N

N

Ergodic BSDEs and related PDEs with Neumann

boundary conditions
Adrien Richou

» To cite this version:

Adrien Richou. Ergodic BSDEs and related PDEs with Neumann boundary conditions. Stochastic
Processes and their Applications, 2009, 119 (9), pp.2945-2969. 10.1016/j.spa.2009.03.005 . hal-
00294590

HAL Id: hal-00294590
https://hal.science/hal-00294590v1
Submitted on 9 Jul 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00294590v1
https://hal.archives-ouvertes.fr

Ergodic BSDEs and related PDEs with Neumann boundary
conditions

Adrien Richou
IRMAR, Université Rennes 1
Campus de Beaulieu, 35042 RENNES Cedex, France
e-mail: adrien.richou@univ-rennesl.fr

July 9, 2008

Abstract

We study a new class of ergodic backward stochastic diffeleaquations (EBSDEs for short)
which is linked with semi-linear Neumann type boundary eatmoblems related to ergodic phenom-
enas. The particularity of these problems is that the eggodinstant appears in Neumann boundary
conditions. We study the existence and uniqueness of sokito EBSDEs and the link with partial
differential equations. Then we apply these results tonagitergodic control problems.

1 Introduction

In this paper we study the following type of (Markovian) baekd stochastic differential equations
with infinite horizon that we shall call ergodic BSDEs or EBS&or short: forald < ¢t < T < +o0,

T T T
YE = Vi + / RO(XE, Z7) — Nds + / [9(X2) — udK* — / Zraw.. (L)
t t

t
In this equation(WW¢) >0 is ad-dimensional Brownian motion and¥”, K ) is the solution to the fol-
lowing forward stochastic differential equation reflected smooth bounded domad = {¢ > 0},
starting atz and with values iR®:

XP=a+ [[b(XT)ds + [ o(X2)dW + [} VO(XI)AKE, > 0; 1.2)
K7? = fot IxeseacdKy, K7 isnon decreasing. '
Our aim is to find a triplgY, Z, 1), whereY, Z are adapted processes taking valueR iand R'*¢
respectively.yp : R x R**¢ — R is a given function. Finally) and . are constantsy, which is
called the “boundary ergodic cost”, is part of the unknowimlev\ is a given constant.

It is now well known that BSDES provide an efficient alteraatiool to study optimal control prob-
lems, see, e.gmg] o[l[8]. But up to our best knowledge, tiqgep of Fuhrman, Hu and Tessitoﬂa [9]
is the only one in which BSDE techniques are applied to ogtooatrol problems with ergodic cost
functionals that are functionals depending only on the ggtit behavior of the state (see e.g. costs
defined in formulas@ﬁ) anE.?) below). That paper deéls the same type of EBSDE as equation
(E) but without boundary condition (and in infinite dimemg: their aim is to find a tripléY, Z, \)
suchthatforald < ¢t < T < o0,

T T
YE = YE+ / [O(XZ, Z7) — Nds — / Zzaw., (1.3)
t

t
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where(W,)>0 is a cylindrical Wiener process in a Hilbert space &t is the solution to a forward
stochastic differential equation startingaatind with values in a Banach space. In this casks, the
“ergodic cost”.

There is a fairly large amount of literature dealing by atialyechniques with optimal ergodic
control problems without boundary conditions for finite @insional stochastic state equations. We
just mention papers of Arisawa and Liorﬂ; [3] and Arisa\ﬂa [Ij. this framework, the problem is
treated through the study of the corresponding HamiltaodaBellman equation. Of course, same
questions have been studied in bounded (or unbounded) deméth suitable boundary conditions.
For example we refer the reader to Bensoussan and Frﬂhset[ﬁj tase of homogeneous Neumann
boundary conditions and to Lasry and Lio [14] for statest@int boundary conditions. But in all
these works, the constantdoes not appear and the authors are interested in the cohstestead.

To the best of our knowledge, only works where the problemhef ¢onstanf. appears in the
boundary condition of a bounded domain are those of Ariszﬂ/}/ar[nd Barles and Da Li(ﬂ5]. The
purpose of the present paper is to show that backward stichéferential equations are an alternative
tool to treat such “boundary ergodic control problems”slwiorth pointing out that the role of the two
constants are different: our main results say that, for amnd under appropriate hypothesis, there
exists a constant for which ) has a solution. At first sight doesn’t seem to be important and
could be incorporated tg, but our proof strategy needs it: we first show that, for anthere exists a
unigue constank := A(u) for which ) has a solution and then we prove th@) = R.

To be more precise, we begin to deal with EBSDESs with zero Neumboundary condition in a
bounded convex smooth domain. As [r|1 [9], we introduce thescta strictly monotonic backward
stochastic differential equations

T T
yoe — yze +/ (X7, Z5°) — aY"]ds —/ Z5qW,, 0<t<T <400, (L4)
t t

with o > 0 (see [J] or [2P]). We then prove that, roughly speakifig™ > — Y, 2, aY"*)
converge, asx — 0, to a solution(Y'*, Z*  \) of EBSDE ) for allz € G when (X®, K®) is
the solution of 2) (see Theorgm|2.6). When there is noo kemumann boundary condition, we
consider a functior such that32 (z) + g(z) = u, Ve € 0G and thanks to the proces$X ™) we
modify EBSDE [1.11) in order to apply previous results reigtio zero Neumann boundary condition.
In TheoremnB.Z we obtain that for gmythere exists a unique constakt:= A(u) for
which ) has a solutiony +— A(p) is a continuous decreasing function and, under appropriate
hypothesis, we can show thitz) =5 —oo andA (1) “=— +oo which allow us to conclude: see
Theore5 whew is bounded and Theore3.7 4.3 whda bounded inc and Lipschitz inz.
All these results are obtained for a bounded convex domdiit lsupossible to prove some additional
results when the domain is not convex.

Moreover we show that we can find a solution 1.1) suchffat= v(X*) wherewv is Lipschitz
and is a viscosity solution of the elliptic partial diffetezl equation (PDE for short)

{ La',v(x) + ¢z, Vo(z)o(z) =), z€G (15)
gr(@) +g(x) =p, x€0G,
with 1
Lf(@) = 5Tr(o(x)'o(2)V* f(2)) +' b(2)Vf(2).
The above results are then applied to control problems veisitsc
, Lot [ [T 1 ye PP .
re.p) = tmsop 8 | [ Lz poas+ [ o0 -] e

T—+oco

1 T : T ,
J(x, p) = limsu 7EP’T{/ L(X?, ps *)\der/ deKZ}]l T RZIS0
(z,p) i sup o T R ; [L(XS, ps) — Al IA 9(X5) EP T K2]>0
(1.7)
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wherep is an adapted process with values in a separable metric spandE”” denotes expectation
with respect taP4. the probability under whichV = W, + fot R(ps)ds is a Wiener process on
[0,7T]. R : U — R%is a bounded function. With appropriate hypothesis and byngey)(z, z) =
infuer {L(z,u) + zR(u)} in (]ﬂ) we prove thah = inf, I(x, p) andp = inf, J(z, p) where the
infimum is over all admissible controls.

The paper is organized as follows. In the following secti@study EBSDESs with zero Neumann
boundary condition. In section 3 we treat the general ca&B&DESs with Neumann boundary con-
dition. In section 4 we study the example of reflected Kolnroggrocesses for the forward equation.
In section 5 we examine the link between our results on EBSibiAssolutions of elliptic semi-linear
PDEs with linear Neumann boundary condition. Section 6 v@tial to optimal ergodic control prob-
lems and the last section contains some additional resotist&EBSDES on a non-convex bounded
set.

2 Ergodic BSDEs (EBSDESs) with zero Neumann boundary
conditions

Let us first introduce some notations. Throughout this pa@é®):>o will denote ad-dimensional
Brownian motion, defined on a probability spa@e, 7,P). Fort > 0, let 7; denote ther-algebra
a(Ws;0 < s < t), augmented with th@-null sets of 7. The Euclidean norm oR? will be denoted
by |.|. The operator norm induced Ky on the space of linear operator is also dendtedGiven a
function f : RY — R* we denote|f|oc = sup,cpa |f(z)| and|f|e,0 = sup,ce |f(z)| with O a
subset ofR?.

Let O be an open connected subseRdt C*(0), Cf (0) andC},,(O) will denote respectively the set
of real functions of clas€” on O, the set of the functions of clag® which are bounded and whose
partial derivatives of order less than or equaktare bounded, and the set of the functions of cl#ss
whose partial derivatives of ordérare Lipschitz functions.

M?(RT,R¥) denotes the space consisting of all progressively measupaticesses, with values in

R* such that, for all” > 0,
T
E {/ |XS|2d8:| < +o00.
0

Throughout this paper we consider EBSDEs where forwardt@msaare stochastic differential
equations (SDEs for short) reflected in a bounded sufiset R?. To state our results, we use the
following assumptions ory"

(G1). There exists a functiop € C2(R?) such thaiG = {¢ > 0}, G = {¢ = 0} and|V¢(z)| =
1,Vz € 0G.

(G2). Gisabounded convex set.

If 2 € OG, we recall that-V () is the outward unit vector t8G' in . We also considel : R?
R? ando : R? — R¥*9, two functions verifying classical assumptions:

(H1). there exist two constant&, > 0 andK, > 0 such that/z,y € R?,

lb(z) —b(y)] < K|z —yl,
and
lo(z) —o(y)] < Kolz—yl

We can state the following result, see eIEI [15] Theorem 3.1.



2 EBSDES WITH ZERO NEUMANN BOUNDARY CONDITION

Lemma 2.1 Assume that (G1) and (H1) hold true. Then for every G there exists a unique adapted
continuous couple of processgeXy, K¥);t > 0} with values inG x R™ such that

XP =x+ [Jb(X2)ds + [ o(XE)dWs + [} VH(XT)AKE, t>0;

. . . 2.1
Kf = fot IxscocdKy, K7 isnondecreasing. (1)
This section is devoted to the following type of BSDEs witfiriite horizon
T T
Y =Yr + / [W(XT,Z5) — Nds — / ZidWs, 0<t<T < +o0, (2.2)
Jt Jt

where) is a real number and is part of the unknowns of the problemyand’ x R¢ — R verifies the
following general assumptions:

(H2). there existKy , > 0andKy, . > 0 such that
[(z,2) — (', 2)| < Kypolz —2'| + Ky.|z— 2|, Va,2' €@, 2,2 e R%

We notice that) (., 0) is continuous so there exists a constaft verifying | (., 0)| < My. Asin |E],
we start by considering an infinite horizon equation witlcr monotonic drift, namely, forx > 0,
the equation

T T
Yo =y +/ [W(XE, Z5%) — aY")ds —/ Z5AW,, 0<t<T < +oo. (2.3)
t

t

Existence and uniqueness have been first study by Briand arial [E] and then generalized by Royer
in [@]. They have established the following result:

Lemma 2.2 Assume that (G1), (H1) and (H2) hold true. Then there existégue solutior(Y**, Z*%)
to BSDE ) such that™“ is a bounded adapted continuous process &id* € M?*(R™,R%).
Furthermore,|Y,”| < M, /a, P-a.s. for allt > 0.

We define
va() = YO

It is worth noting thafv. (z)] < M, /a and uniqueness of solutions implies that X7") = Y,”.
The next step is to show that, is uniformly Lipschitz with respect te.. Let

e [0 b)) | Te@) — o) (o) ~ o(y))]
= p{ [z — yP? * 3z — yP? }

z,yel,xty

We will use the following assumption:

(H3). 7+ Ky .Ks <0.
Remark 2.3 Wheno is a constant function, (H3) becomes

{lepitn s,

|z —y|?

sup
z,yeG,zty

i.e. bis dissipative.
Proposition 2.4 Assume that (G1), (G2), (H1), (H2) and (H3) hold. Then we hforeall « > 0 and
z, 2’ € G,

/ Ky
v (@) — va ()] € ——z

/
< *U*Kw,chr'x x'|.
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Proof. = We use a Girsanov argument due to P. Briand and Y. Hﬂin [7].aef € G, we set
1704 P Yz/,a’ Za — gTa Zz/,a’

VXS, Z8%) — (XS, 25"t

pls) = |Z5he — Z0)2
0 otherwise,

(z2 = Z2) if 22— 75 £ 0

fals) = (X, Z0%) —(XT, 22,

andW, = f(f Bsds + W;. By hypothesis (H2)g is aR? valued adapted process boundediy .,
so we are allowed to apply the Girsanov theorem: fofa# R there exists a probabilit{)r under
which (W4),ejo, 17 is @ Brownian motion. Then, from equatign (2.3) we obtain

T T T
?;‘:Y/Ta—a/ f/;‘ds+/ fa(s)ds—/ Z8dWs, 0<t<T. (2.4)
t t

t

Applying It's formula toe = ¢ =YY, we obtain

T T
Ve = e*a<T*”Y;+/ e*““*“fa(s)dsf/ e Y ZoqW,
t t
_ _ T
90 < e TR 19| 7] +/ e T IB | fu(s)]| 7] ds
t
Vel < e TR 17| R

r )0 ‘12 1/2
+KW/ e (IR T[|X§ - X7 ‘}}] ds.

t

To conclude we are going to use the following lemma whose fpniilb be given after the proof of
Theorem:

Lemma 2.5 Assume that (G1), (G2), (H1), (H2) and (H3) hold. For@i ¢ < s < T,
BT [1X7 - X7 P[] < e - xR
Furthermore, ifo is constant then, for ald < ¢ < s, we have
IXT - X2 < e XT - X,

From the last inequality, we deduce

9 < e IR 7|

, T
P+ Kl Xt = X7| [ emmmiontooog,
t

which implies
[1 = elmatmKy - Ko)(T-1)]

Xr— xo.
a—n— Ky Ko X ‘|

~ _ _n M.
o) < ey g
[0}

Finally, letT — +o0 and the claim follows by setting= 0. 0
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Proof of Lemmalf2.%. Letus apply It's formula te =27 5w.=Ko)(s=) | xo _ xo' 2.
2Ky sKo)s=t) o xo' |2 x5 xE|2

s t 7 ’
+2/ e’2<"+K”’2K°)<“’t)[ (X7 — XZ)(B(XT) — b(XZ))du
t

+3TH((XE) — o(XE ) (o(X2) — o(X2)du

FHXE = X )VH(XD)AKE = (XE — X2 )V (X2 )dK?
FUXE = XE)(0(X2) — o(XE)) (AW — Budu)
—(n+ Ky o Ko)| X5 — X2 Pdul.

G is a convex set, stz — y)V¢(x) < 0forall (z,y) € G x G. Furthermords| < K . ando
is K,-Lipschitz. By the definition of; we obtain,

2Ry Km0y y 1  xE X

S t ’ / ~
vz [0 oz - ) 0 (X2) - o) | aif
t

Taking the conditional expectation of the inequality we thet first result. To conclude, the stochastic
integral is a null function when is a constant function. 0
Asin [ﬂ], we now set
Ua(2) = va(2) = va(0),
then we havev, (z)| < #M|x| forallz € G and alla > 0, according to Propositio@A.
Moreover,a|v, (0)| < My, by Lemm. Thus we can construct by a diagonal procedwgLesce
(an)nen N\, O such that, for alk € GNQ?, Ta,, (z) — 9(z) andanva,, (0) — . Furthermoreg, is

a%-upschitz function uniformly with respect t@. Sov can be extended tog%-

Lipschitz function defined on the whol@, therebyz.,, (z) — @(z) for all z € G. Thanks to this
construction, we obtain the following theorem which can ba/pd in the same way as that of Theo-
rem 4.4 in [pl.

Theorem 2.6 (Existence of a solution)Assume that (G1), (G2), (H1), (H2) and (H3) hold. Debe
the real number and the function constructed previously. We defiife:= 5(X}). Then, there exists

aprocessZ® € M2(R™,R%) such that? — a.s. (Y, Z*, \) is a solution of the EBSDE (}.2) for all

x € G. Moreover there exists a measurable functionR? — R such thatZ{ = {(X7).

We remark that the solution to EBSDE‘Z.Z) is not unique. éudthe equation is invariant with
respect to addition of a constantYo However we have a result of uniqueness Xor

Theorem 2.7 (Uniqueness oh) Assume that (G1), (H1) and (H2) hold. L@t, Z, \) a solution of
EBSDE [2p). Then is unique amongst solution’, Z, A) such thatY is a bounded continuous
adapted process and € M*(R™,R?).

Proof.  We conside(Y, Z, \) and(Y”, Z’, \") two solutions of the EBSDH (3.2). Lét= \' — ),
Y =Y'-YandZ = Z" — Z. We have, for all" € R} ,

T ~ T ~
Ztﬁtdt—T_l/ Z,dW,

X:T_I[Y/T—Y/O]—&-T_l/ /

J 0
with ,
Y(XS, Zs) — (XS, Zs) e
Bs = |Z, — Zs|?
0

elsewhere.

(2.5)
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[ is bounded: by the Girsanov theorem there exists a probabileasureQ+ under WhiCh(Wt =
Wi — f(f Bsds)¢elo,) is @ Brownian motion. Computing the expectation with respe@+ we obtain

\=T"'E%r [YT - Y/O] < %7

becausé’ is bounded. So we can conclude the proof by letfihgs +oo. d
To conclude this section we will show a proposition that Wwélusefull later.

Proposition 2.8 Assume that (G1), (H1) hold7 is a bounded set ang < 0. Then there exists a
unigque invariant measure for the procesg X+ );>o.

Proof.  The existence of an invariant measuréor the procesgX:):>o is already stated irml],
Theorem 1.21. Let andv’ two invariant measures anily ~ v, X, ~ v/ which are independent
random variables ofi;):>o. For all f € Cyi,(R%) we have

’ ’ 1/2
[ELf(Xo)] — ELF(X0)]| = [BLF(X20) - F(X50)]) < KB[|x20 - X202 7,
with Ky the Lipschitz constant of. We are able to apply LemrTEIZ.S with= 0: forall s € RT,
1/2 sioo 0

[ELf(Xo)] ~ EIF(X6))| < Kpe™"E[|Xo - XoP?]

Then the claim ends by use of a density argument and the muomaetass theorem. 0

3 EBSDEs with non-zero Neumann boundary conditions

We are now interested in EBSDEs with non-zero Neumann beyramditions: we are looking for
solutions to the following type of BSDEs, for dll< ¢t < T < +o0,

T T T
Vo= vi [ zn - Nds+ [ lg(x) - ais — [ zzaw., 3a)
t t t

where) is a parametey, is part of the unknowns of the problem,still verifies (H2) andy : G — R
verifies the following general assumption:

(F1). g€ Cﬁp(@).
Moreover we use extra assumptiongn
(G3). o€ Cﬁp(]R{d).

In this situation we will say thatY, Z, 1) is a solution of EBSDE@l) with\ fixed. But, due to
our proof strategy, we will study firstly a modified problemevb . is a parameter and is part of
the unknowns. In this case, we will say tHaf, Z, \) is a solution of EBSDE@.l) with fixed. We
establish the following result of existence:

Theorem 3.1 (Existence of a solution)Assume that (G1), (G2), (G3), (H1), (H2), (H3) and (F1) hold
true. Then for any: € R there exist\ € R, v € Cj;,(G), ¢ : R* — R a measurable function such
that, if we defing;” := v(X7) and Z¢ := ((X7) thenZ® € M*(RT,R?) andP—a.s. (Y*, Z%, \)

is a solution of EBSDH (3.1) with fixed, for allz € G.
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Proof.  Our strategy is to modify EBSDE.l)_in order to apply Thm@. According to the
Theorem 3.2 of[[13] there exists € R and% € C2,,(G) such that

A —av =0 Ve e G
22 (z) +g(z) =p, VzeodG.

We setY,” = #(X7) andZ{ = 'Vo(X{)o(X7). These processes verify for 8ll< ¢t < T' < +oo,

T T T
e / LH(X7)ds +/ [9(X®) — pldK? — / Z2dW..
t t t
We now consider the following EBSDE with infinite horizon:
— — T — — T —
Y =Yr + / [V(XT,Z5) — Nds — / ZidWs, 0<t<T < +o0, (3.2)
Jt Jt
with ¢ (z, 2) = Lo(z) + (z,z + 'Vi(x)o(z)). Since derivatives of,, o and ¢ are Lipschitz
functions, there exists a constait; , such that we have for adl, z’ € Gandz, 2z’ € R?
(=, 2) — (2, 2")| < K lo— 2| + Ky 2|z — 2]

So we are able to apply Theordm]2.6: there exists R, 7 € Cf,(G) and€ : R? — R a measurable

function such thatY® := (X*), Z* := £(X~), A) is a solution of EBSDE[(3]2). We set

Y = i/tx + ):/tx =0(X¥) +0(XY¥), )
Z7 =77 + ZF = "VO(XP)o(XT) + £(X7).
Then(Y”, Z*, \) is a solution of EBSDE[(3]1) linked tp. 0
We have also a result of uniqueness iahat can be shown exactly as Theor@ 2.7

Theorem 3.2 (Uniqueness oh) Assume that (G1), (H1) and (H2) hold. L@t, Z, \) a solution of
EBSDE 1) withy fixed. Then\ is unique among solution&’, Z, \) such thatY” is a bounded
continuous adapted process adde M?(RT, R?).

Thanks to the uniqueness we can define the map A\(x) and study its properties.

Proposition 3.3 Assume that (G1), (G2), (G3), (H1), (H2), (H3) and (F1) haldet Then\(u) is a
decreasing continuous function &

Proof.  Let(Y*, 2", ) and(Y", Z", ) two solutions of [3]1) linked te. andji. We setV :=
Y?® —Y®andZ" := Z* — Z*. These processes verify for dll € R

_ _ T ~ ~ T _
YS”=Y%”+/ [w(X:z:)—w(X:,z:>]ds+[A—AJTW—/J]K;&—/ Zaw.. (3.3)
0 0

As usual, we set

VR (Ze —2z7) ®Zi—28#0
0 otherwise,

Bs =

andW, = — fot Bsds + Wy. According to the Girsanov theorem there exists a prolgkilli- under

which (W4),cj0, 17 is @ Brownian motion. Then we have

V& = EOr [YT] FA = AT + [ — AJECT [KT] . (3.4)

N—— N——
<M >0
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If we suppose that < ji and) < X then
Y& <N=AT+M"=5° —

this is a contradiction. Sp < /i = A > \. To show the continuity ok we assume thafp — p| < e
with e > 0. Then

Y 1 T T ~ x 2M € T
A=A = [0 [¥5 = ¥ o i - ]| < S+ 70 K7,

Let us now prove a lemma about the bound&St [Kf] :

Lemma 3.4 There exists a constant such that

EQr [Kf] <C(+1t), VI eRY vte(0,T],Vz €G.
Proof of the lemma. Applying It's formula tog (X7 ) we have for alk € R* and allz € G
t ot
Ki = 6(X7) = 0(a) — [ Lo(xDds — [ Vo)X, 35)
0 J0
Then

B (7] = 597 [o(xD) — o) [ Lo(xXDds — [ ITOXD0(XD) s + )]

t t
< B o(X0)|+ |0 (@) + / |L6(XT)|ds + / |'VO(X)o(X2)B. ] ds|
N N = 0 \—— 0
<C/2 <C/2 <C/2 <C/2
< C(1+1).
O
Let us return back to the proof of Proposit@ 3.3. By appgylimmm we obtain
~ 2M T+1 T— 400
A< =4+ — .
’)\)\‘\T—&—TC’E—>05
The proof is therefore completed. 0

To prove our second theorem of existence we need to introalfiweher assumption.

(F2).
1. |¢| is bounded by\/,;
2. E[L#(X0)] < 0if Xo ~ v with v the invariant measure for the procgss; );>o.

Theorem 3.5 (existence of a solution)Assume that (G1), (G2), (G3), (H1), (H2), (H3), (F1) and (F2)
hold true. Then for any € R there existg: € R, v € Cﬁp(a), ¢ : R? — R a measurable function
such that, if we defin@;” := v(X7) and Z7¥ := ((X7) thenZ® € M*(RT,R%) andP — a.s.
(Y™, Z", ) is a solution of EBSDH (3.1) with fixed, for allz € G. Moreover we have

A1) = A(0) — HE[L&(X0)]| < 2M,.
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Proof. Let (Y, Z, (1)) and(Y, Z, A\(0)) two solutions of equatiorm.l) linked foand0 respec-
tively. Let Xo ~ v independent ofWW):>0. Then, from equatior@.S), we deduce forAlie RT

B[V5% ~ 7% — A — MOIT - k] < B[ [ TR, Z50) = (X0, ZX0)as],

from which we deduce that

[B[F5X = 72| = ) - AOIT — kB[ K7

< 2M,T.

By using equation@S) we have
T
B[] = E[o(0X) — o) - [ Lo(x)as]

T
- f/ E[L¢(Xj‘°)]ds
0
- fE[Eqb(Xo)]T.
Combining the last two relations, we get
£[fi - 77

= — A1) = A(O)] + KE | £6(Xo)] | < 2My.

Thus lettingl” — +o0o we conclude that
(1) = M0) — HE[L$(Xo)]| < 2My.

So, we obtain
Ap) "= —oo and A(p) "= oo

Finally the result is a direct consequence of the interntedialue theorem. 0
The hypothesi€[L4(Xo)] < 0 say that the boundary has to be visited recurrently. Whés
non-singular orG we show that this hypothesis is always verified.

Proposition 3.6 Assume that (G1), (G2) and (H1) hold true. We assume als@r{agtis non-singular
for all z € G. Then for the invariant measute of the proces§ X+ ).>o we haveE[L#(Xo)] < O if
X() ~ V.

Proof. Let us take a random variabl&, ~ v independent of W;);>o. Then]E[K;f"] =

—E[5¢(xo)]T, which implies thatf. [qu(xo)] < 0. If E[Lé(Xo0)] = 0, thenP-a.s. K, = 0,
forallt € RT. So the procesX *° is the solution of the stochastic differential equation

t rt
XX =X, +/ b(XX)ds + / (X)W, t >0, (3.6)
0 JO

with b andé defined onR? by &(x) = o (projg(z)) andb(z) = b(projz(z)). But according to|E2]

(Corollary 2 of Theorem 7.1), the solution of equatipn|(3s6 recurrent Markov process @&f. Thus

this process is particularly unbounded: we have a conttiadic 0
Wheno is singular on(d then (F2) is not necessarily verified.



3 EBSDES WITH NON-ZERO NEUMANN BOUNDARY CONDITIONS 11

Examples.
X1 O
o LetG = B(0,1), ¢(z) = =22 b(z) = —z ando(z) = onG. Thend,
0 Tq
is an invariant measure at{¢)(0) = 0. If we setd = 1, ) = 0 andg = 0 then solutions of the
differential equation|(1}5) without boundary conditior §r; + Bz — 2\In |z|, (A, B;) € R?}
n[—1,0[ and]0,1]. Thereby bounded continuous solutions 4t — 4|z|*>, A € R} and

Alp) = 0.
o Let@ = B(0,1), é(z) = =22 p(2) = —z ando(e) = ( 2+ Y onG.
I ) 2 ) O Od—k
F, = {ac ERY iy =... =24 = O} ~ R* is a stationary subspace for solutions of equa-

tion (23). Letu, an invariant measure ai* for ¢(z) = ‘=22 b(z) = —z and&(z) = Ix.
According to Propositioﬁ.@“k [£(4)] < 0. Thenv := v, ® 0,4, is an invariant measure

for the initial problem and®” [£(¢)] < 0.

Theore5 is not totally satisfactory for two reasons: weehnot a result on the uniquenessuof
and is usually not bounded in optimal ergodic control probler8s.we introduce another result of
existence with different hypothesis.

(F2). —L¢(z) > |'Voo|,, 5Ky Vreg.

Theorem 3.7 (Existence and uniqueness of a solution 2)ssume that (G1), (G2), (G3), (H1), (H2),
(H3), (F1) and (F2’) hold true. Then for any € R there existy, € R, v € C},,,(G), ¢ : R - Ra
measurable function such that, if we defiijé := v(X}") and Z;" := ((X{) thenZ” € MA(RT RY)
andP — a.s. (Y*,Z%, ) is a solution of EBSD .1) with fixed, for allx € G. Moreoveryu is

unigue among solution§Y, Z, ) with X fixed such that” is a bounded continuous adapted process
andZ € M*(R*,R%).

Proof. Let (Y, Z, A(r)) and(Y, Z, \(fz)) two solutions of equatlorm 1) linked foandi. Asin
the proof of Proposition 3.3 we s&t“ = —Y®andZ® := Z" — Z". From equatlorB4 we
have:

)0
(n— EST [2X 1] - = (% = B9 [¥7]) — (\(w) — A()).
V* is bounded, s&°” [K7,/T| has a limitl,,; > 0 whenT — +o0 andyu # 4’ such that
(A1) = A@) + (1 — @l = 0. @.7)

By use of equatior@.s) we have

]E@T[K;i] = E@T[¢( / LO(XT)ds — / thb(Xf)a(Xf)ﬂsds]
gor [R1] J‘"‘*%+[—sup£¢f|V¢a|oo,aKw,z].

z€G

We setc = —sup, 5 Lo — [V¢o|, zKy,-. Since hypothesis (F2) holds true, we have- 0 and
lu.n = ¢ > 0whenu # p'. Thus, thanks to equatiop (B.7),

Ap) "= —oo and A(p) "= oo

Once again the existence result is a direct consequence aitdrmediate value theorem. Moreover,
if A() = A(@2) thenp = fi. g
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Remark 3.8 By applying LemmEA we show thit” [K%/T] is bounded. So we have:
0<c< <O, VYu#p.

Remark 3.9 If we interest in the second example dealt in this sectionegdlsat (F2’) hold true when
k/2 —1> Kwyz.

4 Study of reflected kolmogorov processes case

In this section, we assume th@X:):>o is a reflected Kolmogorov process. The aim is to obtain an
equivalent to Theore@.? with a less restrictive hypothtisn (F2'). We set = /21 andb = —VU
whereU : R? — R verify the following assumptions:

(H4). U e C?*(R%), VU is a Lipschitz function ofR? andV2U > cI with ¢ > 0.

We notice that (H4) implies (H3) and (H1). Moreover, withdoss of generality, we use an extra
assumption omp:

(G4). V¢ is a Lipschitz function oR?.
To study the reflected process we will introduce the relathfized process:
t
X =u */ VUL (XD%)ds+V2B:, t>0, xzeR? neN,
0

with U, = U + nd?(.,G). According to [1p], d(., Q) is twice differentiable and72d?(., G) > 0.
So, we havé&/2U,, > cI. Let L, the transition semlgroup generator(of;") ;> o with domainDs (L)
on L?(v,,) andy,, its invariant measure given by

v (dz) = NLexp( Un(z))dz, with an/ exp(—Un(z))dx.

n

] n~>+oo

Proposition 4.1 E" [f
tov.

E[f] for all Lipschitz functionsf. Particularly, v, converge weakly

The proof is given in the appendix. We obtain a simple corgila
Corollary 4.2 v(dx) = + exp(—U(z))1,cgdz, With N = [ exp(—U(z))dz.
We now introduce a different assumption that will replac2’\F

(F2"). (% n ﬂwm) Ky < —E'[C4],

with § = sup, .z('VU(z)z) — inf . .5("VU (z)z).

Theorem 4.3 (Existence and uniqueness of a solution 31)heore7 remains true if we assume that
(G1), (G2), (G3), (G4), (H2), (H4), (F1) and (F2") hold.
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Proof. If we use notations of the previous section, it is sufficieriow that there exists a constant
Xo

C > 0 such thatlimy_. 4o, E%7 [K%] > Cforall u # fi, where Xy ~ v is independent of

(W4)e>0. We sete and definedr such that

0
€€ :| EKU)J, *E[[a(f)(XO)] - \/§|v¢|oo’§sz,z |:’

T
ar= {1 [ £o(x)as < BiLo(xo)) ¢}
0
with Xy ~ v andT > 0. ¢ is well defined thanks to hypothesis (F2").

gor (M) = per [P0 00 L g o
2 / V(X Buds]
> f"*% + 2T [(B[-£6(Xo)] — €)lear — L8]0 glar
—V2|Vol,, 5Ky,
> _W% + (E[~L(X0)] - £)(1 — Qr(Ar)) — |£6], 5Qr (A7)
V2|Vl zKy.--

By using Hlder’s inequality withp > 1 andg > 1 such thatl/p + 1/¢q = 1 we obtain

T T
Qr(Ar) = E {exp (/O BsdWs — %/0 |ﬂs|2ds) 1AT}
T 2 T _ T 1/p
E{exp (p/o Bdes—%/o m%#%/o |,85|2ds)} P(A7)"/

exp ((p; 1) Kin) P(AT)lfl/pl

N

/A

To conclude we are going to use the following propositionalihwill be proved in the appendix thanks
to Theorem 3.1 ofIEl]:

Proposition 4.4 Assume that (G1), (G2), (G3), (G4), (H1) and (H4) hold. Then

2
P(Ar) < exp (* CZQT) .

So

P12 (o= 1)052) T
\z P

Qr(an) < e | (225 =

By

B, is a trinomial inp that has two different real rootsand 5221?22 > 1 because > 0Ky, ./v2c by

P,z
T—+oco

hypothesis (F2”). So we are able to fipd> 1 such thatB, < 0. ThenQr(Ar) " — 0and

KXo
lim E°T [%] > ~E[LH(X0)] — V2|Vl 5Ky, — € > 0.

T—4o00
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I, O
0 Og—k
example, is a stationary subspaceNot/. We can even replace (F2") by

(o Vi) e -2

With§ = sup, cgnp, (VU (2)z) —inf, 5,5 ("VU(2)2). Indeed, as we see in the previous example,
v is nonzero at most on the s8N F}.. So itis possible to restrict the process to the subsgace

Remark 4.5 All these results stay truedf(z) = v/2 ) and Fy,, defined in the previous

5 Probabilistic interpretation of the solution of an elliptic
PDE with linear Neumann boundary condition

Consider the semi-linear elliptic PDE:

{ Lu(z) + Yz, Vo(z)o(z) =N, z€C 5.1)

Se(@) +g(@) =p, @ €G,
with 1
Lf(x) = 5Tr(o(x)'o(2)V*f(2)) +' b(2)V f(2).
We will prove now that, defined in Theorer@.l orin Theor3.5, is a viscosity smiudf PDE
). See e.ng] Definition 5.2 for the definition of a \@sity solution.

Theorem 5.1 v € C5,,(G), defined in Theorerh 3.1 or in Theordm| 3.5, is a viscosity isoiwf the
elliptic PDE (5.}).

Proof. Itisa very standard proof that we can adapt easily frErh [IBEorem 4.3. g

Remark 5.2 With other hypothesis, uniqueness of solutiois given by Barles and Da Lio in Theo-
rem 4.4 of HS].

If o is non-singular oty we notice that it is possible to jointly modifyand> without modify the
PDE. We seb(z) = b(z) — ¢z andy)(z, 2) = ¥ (x,2) + Ez0~  (x)z for € € R*. Then we are
able to find a new hypothesis substituting (H3). We nptbe scalar) corresponding to.

Proposition 5.3 If n + Ky, . K, < 00r K, sup, .z |0~ " (z)z| < 1 then there exist§ > 0 such that
i+ Ky Ks < 0. In particular it is true wherv is a constant function.

Proof: It suffices to notice thaf = n — { andK; . < Ky . + £sup, g lo ' (z)z]. So

i+ Ky Ko <n+ Ky Ky + &Ko sup o™ (z)z] — 1).
zeG

6 Optimal ergodic control

LetU be a separable metric space. We define a coptaslan(F; )-progressively measurablé-valued
process. We introduc® : U — R? andL : R? x R'*? — R two continuous functions such that, for
some constantd/r > 0 andM, > 0,

|R(w)| < Mg, |L(z,u)| < Mp, |L(z,u)—L(z',u)| < clz—2|, VueU, z,z' €R% (6.1)
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Given an arbitrary contrgh and7" > 0, we introduce the Girsanov density

, T 1 /T )
I = exp R(ps)dWs — 5 [ |R(ps)["ds
0 0

and the probability?]. = I'/.P on Fr. Ergodic costs corresponding to a given congraind a starting
pointz € R are defined in the following way:

T T
I(z.p) = limsup LBV [ | vz paas+ [ [g(Xf)w]dK:}, 6.2)
0 0

T—+oco

T

1 r :
J(z, p) = limsup WEP,T {/ [L(XZ, ps) — Alds + /
T 0 .

T—+oco 0

g(Xf)dKf} L7 (K2]>05

(6.3)
whereE*T denotes expectation with respect®§. We notice thatV = W, + fot R(ps)ds is a
Wiener process oft), 7'] underP%..
Our purpose is to minimize cosfsand J over all controls. So we first define the Hamiltonian in
the usual way
Y(x,2) = 1}IelfU {L(z,u) + zR(u)}, zeR%zeR™ (6.4)

and we remark that if, for alt, z, the infimum is attained ir@A) then, according to Theorerﬁ[@,
there exists a measurable functipn R? x R'*? — U such that

¥(z,z) = L(z,v(z, 2)) + 2R(¥(7, 2)).
We notice that) is a Lipschitz function: hypothesis (H2) is verified wikfy, . = Mr.

Theorem 6.1 Assume that hypothesis of Theo@ 3.1 hold true(Ye¥, \) a solution of l) with
u fixed. Then the following holds:

1. For arbitrary controlp we havel(z,p) > X and the equality holds if and only (X7, p:) +
Z{ R(pe) = (XY, Z7), P-a.s. for almost every.

2. If the minimum is attained imA) then the confipl= ~( X7, Z;) verifiesI (z,p) = \.

Proof.  This theorem can be proved in the same manner as that of Thebfein @] and we omit
it.

Remark 6.2 1. If the minimum is attained i.4) then there exists annaglt feedback control
given by the function: — ~(z,&(x)) where(Y, £(X), A) is the solution constructed in Theo-
rem[3.}.

2. If limsup is changed into liminf in the definitioﬂ6.2) bétcost, then the same conclusion hold,
with the obvious modifications, and the optimal value isgivg) in both cases.

Theorem 6.3 Assume that hypothesis of Theor@] 3.70r Them 4.3 haddltet(Y, Z, ;1) a solu-
tion of @.) with fixed. Then the following holds:

1. For arbitrary control p we haveJ(z, p) > p and the equality holds if and only B(X7, p:) +
ZFR(pe) = (X7, ZF), P-a.s. for almost every.

2. If the minimum is attained imA) then the confipl= (X[, Z;) verifiesJ (z,p) = p.
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Proof. As (Y, Z, 1) is a solution of the EBSDE with fixed, we have

—dYy" = [P(XY, Z7) — Aldt + [9(XY) — pldKy — Z7dWs
= [W(X7, Z0) = Ndt + [9(XV) — pldKY — Z7 dW] — Z/ R(pq)dt,

from which we deduce that

T
REPTIKT] = EVT (Y7 - YOI+ EOT U [W(XE, ZY) = Zi R(pr) — L(Xﬁpt)]dt}
0

s [ Moo - it 207 [ [ gxane]

0

Thus
T T
JEPTIRE] + EPT [VE — YE] < EPT [ ez —ae+ | g(Xf)dKf]
0 0

To conclude we are going to use the following lemma that weprilve immediately after the proof of
this theorem:

Lemma 6.4 Assume that hypothesis of Theo@ 3.70r The@n 4.3 ha@dThen forale € G
: pTrprey _
TETOOE [KT] = +o0.
So, forT > To, E”T[K%] > 0 and

EFT Y — Y4 1 [T T
< P T _ T x )
EP,T[K%] = [Ep,T[K%]E /0 [L(XY, pe) — Aldt +/O 9(X{)dK]

SinceY is bounded we finally obtain

[+

T

. 1 e
< - TP z _
u < lim sup o %]E {/0 [L(X{, pt) — A]dt +/0

T—+oc0

g(Xf)dKf} — J(z,p).
Similarly, if L(XZ, i) + Z8 R(pe) = $(XE, Z8),
T T
JEPTRE] + BT Y - Y] = B2 [ [z - e+ [ g(Xf)dKf} ,
0 0
and the claim holds. 0

Proof of Lemma. Firstly we assume that hypothesis of Theo@ 3.7 hold trgdnAhe proof
of this theorem, we have by using equati(3.5),

T T
B T[K5] = BT {¢(X%)f¢(x)* | eotxnas— [ tw(X:)a(X:)R(ps)ds},
0 0
from which we deduce that

K7 2|0|oo
E~T {—T} > ————+ | —sup Lo(z) — |[Voo|, eMr|.
T T [ e G ]

Thanks to hypothesis (F2’) we have

K 1
g T {TT} > 2 [ — sup Lo(x) — |Vgol o gMr| >0, VT > T,
zeG

16
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and the claim is proved. We now assume that hypothesis ofr@ hold true. LeX, ~ v be
a random variable independent (@ ):>o andv the invariant measure ¢fX;):>o. Exactly as in the

proof of Theorenf 4]3 we are able to show tHAt" [K;f" /T] > C > 0forall T > Ty by replacing

B with R(p). On the other hand, for all € G andT € R’., we have

i il o
T

4|<Z>|oo

<

BT / LH(X0) — Lo(XT)|ds

+7 EPT./ I'Vo(XX0)o(X20) = V(X))o (XE)||R(ps)|ds

SinceL¢ and’V ¢o are Lipschitz functions, we obtain

EPT [K;f”] —ErT [K;ﬂ]
T

gl | Keo T/T Xo _ yo
< E” XX — X2|d
Tt X slds

MrKiggo

Y

T
IE"’T/ |XX0 — X7|ds.
JO

Exactly as in Lemm@.S we are able to show that fosaHl 0

EeT [|XSXO B st|2] < 2t MRKo)spp,T [|X0 B 317|2] .

Finally,
BT [K0 | - B0 K] Kout MaK T
E < Ll TRINer T (X — of?] 1/2/ e+ MREa)s g
0
4|¢loo
+ T
o Kry + MrKiy o EPT [|X _ x|2] 12 1 — (M MrKo)T
= T 0 —n— MpK,
4|¢loo
+ T
Since hypothesis (H3) holds trug+ Mr K, < 0 and so
BT[] - BT K7 ]
lim =0.
T—+oo T
Thus, for allz € G there existd} > 0 such that
EXT [K3/T] > IE” T [KX“/T] ¢/2>0
and the claim follows. O

Remark 6.5 Remarkﬁz remains true for Theor@ 6.3.

7 Some additional results: EBSDESs on a non-convex bounded
set

In previous sections we have supposed thatas a bounded convex set. We shall substitute hypothesis
(G2) by this one:
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(G2). Gisabounded subset &

In this section we suppose also thais a constant function. At last, we set

a= sup sup (‘yVi¢(z)y)
seco(@) lul=1

with co(G) the convex hull ofG. Without loss of generality we assume that> 0. Indeed, < 0
if and only if ¢ is concave which implie& is a convex set. In previous sections hypothesis (G2) has
been used to prove Lemrha]2.5 so we will modify it:

Lemma 7.1 Assume (G1), (G2, (H1), (H2) hold true amdis a constant function. Let
b “p {;(x — y)(b(z) = b(y))
|z —yl?
—a' (Vo (z) + Vé(y))oB(z,y, 2,2")
—5 Tr (V26(a)o'o + V26(y)o'o) — o' Vo(x)b(x) — o' Ve(y)b(y)

z,y€G,x#y,2,2' ERD z#£2!

+a?("Vota) + Vo)) "o (Volo) + Vo) .

with (z—2")B(z,y, 2, 2") = (Y(x, 2) +(y, 2) —(z, 2") —(y, 2")) /2. Then there exists a constant
M which depends only ot and such that forald < ¢t < s < n,

E% [1x5 - XI'P

F| < M0 xT - X7
Remark 7.2 [ exists, we can take

ﬂ { 1/}(:E,Zl)+1/)(y,zl) *l/J(Z/:Z) 7w(xvz)t

(2 —2) ifz#272

otherwise,

2|z" — z|?

but there is not uniqueness. We hage< K, . yet.

Proof.  Firstly we show an elementary lemma.
Lemma 7.3 Vz € G, Vy € G we have

—alz —y|* +2'(y — 2)Ve(y) < 0.

Proof. Letz € G andy € 9G. According to Taylor-Lagrange theorem there exisig0, 1 such
that

8(x) = 6(y) + (@~ 1) Vo) + 5 (@~ y)Vo(tx + (1 1)y — 2)(z — y).

¢(x) = 0, ¢(y) = 0 and the claim easily follows. O
As in Lions and Sznitmarml.S] page 524, using It's formula, develop the semimartingale
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e~ Oue—G(XDHOXI)| X _ X+’ |2 which leads us to
d<679uefa(¢(xff)+¢>(xﬁl))|Xff - Xff'|2> =

e e XD D | X7 _ XE Pdu

et DT (X7 — X )(B(XT) — (X ))du
FXE — XE)VO(XD)AKE — (X — X3 )Vo(xz )k |

—ae e XD ) X7 _ xE 2 [dKff + K
+(VO(XT) + VO(XE ) (@W, + Budu)
+LTHV26(XE)o'o + V26(XE )o'o)du
+('Vo(XI)b(XE) + ’fW(Xff/)b(Xf))d“]

Fale e XD o) xz _ X' |2 [

(VO(XE) + V(XL )o' o (VO(XE) + V(XE)|ds.
By Lemma ) we have
(2'(xs = XI)V(XD) - alxi - XI']P)dKE <0,

and
(zt(xfj/ — XH)VH(XE) - a|XT — X;"F)df(fj' <o0.

Applying the definitions of3 andé, we obtain

d(e—eue—a<¢<X:)+¢<X$’>>|X;c _ X;c’|2) <

—ae XD+ X X PUVH(XT) + V(XE))odW.
Thereby, foral0 <t <s<n

EQn [e—e<s—t)—a<¢<X:)+¢(X;”’))|Xx — x|

A <Ixi - X7

The claim follows by setting/ = ¢2*s%Pwec #(*), O
Of course we introduce a new hypothesis:

(H3). #<o.

Theorem 7.4 Assume thab is a constant function. Theore2 35 @ 3.7 stay ifrwe
substitute hypothesis (G2) and (H3) by (G2) and (H3’).

As in sectiorﬂs, it is possible to jointly modify and+ without modify the PD1 it is non-
singular onG. We seth(z) = b(z) — £x andi(z, 2) = (z, z) + 20 'z for € € RT. Then we are
able to find a new hypothesis substituting (H3’). We n@te) the scala¥ corresponding td and.
Let d the diameter of5:

d:= sup |z —yl
z,yeG

Proposition 7.5 6(¢) < 0 — (2 — 1d%a?)¢. Particularly, if ad < 2 then there exist§ > 0 such that

0(¢) < 0.

19
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Proof. Let 3 the functiong linked with ). We have

(22— 22)3 = (22— 2218, + §(22 — 22 YoM (X 4 X)

Sowe can takg, = 3, + S0 (X2 + X?). Thusd(¢) < 6 + C¢ with

C = -2+ sw { - (Vo) + Vo) @ +y) +al Vol)a + Voly)y) |

z,yeG,zty

24 & sup {{(Vo(x) - Vo) —)}.

z,yeG

On the other hand, we have

sup {'(Vo(x) — Vo(y)(z —y)} < d’a.

z,yeG

Indeed, according to the Taylor Lagrange theorem there £xis€]0, 1] such that
1
6(x) = ¢(y) + (@ = Y VeW) + 3" (x —y)Vé(ty + (1 — t)(z — ) (@ — v),

DY) = 6(@) + 'y ~ 2)Vé(x) + 5y~ ) V6(t' + (1 )y — 2))(y — ).

Finally C < -2+ @ and the proof is therefore completed. 0

A Appendix
A.1 Proof of Proposition[4d.]

We will prove that for all Lipschitz functiong, E» [f] "= E¥[f]. We setX, ~ v and X§ ~ vy,
independent ofW4).>0. We have, for alt > 0,

n, X

[ (] - B[] < [BLACXE) = px o) + [BLr(x7) - (x|

An it Bn,t

Firstly,

n, X

Apy < KGE ‘Xt — xpXo|.

V32U, > cI, soVU, is dissipative : we can prove that (see e.g. Propositionle[g])

n,XS’

E|X,"70 — X" 0| < e "E|X{ — Xol.

Then, by simple computations

n 1 — T
E|X§ — Xo| < —/ lz|e Y daz + E|Xo| < +00.
N Jau

S0,A,.; < Ce™° "222° 0, and the limit is uniform im. Moreover,

Bn: < KfE’Xt"’XMXtXO

<Ky [ Blsup X2 X2[v(da),

G 0<s<t
So, by Theorem 1 irﬂ?]Bn,t "“ZF2° ) whent is fixed. In conclusion, for alf > 0,

limsup [E""[f] — E”[f]| < Ce™“".

n—-—+oo

So we can conclude the proof by lettifig— +oco. 0

20
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A.2 Proof of Proposition[4.4.

We know thatv2U,, > cI. So, according to the Bakry-Emery criterion (SEe [4]), weedne Poincaré
inequality
Var,,,(f) < =< HLaf, f), Vf € Da(Ln).

Now, we are allowed to use Theorem 3.1[i] [11]:
v\
dvy,
1/2

v dl/ 2 Nn n——+oo
E — = — — 1L
[(dun) :| N

Moreover, applying Propositi.l,

p(—L [ roxm*oyds < —E(r <E”
(_?/0 O(Xs )ds < — [¢]_5)\

Firstly, by dominated convergence theorem

E™ (L] "= E[Lo(Xo)).

Finally,

e X L[ X
E|= LH(XT0)ds — = LO(X0)ds
T 0 T 0

< K£¢/E
G

sup | X — X7|| v(dx).
s€[0,T)

But, according to[[17],
E| sup |XI" — X;‘@ s

s€[0,T]

and the limit is uniform inz belonging toG. So

n—-+oo O

I

1 r n, X 1 . X
E|= [ LHXPX0Vds— — [ LH(XX0)ds
T 0 T J0

and, as convergence in' implies convergence in law, the claim follows. 0
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