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HAL is

The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions

Introduction

The wave equation u tt -∆u = f (x, t, u, u t ), associated with the different boundary conditions, has been extensively studied by many authors, see [1 -8] and references therein. In the above mentioned papers, the existence and regularity of solutions, the asymptotic behavior and asymptotic expansion of solutions have received much attention.

In [START_REF] Santos | Decay rates for solutions of a system of wave equations with memory[END_REF], Santos also studied the asymptotic behavior of the solutions to a coupled system of wave equations having integral convolutions as memory terms. Their main result showed that the solution of that system decays uniformly in time, with rates depending on the rate of decay of the kernel of the convolutions.

In this paper we consider the following initial-boundary value problem for the linear wave equation u ttu xx + Ku + λu t = f (x, t) in (0, 1) × (0, ∞),

u x (0, t) = h 0 u(0, t) + λ 0 u t (0, t) + h 1 u(1, t) + λ 1 u t (1, t) + g 0 (t), (

-u x (1, t) = h 1 u(1, t) + λ 1 u t (1, t) + h 0 u(0, t) + λ 0 u t (0, t) + g 1 (t), (1.3) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (1.4) where h 0 , h 1 , λ 0 , λ 1 , h 0 , h 1 , λ 0 , λ 1 , K, λ are constants and u 0 , u 1 , f , g 0 , g 1 are given functions.

The rest of this paper consists of four sections. In section 2, we present some notations and lemmas that will be used to establish our results. In section 3, we investigate the existence and uniqueness of a weak solution and so a strong solutions of problem (1.1) -(1.4) with the convenable conditions. Section 4 is devoted to the study of the regularity of solutions. Finally, in fifth section, we prove that the exponential decay properties of the global solutions are similar to that of the functionals f, g 0 , g 1 .

Preliminaries

Let Ω = (0, 1) and Q T = Ω × (0, T ), for T > 0. In what follows we will denote

u, v = 1 0 u(x)v(x)dx, v = v, v ,
and • 1 is a equivalent norm in H 1 (Ω), defined by

v 1 = v 2 (0) + v x 2 1/2 .
We also denote u(x, t), u t (x, t), u tt (x, t), u x (x, t) and u xx (x, t) by u(t), u ′ (t), u ′′ (t), u x (t), u xx (t), respectively, when no confusion arises.

Consider a symmetric bilinear form a(u, v) on H 1 (Ω) × H 1 (Ω) by setting a(u, v) = u x , v x + h 0 u(0)v(0) + h 1 u(1)v [START_REF] Clark | Global classical solutions to the Cauchy problem for a nonlinear wave equation[END_REF].

We state here some preliminary results that will be used in the sequel.

Lemma 2.1. The imbedding H 1 (Ω) ֒→ C 0 (Ω) is compact and

v C 0 (Ω) ≤ √ 2 v 1 , for all v ∈ H 1 (Ω). (2.1) Lemma 2.2. Let h 0 > 0 and h 1 ≥ 0. Then, the symmetric bilinear form a(•, •) is continuous on H 1 (Ω) × H 1 (Ω) and coercive on H 1 (Ω), i.e., (i) |a(u, v)| ≤ C 1 u 1 v 1 , ∀u, v ∈ H 1 (Ω), (ii) a(v, v) ≥ C 0 v 2 1 , ∀v ∈ H 1 (Ω), where C 0 = min {1, h 0 } and C 1 = max {1, h 0 , 2h 1 }. Lemma 2.3. Let λ 0 , λ 1 > 0 and λ 0 , λ 1 ∈ R such that λ 0 + λ 1 2 -4λ 0 λ 1 < 0. Then we have λ 0 x 2 + λ 1 y 2 + λ 0 + λ 1 xy ≥ 1 2 µ min x 2 + y 2 , ∀x, y ∈ R,
where

µ min = 1 4 -λ 0 + λ 1 2 + 4 λ 0 λ 1 min 1 λ 0 , 1 λ 1 > 0.
The proof of these lemmas are straightforward. We shall omit the details.

Remark 2.4. From the Lemma 2.2 we deduce that

C 0 v 2 1 ≤ v 2 a ≤ C 1 v 2 1 , ∀v ∈ H 1 (Ω), (2.2)
where • a is the norm on H 1 (Ω) generated by the the symmetric bilinear form a(•, •), i.e.,

v a = a(v, v), ∀v ∈ H 1 (Ω).

Existence and uniqueness of solutions

In this section, we assume that h 0 , λ 0 , λ 1 are positive constants, h 1 is nonnegative constant and K, λ, h 0 , h 1 , λ 0 , λ 1 are constants verifying the condition

λ 0 + λ 1 < 2 λ 0 λ 1 . (3.1) 
Theorem 3.1. Let T > 0 and assume that g 0 ,

g 1 ∈ L 2 (0, T ), f ∈ L 1 0, T ; L 2 (Ω) . Then, for each ( u 0 , u 1 ) ∈ H 1 (Ω) × L 2 (Ω), the problem (1.1) -(1.4) has a unique weak solution u satisfying u ∈ L ∞ 0, T ; H 1 (Ω) , u t ∈ L ∞ 0, T ; L 2 (Ω) , and 
u(0, •), u(1, •) ∈ H 1 (0, T ) .
Proof. The proof consists of step 1 -4.

Step 1. The Faedo-Galerkin approximation. Let {w j } be a denumerable base of H 1 (Ω). We find the approximate solution of problem (1.1) -(1.4) in the form

u m (t) = m j=1 c mj (t)w j ,
where the coefficient functions c mj satisfy the system of ordinary differential equations

u ′′ m (t), w j + a (u m (t), w j ) + λ 0 u ′ m (0, t) + h 1 u m (1, t) + λ 1 u ′ m (1, t) w j (0) + λ 1 u ′ m (1, t) + h 0 u m (0, t) + λ 0 u ′ m (0, t) w j (1) + Ku m (t) + λu ′ m (t), w j (3.2) = -g 0 (t)w j (0) -g 1 (t)w j (1) + f (t), w j , 1 ≤ j ≤ m,
with the initial conditions

u m (0) = u 0m = m j=1 α mj w j → u 0 strongly in H 1 (Ω), (3.3) 
and

u ′ m (0) = u 1m = m j=1 β mj w j → u 1 strongly in L 2 (Ω). (3.4)
From the assumptions of Theorem 3.1, system (3.2)-(3.4) has solution u m (t) on some interval [0, T m ]. The following estimates allow one to take T m = T , for all m.

Step 2. A priori estimates. Multiplying the j th equation of (3.2) by c ′ mj (t) and summing up with respect to j, afterwards, integrating by parts with respect to the time variable from 0 to t, we get after some rearrangements

S m (t) =S m (0) -2 h 0 t 0 u m (0, s)u ′ m (1, s)ds -2 h 1 t 0 u m (1, s)u ′ m (0, s)ds -2K t 0 u m (s), u ′ m (s) ds -2λ t 0 u ′ m (s) 2 ds (3.5) -2 t 0 g 0 (s)u ′ m (0, s)ds -2 t 0 g 1 (s)u ′ m (1, s)ds + 2 t 0 f (s), u ′ m (s) ds =S m (0) + 7 i=1 I i ,
where

S m (t) = u ′ m (t) 2 + u m (t) 2 a + 2 t 0 λ 0 u ′ m (0, s) 2 + λ 1 u ′ m (1, s) 2 + λ 0 + λ 1 u ′ m (0, t)u ′ m (1, t) ds. (3.6) 
By Lemma 2.3, it follows from (3.6), that

S m (t) ≥ µ 0 X m (t), (3.7) 
where

X m (t) = u ′ m (t) 2 + u m (t) 2 1 + t 0 u ′ m (0, s) 2 + u ′ m (1, s) 2 ds, (3.8) 
and µ 0 = min {C 0 , µ min }. Now, using the inequalities (2.1) -(2.2) and the following inequalities

2ab ≤ εa 2 + 1 ε b 2 , ∀a, b ∈ R, ∀ε > 0, (3.9) |u m (0, t)| ≤ u m (t) C 0 (Ω) ≤ √ 2 u m (t) 1 ≤ 2X m (t), (3.10) u m (t) 2 ≤ 2 u 0m 2 + 2 t 0 u ′ m (s) 2 ds ≤ 2 u 0m 2 + 2 t 0 X m (s)ds, (3.11) 
we shall estimate respectively the terms on the right-hand side of (3.5) as follows

I 1 = -2 h 0 t 0 u m (0, s)u ′ m (1, s)ds ≤ 1 ε h 0 2 t 0 |u m (0, s)| 2 ds + ε t 0 u ′ m (1, s) 2 ds (3.12) ≤ 2 ε h 0 2 t 0 X m (s)ds + εX m (t), I 2 = -2 h 1 t 0 u m (1, s)u ′ m (0, s)ds ≤ 2 ε h 1 2 t 0 X m (s)ds + εX m (t), (3.13) 
I 3 = -2K t 0 u m (s), u ′ m (s) ds ≤ 2 √ 2 |K| t 0 X m (s)ds, (3.14) 
I 4 = -2λ t 0 u ′ m (s) 2 ds ≤ 2 |λ| t 0 X m (s)ds, (3.15) 
I 5 = -2 t 0 g 0 (s)u ′ m (0, s)ds ≤ 1 ε g 0 2 L 2 (0,T ) + ε t 0 u ′ m (0, s) 2 ds ≤ 1 ε g 0 2 L 2 (0,T ) + εX m (t), (3.16 
)

I 6 = -2 t 0 g 1 (s)u ′ m (1, s)ds ≤ 1 ε g 1 2 L 2 (0,T ) + εX m (t), ( 3 
.17)

I 7 = 2 t 0 f (s), u ′ m (s) ds ≤ T 0 f (s) ds + t 0 f (s) X m (s)ds. (3.18)
On the other hand, using (3.3) -(3.4), (3.6) and the assumption (

u 0 , u 1 ) ∈ H 1 (Ω) × L 2 (Ω), we have S m (0) = u 1m 2 + u 0m 2 a ≤ C 1 for all m, (3.19) 
where C 1 is a constant depending only on u 0 , u 1 , h 0 and h 1 .

Combining (3.5), (3.7), (3.12)-(3.19), we obtain

(µ 0 -4ε) X m (t) ≤ C 1 + 1 ε g 0 2 L 2 (0,T ) + 1 ε g 1 2 L 2 (0,T ) + T 0 f (s) ds (3.20) + t 0 2 ε h 0 2 + h 1 2 + 2 √ 2 |K| + 2 |λ| + f (s) X m (s)ds, for all ε > 0. By choosing ε > 0 such that µ 0 -4ε > 0, it follows from (3.20) that X m (t) ≤ M (1) 
T + t 0 N (1) 
T (s)X m (s)ds, (3.21) 
where

M (1) T = (µ 0 -4ε) -1 C 1 + 1 ε g 0 2 L 2 (0,T ) + 1 ε g 1 2 L 2 (0,T ) + T 0 f (s) ds , and 
N (1) T (s) = (µ 0 -4ε) -1 2 ε h 0 2 + h 1 2 + 2 √ 2 |K| + 2 |λ| + f (s) , N (1) 
T ∈ L 1 (0, T ).

By Gronwall's lemma, we deduce from (3.21), that

X m (t) ≤ M (1) 
T exp t 0 N (1) 
T (s)ds ≤ C T , for all t ∈ [0, T ], (3.22) 
where C T is a posistive constant depending only on T .

Step 3. Limiting process. From (3.8) and (3.22), we deduce the existence of a subsequence of {u m } still also so denoted, such that

       u m → u in L ∞ (0, T ; H 1 (Ω)) weak*, u ′ m → u ′ in L ∞ (0, T ; L 2 (Ω)) weak*, u m (0, •) → u(0, •) in H 1 (0, T ) weakly, u m (1, •) → u(1, •) in H 1 (0, T ) weakly. (3.23)
By the compactness lemma of Lions [5: p.57] and the imbedding H 1 (0, T ) ֒→ C 0 ([0, T ]), we can deduce from (3.23) the existence of a subsequence still denoted by 

{u m }, such that    u m → u strongly in L 2 (Q T ), u m (0, •) → u(0, •) strongly in C 0 ([0, T ]) , u m (1, •) → u(1, •) strongly in C 0 ([0, T ]) .
d dt u ′ (t), v + a (u(t), v) + λ 0 u ′ (0, t) + h 1 u(1, t) + λ 1 u ′ (1, t) v(0) + λ 1 u ′ (1, t) + h 0 u(0, t) + λ 0 u ′ (0, t) v(1) + Ku(t) + λu ′ (t), v (3.25) = -g 0 (t)v(0) -g 1 (t)v(1) + f (t), v , ∀ v ∈ H 1 (Ω),
in L 2 (0, T ) weakly, and

u(0) = u 0 , u ′ (0) = u 1 . (3.26) 
The existence of the theorem is proved completely.

Step 4. Uniqueness of the solution. Let u 1 , u 2 be two weak solutions of problem (1.1)-(1.4), such that

u i ∈ L ∞ (0, T ; H 1 (Ω)), u ′ i ∈ L ∞ (0, T ; L 2 (Ω)), u i (0, •), u i (1, •) ∈ H 1 (0, T ) , i = 1, 2.
(3.27)

Then u = u 1 -u 2 is the weak solution of the following problem        u tt -u xx + Ku + λu t = 0, (x, t) ∈ Q T , u x (0, t) = h 0 u(0, t) + λ 0 u t (0, t) + h 1 u(1, t) + λ 1 u t (1, t), -u x (1, t) = h 1 u(1, t) + λ 1 u t (1, t) + h 0 u(0, t) + λ 0 u t (0, t), u(x, 0) = 0, u t (x, 0) = 0.
(3.28) By using the lemma in [8, Lemma 2.4, p. 1799], we deduce that

u ′ (t) 2 + u(t) 2 a + 2 t 0 Ku(s) + λu ′ (s), u ′ (s) ds + 2 t 0 λ 0 u ′ (0, s) 2 ds + λ 1 u ′ (1, s) 2 ds + λ 0 + λ 1 u ′ (0, s)u ′ (1, s) ds (3.29) + 2 h 1 t 0 u(1, s)u ′ (0, s)ds + 2 h 0 t 0 u(0, s)u ′ (1, s)ds.
Putting

σ(t) = u ′ (t) 2 + u(t) 2 1 + µ min t 0 u ′ (0, s) 2 + u ′ (1, s) 2 ds. (3.30)
From (3.29), (3.30) and Lemma 2.3, we prove, in a similar manner to that in the above part, that

1 - 2ε µ min σ(t) ≤ 2 1 ε h 0 2 + h 1 2 + √ 2 |K| + |λ| t 0 σ(s)ds. (3.31)
Choosing ε > 0, with 1 -2εµ -1 min > 0. Using Gronwall's lemma, it follows from (3.30)-(3.31), that σ(t) ≡ 0, i.e., u 1 ≡ u 2 . The theorem 3.1 is proved completely. Theorem 3.2. Let T > 0 and assume that g 0 ,

g 1 ∈ H 1 (0, T ), f, f t ∈ L 2 (Q T ). Then, for each ( u 0 , u 1 ) ∈ H 2 (Ω) × H 1 (Ω), the problem (1.1) -(1.4) has a unique weak solution u satisfying u ∈ L ∞ 0, T ; H 2 (Ω) , u t ∈ L ∞ 0, T ; H 1 (Ω) , u tt ∈ L ∞ 0, T ; L 2 (Ω) , (3.32 
)

and u(0, •), u(1, •) ∈ H 2 (0, T ) . (3.33)
Proof. The proof consists of Steps 1-4.

Step 1. The Faedo-Galerkin approximation. Let {w j } be a denumerable base of H 2 (Ω). We find the approximate solution of problem (1.1) -(1.4) in the form

u m (t) = m j=1 c mj (t)w j ,
where the coefficient functions c mj satisfy the system of ordinary differential equations (3.2), with the initial conditions

u m (0) = u 0m = m j=1 α mj w j → u 0 strongly in H 2 , u / m (0) = u 1m = m j=1 β mj w j → u 1 strongly in H 1 .
(3.34)

From the assumptions of Theorem 3.2, system (3.2) and (3.34) has solution u m (t) on some interval [0, T m ]. The following estimates allow one to take T m = T for all m.

Step 2. A priori estimates. By same arguments as in proof of Theorem 3.1, we obtain

X m (t) ≤ C T , for all t ∈ [0, T ], m ∈ Z + , (3.35) 
where X m (t) defined by (3.8) and C T always indicating a bound depending on T . Now, differentiating (3.2) with respect to t, we have

u ′′′ m (t), w j + a u ′ m (t), w j + λ 0 u ′′ m (0, t) + h 1 u ′ m (1, t) + λ 1 u ′′ m (1, t) w j (0)+ λ 1 u ′′ m (1, t) + h 0 u ′ m (0, t) + λ 0 u ′′ m (0, t) w j (1) + Ku ′ m (t) + λu ′′ m (t), w j (3.36) = -g ′ 0 (t)w j (0) -g ′ 1 (t)w j (1) + f ′ (t), w j ,
for all j = 1, 2, ..., m.

Multiplying the j th equation of (3.36) by c ′ mj (t), summing up with respect to j and then integrating with respect to the time variable from 0 to t, we have after some rearrangements

S m (t) = S m (0) -2 h 0 t 0 u ′ m (0, s)u ′′ m (1, s)ds -2 h 1 t 0 u ′ m (1, s)u ′′ m (0, s)ds -2K t 0 u ′ m (s), u ′′ m (s) ds -2λ t 0 u ′′ m (s) 2 ds (3.37) -2 t 0 g ′ 0 (s)u ′′ m (0, s)ds -2 t 0 g ′ 1 (s)u ′′ m (1, s)ds + 2 t 0 f ′ (s), u ′′ m (s) ds = S m (0) + 7 i=1 J i ,
where

S m (t) = u ′′ m (t) 2 + u ′ m (t) 2 a (3.38) + 2 t 0 λ 0 u ′′ m (0, s) 2 + λ 1 u ′′ m (1, s) 2 + λ 0 + λ 1 u ′′ m (0, t)u ′′ m (1, t) ds.
Using (3.34), (3.38) and Lemma 2.1, we have

S m (0) = u ′′ m (0) 2 + u 1m 2 a ≤ C 2 , for all m, (3.39) 
where C 2 is a constant depending only on u 0 , u 1 , f (•, 0), K and λ. On the other hand, by Lemma 2.3, it follows from (3.39) that

S m (t) ≥ µ 0 X m (t), (3.40) 
where

X m (t) = u ′′ m (t) 2 + u ′ m (t) 2 1 + t 0 u ′′ m (0, s) 2 + u ′′ m (1, s) 2 ds, (3.41) 
and µ 0 = min{C 0 , µ min }.

By estimating the terms J i , (i = 1, 2, ..., 7) on the right-hand side of (3.37) as in the proof of Theorem 3.1, we get

X m (t) ≤ M (2) T + t 0 N (2) T (s) X m (s)ds, (3.42) 
where

M (2) T = 2 µ 0 C 2 + 8 µ 0 g ′ 0 2 L 2 (0,T ) + 8 µ 0 g ′ 1 2 L 2 (0,T ) + T 0 f ′ (s) ds , and 
N (2) T (s) = 2 µ 0 16 µ 0 h 2 0 + h 2 1 + 2 √ 2 |K| + 2 |λ| + f ′ (s) , N (2) 
T ∈ L 1 (0, T ).

From (3.42) and applying Gronwall's inequality, we obtain that 

X m (t) ≤ M (2) 
T exp t 0 N (2) 
T (s)ds ≤ C T , for all t ∈ [0, T ]. ( 3 
          u m → u in L ∞ (0, T ; H 1 (Ω)) weak*, u ′ m → u ′ in L ∞ (0, T ; H 1 (Ω)) weak*, u ′′ m → u ′′ in L ∞ (0, T ; L 2 (Ω)) weak*, u m (0, •) → u(0, •) in H 2 (0, T ) weakly, u m (1, •) → u(1, •) in H 2 (0, T )
weakly.

(3.44)

By the compactness lemma of Lions [5, p.57] and the imbeddings 

H 1 (0, T ) ֒→ C 0 ([0, T ]), H 2 (0, T ) ֒→ C 1 ([0, T ]),
∈ Q T , u m (0, •) → u(0, •) strongly in C 1 ([0, T ]) , u m (1, •) → u(1, •) strongly in C 1 ([0, T ]) .
u ′′ (t), v + a (u(t), v) + λ 0 u ′ (0, t) + h 1 u(1, t) + λ 1 u ′ (1, t) v(0) + λ 1 u ′ (1, t) + h 0 u(0, t) + λ 0 u ′ (0, t) v(1) + Ku(t) + λu ′ (t), v (3.46) 
= -g 0 (t)v(0) -g 1 (t)v(1) + f (t), v , ∀ v ∈ H 1 (Ω), u(0) = u 0 , u ′ (0) = u 1 . (3.47)
On the other hand, it follows from (3.44) 1,2,3 and (3.46), that

u xx = u ′′ + Ku + λu ′ -f ∈ L ∞ (0, T ; L 2 (Ω)). (3.48)
Thus, u ∈ L ∞ (0, T ; H 2 (Ω)) and the existence of solution is proved completely.

Step 4. Uniqueness of the solution of problem (1.1) -(1.4) is similarly proved as in Theorem 3.1 and we will omit here. 

  u ∈ C 0 0, T ; H 1 (Ω) ∩ C 1 0, T ; L 2 (Ω) ∩ L ∞ 0, T ; H 2 (Ω) , u t ∈ L ∞ 0, T ; H 1 (Ω) , u tt ∈ L ∞ 0, T ; L 2 (Ω) , u(0, •), u(1, •) ∈ H 2 (0, T ) .

The regularity of solutions

In this section, we study the regularity of solution of problem (1.1) -(1.4). For this purpose, we also assume that the constants h 0 , h 1 , λ 0 , λ 1 , K, λ, h 0 , h 1 , λ 0 , λ 1 satisfy the conditions as in section 3. Furthermore, we will impose the following stronger assumptions, with r ∈ N.

(A1) u 0 ∈ H r+2 (Ω) and u 1 ∈ H r+1 (Ω). (A2) The function f (x, t) satisfies ∂ r f ∂ x j ∂ t r-j ∈ L ∞ (0, T ; L 2 (Ω)), 0 ≤ j ≤ r, ∂ ν f ∂ t ν ∈ L 2 (0, T ; L 2 (Ω)), 0 ≤ ν ≤ r + 1, and ∂ µ f ∂ t µ (•, 0) ∈ H 1 (Ω), 0 ≤ µ ≤ r -1. (A3) g 0 , g 1 ∈ H r+1 (0, T ) , r ≥ 1.
Formally differentiating problem(1.1)-(1.4) with respect to time up to order r and letting u [r] = ∂ r u ∂ t r we are led to consider the solution u [r] of problem (Q [r] ):

     Lu [r] = f [r] (x, t), (x, t) ∈ Q T , B 0 u [r] = g [r] 0 (t), B 1 u [r] = g [r] 1 (t), u [r] (x, 0) = u [r] 0 (x), u [r] t (x, 0) = u [r] 1 (x), (Q [r] )
where

Lu [r] = u [r] tt -u [r] xx + Ku [r] + λu [r] t , B 0 u [r] = u [r] x (0, t) -h 0 u [r] (0, t) -λ 0 u [r] t (0, t) -h 1 u [r] (1, t) -λ 1 u [r] t (1, t), B 1 u [r] = -u [r] x (1, t) -h 1 u [r] (1, t) -λ 1 u [r] t (1, t) -h 0 u [r] (0, t) -λ 0 u [r]
t (0, t), the functions u 1 are defined by the recurrence formulas

u [0] 0 = u 0 , u [r] 0 = u [r-1] 1 , r ≥ 1, u [0] 1 = u 1 , u [r] 1 = u [r-1] 0xx -Ku [r-1] 0 -λu [r-1] 1 + ∂ r-1 f ∂ t r-1 (x, 0), r ≥ 1, and f [r] = ∂ r f ∂ t r , g [0] i = g i , g [r] i = d r g i d t r , r ≥ 1, i = 0, 1.
From the assumptions (A1)-(A3) we deduce that u

[r] 0 , u [r] 1 , f [r] , g [r]
0 and g

[r]

1 satisfy the conditions of Theorem 3.2. Hence, the problem (Q [r] ) has a unique weak solution u [r] 

such that      u [r] ∈ L ∞ 0, T ; H 2 (Ω) ∩ C 0 0, T ; H 1 (Ω) ∩ C 1 0, T ; L 2 (Ω) , u [r] t ∈ L ∞ 0, T ; H 1 (Ω) , u [r] tt ∈ L ∞ 0, T ; L 2 (Ω) , u [r] (0, •), u [r] (1, •) ∈ H 2 (0, T ) .
u ∈ C r-1 0, T ; H 2 (Ω) ∩ C r 0, T ; H 1 (Ω) ∩ C r+1 0, T ; L 2 (Ω) , ∂ r u ∂ t r ∈ L ∞ 0, T ; H 2 (Ω) ∩ C 0 0, T ; H 1 (Ω) ∩ C 1 0, T ; L 2 (Ω) , ∂ r+1 u ∂ t r+1 ∈ L ∞ 0, T ; H 1 (Ω) , (4.2) ∂ r+2 u ∂ t r+2 ∈ L ∞ 0, T ; L 2 (Ω) , u(0, •), u(1, •) ∈ H r+2 (0, T ) .
Next we shall prove by induction on r that

∂ r+2-j u ∂ t r+2-j ∈ L ∞ (0, T ; H j (Ω)), 0 ≤ j ≤ r + 2. (4.3) With r = 1, it follows from (4.2) that u ′ ∈ L ∞ (0, T ; H 2 (Ω)), u ′′ ∈ L ∞ (0, T ; H 1 (Ω)), u ′′′ ∈ L ∞ (0, T ; L 2 (Ω)). (4.4)
On the other hand, from (1.1), (4.4) and the assumption (A2) we deduce that

u xxx = u ′′ x + Ku x + λu ′ x -f x ∈ L ∞ (0, T ; L 2 (Ω)).
Thus, u ∈ L ∞ (0, T ; H 3 (Ω)) and ( 4.3) hold for r = 1. Suppose by induction that (4.3) holds for r -1, i.e.,

∂ r+1-j u ∂ t r+1-j ∈ L ∞ (0, T ; H j (Ω)), 0 ≤ j ≤ r + 1. (4.5)
We shall prove that (4.3) holds. It follows from (4.2) that

∂ r+2-j u ∂ t r+2-j ∈ L ∞ 0, T ; H j (Ω) , for j = 0, 1, 2. (4.6)
Let j ∈ {3, 4, ..., r + 2} and put θ = r + 2j. We have from (1.1)

∂ r+2 u ∂x j ∂t θ = ∂ r+2 u ∂x j-2 ∂t θ+2 + K ∂ r u ∂x j-2 ∂t θ + λ ∂ r+1 u ∂x j-2 ∂t θ+1 - ∂ r f ∂x j-2 ∂t θ . (4.7) 
On the other hand, it follows from (4.5) and the assumption (A2), that

∂ θ u ∂t θ ∈ L ∞ (0, T ; H j-1 (Ω)), ∂ θ+1 u ∂t θ+1 , ∂ θ f ∂t θ ∈ L ∞ (0, T ; H j-2 (Ω)). (4.8) 
Combining (4.6), (4.7) and (4.8), by induction arguments on j, we conclude that (4.3) holds.

Hence we have the following theorem 

u ∈ H r+2 (Q T ) ∩   r+1 j=0 C r+1-j 0, T ; H j (Ω)   . (4.9) 

Exponential decay of solutions

In this section we assume that K > 0 and λ > 0. Let u(x, t) be a strong solution of problem (1.1)- (1.4). In order to obtain the decay result, we use the functional

Γ(t) = E(t) + δψ(t), (5.1) 
where δ is a positive constant and

E (t) = 1 2 u ′ (t) 2 + 1 2 u (t) 2 a + K 2 u(t) 2 , (5.2) 
ψ (t) = u (t) , u ′ (t) + λ 2 u (t) 2 + λ 0 2 u 2 (0, t) + λ 1 2 u 2 (1, t) . (5.3) 
Lemma 5.1. There exist the constants β 1 , β 2 such that

β 1 E (t) ≤ Γ (t) ≤ β 2 E (t) , (5.4 
)

when δ < C 0 2 .
Proof. By using Lemma 2.1, it's easy to obtain the following estimate

Γ(t) ≤ 1 + δ 2 u ′ (t) 2 + 1 2 1 + 2δ C 0 (1 + λ + λ 0 + λ 1 ) u(t) 2 a + K 2 u(t) 2 , which implies that Γ (t) ≤ β 2 E (t) ,
where

β 2 = 1 + 2δ C 0 (1 + λ + λ 0 + λ 1 ) .
Similar, we have

Γ(t) ≥ 1 -δ 2 u ′ (t) 2 + 1 2 - δ C 0 u(t) 2 a + K 2 u(t) 2 . Thus, if δ < C 0 2 then Γ(t) ≥ β 1 E(t), where β 1 = 1 -2δ C 0 > 0. Lemma 5.1 is proved. Lemma 5.2.
The functional E(t) defined by (5.2), satisfies

E ′ (t) ≤ ( ε 1 2 -λ) u ′ (t) 2 + ε 1 - µ min 2 u ′ (0, t) 2 + u ′ ( 1, t) 2 (5.5) 
+ 1 ε 1 C 0 h 2 0 + h 2 1 u(t) 2 a + 1 2ε 1 g 2 0 (t) + g 2 1 (t) + f (t) 2 ,
for all ε 1 > 0.

Proof. Multiplying (1.1) by u ′ (x, t) and integrating over [0, 1], we get

E ′ (t) = -λ u ′ (t) 2 -λ 0 u ′ (0, t) 2 + λ 1 u ′ (1, t) 2 + λ 0 + λ 1 u ′ (0, t) u ′ (1, t) -h 0 u (0, t) u ′ (1, t) (5.6) 
-h 1 u (1, t) u ′ (0, t) -g 0 (t) u ′ (0, t) -g 1 (t) u ′ (1, t)+ f (t) , u ′ (t) .
By Lemma 1.3 we have

λ 0 u ′ (0, t) 2 + λ 1 u ′ (1, t) 2 + λ 0 + λ 1 u ′ (0, t) u ′ (1, t) (5.7) 
≥ µ min 2 u ′ (0, t) 2 + u ′ (1, t) 2 .
It follows from (5.6) and (5.7) that

E ′ (t) ≤ -λ u ′ (t) 2 - µ min 2 u ′ (0, t) 2 + u ′ (1, t) 2 -h 0 u (0, t) u ′ (1, t) -h 1 u (1, t) u ′ (0, t) (5.8) -g 0 (t) u ′ (0, t) -g 1 (t) u ′ (1, t) + f (t) , u ′ (t) .
On the other hand, for ε 1 > 0,

-h 0 u(0, t)u ′ (1, t) ≤ ε 1 2 u ′ (1, t) 2 + 1 2ε 1 h 2 0 u 2 (0, t) (5.9) ≤ ε 1 2 u ′ (1, t) 2 + 1 ε 1 C 0 h 2 0 u(t) 2 a , -h 1 u(1, t)u ′ (0, t) ≤ ε 1 2 u ′ (0, t) 2 + 1 ε 1 C 0 h 2 1 u(t) 2 a ,
(5.10)

-g 0 (t)u ′ (0, t) -g 1 (t)u ′ (1, t) ≤ ε 1 2 u ′ (0, t) 2 + u ′ (1, t) 2 (5.11) + 1 2ε 1 g 2 0 (t) + g 2 1 (t) , f (t), u ′ (t) ≤ f (t) u ′ (t) ≤ ε 1 2 u ′ (t) 2 + 1 2ε 1 f (t) 2 .
(5.12)

Combining (5.8) -( 5.12), it is easy to see that (5.5) holds. The proof is complete.

Lemma 5.3. The functional ψ(t) defined by (5.3) satisfies

ψ ′ (t) ≤ u ′ (t) 2 + 2 C 0 h 0 + h 1 + 5ε 2 C 0 -1 u(t) 2 a + 1 2ε 2 λ 2 0 + λ 2 1 u ′ (0, t) 2 + u ′ (1, t) 2 (5.13) + 1 2ε 2 f (t) 2 + g 2 0 (t) + g 2 1 (t) ,
for all ε 2 > 0.

Proof. Multiplying the equation (1.1) by u(x, t) and integrating over [0, 1], we have

ψ ′ (t) = u ′ (t) 2 -u(t) 2 a -K u(t) 2 -h 0 + h 1 u(0, t)u(1, t) -λ 0 u ′ (0, t)u(1, t) -λ 1 u(0, t)u ′ (1, t) (5.14) -g 0 (t)u(0, t) -g 1 (t)u(1, t) + f (t), u(t) .
By some estimations as in proof of Lemma 5.2, we deduce the conclusion of Lemma.

Theorem 5.4. Assume that σ(t) ≤ σ 1 exp(-σ 2 t), for all t ≥ 0, (5.15) where σ 1 , σ 2 are two positive constants and

σ(t) = f (t) 2 + g 2 0 (t) + g 2 1 (t).
Then, there exist positive constants γ 1 , γ 2 such that E(t) ≤ γ 1 exp(-γ 2 t), for all t ≥ 0, (5.16) for any strong solution of the problem (1.1)- (1.4), where h 0 and h 1 are chosen small enough.

Proof. It follows from (5.1), (5.5) and (5.13), that

Γ ′ (t) ≤ δ + ε 1 C 0 -λ u ′ (t) 2 + 1 ε 1 C 0 h 2 0 + h 2 1 + δ 2 C 0 h 0 + h 1 + 5ε 2 C 0 -1 u(t) 2 a + ε 1 - µ min 2 + δ 2ε 2 λ 2 0 + λ 2 1 u ′ (0, t) 2 + u ′ (1, t) 2 
(5.17)

+ 1 2 1 ε 1 + δ ε 2 f (t) 2 + g 2 0 (t) + g 2 1 (t) , for all ε 1 , ε 2 > 0. Let ε 1 < min{C 0 λ, µ min 2 }, ε 2 < 1 5 C 0 and δ < min C 0 2 , λ - ε 1 C 0 , 2ε 2 
λ 2 0 + λ 2 1 µ min 2 -ε 1 .
Then, by choosing h 0 , h 1 satisfy

1 ε 1 C 0 h 2 0 + h 2 1 + 2δ C 0 h 0 + h 1 < δ 1 - 5ε 2 C 0 ,
we deduce from (5.4) and (5.17) that there exists a constant γ < σ 2 such that

Γ ′ (t) ≤ -δΓ(t) + 1 2 1 ε 1 + δ ε 2 σ(t)
, for all t ≥ 0.

(5.18) Combining (5.4), (5.15) and (5.18), we get (5.16). Theorem 5.4 is completely proved.

We can extend the above theorem to weak solutions by using density arguments.

Numerical results

Consider the following problem:

u tt -u xx + Ku + λu t = f (x, t) in (0, 1) × (0, ∞), (6.1) 
0 < x < 1, 0 < t < T, with boundary conditions

u x (0, t) = h 0 u(0, t) + λ 0 u t (0, t) + h 1 u(1, t) + λ 1 u t (1, t) + g 0 (t), -u x (1, t) = h 1 u(1, t) + λ 1 u t (1, t) + h 0 u(0, t) + λ 0 u t (0, t) + g 1 (t), (6.2) 
and initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (6.3) where

K = λ = λ 0 = λ 1 = 1, λ 0 = λ 1 = -1 2 , h 0 = h 1 = 1, h 0 = 1 2 , h 1 = -3
2 are constants and the functions u 0 , u 1 , g 0 , g 1 and f are defined by

u 0 (x) = 1 + (x 2 -x) 2 , u 1 (x) = -1 -(x 2 -x) 2 , (6.4) 
g 0 (t) = e -t , g 1 (t) = -e -t , (6.5)

f (x, t) = x 4 -2x 3 -11x 2 -12x -1 e -t . (6.6) 
The exact solution of the problem (6.1) -( 6.3) with u 0 , u 1 , g 0 , g 1 and f defined in (6.4) -(6.6) respectively, is the function U ex given by

U ex (x, t) = x 4 -2x 3 + x 2 + 1 e -t . (6.7) 
To solve problem (6.1) -( 6.3) numerically, we consider the differential system for the unknowns U j (t) ≡ u(x j , t), V j (t) = dU j dt (t), with x j = j∆x, ∆x = 1 N , j = 0, 1, ..., N :

                                       dU j dt (t) = V j (t), j = 0, N , dV 0 dt (t) = -1+h 0 ∆x (∆x) 2 + K U 0 (t) + 1 (∆x) 2 U 1 (t) -h 1 ∆x U N (t) -( λ 0 ∆x + λ)V 0 (t) -λ 1 ∆x V N (t) -1 ∆x g 0 (t) + f 0 (t), dV j dt (t) = U j-1 (t)-2U j (t)+U j+1 (t) (∆x) 2 -KU j (t) -λV j (t) + f (x j , t), j = 1, N -1, dV N dt (t) = -h 0 ∆x U 0 (t) + 1 (∆x) 2 U N -1 (t) -1+h 1 ∆x (∆x) 2 + K U N (t) -λ 0 ∆x V 0 (t) -( λ 1 ∆x + λ)V N (t) -1 ∆x g 1 (t) + f N (t), U j (0) = u 0 (x j ), V j (0) = u 1 (x j ), j = 0, N . (6.8)
Then system (6.8) is equivalent to:

d dt                     U 0 U 1 . . . . . . U N V 0 V 1 . . . . . . V N                     =                     0 1 0 0 1 . . . . . . . . . . . . . . . . . . 0 0 1 γ 0 α γ N δ 0 δ N α γ α -λ . . . . . . . . . . . . α γ α -λ γ 0 α γ N δ 0 δ N                                         U 0 U 1 . . . . . . U N V 0 V 1 . . . . . . V N                     +                     0 0 . . . . . . 0 F 0 F 1 . . . . . . F N                     (6.9)
where

                               α = 1 (∆x) 2 , γ = -K -2 (∆x) 2 = -K -2α, γ 0 = -K + 1+h 0 ∆x (∆x) 2
, γ N = -h 1 ∆x , δ 0 = -( λ 0 ∆x + λ), δ N = -λ 1 ∆x , γ 0 = -h 0 ∆x , γ N = -K + 1+h 1 ∆x (∆x) 2

, δ 0 = -λ 0 ∆x , δ N = -( λ 1 ∆x + λ).

F j = F j (t) = f j (t) = f (x j , t), j = 1, N -1, F 0 = F 0 (t) = -1 ∆x g 0 (t) + f 0 (t), F N = F N (t) = -1 ∆x g 1 (t) + f N (t), (6.10) Rewritten (6.9) d dt X(t) = AX(t) + F (t), (6.11)

          
X(t) = (U 0 (t), U 1 (t), ..., U N (t), V 0 (t), V 1 (t), ..., V N (t)) T ∈ R 2N +2 , F (t) = (0, 0, ..., 0, F 0 , F 1 , ..., F N ) The fig. 3 corresponds to the surface (x, t) → u(x, t) approximated solution in the case where f (x, t) = 0. So in both cases we notice the very good decay of these surfaces from T = 0 to T = 8. 

T ∈ R 2N +2 , A = O E A B , (6.12) 

( 3 .

 3 24) Passing to the limit in (3.2)-(3.4) by (3.23) and (3.24) we have u satisfying the equation

( 3

 3 .45) Passing to the limit in (3.2) and (3.34) by (3.44)-(3.45) we have u satisfying the problem

Remark 3 . 3 .

 33 Noting that with the regularity obtained by (3.32)-(3.33), it follows that the problem (1.1) -(1.4) has a unique strong solution u satisfying 

(4. 1 )

 1 Moreover, from the uniqueness of weak solution we have u [r] = ∂ r u ∂ t r . Hence we deduce from (4.1) that the solution u of problem (1.1) -(1.4) satisfy

Theorem 4 . 1 .

 41 Let (A1)-(A3) hold. Then the unique solution u(x, t) of problem (1.1)-(1.4) satisfies (4.2) and (4.3). Furthermore
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 12 Figure 1: Numerical solution
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 3 Figure 3: case f=0

  .43) Step 3. Limiting process. From (3.8), (3.35), (3.41) and (3.43), we deduce the existence of a subsequence of {u m }, still denoted by {u m }, such that 