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Abstract. Over a ψ-mixing dynamical system we consider the function
τ(Cn)/n in the limit of large n, where τ(Cn) is the first return of a cylinder
of length n to itself. Saussol et al. ([30]) proved that this function is constant
almost everywhere if the Cn are chosen in a descending sequence of cylinders
around a given point. We prove upper and lower general bounds for its large
deviation function. Under mild assumptions we compute the large deviation
function directly and show that the limit corresponds to the Rényi’s entropy
of the system. We finally compute the free energy function of τ(Cn)/n. We
illustrate our results with a few examples.

1. Introduction. In the statistical analysis of the Poincaré recurrence it is classical
to study the first return or the first hitting time of a point (in some space Ω and
under the iteration of a map T ) to a cylinder and to get exponential limit laws for
these distributions (cylinders are defined in the next section as the elements of the
backward iteration of a suitable partition of Ω). We refer the reader to Abadi and
Galves [4] for an up-to-date on this subject. It appears recently that to deal with
the above quantities it is fundamental to describe the first return of a cylinder (not
of a point) to itself. See for instance Galves and Schmitt [18], Abadi [1], [2] and [3],
Abadi and Vergne [5], Hirata, Saussol and Vaienti [22] and Haydn and Vaienti [20].
If we denote with τ(Cn) the first return of an n-cylinder to itself, it was proved by
Saussol et al. [30] and independently by Afraimovich et al. [7] that for an ergodic
measure µ of positive metric entropy, the ratio τ(Cn)/n verifies

lim inf
n→∞

τ(Cn)

n
≥ 1 , (1)

whenever ∩nCn = z and z is chosen µ-almost everywhere. To stress the fact that
the decreasing sequence of cylinders Cn is taken around the point z, we will some-
times write Cn(z). If the system satisfies the specification property [23], the same
authors show that the above limit exists and is 1 almost everywhere. This result has
also been proved for a class of non-uniformly expanding maps of the interval [22].
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2 MIGUEL ABADI AND SANDRO VAIENTI

We stressed above that the first return of sets plays a crucial role in establishing
the exponential limit law for the distribution of the first return and entry times.
Here we briefly quote some other nice applications of such a quantity.
In the case of zero-entropy systems, the asymptotic behavior of

τCn(z)

n reveals inter-
esting features, usually related to the arithmetic properties of the map; we defer to
the papers [24, 25, 12] where that analysis was carried out for Sturmian shifts and
for substitutive systems.

In a different context, the first return of a set has been used to define the recur-
rence dimension, since it was used as a set function to construct a suitable outer
measure in the Carathéodory scheme [6, 27].

The recurrence of sets has been also related to the Algorithmic Information
Content in [10] and used to characterize the statistical behavior of the system.

Some of these results have a nice counterpart whenever we replace cylinders with
balls Br(z) of radius r around z ∈ Ω (supposed to be a metric space), and we
consider the first return of the ball into itself, τBr(z) . The natural generalization
of the limit (1) is now the quantity:

lim
r→0+

1

− log r
τBr(z) . (2)

For a large class of maps of the interval, it has been proved that [30]:

lim
r→0+

τBr(z)

− log r
=

1

λ
z, µ− a.e. (3)

where λ is the Lyapunov exponent of the measure µ. The limit (3) can be generalized
to multidimensional transformations, in particular for smooth diffeomorphisms of
a compact manifold, and in these cases it becomes a suitable combination of the
reciprocal of the largest and smallest Lyapunov exponents [31].

In this paper we describe the large deviation properties of τ(Cn)/n. Besides
the motivations addressed above, we would like to point out the link between the
large deviation of τ(Cn)/n and the Rényi’s entropy. These entropies have been
extensively studied in the last years for their connection with thermodynamic and
multi-fractal formalism of dynamical systems [8, 16, 19]. They have also been
applied to intermittency since one can show a phase transition in the spectrum
of these entropies [14, 26]. We recall also the close connection between the Rényi
entropies and the topological pressure, whenever we consider potential of the form
βφ, where φ is usually the jacobian of the map T , see for instance [9].

The large deviation function of a certain limiting process which is constant almost
everywhere is defined as the measure of all points that deviate from the typical value.
Of course this quantity goes to zero, in many cases exponentially fast. Therefore
one is interested in considering the lower deviation function

lim
n→∞

1

n
lnµ

(

z;
τ(Cn(z))

n
< 1 − ε

)

, (4)

for positive ε. Through this paper ln stands for natural logarithm. Very often the
upper deviation is not interesting since one has τ(Cn) ≤ n+ n0 for all n-cylinders
Cn and n0 a fixed integer, which implies that:

lim
n→∞

1

n
lnµ

(

z;
τ(Cn(z))

n
> 1 + ε

)

= 0 ,

This happens for instance for aperiodic sub-shifts of finite type (and in this case n0

is the lowest power for which the transition matrix becomes strictly positive) and a
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fortiori for systems which can be coded with a complete grammar, and this will be
actually the case in our paper, as a consequence of a particular assumption stated
in Lemma (2.1), see also Remark 2.

In this work we consider therefore the limit (4) and:
(a) prove lower and upper bounds for it
(b) compute explicitly the lower large deviation function (4)
(c) compute its free energy function.

The bounds we prove in (a) are given in terms of the maximum and minimum
rate of exponential decay of the measure of cylinders. The principal result of this
paper is with respect to (b). It says that the large deviation function exists and
is a piecewise linear function over (0,1). Moreover, it is linear over each interval
(1/m, 1/(m+1)) with m ∈ IN . Further, at the sequence {1/m} it coincide with the
Rényi entropy of the process.

For completeness, we compute the free energy function of τ(Cn)/n. As it can
be expected by (b), it is not differentiable on the whole real line. We find that, if
γµ denote the maximum rate of exponential decay of the measure of the cylinders,
then for t ≥ −γµ the free energy is the identity and for t ≤ −γµ it is constantly γµ.
Therefore, by applying the large deviation principle by Ellis [17] or Planchky and
Steinbach [28] we recover the bounds that we establish directly in (a).

We illustrate our results with several examples.
Our framework is the class of ψ-mixing processes. For instance, irreducible and

aperiodic finite state Markov chains are known to be ψ-mixing with exponential
decay. Moreover, Gibbs states which have summable variations are ψ-mixing (see
[32]). They have exponential decay if they have Hölder continuous potential (see
[11]). We refer the reader to [15] for a source of examples of mixing processes.

2. Bounds for the large deviation function. Let (Ω,F , µ, T ) be a measurable
dynamical systems over the space Ω, with µ a probability measure on the σ-algebra
F and T a measurable map preserving µ. We put C a finite generating partition

of Ω and we write Cn =
∨n−1

j=0 T
−jC for its n-join, whose elements will be called

cylinders (of length n) and denoted with Cn or with Cn(z) to specify that they
contain the point z. Let Ω = CZZ , where CZZ denotes the countable product, over ZZ,
of C with itself. For each x = (xm)m∈ZZ ∈ Ω and m ∈ ZZ, let Xm : Ω → C be the
m-th coordinate projection, that is Xm(x) = xm.

We can equivalently (and with a more probabilistic language) say that a subset
Cn ⊆ Ω is a n-cylinder if Cn ∈ Cn and

Cn = {X0 = a0; . . . ;Xn−1 = an−1} ,

with ai ∈ C, i = 0, . . . , n− 1.
The σ-algebra F is that generated by the algebra of finite disjoint reunion of

cylinders. We shall assume without loss of generality that there is no subsets of
measure 0 in the partition C.

We say that the process (Ω,F , µ, T ) is ψ-mixing if the sequence

ψ(l) = sup

∣
∣
∣
∣

µ(B ∩ C)

µ(B)µ(C)
− 1

∣
∣
∣
∣
,

converges to zero. The supremum is taken over B and C such that B ∈ σ(Xn
0 ), C ∈

σ(X∞
n+l+1) with µ(B)µ(C) > 0.

Wherever it is not ambiguous we will write C for different positive constants even
in the same sequence of equalities/inequalities.
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Let us now define:

τ(Cn) = inf{k ≥ 1 | T kCn ∩ Cn 6= ∅} .

As we did before we will write Cn(z) if we need to be precise that the cylinder Cn

contains the point z. Since τ(Cn) can take only integer values, the set involved in
(4) is equivalent to {z; τ(Cn(z)) ≤ [δn]} with δ ∈ (0, 1). Since τ(Cn(z)) is obviously
the same for all the points z in the cylinder, the set {z; τ(Cn(z)) ≤ [δn]} coincides
with the following one

Cδ,n = {Cn ∈ Cn | τ(Cn) ≤ [δn]} .

In this section we will provide lower and upper bounds for the measure of the sets
Cδ,n; these results hold for ψ-mixing measures equipped with some mild assumption.
First we establish exponential bounds for the measure of any fixed cylinder. The
upper bound is a well-known result [18]; for the lower bound we assume the extra
condition ψ(0) < 1.

Lemma 2.1. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system. Then there exist
positive constants C1, c1 such that for all x ∈ Ω and n ∈ IN

µ(Cn(x)) ≤ C1 exp(−c1n) . (5)

Moreover, if ψ(0) < 1, then there exist positive constants C2, c2 such that for all
n ∈ IN

µ(Cn(x)) ≥ C2 exp(−c2n) .

Remark 1. In the following we will define γµ as the supremum of all the constants
c1 which verifies (5), namely

γµ = sup{c1 > 0; ∃C1 > 0 such that ∀n and ∀x ∈ Ω : µ(Cn(x)) ≤ C1 exp(−c1n)} .

Remark 2. As a consequence of the preceding lemma, in particular of the condition
ψ(0) < 1, we get that all cylinders have positive measure, namely for any string
{a0, . . . , an−1} ∈ Cn, n ≥ 1, the cylinder Cn = {a0, . . . , an−1} has positive measure.
Although this condition is strong, but satisfied in several interesting situations which
we will quote later on, it will allow us to compute the large deviation function for
our process. By relaxing that condition one could only prove bounds on the limsup
of 1

n lnµ(Cδ,n). We will return to this point in the concluding remarks.

The next proposition establishes a linear upper and lower bound for the expo-
nential decay rate of the measure of cylinders with return before δn. We need
the following definition and lemma which describe some symbolic structure of the
cylinders in Cδ,n. With the notation y/x, we will mean that x divides y.

Definition 2.2. Let us define, for n ∈ IN and 1 ≤ j ≤ n:

Bn(j) = {Cn ∈ Cn | j/τ(Cn)} .

Remark 3. If j ≤ n/2 then the symbolic representation of Cn ∈ Bn(j) is

Cn = (ai1 , . . . , aij
︸ ︷︷ ︸

1

ai1 , . . . , aij
︸ ︷︷ ︸

2

, . . . , ai1 , . . . , aij
︸ ︷︷ ︸

[n/j]

ai1 , . . . , air
︸ ︷︷ ︸

1

) .
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Thus, Bn(j) is the set of n-cylinders whose symbolic representation consists in any
symbol for the first j-block and then this initial block repeats to complete the
n-string. For j ≥ n/2, the symbolic representation of an n-cylinder is

Cn = (ai1 , . . . , ain−j
︸ ︷︷ ︸

1

, ai1 , . . . , ain−2(n−j)
︸ ︷︷ ︸

2

, ai1 , . . . , ain−j
︸ ︷︷ ︸

3

) ,

namely, it consists in the first and last block of equal symbols of length n− j and
whatever else for the central n− 2(n− j) block.

Lemma 2.3.

Bn([δn]) ⊆ Cδ,n ⊆

[δn]
⋃

[δn]/2

Bn(j) . (6)

Remark 4. To make the notation less heavy we write [δn]/2 to mean [[δn]/2].

Proposition 1. Let µ be a ψ-mixing measure. Take δ ∈ (0, 1).

(a) Then

lim sup
1

n
lnµ(Cδ,n) ≤ −γµ(1 − δ) .

(b) Assume ψ(0) < 1. Then

lim inf
1

n
lnµ(Cδ,n) ≥ −hµ(1 − δ) .

where hµ denotes the metric entropy of µ.

Remark 5. (a) extends a result by Collet et al.[13] which establishes that for Gibbs
measures µ(C1/3,n) ≤ Ke−Kn and by Abadi [1] which shows that for the more

general φ-mixing systems, there exists δ0 ∈ (0, 1) such that µ(Cδ0,n) ≤ Ke−Kn.

The next assumption will be used to get a general lower bound for the measure
of the set Cδ,n and also to compute the free energy of the process τ(Cn)/n in section
4.

Hypothesis 1. There exists a sequence of n-cylinders (not necessarily around the
same point) {Pn}n such that

lim
n→∞

−
1

n
lnµ(Pn) = γµ , (7)

and

lim
n→∞

τ(Pn)

n
= 0 . (8)

The above properties mean that among the sequences of cylinders whose measure
converges to the largest possible, one can be chosen such that the cylinders have
short return. We will give in Sect. 4.2 a few examples which verify this assumption.
It is interesting to note that the example 4.5 (a two state Markov chain), could be
arranged in such a way that ψ(0) ≥ 1, still verifying formulas (7) and (8). Instead,
when the condition ψ(0) < 1 is verified, the existence of the limit (7) implies the
existence of the limit (8). This is the content of the next Proposition which has
been suggested to us by the referee. We warmly thank him.
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0 1
δ

−γµ(1−δ) −hµ(1−δ)

−γµ

Figure 1. Propositions 1 and 3

Proposition 2. Let us suppose that {Pn}n is a sequence of cylinders verifying
(7). Let us suppose moreover that ψ(0) < 1. Then there exists a new sequence of
cylinders P ′

n, n ∈ N such that:

lim
n→∞

−
1

n
lnµ(P ′

n) = γµ ,

and

lim
n→∞

τ(P ′
n)

n
= 0 .

Proposition 3. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system which verifies
Assumption 1. Then the following inequality holds:

lim inf
1

n
lnµ(Cδ,n) ≥ −γµ .

So far, collecting Propositions 1 and Proposition 3 we have proved that the
measure of cylinders with short returns is contained in the triangle determined by
−γµ(1 − δ),−hµ(1 − δ) and −γµ, as shown in the picture.

2.1. Proofs.

Proof of Lemma 2.1. As we said above, the upper bound has been proved by Galves
and Schmitt [18]. We now show the lower bound. By the ψ-mixing property and
under the assumption ψ(0) < 1 we have

µ(Cn(x)) ≥ (1 − ψ(0))µ(C1(x))µ(T−1Cn−1(x)) (9)

≥ (1 − ψ(0))n−1
n−1∏

i=0

µ(T−iC1(x)) .

Since we assumed that there are no cylinders in C of measure 0 we have

0 < b := (1 − ψ(0)) min
C1∈C

µ(C1) < 1 .
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Thus

µ(Cn(x)) ≥
1

(1 − ψ(0))
bn .

This shows that the measure of n-cylinders has exponential lower bound. In par-
ticular, if ψ(0) < 1, all cylinders have positive measure. This ends the proof.

Proof of Lemma 2.3. By definition we have the following inclusions where the first
reunion is a disjoint one

Bn([δn]) ⊆ Cδ,n =

[δn]
⋃

j=1

{τ(Cn) = j} ⊆

[δn]
⋃

j=1

Bn(j) . (10)

Hence the first inequality follows by the first inclusion. Set for a moment x = [δn].
For any integer 1 ≤ j ≤ x/2 one can write x = [x/j]j + rj with 0 ≤ rj ≤ x/2 and
so x/2 ≤ [x/j]j ≤ x. Therefore, for each 1 ≤ j ≤ x/2 one has that Bn(j) ⊆ Bn(i)
where [δn]/2 ≤ i = [x/j]j ≤ [δn]. Thus

[δn]
⋃

j=1

Bn(j) =

[δn]
⋃

j=[δn]/2

Bn(j) .

This ends the proof.

Proof of Proposition 1. We will avoid the dependence on x in Cn(x) whenever it is
clear. First we prove (a). By (6)

µ(Cδ,n) ≤

[δn]
∑

j=[δn]/2

µ(Bn(j)) .

Further, by the ψ-mixing property

µ(Cn) ≤ (1 + ψ(0))µ(Cj)µ(T−jCn−j) .

Therefore using (i): the exponential decay of cylinders for those of length n− j in
the next inequality; (ii) the symbolic construction of cylinders in Bn(j), we have
(here and in the sequel of the proof the constant C will denote the factor (1+ψ(0)))

∑

Cn∈Bn(j)

µ(Cn) ≤
∑

Cn∈Bn(j)

Cµ(Cj)µ(T−jCn−j)

≤ C exp(−γµ(n− j))
∑

Cj∈Cj

µ(Cj)

= C exp(−γµ(n− j)) .

Taking ln and dividing by n we get

lnµ(Cδ,n)

n
≤

lnC

n
− γµ

n− j

n
+

1

n
ln

[δn]

2
≤

lnC

n
+

1

n
ln

[δn]

2
− γµ

n− [δn]

n
.

The last inequality follows since j ≤ [δn]. The most right term in the above in-
equality converges to −γµ(1 − δ). This ends the proof of (a).

The second inequality is obtained analogously to the previous one. By (6)

µ(Cδ,n) ≥ µ(Bn([δn])) .

By using ψ(0) < 1 in the ψ-mixing property we get

µ(Cn) ≥ (1 − ψ(0))µ(C[δn])µ(T−[δn]Cn−[δn]) .
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We now remark on two facts:
(i) if we fix the cylinder Cn in the left hand side of the previous lower bound, then
the cylinders on the right hand side verify: C[δn] ⊃ Cn and T [δn]Cn ⊂ Cn−[δn];
(ii) we observe that by Egorov’s theorem and given ǫ > 0 we can find a measur-
able subset Ωǫ ⊂ Ω of measure µ(Ωǫ) > 1 − ǫ, such that the convergence of the
limit (Shannon, Mc-Millan, Breiman theorem): limn→∞ − 1

n logµ(Cn(x)) = hµ is
uniform whenever x ∈ Ωǫ.

Therefore by the exponential uniform lower bound of the measure of the cylinders
we have

∑

Cn∈Bn([δn])

µ(Cn)

≥
∑

Cn∈Bn([δn]), Cn∩Ωǫ 6=∅, T [δn]Cn∩Ωǫ 6=∅

Cµ(C[δn])µ(T−[δn]Cn−[δn]) .

Since µ{Cn ∈ Cn;Cn ⊂ Ωc
ǫ and T

[δn]Cn ⊂ Ωc
ǫ} ≤ 2ǫ, and observing that for the

item (i) above the cylinders Cn−[δn] in the preceding sum will contain at least one
point of Ωǫ, we continue the preceding lower bound as:

≥ C exp(−(hµ + ǫ)(n− [δn]))
∑

Cj∈C[δn], Cj∩Ωǫ 6=∅, T [δn]Cj∩Ωǫ 6=∅

µ(Cj)

≥ C exp(−(hµ + ǫ)(n− [δn]))(1 − 2ǫ) ,

provided n is taken large enough (depending on ǫ). Taking ln and dividing by n we
get

lnµ(Cδ,n)

n
≥

lnC(1 − 2ǫ)

n
− (hµ + ǫ)n− [δn]n .

The most right term in the above inequality converges to −hµ(1 − δ) by sending
first n to infinity and then ǫ to zero. This ends the proof of (b).

Proof of Proposition 2. Let us take k(n) an integer increasing function of n and
construct by concatenation the cylinder of length k(n)n: Pk(n)n ≡ PnPn . . . Pn, k(n)
times, where Pn satisfies (7). By using the ψ-mixing condition we immediately get
that µ(Pk(n)n) ≥ (1−ψ(0))k(n)µ(Pn)k(n)n and a similar upper bound with (1−ψ(0))

replaced by (1 + ψ(0)). This implies that limn→∞ − 1
k(n)n logµ(Pk(n)n) = γµ. The

cylinders Pk(n)n have first return which is at most n. We now begin to construct
the new sequence P ′

j , j ∈ N. When j = k(n)n we put P ′
j = Pk(n)n. For nk(n) <

j < (n + 1)k(n+ 1), write j = [j/n] + r, r < n, and build up P ′
j by concatenating

[j/n] times the cylinder Pn followed by the first r symbols of Pn; the first return of

P ′
j is again at most n. Therefore: limj→∞

τ(P ′

j)

j = 0. Moreover by applying to the

cylinders P ′
j with nk(n) < j < (n+ 1)k(n+ 1) the ψ-mixing condition [j/n] times

as above we immediately get that limj→∞ − 1
j logµ(P ′

j) = γµ, which concludes the

proof of the Proposition.

Proof of Proposition 3. By Assumption 1 one has that Pn ∈ {Cn | τ(Cn) ≤ δn}
for n large enough. Therefore µ{τ(Cn) ≤ δn} ≥ µ(Pn). By definition of γµ the
proposition follows.
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3. Computation of the large deviation function. The goal of this section
is to present the next theorem which links the measure of short returns with the
generalized Rényi’s entropy.

Definition 3.1. For any β ∈ IR the generalized Rényi entropy of a measure µ
relative to the partition C are denoted by HR(β) and defined as

HR(β) = − lim
m→∞

1

mβ
ln

∑

Cm∈Cm

µ(Cm)β+1

= − lim
m→∞

1

mβ
ln

∫

Cm

µ(Cm)βdµ ,

for β 6= 0 and

HR(0) = hµ = − lim
m→∞

1

m

∑

Cm∈Cm

µ(Cm) lnµ(Cm) ,

and provided the limits exist.

These limits can be computed in several circumstances: Bernoulli shifts, irre-
ducible and aperiodic Markov shifts, Gibbs measures for Hölder continuous poten-
tials φ, etc. [8, 16, 19]. In the latter case, it is possible to establish a link between
the Rényi entropies and the topological pressure of the function βφ and therefore
one could use the whole machinery of thermodynamic formalism (see, e.g. Ruelle’s
book [29]) to get the existence and the smoothness property of the function HR(β)
[9]. In the following we will assume that the limit defining the Rényi entropies
exists for positive integer numbers; moreover we will need a further, monotonicity,
property which is a direct consequence of the definition:

HR(β1) ≤ HR(β2), β1 ≥ β2.

One could wonder whether for a given ψ-mixing measure, the Rényi entropies
exist and are smooth as a function of the parameter β and for a given generating
partition. We already mentioned a few examples where it is the case. In general
we do not know. Instead for any ψ-mixing measure one could prove the existence
of the metric entropy HR(0) for any finite generating partition [21]. We now state
our main result.

Theorem 3.2. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system. Assume ψ(0) < 1
and suppose that the Rényi entropies relative to the partition C exist for any β ∈ N.
Then, for δ ∈ (0, 1], the limit

M(δ) := lim
n→∞

1

n
lnµ(Cδ,n) ,

exists. Moreover, its explicit form is

M(δ) = −

[
1

δ

] (

1 − δ

[
1

δ

])

HR

([
1

δ

])

+

(

1 − δ − δ

[
1

δ

]) ([
1

δ

]

− 1

)

HR

([
1

δ

]

− 1

)

,

which is a non-decreasing continuous piece-wise affine function.
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0 1/4 1/2 1
δ

−γµ(1−δ)

G(δ)

M(δ)

−hµ(1−δ)

−γµ

Figure 2. Theorem 3.2

Remark 6. The (horrendous) explicit expression of M(δ) has a simple interpreta-
tion. For δ = 1/k with k ∈ IN the most left term disappears and the most right
one simply becomes

−
1

k
(k − 1)HR(k − 1) .

For values of δ ∈ (1/(k + 1), 1/k) it is just a linear function of δ which interpolates
−HR(k)k/(k + 1) and −HR(k − 1)(k − 1)/k.

Whenever the Rényi entropies are defined for β > 0, M(δ) interpolates the
function

G(δ) = −HR

(
1

δ
− 1

)

(1 − δ) , (11)

over the set {1/k | k ∈ IN}.
Note that HR(0) is the metric entropy. In the case when G is convex (see picture

below, and this is what happens in the aforementioned examples where HR(β) is a
real analytic function of β), M(δ) provides a lower bound for HR(0). Namely, one
has

M(δ)

δ − 1
≤ HR

(
1

δ
− 1

)

≤ HR(0) .

Let us give two examples.

Example 1. Consider an automorphism T over the space Ω with a finite partition
E = {a1, . . . , aα} and which has maximal entropy measure µ. Therefore for any
n-cylinder set C = Cn = (ai1 , . . . , ain

) ∈ En one has µ(Cn) = Ce−hM n. In such a
case γµ = ρµ = hM . Moreover HR(δ) is constant and for all δ ∈ (0, 1)

lim
n→∞

1

n
lnµ(Cδ,n) = −hM (1 − δ) .

Example 2. Consider a Bernoulli automorphism T over the space Ω with finite
generating partition C = {0, 1} such that µ(1) = p and µ(0) = p. The Rényi
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entropies are easily seen to be, for β 6= 0: HR(β) = 1
β ln(pβ + (1 − p)β). An

immediate application of the preceding theorem gives:

lim
n→∞

1

n
lnµ(Cδ,n) =

{
δ ln

(
p1/δ + (1 − p)1/δ

)
δ = 1

k
(1 − δ) ln

(
p2 + (1 − p)2

)
1
2 ≤ δ ≤ 1

. (12)

For 1/(k + 1) < δ < 1/k, M(δ) is a linear function between M(1/(k + 1)) and
M(1/k). Namely

M(δ) =
M(1/k) −M(1/(k + 1))

1/k − 1/(k + 1)
(δ − 1/k + 1) +M (1/(k + 1)) .

Moreover

lim
δ→0

lim
n→∞

1

n
lnµ(Cδ,n) = ln p = −γµ .

Example 3. The previous Bernoulli measure is the very simple example of an
equilibrium (Gibbs) state on the full shift. We could also consider Markov measures
on aperiodic finite Markov chains (an explicit formula for the Renyi entropies exists
in this case as well). These two measures are particular cases of Gibbs equilibrium
states for Hölder continuous potential φ on subshifts of finite type. Let us denote
with P (φ) the topological pressure of the function φ. Then the equilibrium state
µφ verifies the variational principle: P (φ) = hµφ

+
∫
φdµφ. In [9] it is proved that

HR(β)β = (1+β)P (φ)−P ((1+β)φ), where we used the measure µφ to compute the

Renyi entropies. An easy change of variable shows that G(λ) = −P (φ) + P (λ−1φ)
λ−1 .

3.1. Proof of Theorem 3.2 and corollaries. We divide the proof in Proposition
4 and Proposition 5 below which prove a lower and upper bound respectively.

Proposition 4. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system. Assume ψ(0) <
1 and suppose that the Rényi entropies relative to the partition C exist for any β ∈ N.
Then, for δ ∈ (0, 1] the following holds

lim inf
n→∞

1

n
lnµ(Cδ,n) ≥M(δ) .

Proof. Write n = [δn][1/δ] + r. Thus

r = n

(

1 − δ

[
1

δ

])

+ (δn− [δn])

[
1

δ

]

.

Therefore

L := n

(

1 − δ

[
1

δ

])

≤ r ≤ n

(

1 − δ

[
1

δ

])

+

[
1

δ

]

=: U . (13)

Now we divide the proof in 0 < δ < 1/2 and 1/2 ≤ δ < 1.

-Case 0 < δ < 1/2. We put n = [1/δ][δn] + r; then

µ(Cδ,n) ≥ µ(Bn([δn]))

=
∑

Cn∈Bn([δn])

µ(Cn)

≥
∑

C[δn]∈C[δn]

(1 − ψ(0))[1/δ]µ(C[δn])
[1/δ]µ(T−[δn][1/δ]Cr) .
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For any C[δn] ∈ C[δn] we write C[δn] = Cr ∩ T−rC[δn]−r. Thus, again by the mixing
property

µ(C[δn]) ≥ (1 − ψ(0))µ(Cr)µ(T−rC[δn]−r) . (14)

Moreover C[δn] = Cr × C[δn]−r, thus

µ(Cδ,n) ≥ (1 − ψ(0))2[1/δ]
∑

C∈Cr

µ(Cr)
[1/δ]+1

∑

C∈C[δn]−r

µ(C[δn]−r)
[1/δ] .

Applying (13) we get

µ(Cδ,n) ≥ (1 − ψ(0))2[1/δ]
∑

CU∈CU

µ(CU )[1/δ]+1
∑

C[δn]−L∈C[δn]−L

µ(C[δn]−L)[1/δ] .

Notice that

lim
n→∞

U

n
= 1 − δ

[
1

δ

]

; lim
n→∞

[δn] − L

n
= δ − (1 − δ

[
1

δ

]

) .

Then, by the exchanges of variables n′ = U and n” = [δn] − L, we conclude that

1

n
lnµ(Cδ,n) ,

is bounded from below by M(δ). This ends the first case.

-Case 1/2 ≤ δ < 1. One has

µ(Cδ,n) ≥ µ(Bn([δn])) .

Since [δn] ≥ n/2 the first and the last n − [δn] symbols of Cn are equal. Thus,
dividing Cn in its first and last n − [δn] symbols and its n − 2(n − [δn]) central
symbols and then using the ψ-mixing property one has

∑

Cn∈Bn([δn])

µ(Cn) ≥
∑

C∈Cn−[δn]

∑

C∈C2[δn]−n

(1 − ψ(0))2µ(Cn−[δn])
2µ(C2[δn]−n)

≥ K
∑

Cn−[δn]∈Cn−[δn]

µ(Cn−[δn])
2 .

Further,

1

n
ln

∑

Cn−[δn]∈Cn−[δn]

µ(Cn−[δn])
2

=
n− [δn]

n

1

n− [δn]
ln

∑

Cn−[δn]∈Cn−[δn]

µ(Cn−[δn])
2 .

Thus the proposition follows.

Proposition 5. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system. Suppose that the
Rényi entropies relative to the partition C exist for any β ∈ N. Then, for δ ∈ (0, 1]
the following holds

lim sup
n→∞

1

n
lnµ(Cδ,n) ≤M(δ) .

Proof. We first need the following useful lemma.
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Lemma 3.3. Let ci,n > 0 with 1 ≤ i ≤ n, n ∈ IN . Then (if the limits exist,
otherwise it holds for lim sup and lim inf) the following equality holds

lim
n→∞

1

n
ln

n∑

i=1

ci,n = lim
n→∞

1

n
ln max

1≤i≤n
{ci,n} .

Proof. Observe that max1≤i≤n{ci,n} ≤
∑n

i=1 ci,n ≤ n max1≤i≤n{ci,n}. Taking the
logarithm, dividing by n and then taking the limit, the lemma follows.

We return to the proof of the Proposition. As we show in Proposition 1 we have

µ(Cδ,n) ≤

[δn]
∑

j=[δn]/2

µ(Bn(j)) ≤ n max
[δn]/2≤j≤[δn]

µ(Bn(j)) .

Therefore by Lemma 3.3 in order to get an upper bound for lim supn→∞ lnµ(Cδ,n)/n
it is enough to find an upper bound for

lim sup
n→∞

1

n
lnµ(Bn(j(n))) , (15)

where j(n) is (one of) the j that realizes the following maximum

max
[δn]/2≤j≤[δn]

µ(Bn(j)) .

Now, we also divide this proof in two cases: (a) 0 < δ < 1/2 and (b) 1/2 ≤ δ < 1.

Assume (a). Since j(n) < n/2, for each Cn ∈ Bn(j(n)) every contiguous and
non-overlapped block of j(n) symbols of Cn is equal to the first one. Thus, write
n = [n/j]j+ r recalling that j depends on n and r depends on j. By the ψ-mixing
property

µ(Bn(j)) ≤
∑

Cj∈Cj

(1 + ψ(0))[n/j]µ(Cj)
[n/j]µ(Cr) .

As in (14) one has

µ(Cj) ≤ (1 + ψ(0))µ(Cr)µ(T−rCj−r) .

Thus, since Cj = Cr × Cj−r, we get that µ(Bn(j)) is bounded from above by

(1 + ψ(0))2[n/j]
∑

Cr∈Cr

µ(Cr)
[n/j]+1

∑

Cj−r∈Cj−r

µ(Cj−r)
[n/j] .

Hence lim supn→∞ lnµ(Cδ,n)/n is bounded from above by the sum of the following
three limits

lim sup
n→∞

1

n
ln

∑

Cr∈Cr

µ(Cr)
[n/j]+1 , (16)

lim sup
n→∞

1

n
ln

∑

Cj−r∈Cj−r

µ(Cj−r)
[n/j] , (17)

and

lim sup
n→∞

1

n
ln(1 + ψ(0))2[n/j] . (18)

Since [δn]/2 ≤ j, the limit (18) is zero. We now consider the limits (16), (17) and
the sequence {j(n)/n}n∈IN . Remind that n = [n/j(n)]j(n) + r(n). We have two
cases according to the sequence {j(n)/n}n∈IN converges or diverges.
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A. If it converges and since [δn]/2 ≤ j(n) ≤ [δn], it goes to some λ ∈ [δ/2, δ]. We
still have two cases.

-If λ = 1/k with k ∈ IN then limn→∞ r(n)/n = 0. Thus (16) goes to zero
and (17) converges to

−HR

(
1

λ
− 1

)

λ(
1

λ
− 1) = HR

(
1

λ
− 1

)

(λ− 1) .

-If λ 6= 1/k we can write 1 = λ[1/λ] + rλ. So limn→∞ r(n)/n = rλ =
1 − λ[1/λ]. Thus (16) converges to

−HR

([
1

λ

])

(1 − λ

[
1

λ

]

)

[
1

λ

]

,

and (17) converges to

−HR

([
1

λ

]

− 1

)(

λ− (1 − λ

[
1

λ

]

)

)

(

[
1

λ

]

− 1) .

The sum of the last two quantities is nothing but M(λ). But as we previ-
ously said, the latter function interpolates the function G(λ), see (11). It is
straightforward to check that G(λ) is increasing [8], and then the maximum
of the possible limits of M(λ) is attained when λ = δ.

B. If j(n)/n does not converge, then consider all its converging subsequences.
The possible limits are those obtained in A. The maximum is yet attained
when λ = δ.

Thus we conclude the proof of the first case.
Proof of (b). We proceed by estimating

µ(Cδ,n) ≤

[δn]
∑

j=[δn/]2

µ(Bn(j)) .

We recall the different structure of Bn(j) for j ≤ [n/2] and j > [n/2]. Using Lemma
3.3 we have only to identify (one of) the maximum of µ(Bn(j)) for [δn]/2 ≤ j ≤ [δn].
Call it again j(n).

Consider first that [n/2] < j(n) ≤ [δn]. By the definition of Bn(j) one has

µ(Bn(j))

≤
∑

Cn−j(n)∈Cn−j(n)

∑

C2j(n)−n∈C2j(n)−n

(1 + ψ(0))2µ(Cn−j(n))
2µ(C2j(n)−n)

≤ K
∑

Cn−j(n)∈Cn−j(n)

µ(Cn−j(n))
2 .

Therefore we consider

n− j(n)

n

1

n− j(n)
ln

∑

C∈Cn−j(n)

µ(Cn−j(n))
2 . (19)

We have two cases according to the sequence {j(n)/n}n∈IN converges to [1/2, δ]
or [δ/2, 1/2).

A. We still divide this case in two: δ/2 ≤ λ ≤ 1/2 and 1/2 < λ ≤ δ. If
δ/2 ≤ λ ≤ 1/2 then (19) converges to the same limit established in case A of
(a). If 1/2 < λ ≤ δ then (19) converges to

−(1 − λ)HR(1) .
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The maximum of both cases is still when λ = δ.
B. Consider that [δn]/2 ≤ j(n) ≤ [n/2]. This case is treated verbatim like the

case when λ ≤ 1/2.

As in the proof of (a), if j(n)/n does not converges, consider all its converging
subsequences. The possible limits are those obtained in A and B. The maximum
is yet attained when λ = δ. Now the maximum at λ = δ is −(1 − δ)HR(1).

This ends the proof of the proposition.

4. Computation of the free energy. We show in this section that for ψ-mixing
dynamical systems the free energy function of τ(Cn)/n can be easily computed; the
free energy is defined as

F (β)
def
= lim

n→∞

1

n
ln

∫

Ω

exp(βτ(Cn))dµ

= lim
n→∞

1

n
ln

n∑

i=1

exp(βj)µ(τ(Cn) = j) , (20)

wherever the limit exists.
In the next proposition we invoke Assumption 1.

Proposition 6. Let (Ω,F , µ, T ) be a ψ-mixing dynamical system and suppose
Assumption 1 holds. Then the following equality holds:

F (β) =

{
β −γµ ≤ β < 0
−γµ β ≤ −γµ

. (21)

Remark 7. Therefore, the free energy function is continuous. It is not differentiable
only at the point β = −γµ. Notice that −γµ ≥ −hµ, where hµ is the metric entropy.
The equality holds only when µ is the maximal entropy measure. In that case one
has γµ = hµ. Since F (β) is not differentiable, by applying the classical theorem of
large deviations (see for instance Ellis’ book [17]), we can only get an upper bound
for M(δ) by means of the Legendre transform of the free energy function F (β),
denoted by L(F )(δ). It is a straightforward computation to show that

M(δ) ≤ L(F )(δ) = −γµ(1 − δ) .

Thus we recover the upper bound we get directly in Proposition 1 (a).

4.1. Proof of Proposition 6.

Proof. By Lemma 3.3, in order to obtain the limit (20) it is enough to obtain the
limit limn→∞(lnmn(β))/n, where

mn(β)
def
= max

1≤j≤n
exp(βj) µ(τ(Cn) = j), ∀n ∈ IN. (22)

Take any cylinder Cn such that τ(Cn) = j. Put n = [n/j]j + r. By definition of
Bn(j)

µ(τ(Cn) = j) ≤ µ(Bn(j)) .

As in the proof of Proposition (1) and with the same notations used there:

µ(Bn(j)) ≤
∑

Cj∈Cj

(1 + ψ(0))µ(Cj)µ(T jCn−j)

≤ (C exp(−γµ(n− j)) .
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Applying the above inequality to (22) we have

1

n
lnmn(β) ≤

1

n
ln max

j
{C1 exp (βj − γµ(n− j))} (23)

= C2 max
j

{

β
j

n
− γµ

n− j

n

}

.

where C1 and C2 are suitable constants. For 1 ≤ j ≤ n, and n ∈ IN , define the
numbers

aj,n =
j

n
and bj,n = −γµ

n− j

n
,

and the linear functions gj,n(β) = aj,nβ + bj,n.
Observe that gj,n(−γµ) = −γµ for all 1 ≤ j ≤ n ∈ IN . Moreover 1/n < a1,n <

· · · < an,n = 1. Therefore

max
j
gj,n(β) = gn,n(β) = β ∀β ≥ −γµ ; ∀n ∈ IN .

We conclude that

lim sup
n→∞

1

n
lnmn(β) ≤ β .

On the other hand

max
j
gj,n(β) = g1,n(β) ∀β ≤ −γµ ; ∀n ∈ IN .

Moreover, limn→∞ g1,n(β) = −γµ . We conclude that

lim sup
n→∞

1

n
lnmn(β) ≤ −γµ ; ∀n ∈ IN .

This ends the proof of the upper bound for F (β).

Now we proceed to prove the lower bound for lim infn→∞(lnmn(β))/n. We divide
its proof in two cases.

Case (i): −γµ ≤ β < 0. Since β < 0 one has

n∑

j=1

exp(βj)µ(τ(Cn) = j) ≥ exp(βn) , (24)

which obviously gives:

lim inf
n→∞

1

n
ln

∫

Ω

exp(βτ(Cn))dµ ≥ β .

Case (ii): β < −γµ. For each n ∈ IN , consider the n-cylinder Pn which verifies
Assumption 1. We have the inequality:

n∑

j=1

exp(βj)µ(τ(Cn) = j) ≥ exp (βτ(Pn))µ(Pn) .

Thus, by limit (8)

lim inf
n→∞

1

n
ln

∫

Ω

exp(βτ(Cn))dµ ≥ −γµ .

This ends the proof of formula (21).
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4.2. Examples. In this section we present some examples of systems for which the
Assumption 1 is verified. Moreover, in all of them a stronger property holds: there
exists a positive constant C > 0 such that τ(Pn) ≤ C for all n ∈ IN .

Example 4. Consider a Bernoulli automorphism T over the space Ω with a finite
partition C = {a1, . . . , aα} and which has a non maximal entropy measure µ. So
that, for any n-cylinder set C = Cn = (ai1 , . . . , ain

) ∈ Cn one has µ(ai1 , . . . , ain
) =

∏n
j=1 pij

. Choose

Pn = (1, . . . , 1
︸ ︷︷ ︸

n

) ∀n ∈ IN .

Therefore, if we put p = maxi∈{1,...,α} {pi}, then µ(Pn) = pn. It follows immediately
that γµ = − ln p. Further, τ(Pn) = 1 for all n ∈ IN . Thus condition (1) holds.

Example 5. Consider an automorphism T over the space Ω with a finite partition
C = {a1, . . . , aα} and which has maximal entropy measure µ. Hence for any n-
cylinder Cn = (ai1 , . . . , ain

) ∈ Cn one has µ(Cn) = Ce−hM n. It is immediate to
check that γµ = −hM . Further, if x is any fixed point and we choose Pn = Cn(x),
we have that

µ(Pn) = Ce−hM n. and τ(Pn) ≤ C .

Thus condition (1) holds.

Example 6. Consider an irreducible and aperiodic Markov chain over the space
Ω with a two-state partition C = {0, 1} and transition probabilities given by the
matrix

Q =

[
1 − p p
q 1 − q

]

,

with Q(0, 0) = µ0(0) = 1 − p. Thus the measure of any n-cylinder is

µ(a0, . . . , an−1) = µ(a0)

n−1∏

i=0

Q(ai, ai+1) = µ(a0)(1 − p)np(1 − q)nqpn0qn1 ,

satisfying the constrains

np + nq + n0 + n1 = n− 1 and |n0 − n1| = 0 or 1 .

Thus taking the limit

− lim inf
n→∞

1

n
lnµ(a0, . . . , an−1) = −lp ln(1 − p) − lq ln(1 − q) − 2l0,1

ln p+ ln q

2
,

where

lp + lq + 2l0,1 = 1 and 0 ≤ lp ≤ 1, 0 ≤ lq ≤ 1, 0 ≤ l0,1 ≤ 1 .

Therefore

γµ = min

{

− ln(1 − p),− ln(1 − q),−
ln p+ ln q

2

}

.

Now

• if γµ = − ln(1 − p) we take Pn = (0, . . . , 0)
• if γµ = − ln(1 − q) we take Pn = (1, . . . , 1)
• if γµ = −(ln p+ ln q)/2 we take Pn = (1, 0, 1, 0, . . .

︸ ︷︷ ︸

n

)

In any case τ(Pn) ≤ 2. Thus Assumption 1 holds.
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5. Concluding remarks. The main results of this paper have been to compute
the large deviations and the free energy of the process τ(Cn)/n, by showing that
the limits defining those quantities exist. As we pointed out in the Remark 2, the
condition ψ(0) < 1 was necessary to implement our approach, in particular to prove
the lower bounds for the two limits:

lim inf
n→∞

1

n
lnµ(Cδ,n)

and

lim inf
n→∞

1

n
ln

∫

Ω

exp(βτ(Cn))dµ.

To get similar bounds without the condition ψ(0) < 1 would probably require
a different strategy. Instead we would like to point out that the upper bounds for
the preceding limits, with the lim sup at the place of the lim inf, do not need the
preceding condition, so that they remain true for a general ψ-mixing measure: they
are exactly the contents of Proposition 5 and of Proposition 6 (upper bound). In
this case of course one would get an upper large deviation bound for the process
τ(Cn)/n, which is weaker than our complete result but still interesting, especially
for its connection with the Rnyi entropies.
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