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Introduction

In [START_REF] Gafni | Rounds-by-rounds fault detectors: unifying synchrony and asynchrony[END_REF], Gafni defined a new round-based computational model, called Round-by-Round Fault Detector model (RRFD for short), for the analysis of distributed systems. In this model, computations are defined to evolve round by round, the properties of communication between processes, either via shared variables or by message passing, being captured by a single module called Round-by-Round Fault Detector module. At each round r, and for each process p, the module provides a set of suspected processes from which p will not wait for a message. Hence, synchrony degree and failure model are encapsulated into the same abstract entity.

In [START_REF] Charron-Bost | The Heard-Of Model: Computing in Distributed Systems with Benign Failures[END_REF], Charron-Bost and Schiper combined this approach with the Transmission Faults model, introduced by Santoro and Widmayer in [START_REF] Santoro | Time is not a healer[END_REF], designed for synchronous message-passing systems and which locates the failure without specifying their cause. As a result, Charron-Bost and Schiper developed the Heard-Of model (HO for short), a computational round-based model suitable for distributed systems subject to benign failures, which is based only on the notion of transmission failure and renounce the one of faulty component. Computations in this model evolve in rounds. At each round r, each process p sends a message to all the others and waits to receive messages from a subset of them, denoted by HO(p, r), which consists of the processes that p "hears of" at round r. Communication missed at a round is lost, and so rounds are communication-closed layers, using the terminology of [START_REF] Elrad | Decomposition of distributed programs into communicationclosed layers[END_REF]. A transmission failure from q to p at round r is thus charaterized by the fact that q does not belong to HO(p, r). A crash of some process p can be modeled by the fact that, from some point in the execution, p does not belong to any heard-of set and thus has no impact on the rest of the computation. The features of a particular system (synchrony degree, failure model,...) are captured by a communication predicate, which is a predicate over the collections of the HO(p, r)'s sets.

The HO model lies at a very high abstraction level. It is thus important to study what communication predicates can be implemented in what system. This allows to characterize and to compare different systems.

Contribution

In [START_REF] Gafni | Rounds-by-rounds fault detectors: unifying synchrony and asynchrony[END_REF], Gafni informally studied the capability of the RRFD model to cover various classical types of distributed systems. We analyse here the results he gave regarding two particular types of sharedmemory systems, namely the ones in which processes communicate via SingleWriter/MultiReader atomic registers (SWMR for short) [START_REF] Herlihy | Wait-free synchronization[END_REF][START_REF] Lamport | On interprocess communication. part ii: Algorithms[END_REF][START_REF] Kruskal | Efficient synchronization of multiprocessors with shared memory[END_REF], and Atomic-Snaphot objects [START_REF] Afek | Atomic snapshots of shared memory[END_REF][START_REF] Attiya | Atomic snapshots in o (n log n) operations[END_REF], respectively.

For the first type, each process p is associated with a read/write register R p such that (i) p is the sole process that is allowed to write into R p , and (ii) every process can read the value of R p . Moreover, accesses to a given register are atomic in the sense of [START_REF] Lamport | On interprocess communication. part ii: Algorithms[END_REF], i.e., in any execution of the system, there is a way of totally ordering reads and writes so that the values returned by the reads are the same as if the operations had been performed in that order, with no overlapping. An Atomic-Snapshot object consists of an array of SWMR atomic registers, one for each process of the system. The main difference with SWMR registers lies in the fact that a process can atomically take a snapshot of the whole array, instead of reading all the registers one after the other. Gafni informally showed the correspondance between Atomic-Snapshot systems and the RRFD module such that at each round and for any two processes p and q, the sets of processes suspected by p and q are ordered by inclusion. As for SWMR systems, he proposed the RRFD module that ensures that at each round there exists some process which is not supected by anyone. Note that any RRFD module can be seen as a communication predicate by defining, for each round, the heard-of set of any process to be the complementary of the set of suspected processes provided by the RRFD module to this process at that round.

The rest of this paper is organized as follow. We give a formal proof of Gafni's result regarding the RRFD module corresponding to Atomic-Snapshot systems in Section 2, and demonstrate that the one he proposed for SWMR systems is strictly weaker. The well-known equivalence between SWMR systems and Atomic-Snaphots ones [START_REF] Afek | Atomic snapshots of shared memory[END_REF][START_REF] Attiya | Atomic snapshots in o (n log n) operations[END_REF][START_REF] Fich | How hard is it to take a snapshot[END_REF] then leads us to consider an alternative communication predicate. In Section 3, we prove this third predicate to be (1) implementable in SWMR systems and (2) equivalent to the one corresponding to Atomic-Snapshot systems. Moreover, we give a direct proof of the fact that this predicate is strictly stronger than the one corresponding to the RRFD module proposed by Gafni for characterizing SWMR systems. Section 4 draws some conclusions.

The HO model

As explained in the Introduction, computations in this model are structured in rounds that are communication-closed layers in the sense that a message sent at some round can be received only at that round.

Heard-Of sets and communication predicates

Let Π be a finite non-empty set of cardinality n, and let M be a set of messages (optionally including a null placeholder indicating the empty message). To each p in Π, we associate a process, which consists of the following components: a set of states denoted by states p , a subset init p of initial states, and for each positive integer r called round number , a message-sending function S r p mapping states p × Π to a unique message from M , and a state-transition function T r p mapping states p and partial vectors (indexed by Π) of elements of M to states p . The collection of processes is called an algorithm on Π.

In each round r, a process p 1. applies S r p to the current state, and emits the "messages" to be sent (according to its sending function S r p ) to each process; 2. applies T r p to the partial vector of incoming messages whose support is HO(p, r). Computations evolves in an infinite sequence of rounds. Each run is entirely determined by the initial configuration (i.e., the collection of process initial states), and the collection (HO(p, r)) p∈Π,r>0 of heard-of sets.

A communication predicate P is a predicate over collections of subsets of Π (representing heardof collections), that is not the constant predicate false. As an exemple, the predicate ∀r > 0, ∀p ∈ Π : |HO(p, r)| ≥ nf models the fact that at each round, each process receives a message from at least nf distinct processes. A heard-of machine (HO machine for short) for a set of processes Π is a pair (A, P), where A is an algorithm on Π, and P is a communication predicate.

Translations

Our concern in this paper is to compare different communication predicates and to determine the one corresponding to SWMR systems by using the equivalence between such systems and the Atomic-Snapshot ones. For that, we will use the notion of equivalence between communication predicates. We thus have to formalize what it means for an HO machine (A, P) to emulate a communication predicate P ′ . This leads us to introduce the notion of translation of P into P ′ defined in [START_REF] Charron-Bost | The Heard-Of Model: Computing in Distributed Systems with Benign Failures[END_REF].

Let k be any positive integer, and let A be an algorithm that maintains a variable N ewHO p at every process p, which contains a subset of Π. We call macro-round ρ the sequence of the k consecutive rounds k(ρ -1) + 1, . . . , kρ. The value of N ewHO p at the end of macro-round ρ is denoted N ewHO (ρ) p . We say that the HO machine M = (A, P) emulates the communication predicate P ′ in k rounds if for any run of M, the following holds: E1: If process q belongs to N ewHO (ρ) p , then there exist an integer l ∈ 1; k , a chain of l + 1 processes p 0 , p 1 , . . . p l from p 0 = q to p l = p and a subsequence of l rounds r 1 , . . . , r l in macro-round ρ such that for any index i, 1 ≤ i ≤ l, we have p i-1 ∈ HO(p i , r i ).

E2:

The collection N ewHO

(ρ) p p∈Π,ρ>0
satisfies predicate P ′ .

Condition E1 avoid trivial emulations of P ′ since it requires that for each macro-round ρ, if some process q belongs to N ewHO (ρ) p , then p actually hears of q during this macro-round (possibly not directly but through intermediate processes). If there exists an algorithm A such that the HO machine emulates P ′ in k rounds, then we write P k P ′ , and we say that A is a k-rounds translation of P into P ′ . We shall also say that P is at least as strong as P ′ . Moreover, predicates P and P ′ are said to be equivalent if P k P ′ and P ′ k ′ P for some integers k and k ′ . Note that if P ⇒ P ′ , the trivial algorithm in which each process p writes the value of HO(p, r) into N ewHO p at the end of each round r is a 1-round translation of P into P ′ .

Gafni's characterization of SWMR and Atomic-Snapshot systems

As said in the Introduction, Gafni presented in [START_REF] Gafni | Rounds-by-rounds fault detectors: unifying synchrony and asynchrony[END_REF] the RRFD model, a round-based model for the analysis of distributed systems subject to benign failures, and informally adressed its expressivity.

In particular, he introduced two RRFD modules that he claimed to "naturally" correspond to systems with Atomic-Snaphots objects and SWMR registers, respectively.

Informally speaking, in a system with SWMR registers each process of a set Π is associated with a register R p that supports two operations: (1) W rite(R p , v), where v is a value drawn from a given set V , and (2) Read(R p ). Each process p can read all the registers but no process q = p can write into R p . Moreover, the registers we consider are atomic in the sense of [START_REF] Lamport | On interprocess communication. part ii: Algorithms[END_REF], i.e., the Read and Write operations behave as if they occur in some definite order. In other words, for any execution of the system there exists a way of totally ordering them so that the values returned by the reading operations are the same as if the operations had been performed in that order, with no overlapping.

An Atomic-Snapshot object consists of an array of n atomic SWMR registers, one for each process of the system. Each process can either write a value into its register (it updates the object) or take a snapshot of the whole array (it performs a scan). The operations on the object (either updates or scans) are atomic in the same sense as above.

Predicates corresponding to Gafni's RRFD modules

The two RRFD modules claimed by Gafni to correspond to SWMR and Atomic-Snapshot systems, respectively, are expressed in the HO model by the two predicates P Gaf and P RD , given in Figure 1.

To see that Atomic-Snapshot systems effectively implement P RD consider the algorithm AtSn, given as Algorithm 1. Roughly speaking, at each round r, all processes can access an Atomic-P Gaf :: ∀r > 0, p∈Π HO(p, r) = ∅ P RD :: ∀r > 0, p ∈ HO(p, r) ∀p, q ∈ Π, HO(p, r) ⊆ HO(q, r) ∨ HO(q, r) ⊆ HO(p, r) 

3:

vp ∈ V , initially vp = idp, with idp the identifier of p

4:

HOp ⊆ Π 5: Round r: 6:

HOp := ∅

7:

W rite(Ar[p], vp)

8:

Scan(Ar)

9:

HOp := {q : Scan(Ar)[q] = ⊥} 10:

r := r + 1
Snapshot object A r . Each process p first updates its own component A r [p] by writing its identifier into it and then scans the whole array. The following proposition shows that at the end of any round r, for any two processes p and q, the sets of processes' identifiers read by p and q, respectively, at round r are ordered by inclusion.

Proposition 2.1. Let e be any execution of AtSn in an Atomic-Snapshot system and let r be any integer such that r ≥ 1. At the end of round r, the collection HO p p∈Π satisfies P RD .

Proof: Let r be any integer such that r ≥ 1. First let p be any process in Π. The code of AtSn (lines 7 and 8) directly implies that p belongs to HO p at the end of round r. Now let q be any process distinct from q. By the atomicity of the Atomic-Snapshot object, either p or q is the first process to scan A r . Since the values written cannot be deleted, we deduce that all the identifiers read by the first process that scans A r are also read by the second one. Hence, at the end of round r, we have either HO p ⊆ HO q or HO q ⊆ HO p . ✷

The fact that an Atomic-Snaphot object can be implemented in a system whose executions satisfy P RD is a simple corollary of [START_REF] Borowsky | A simple algorithmically reasoned characterization of wait-free computations (extended abstract)[END_REF]. Combining this result with Proposition 2.1, we derive the following theorem: Theorem 2.2. The communication predicate P RD entirely captures the communication properties of Atomic-Snapshot systems in the benign case.

For the SWMR systems, in which at each round each process writes into its own register and then reads all the registers, Gafni noticed that, by the atomicity assumption, the first process to write into its register at some round is necessarily heard by all the others at that round, and so belongs to all the heard-of sets.

At this point, regarding the equivalence between the two considered types of systems and Theorem 2.2, it seems natural to check whether the two corresponding predicates P RD and P Gaf are actually equivalent, according to the definition given in Section 1.2. Although, the two following propositions show that P RD is actually strictly stronger than P Gaf .

Proposition 2.3. The communication predicate P RD is at least as strong as P Gaf .

P sym :: ∀r > 0, ∀p, q ∈ Π : p ∈ HO(q, r) ∨ q ∈ HO(p, r)

Figure 2: Predicate P sym , our candidate for SWMR atomic registers Proof: We are going to show that P RD in fact directly implies P Gaf . Let HO(p, r) p∈Π,r>0 be a collection of heard-of sets which satisfies P RD and let r > 0 be any round number.

The second part of P RD implies that the collection of all the heard-of sets of round r is ordered by the inclusion, while the first one ensures that each of them is nonempty. It thus follows that their intersection is nonempty. We therefore conclude that HO(p, r) p∈Π,r>0 satisfies P Gaf . ✷ Proposition 2.4. The communication predicate P Gaf is not at least as strong as P RD .

Proof: We proceed by contradiction. Assume that there exists an algorithm A that translates P Gaf into P RD in k rounds, for some positive integer k.

Let e be the execution of the HO machine (A, P Gaf ) such that ∃q ∈ Π, ∀r > 0, ∀p ∈ Π : HO(p, r) = {q}.

Let ρ be a macro-round of e and let p be some process, other than q. Since A is a translation of P Gaf into P RD , condition E2 of the definition of a translation ensures that the collection N ewHO (ρ) p p∈Π,ρ>0 satisfies P RD , and so that p belongs to N ewHO (ρ) p . From condition E1, we then deduce that p hears of itself (possibly through intermediate processes) during macro-round ρ. In particular, this implies that there exist some round r of macro-round ρ and some process p ′ ∈ Π (possibly p ′ = p) such that p ∈ HO(p ′ , r), which contradicts the fact that for all rounds r of e and for all processes p ′ ∈ Π, HO(p ′ , r) = {q}, whith q = p. Hence A is not a translation of P Gaf into P RD . ✷

By combining Propositions 2.3 and 2.4, we derive the following theorem:

Theorem 2.5. The communication predicate P RD is strictly stronger than P Gaf .

This result points out that, since P RD has been shown to be the predicate which entirely characterizes Atomic-Snapshot systems, we cannot morally consider that P Gaf effectively corresponds to SWMR systems.

In search for equivalence

As shown in the above section, the communication predicate P Gaf appears to be too weak for characterizing SWMR systems. We consider here an alternative predicate, called P sym and given in Figure 2, that we claim to be (i) guaranteed by such systems, and (ii) equivalent to P RD .

For the first point, we introduce the algorithm SWMR, given as Algorithm 2. In this algorithm, at each round r ≥ 1, each process p writes its own identifier into a SWMR atomic register R r p and then reads all the R r q 's. The following proposition shows that at each round r, for any two processes p and q, either p belongs to HO q or q belongs to HO p . Proposition 3.1. Let e be any execution of SWMR in a SWMR system. At the end of any round r, we have: p ∈ HO q ∨ q ∈ HO p .

Algorithm 2 Algorithm SWMR: code for process p 1: Initialization 2:

r ∈ N; initially 1

3:

vp ∈ V , initially vp = idp, whith idp being the identifier of process p

4:

HOp ⊆ Π 5: Round r: 6:

HOp := ∅

7:

W rite(R r p , vp)

8:

Pour tout q ∈ Π, Read(R r q )

9:

HOp := {q : Read(R r q ) = ⊥} 10:

r := r + 1
Proof: Let p and q be two processes in Π. First assume that p = q. The code of SWMR trivially implies that p reads its own identifier at round r, and so p ∈ HO p . Now assume that p and q are two distinct processes and that p / ∈ HO q at the end of round r. By the atomicity of the registers, this implies that q started executing line 8 of its code before p executed line 7. The code of SWMR therefore ensures that p started reading the registers after q has written its identifier, and so q ∈ HO p at the end of round r. ✷

P sym and P RD are equivalent

The result of the previous section shows that P sym is guaranteed by SWMR systems in the benign case. We give in this section a rigorous proof of the equivalence between P sym and P RD which, thanks to Theorem 2.2 and the equivalence between SWMR systems and Atomic-Snapshot ones, demonstrate that P sym entirely characterizes SWMR systems in the benign case.

We start our demonstration by showing that P RD is at least as strong as P sym .

Theorem 3.2. The communication predicate P RD implies P sym .

Proof: Let HO(p, r) p∈Π,r>0 be a collection of heard-of sets that satisfies P RD . We show that HO(p, r) p∈Π,r>0 also satisfies P sym .

Let r > 0 be any round number and let p and q be any two processes in Π. We have to demonstrate that either p ∈ HO(q, r) or q ∈ HO(p, r).

• If p = q, then the first part of P RD implies that p ∈ HO(p, r).

• Now assume that p and q are distinct and p / ∈ HO(q, r). The first part of P RD implies that p ∈ HO(p, r), and therefore that HO(p, r) ⊆ HO(q, r). The second part of P RD then ensures that HO(q, r) ⊆ HO(p, r). Since, by the first part of P RD , q belongs to HO(q, r), we finally conclude that p ∈ HO(q, r).

Hence, the collection HO(p, r) p∈Π,r>0 satisfies P sym , as needed. ✷

It remains to show that P sym is at least as strong as P RD , i.e., there exists a translation of P sym into P RD . We present here the algorithm SRD, given as Algorithm 3, which we prove to be such a translation. Informally speaking, at each macro-round ρ, each process p maintains a variable D p consisting of the processes that p hears of, directly or through intermediate processes, during ρ. If D p does not change for a given number of rounds, then p defines N ewHO p to be the set of all processes it heard of during ρ. This scheme is inspired by the double-collect used in many implementations (e.g. [START_REF] Attiya | Atomic snapshots in o (n log n) operations[END_REF], [START_REF] Attiya | Distributed Computing[END_REF]) of Atomic-Snapshot objects by SWMR atomic registers. 

23:

if k = 2 then 24:

k := k -1; Np := Np -1

25:

if Np = 0 then 26:

N ewHOp := Dp
Before starting our correctness proof, we introduce some piece of notation which we will use in the sequel. Let p be any process, and x p be some variable local to p. For each round r > 0, we denote by x (r) p the value of x p at the end of round r.

We first show that during any macro-round, each process p sets its variable N ewHO p to another value than ∅. In other word, the guard in line 25 is well defined. Lemma 3.3. Let e be an execution of the HO machine (SRD, P sym ) and let ρ be any macro-round of e. Let r 1 , r 2 , . . . , r n+1 be any sequence of n + 1 consecutive rounds of ρ and let p be some process in Π.

If N ewHO (r 1 -1) p = ∅, then there exists some index i ∈ 1; n + 1 such that

D (r i ) p = D (r i -1) p ∨ N ewHO (r i ) p = ∅.
Proof: Let e be an execution of (SRD, P sym ) and let ρ > 0 be any macro-round of e. Let r 1 , r 2 , . . . , r n+1 be a sequence of n + 1 consecutive rounds of ρ. We proceed by contradiction. Assume that there exists some process p such that N ewHO

(r 1 -1) p = ∅ and, for all indices i ∈ 1; n + 1 , D (r i ) p = D (r i -1) p ∧ N ewHO (r i ) p = ∅.
The code of SRD ensures that p executes the line 24 during each round r 2 , . . . , r n+1 . It follows that N

(r n+1 ) p ≤ N (r 2 ) p -n. Since N (r 2 ) p = |HO(p, r 2 )|, we deduce that N (r n+1 ) p ≤ 0.
Therefore, there exists an index j ≤ n + 1 such that N (r j ) p = 0, and so such that p executes the line 26 at round r j . Hence N ewHO (r j ) p = D (r j ) p . However, for all rounds r > 0, process p belongs to D (r) p , since P sym is satisfied in e. We thus conclude that N ewHO Proof: Let e be an execution of (SRD, P sym ) and let ρ > 0 be any macro-round of e.

Let p be any process of Π. Since D p = {p} at the beginning of macro-round ρ and D (r)

p ⊆ Π for all rouds r > 0, we deduce that there exist at most n -1 rounds r 1 , r 2 , . . . , r n-1 of macro-round ρ such that, for all indices i ∈ 1, ; n -1 , we have D

(r i ) p = D (r i -1) p .
Since ρ consists of n 2 + n rounds, Lemma 3.3 implies that p necessarily executes the line 26 during ρ, and so N ewHO

(ρ) p = D (ρ)
p . The result finally follows from the fact that, since P sym is satisfied in e, for all rounds r > 0, we have D (r) p = ∅. ✷

We are now in position to show that for any execution of the HO machine (SRD, P sym ), the collection N ewHO (ρ) p p∈Π,ρ>0 satisfies P RD . The following proposition shows that every process p belongs to its own set N ewHO p at the end of every macro-round ρ. Proposition 3.5. Let e be any execution of the HO machine (SRD, P sym ) and let ρ > 0 be any macro-round of e. For all processes p ∈ Π we have p ∈ N ewHO (ρ) p .

Proof: Let e be any execution of the HO machine (SRD, P sym ) and let ρ > 0 be any macro-round of e.

Since P sym is satisfied in e we have, for all rounds r > 0, p ∈ D

p . Moreover, Proposition 3.4 ensures that every process p executes the line 26 during ρ, and so that N ewHO

(ρ) p = D (ρ)
p . We thus conclude that, for every process p, we have p ∈ N ewHO

(ρ) p .
✷

It remains to show that at the end of any macro-round ρ, for any two processes p and q, the sets N ewHO q are ordered by inclusion. Lemma 3.6. Let e be any execution of the HO machine (SRD, P sym ), let ρ > 0 be any macro-round of e and let r 0 be any round of ρ.

If p and q are two distinct processes that both execute line 26 at round r 0 , then

N ewHO (ρ) p ⊆ N ewHO (ρ) q ∨ N ewHO (ρ) q ⊆ N ewHO (ρ) p .
Proof: Let e be any execution of the HO machine (SRD, P sym ) and let ρ > 0 be any macro-round of e. Assume that there exist two distinct processes p and q that both execute line 26 at some round r 0 of macro-round ρ.

Since P sym is satisfied in e, we have either p ∈ HO(q, r 0 ) or q ∈ HO(p, r 0 ). The code of SRD (line 15) then ensures that D

(r 0 -1) p ⊆ Known (r 0 ) q or D (r 0 -1) q ⊆ Known (r 0 ) p , respectively, which implies that D (r 0 -1) p ⊆ D (r 0 ) q or D (r 0 -1) q ⊆ D (r 0 ) p
Since p and q both execute line 26 at round r 0 , we necessarily have

D (r 0 -1) p = D (r 0 ) p = N ewHO (ρ) p and D (r 0 -1) q = D (r 0 ) q = N ewHO (ρ)
q . Hence, we finally deduce that either N ewHO

(ρ) p ⊆ N ewHO (ρ) q or N ewHO (ρ) q ⊆ N ewHO (ρ) p .
✷

We now extend the result to the case in which p and q determine N ewHO p and N ewHO q during two distinct rounds. Lemma 3.7. Let e be any execution of the HO machine (SRD, P sym ), let ρ > 0 be any macro-round of e and let r 0 be any round of ρ.

If p and q are two distinct processes that execute line 26 at rounds r 0 and r 1 respectively, with

r 0 = r 1 , then N ewHO (ρ) p ⊆ N ewHO (ρ) q ∨ N ewHO (ρ) q ⊆ N ewHO (ρ)
p . Proof: Let e be any execution of the HO machine (SRD, P sym ) and let ρ > 0 be any macro-round of e. Assume that there exist two distinct processes p and q that execute line 26 at rounds r 0 and r 1 respectively, with r 0 = r 1 .

We proceed by contradiction and assume that

N ewHO (ρ) p ⊆ N ewHO (ρ) q ∧ N ewHO (ρ) q ⊆ N ewHO (ρ) p .
Since P sym is satisfied in e, we have either p ∈ HO(q, r 0 ) or q ∈ HO(p, r 0 ). If we assume p ∈ HO(q, r 0 ), then the code of SRD ensures that D (r 0 -1) p ⊆ D (r 0 ) q . By the definition of r 0 , we thus have

D (r 0 -1) p = N ewHO (ρ) p . Moreover, since D (r 0 ) q ⊆ N ewHO (ρ) q , it follows that N ewHO (ρ) p ⊆ N ewHO (ρ)
q , a contradiction. We thus deduce that p / ∈ HO(q, r 0 ), which implies q ∈ HO(p, r 0 ), and so

D (r 0 -1) q ⊆ D (r 0 ) p = N ewHO (ρ) p .
By assumption, N ewHO

(ρ) p ⊆ N ewHO (ρ) q . Since D (r 0 -1) q ⊆ N ewHO (ρ)
q , we then obtain D (r 0 -1) q ⊂ N ewHO (ρ) p . We also assumed that N ewHO

(ρ) q ⊆ N ewHO (ρ)
p . Hence there exists some process q 0 / ∈ N ewHO

(ρ)
p which belongs to N ewHO (ρ)

q . Let r q be the round of ρ such that q 0 ∈ D

(rq) q \ D (rq-1) q . Since D (r 0 -1) q ⊂ N ewHO (ρ) p and q 0 / ∈ N ewHO (ρ)
p , we necessarily have r q ≥ r 0 .

Assume r q = r 0 . Then there exists some process q 1 distinct from p such that q 0 ∈ D (r 0 -1)

q 1 ∧ N ewHO (ρ) p ⊆ D (r 0 -1) q 1
∧ q 1 ∈ HO(q, r 0 ). Now assume that q 0 ∈ D (r 0 -2) q 1

. This implies that q 1 / ∈ HO(p, r 0 -1) and therefore, under P sym , we have p ∈ HO(q 1 , r 0 -1). By the definition of r 0 , it follows that N ewHO

(ρ) p ⊆ D (r 0 -1) q 1
, and so N ewHO

(ρ) p ⊆ D (r 0 ) q , a contradiction. Hence, q 0 ∈ D (r 0 -1) q 1 \ D (r 0 -2) q 1 .
The same argument as above shows that there exist N (r 0 ) p processes q 1 , . . . , q N (r 0 ) p , each distinct from p, such that for all indices l ∈ 1; N (r 0 ) p we have

q 0 ∈ D (r 0 -l) q l \ D (r 0 -l-1) q l ∧ N ewHO (ρ) p ⊆ D (r 0 -l) q l
, which implies that for all indices l ∈ 1; N (r 0 ) p , we have N ewHO

(ρ) p ⊆ D (r 0 -N (r 0 ) p ) q l
. However, since P sym is satisfied, the definition of N (r 0 ) p ensures that there exist at most N (r 0 ) p -1 processes q ′ distinct from p such that N ewHO

(ρ) p ⊆ D (r 0 -N (r 0 ) p ) q ′
, a contradiction. Hence r q > r 0 .

By a similar argument, we show that for any round r ′ of ρ such that r ′ > r 0 , we have r q ≥ r ′ , a contradiction since ρ consists of a finite number of rounds. We thus conclude that either N ewHO

(ρ) p ⊆ N ewHO (ρ) q or N ewHO (ρ) q ⊆ N ewHO (ρ) p . ✷
As a last step in our argumentation, we demonstrate that P sym is at least as strong as P RD :

Theorem 3.8. Algorithm SRD is a translation of P sym into P RD .

Proof: Let e be any execution of the HO machine (SRD, P sym ). We first argue condition E2, which requires that the collection N ewHO (ρ) p ) p∈Π,ρ>0 satisfies P RD . Proposition 3.5 ensures that every process p belongs to N ewHO p at the end of each macroround ρ of e, while the combination of Lemmas 3.6 and 3.7 implies that for any two distinct processes p and q, and for any macro-round ρ, the sets N ewHO 

3:

idp is the identifier of process p 4: Round r = 2ρ -1 5:

S r p :

6:

Send idp to all 7:

T r p :

8:

N ewHOp := ∅ 9: Round r = 2ρ 10:

S r p :

11:

Send HO(p, r -1) to all

12:

T r p :

13:

N ewHOp := S q∈HO(p,r) HO(q, r -1)

We present here the algorithm ST N , given as Algorithm 4, which we prove to be a 2-rounds translation of P sym into P Gaf . For that, we use a purely combinatorial result stated by the following lemma: Lemma 3.10. Let n be an integer such that n ≥ 2, and let A = (a i,j ) i,j∈ 1;n and B = (b i,j ) i,j∈ 1;n be two matrices in M n×n ({0, 1}).

If A and B verify * ∀i, j ∈ 1; n , a i,j + a j,i > 0 * ∀i, j ∈ 1; n , b i,j + b j,i > 0

and if M = (m i,j ) i,j∈ 1;n is defined by M = A × B, then M verifies the following condition:

∃i ∈ 1; n , ∀j ∈ 1; n m i,j > 0.

Proof: We procced by induction on the size n (n ≥ 2) of matrices A and B.

• If n = 2. Let A = (a i,j ) i,j∈{1,2} and B = (b i,j ) i,j∈{1,2} in M 2×2 ({0, 1}). If A is such that ∀i, j ∈ {1, 2}, a i,j + a j,i > 0,
then there exists i 0 ∈ {1, 2} such that a i 0 ,1 > 0 and

a i 0 ,2 > 0. Moreover, if B is such that ∀i, j ∈ {1, 2} 2 , b i,j + b j,i > 0 then we have b 1,1 > 0 and b 2,2 > 0. It follows that if M is defined by M = A × B then we have m i 0 ,1 > 0 and m i 0 ,2 > 0.
• Now assume that the result holds for matrices of size n -1. Let A = (a i,j ) i,j∈ 1;n and B = (b i,j ) i,j∈ 1;n be two matrices in M n×n ({0, 1}) that satisfy -∀i, j ∈ 1; n , a i,j + a j,i > 0 Hence we can define a mapping i : 1; n -→ 1; n such that, for all indices j = 1, • • • , n, i(j) = i j . By construction, the mapping i is bijective.

-∀i, j ∈ 1; n , b i,j + b j,i > 0 Let M = (m i,j ) i,

Conclusions and future work

In this paper, we adress the expressivity of the HO model. We give a first answer regarding two major types of models for distributed computing in the presence of benign failures. In particular, we present the first formal characterization of classical models only in terms of predicates that capture the properties of their communications. Moreover, we show how it is possible to compare and hierarchize such predicates.

In [START_REF] Biely | Tolerating corrupted communication[END_REF], Charron-Bost et al. generalized the HO model to cope with value failures. This extended model covers both the Byzantine failures [START_REF] Pease | Reaching agreement in the presence of faults[END_REF] and the dynamic transmission faults of [START_REF] Santoro | Time is not a healer[END_REF]. The HO model thus appears to be suitable for systems with any type of failures.

Future works may try to apply the techniques presented in this paper to rigorously determine the predicates corresponding to other existing models, either shared-memory or message passing, with benign failures or value failures. This would provide a formal unified framework for the analysis of fault-tolerant distributed systems and may give new insights about questions such : 
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 p34 ∅, a contradiction. ✷ As a corollary of the previous lemma, we derive the following proposition: Let e be any execution of the HO machine (SRD, P sym ). For any macro-round ρ of e and for any process p, we have N ewHO (ρ) p = ∅.
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 39 are ordered by inclusion. Therefore, condition E2 is satisfied.Condition E1 directly follows from the code of SRD (lines 15, 20 and 26) and from the fact that under P sym , each process p belongs to HO(p, r) at each round r. ✷ Combining Theorems 3.2 and 3.8, we derive our main result: Predicates P sym and P RD are equivalent.
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 21 j∈ 1;n be the matrix defined by M = A × B. By contradiction assume that M satisfies ∀i ∈ 1; n , ∃j ∈ 1; n : m i,j = 0.For all indicesk = 1, • • • , n, let A k , B k in M (n-1)×(n-1) ({0, 1}) and M k in M (n-1)×(n-1) (N) be the matrices defined byA k = (a i,j ) i,j =k , B k = (b i,j ) i,j =k , M k = (m i,j ) i,j =k .By the definition of A and B, forall indices k = 1, • • • , n, matrices A k and B k satisfy -∀i, j ∈ ({1, • • • , n} \ {k}), a i,j + a j,i > 0 -∀i, j ∈ ({1, • • • , n} \ {k}), b i,j + b j,i > 0Consider A 1 and B 1 . The recurrence assumption implies that there exists an index i 1 = 1 such that, for all indices j = 2, • • • , n, we haven l=2 a i 1 ,l • b l,j > 0.Moreover, for all indices j = 2,• • • , n m i 1 ,j = n l=2 a i 1 ,l • b l,j .It follows that, for all indices j = 2, • • • , n,m i 1 ,j ≥ n l=2 a i 1 ,l • b l,j > 0Since we have assumed that ∀i ∈ 1; n , ∃j ∈ 1; n , m i,j = 0, we thus conclude that m i 1 ,1 = 0. Now consider A 2 , B 2 and M 2 . By the same argument, we show that there exists an index i 2 = 2 such that m i 2 ,2 = 0 and ∀j = 2, m i 2 ,j > 0. We have shown that m i 1 ,1 = 0, so we deduce that i Repeating the same argument for A k , B k and M k , k = 3, • • • , n, we show that -for all k = 1, • • • , n there exists an index i k ∈ {1, • • • , n} such that m i k ,k = 0 and ∀l ∈ {1, • • • , n} \ {k}, m i k ,l > 0 -∀l, k ∈ 1; n , k = l ⇒ i k = i l

  (i) what communication properties are really crucial, or (ii) what problems are solvable in what systems.

  3.2 A 2-rounds translation of P sym into P GafWe have shown in the above section that (i) P RD implies P Gaf , and (ii) algorithm SRD is a (n 2 + n)-rounds translation of P sym into P RD . It trivially follows that SRD is a (n 2 + n)-rounds translation of P sym into P Gaf .

	Algorithm 4 Algorithme ST N ): code of process p
	1: Initialisation:
	2:	N ewHOp ∈ 2 Π , initially empty

Now, let k ∈ {1, • • • , n}. Since i : j → i(j) is bijective, we have m i(k),i(i -1 (k)) = 0. The fact that b i(i -1 (k)),i(i -1 (k)) > 0 then implies a i(k),i(i -1 (k)) = 0.

Moreover, for all i, j ∈ 1; n , a i,j + a j,i > 0 and so a i(i -1 (k)),i(k) > 0.

By the definition of the mapping i, we have

We then deduce that b i(k),i -1 (k) = 0 which, by the definition of B, implies that b i -1 (k),i(k) > 0.

Repeating the same argument, we obtain a i(i(k)),i -1 (k) = 0 and then

where i r is the r-th iterated of i.

, we obtain a i(k),k > 0, a contradiction. ✷ Theorem 3.11. Algorithm ST N is a 2-rounds translation of P sym into P Gaf .

Proof: Let e be an execution of the HO machine and let ρ > 0 be any macro-round of e.

The fact that e satisfies condition E1 of the definition of a translation is a straightforward consequence of the way ST N works. Indeed, the code of ST N (line 13) ensures that if some process q belongs to the set N ewHO (ρ) p of some process p, then p actually heard of q, possibly through an intermediate process, during macro-round ρ.

We now argue condition E2. Let A ρ = (a i,j ) i,j∈ 1;n , B ρ = (b i,j ) i,j∈ 1;n and M ρ = (m i,j ) i,j∈ 1;n be the matrices defined by: * a i,j = 1 if p i ∈ HO(p j , 2ρ -1), and 0 otherwise * b i,j = 1 if p i ∈ HO(p j , 2ρ), and 0 otherwise * M ρ = A ρ × B ρ By these definitions, it is obvious to see that, for all indices i, j ∈ 1; n , we have m i,j > 0 if and only if process p i belongs to N ewHO (ρ) p j . Hence, e satisfies condition E2 if and only if M ρ verifies the following condition:

C : ∃i ∈ 1; n , ∀j ∈ 1; n m i,j > 0.

Since P sym is satisfied in e, matrices A ρ and B ρ verify * ∀i, j ∈ 1; n , a i,j + a j,i > 0 * ∀i, j ∈ 1; n , b i,j + b j,i > 0 Lemma 3.10 then ensures that M ρ = A ρ × B ρ verifies condition C, which ends to show that ST N translates P sym into P Gaf . ✷