := −

1∫
0

1∫
0

gk cosh(zjx) cos(nπy)dxdy

T∫
0

e−(z2
j −n2π2)tϕk(t)dt

;

end do;

for m from 0 to r do

coef := 0;

for j from 1 to 20r do

w := 1;

for ℓ from 1 to 20r do

if (ℓ 6= j) then w := w ∗
−(mπ)2 − z2

ℓ

z2
j − z2

ℓ

end if ;

end do;

coef := coef + w ∗ Hj ;

end do;

fk := fk + κ(m, n) ∗ coef ∗ cos(mπx) ∗ cos(nπy);

end do;

end do;

In the two following examples, we will show the ill-posedness of the problem and how
our regularization treat it.
Example 1. Consider the exact data

ϕ0(t) = π2e−4π2t, g0(x, y) = (1 + cos(πx)) cos(πy),

Then the system (1) has the exact solution

u0(x, y, t) = e−4π2t (1 + cos(πx)) cos(πy),

f0(x, y) = −3 cos(πy) − 2 cos(πx) cos(πy).

For each integer k ≥ 1, take the disturbed data

ϕk(t) = ϕ0(t), gk(x, y) = g0(x, y) +
π

k
sin2(kπx) cos(kπy).
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Then the system (1) has the disturbed solution

ũk(x, y, t) = u0(x, y, t) +
π

k
e−4π2t sin2(kπx) cos(kπy),

f̃k(x, y) = f0(x, y) +
π

k

(
(5k2 − 4) sin2(kπx) − 2k2

)
cos(kπy).

We see that

‖gk − g‖L1(Ω) =
1

k
,
∥∥∥f̃k − f0

∥∥∥
L2(Ω)

=
π

4

√
27k2 − 56 +

48

k2
.

Hence, if k is large then a small error of the data will cause a large error of the solution.
Thus the problem is ill-posed and a regularization is necessary.

Corresponding to the error of the data ε = k−1 = 10−2, our regularized procedure
produces the regularized solution

fk(x, y) = −2.999721 cos(πy) − 1.997145 cos(πx) cos(πy).

The error between the regularized solution and the exact solution is

‖fk − f0‖L2(Ω) = 0.001441.

In this case, the exact solution has form of a truncated Fourier series, and hence the
approximation is very good.
Example 2. Corresponding to the exact data

ϕ0(t) = et, g0(x) = (x cos(1 − x) + sin(1 − x) − 1) (2y3 − 3y2),

the exact solution of the system (1) is

u0(x, y, t) = et (x cos(1 − x) + sin(1 − x) − 1) (2y3 − 3y2),

f0(x, y) = (2x cos(1 − x) − 1) (2y3 − 3y2) +

− (x cos(1 − x) + sin(1 − x) − 1) (12y − 6).

For each integer k ≥ 1, the disturbed data

ϕk(t) = ϕ0(t), gk(x, y) = g0(x, y) +
π

k
sin2(kπx) cos(2πy)

corresponds the disturbed solution

ũk(x, y, t) = u0(x, y, t) +
π

k
et sin2(kπx) cos(2πy),

f̃k(x, y) = f0(x, y) +
π

k

(
(4k2π2 + 4π2 + 1) sin2(kπx) − 2k2π2

)
cos(2πy).

We see that

‖gk − g‖L1(Ω) =
1

k
→ 0,

∥∥∥f̃k − f0

∥∥∥
L2(Ω)

=
π

4

√
16π4k2 + 32π4 + 8π2 +

48π4 + 24π2 + 3

k2
→ +∞
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as k → +∞. Thus a small error of the data causes a large error of the solution.

Figure 1. The exact solution f0(x, y).

Figure 2. The disturbed solution f̃k with k = 100.

Now, we use our regularized procedure for ε = n−1 = 10−2. The regularized solution is

fk(x, y) = 0.040435 + 0.426992 cos(πx)

−0.431701 cos(πy) − 0.800509 cos(πx) cos(πy).
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Figure 3. The regularized solution fk with k = 100.

The error between the regularized solution and the exact solution is
‖fk − f0‖L2(Ω) = 0.059997. To see the effect of the regularization, we note that the

disturbed solution corresponding to k = 100 causes a so large error∥∥∥f̃k − f0

∥∥∥
L2(Ω)

= 1.24 × 106. Figure 1, Figure 2 and Figure 3 give a visual comparison

between the exact solution, the disturbed solution and the regularized solution in the
second example.
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