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Abstract

An analytical model of the electrostatic force between the tip of a non-contact Atomic Force

Microscope (nc-AFM) and the (001) surface of an ionic crystal is reported. The model is able

to account for the atomic contrast of the local contact potential difference (CPD) observed while

nc-AFM-based Kelvin Probe Force Microscopy (KPFM) experiments. With the goal in mind to

put in evidence this short-range electrostatic force, the Madelung potential arising at the surface

of the ionic crystal is primarily derived. The expression of the force which is deduced can be split

into two major contributions: the first stands for the coupling between the microscopic structure of

the tip apex and the capacitor formed between the tip, the ionic crystal and the counter-electrode;

the second term depicts the influence of the Madelung surface potential on the mesoscopic part of

the tip, independently from its microscopic structure. The former has the lateral periodicity of the

Madelung surface potential whereas the latter only acts as a static component, which shifts the

total force. These short-range electrostatic forces are in the range of ten pico-Newtons. Beyond

the dielectric properties of the crystal, a major effect which is responsible for the atomic contrast

of the KPFM signal is the ionic polarization of the sample due to the influence of the tip/counter-

electrode capacitor. When explicitly considering the crystal polarization, an analytical expression

of the bias voltage to be applied on the tip to compensate for the local CPD, i.e. to cancel the

short-range electrostatic force, is derived. The compensated CPD has the lateral periodicity of

the Madelung surface potential. However, the strong dependence on the tip geometry, the applied

modulation voltage as well as the tip-sample distance, which can even lead to an overestimation

of the real surface potential, makes quantitative KPFM measurements of the local CPD extremely

difficult.

PACS numbers: 07.79.Lh, 41.20.Cv, 73.40.Cg

Keywords: non-contact Atomic Force Microscopy; Kelvin Probe Force Microscopy; Local Contact Potential

Difference; Short-range Electrostatic Force; Analytical model; Madelung Surface Potential; Ionic crystal
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I. INTRODUCTION

Electrostatic forces play a key role in non-contact Atomic Force Microscopy (nc-AFM),

not only in the imaging process1 but also for the investigation of the surface electronic prop-

erties. Electronic properties such as the work function and surface charges can be acquired

by Kelvin Probe Force Microscopy (KPFM)2,3 simultaneously to imaging topography by

nc-AFM. In KPFM, a feedback is used to apply a voltage between the tip and the sample in

order to minimize the electrostatic tip-sample interaction. For metals, this voltage is equal

to the contact potential difference (CPD), i.e. the bias voltage to be applied between the tip

and the surface to align their fermi levels. It is connected to the difference between the work

functions of the two surfaces, and thereby to their local electronic properties, according to:

∆φ = φtip − φsample = qVcpd, (1)

q being the elementary electrical charge: q = 1.6 × 10−19 C.

Nowadays, two KPFM-based techniques provide facilities to map the spatial variations of

the CPD on the nanometer scale, namely Frequency-4 or Amplitude-Modulation-KPFM5,6,7

(FM- or AM-KPFM, respectively). These methods were primarily applied to metallic and

semiconducting surfaces to study the distribution of dopants in semiconductors8, or the

adsorption of organic molecules (for an overview see ref.[9]). In a few experiments, even

molecular10 or atomic11,12,13 contrast has been reported. The extension of the technique to

insulating surfaces, was performed more recently, as demonstrated by the results reported

on thin ionic films on metals14,15, or on the contribution of bulk defects to the surface charge

state of ionic crystals16,17.

In this work, atomic corrugation of the CPD signal is reported for the first time on the

(001) surface of a bulk ionic crystal of KBr. For that purpose, KPFM experiments were

carried out in ultrahigh vacuum with a base pressure below 10−10 mbar using a home built

non-contact atomic force microscope operated at room temperature18. A highly doped silicon

cantilever with a resonance frequency f0 ≈ 160 kHz, and a spring constant k ≈ 21 N.m−1

was used. The typical oscillation amplitude of the fundamental bending resonance was

≈ 10 nm. The cantilever was annealed (30 min @ 120◦) and gently sputtered with Ar+ ions

(1-2 min @ 680 eV). The KBr crystal was cleaved in ultrahigh vacuum along the (001)-plane

and subsequently annealed at 120◦ during an hour. The KPFM signal was detected using the
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AM mode, as described in detail in Ref. 5. While these experiments, atomic-scale contrast

was as well visible in the topography channel (data not shown). The CPD measurements are

reported in figs.1a and b. In fig.1a, the image exhibits atomic features, the measured period

of which is 0.63 nm, which is visible in the joint cross section. This value matches to a good

agreement the lattice constant of KBr, 0.66 nm. The vertical contrast yields about 100 mV

around an average value of -3.9 V, the origin of which will be discussed in section IVB. A

striking aspect of those results is the robustness of the imaging process in terms of stability

and reproducibility upon the tips used. These results suggest an intrinsic imaging process

relying on the microscopic origin of the contact potential arising at the sample surface. In

this case, the CPD rather turns into local CPD, consistently with the concept of local work

function which has been introduced by Wandelt on metals19. By “intrinsic imaging process”,

it is meant that the contrast can be accounted for with a tip consisting of a single material,

namely a metal. Thus, the atomic contrast neither relies on adsorbed nor on unstable species

at the tip apex, as often reported for topographic20 or dissipation21 imaging by nc-AFM.

In this work, in order to understand the local CPD contrast formation, an electrostatic

model is proposed that allows us to derive an expression of the short-range electrostatic force

occurring between a biased metallic tip of a nc-AFM microscope and the surface of a bulk

dielectric. On the contrary to more refined numerical methods proposed in the literature for

almost similar systems22,23, the analytical development is restricted to a simple tip geometry

and a classical, continuous electrostatic approach. Notwithstanding, the model allows us to

define a general frame, able to put in relation the surface electrostatic properties with the

imaging process yielding atomic contrast of the CPD on ionic surfaces. Obviously, the main

results presented here remain qualitatively correct for more complex tip geometries, although

numerical methods are then required to get quantitative numbers.

The motivations for that work are twofold. On the one hand, to our knowledge, a com-

pact modelization of the short-range electrostatic forces responsible for the atomic contrast

in KPFM on a bulk ionic crystal is still lacking. On the other hand, when evaluating KPFM

experiments, the relative complexity of FM- or AM-KPFM experimental setups, both in-

cluding four electronic controllers, makes the interpretation of the experimental images, and

primarily CPD images, tedious, especially when dealing with atomic resolution. Several

groups analyzed the KPFM imaging mechanism in order to evaluate their data in terms of

quantitative values and lateral resolution24,25,26,27,28,29,30,31,32,33, a few of them also compared
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AM- and FM-KPFM in terms of evaluating the force and its gradient, respectively7,31. The

fact that many of the above mentioned calculations point out that KPFM results, especially

for nano-objects, show a strong distance dependence, clearly points out that for a careful

analysis, it is not sufficient to only calculate the electrostatic tip-sample interaction. It is

rather important to perform simulations including all imaging mechanisms and in particular

also the distance control in order to exclude artifacts due to the feedback circuits. In order to

explore the origin of the CPD atomic contrast, we are aiming to closely mimic a real KPFM

setup by means of an earlier developed nc-AFM simulator34. In the present case of an ionic

surface, it is required to consider a large slab of ions, virtually infinite, to describe properly

the electrostatic interaction. This is hardly feasible by means of ab initio calculations which

fail to describe tip-surface systems involving a too big number of atoms. Therefore, prior to

simulating the CPD contrast on ionic surfaces by means of our simulator, which is the scope

of a future work, we have to find an analytical expression for the electrostatic tip-sample

interaction.

The following section details the boundary-value electrostatic problem leading to the

expression of the force (section III). In section IV, the analytical expression of the local

CPD is derived and discussed to be put in relation with the experimental observations. The

implications for KPFM experiments are discussed as well.

II. ELECTROSTATIC MODEL

The geometry of the problem of FM- or AM-KPFM experiments applied to bulk insulating

materials is reported in fig.2b. The dielectric sample is an alkali halide crystal like NaCl,

KBr, KCl with a fcc structure and a lattice constant a (cf. fig.2a). In the area where

the tip is, the model assumes that the crystal carries neither net charge, nor local dipole.

Its thickness hd is much larger than all other distances of the problem, typically a few

millimeters. Below the surface, the crystal is treated as a continuous dielectric medium with

a dielectric permittivity ǫd. At the surface, the atomic corrugation of the crystal is described

by a single layer of alternate point charges arranged with a fcc structure perpendicular to

the [001] direction. The layer extends infinitely in the plane direction. The motivation for

such a rationalization of the problem will be justified in section (IIB).

The crystal lies on a metallic sample holder (hereafter referred to as the counter-
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electrode), with respect to which the tip is biased. The counter-electrode is a planar and

perfect conductor. The tip is also assumed to be a perfect conductor which is biased at Vb.

In order to preserve the analyticity of the model, the electrostatic boundary-value problem

is restricted to a tip with a very simple apex geometry, namely: a hemispherical mesoscopic

part (radius R ≃ 5 nm) on top of which is half-embedded a small spherical asperity (radius

Ra ≪ R). The contributions of the cantilever and of the macroscopic part of the tip to

which the apex is connected to are assumed to be negligible. This issue will be justified in

section IIIA. The tip-surface distance is denoted zµ (typically a few Å).

The electric field
−→
E produced locally between the tip, the dielectric, and the counter-

electrode polarizes the ionic crystal, which acquires a macroscopic polarization
−→
P = nv

−→pl

oriented along
−→
E . In the former equation, nv is the number of polarizable species per unit

volume and −→pl , the local dipolar moment per unit cell. In KPFM, the bias voltage Vb is

modulated at frequencies which do not influence the electronic polarization of the ions. The

major part of the crystal polarization has rather an ionic character, i.e. a net displacement

in opposite directions of the ions due to their charge ±q with respect to their equilibrium

positions, ±δ/2, with δ = pl/q, q being the elementary electrical charge. The polarization

effect occurs as well at the crystal surface, where the positions of the ions become modulated

perpendicularly to the surface plane, i.e. δ → δ⊥, as sketched in figs.2b and d. δ⊥ is

proportional to the local electric field
−→
El at any ionic site and to the total polarizability of

the dielectric restricted, in our approach, to the ionic polarizability αi (ref.[35]). Usually,
−→
El

differs from the external electric field
−→
E due to the biased tip because

−→
El explicitly depends

on the polarization of the dielectric. The Lorentz’s model links
−→
El and

−→
E (ref.[36]), thus,

−→pl is written:

−→pl = αiǫ0
−→
El = χd

−→
E = qδ⊥

−→
E

E
, (2)

with χd = αiǫ0/(1 − nvαi/3), the dielectric susceptibility of the sample. In the former

equation, it is important to notice that −→pl depends on
−→
E and hence on the bias voltage Vb.

Consequently, this is also true for δ⊥. For the sake of discussions, the bias dependence will

henceforth be explicitly outlined δ⊥ → δ⊥(Vb). Despite δ⊥(Vb) cannot be estimated at this

point, it is crucial to keep in mind that the sample surface is polarized by the influence of

the bias since this is a key aspect of the origin of the CPD atomic contrast.

Our approach of the electrostatic boundary-value problem relies on an ad hoc assumption.
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The tip, being a perfect conductor, develops a surface charge density σ, the origin of which

is split into two main contributions σ = σm + σµ, namely:

• a charge density σm due to the capacitor formed between the biased tip and the

counter-electrode with the dielectric in between (cf. fig.2c). Owing to the distance

between the electrodes, i.e. roughly the dielectric thickness hd, σm has a mesoscopic

character. It is not influenced by the local structure of the tip apex, but rather by its

overall shape.

• a charge density σµ originating from the Madelung potential that expands at the crystal

surface. When the tip is at a distance zµ where the potential is effective, typically a few

Ångströms, then it develops, in addition to σm, a surface charge density σµ (cf. fig.2d).

σµ has a microscopic character and must strongly depend on the local structure of the

tip apex and on zµ.

Despite the simple tip geometry that has been assumed, the calculation of the electro-

static force acting on it due to the combined influence of the capacitive coupling and of the

Madelung surface potential has no exact analytical solution. Nevertheless, one can build

up an approximate solution to the boundary-value problem relying on the superposition

principle. For that purpose, the problem is split up into two boundary-value sub-problems

schemed in figs.2c and d:

• problem A: the tip biased at Vb in front of a dielectric continuous medium (height hd,

dielectric permittivity ǫd) held on an infinite planar conductor, the counter-electrode

(fig.2c). The local structure of the dielectric is not supposed to influence the tip.

This is the description of the “capacitive” problem, the solution of which provides the

surface charge density σm.

• problem B: the tip now biased at 0 V with an infinite plane of alternate point charges

located at the same distance than the surface of the dielectric in problem A, i.e. zµ.

The layer of point charges is polarized under the electric field that occurs in problem A

(fig.2d). This describes the “microscopic” problem. The solution provides the surface

charge density σµ.

Besides, in order to carry out the calculations more easily, it is convenient to distinguish

the two following geometrical areas on the tip (cf. fig.2d), namely: the asperity, area (1), i.e.
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a half-sphere with radius Ra and the mesoscopic tip apex around it, area (2), a sphere with

radius R ≫ Ra (typically R/Ra ≥ 50). These two areas do not overlap, but the continuity

between them is ensured. The vertical force acting on the tip37 is written in terms of σm

and σµ as described above:

F =

∫

tip

(σm + σµ)2

2ǫ0
n̂.ûzdS = Fm + Fmµ + Fµ (3)

n̂ and ûz are the normal to the tip surface and the unitary vector along the vertical z

axis of the problem, respectively. Doing so, we only focus on the vertical resultant of the

force acting onto the tip. The above expression can be expanded into three components: a

purely capacitive part, Fm originating from the tip/dielectric/counter-electrode capacitor;

a coupling part, Fmµ, which can be interpreted in terms of the resulting force of all the

elementary forces due to the electric field σm/ǫ0 onto each elementary charge σµdS produced

on the tip by the influence of the Madelung potential of the crystal, Vs; and a purely

microscopic part, Fµ, standing for the short-range electrostatic force due to Vs.

A. Problem A: estimation of σm

Although the boundary-value problem of a planar conductor biased with respect to an-

other one with an incomplete dielectric layer in between yields an expression of the surface

charge density, the problem with the sphere does not. However, one can argue that the ex-

pression of σm must be a combination between a configuration in which there is no dielectric

medium in the sphere/counter-electrode interface and an opposite one, where the interface

is completely filled with it. One can therefore postulate an effective dielectric permittivity

ǫ̃d = Kǫd, where K (< 1) is a constant to be set. Owing to the fact that the mesoscopic

part of the tip apex, referred to as area (2), is located at a distance zm = zµ + hd ≫ R from

the counter-electrode, the analytical expression of σ
(2)
m , explicitly calculated in refs.[37,38],

asymptotically trends towards the surface charge density of an isolated, biased sphere37:

σ(2)
m

zm≫R
=

ǫ̃dǫ0Vb

R
(4)

To get the surface charge density on area (1), σ
(1)
m , we seek the potential V

(1)
m which equals

Vb over the asperity. For that purpose, a spherical coordinate system (r, θ, ϕ) centered on
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the asperity is chosen. The problem having an azimuthal symmetry, the sought potential

can be expanded in Legendre polynomials37:

V (1)
m (r, θ) =

∞∑

n=0

(
αnr

n +
βn

rn+1

)
Pn(cos θ) (5)

At large distance from the asperity, r ≫ Ra, the potential must be similar to the one of a

sphere with radius R biased at Vb, namely37:

V (1)
m (r, θ)

R>r≫Ra= Vb

∞∑

n=0

( r

R

)n

Pn(cos θ) (6)

Hence, the coefficients αn of the expansion are known. The coefficients βn are deduced

from the property of orthogonality of the Legendre polynomials at the boundary condition

V (r = Ra) = Vb. The potential is finally written:

V (1)
m (r, θ) = Vb

{
1 +

∞∑

n=1

[( r

R

)n

− R2n+1
a

Rnrn+1

]
Pn(cos θ)

}
(7)

The former equation rigorously describes the potential of a system apex/asperity where the

junction point between the two spheres is smoothed and not singular, as sketched in fig.2d.

Nevertheless, for R ≫ Ra, the influence of the singular area is negligible. Therefore, equ.7

is a good approximation to the boundary-value problem. The normal derivation along the

surface of the asperity yields the expression of σ
(1)
m :

σ(1)
m = − ǫ̃dǫ0Vb

R

∞∑

n=1

(2n + 1)

(
Ra

R

)n−1

Pn(cos θ) (8)

Owing to the condition R ≫ Ra, the sum can be restricted to the first term. Therefore:

σ(1)
m = −3ǫ̃dǫ0Vb

R
cos θ (9)

Thus, despite σ
(1)
m develops on the asperity, its strength is governed by the radius of the

mesoscopic part of the tip apex, R and not by the local radius of curvature of the asperity,

Ra.
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B. Problem B: estimation of σµ

The calculation of the surface charge density σµ on the mesoscopic sphere+asperity is

more tedious, primarily because it relies on the estimation of the Madelung potential of

the ionic crystal, Vs. The boundary-value problem is now restricted to the determination

of the surface charge density arising on a metallic tip at zero potential under the influence

of an infinite planar slab of point charges. Again, the solution of such a problem has no

straightforward analytical solution. However, we can again use the condition R ≫ Ra, as

depicted, to some extend, in fig.2d. Consequently, the mesoscopic part of the apex can be

assumed as equivalent to an infinite planar conductor, at least in a small area along the

sides of the asperity (light grey area in fig.2d). The new boundary-value problem defined by

an infinite planar conductor influencing another infinite planar conductor at zero potential

carrying a hemispherical bump with a radius Ra, now yields a solution38. The method of

the image charges is used to solve it. The first set of image charges ensuring a zero-potential

value on the counter-electrode39 produces an electric field which influences the tip. But as

a matter of fact, this contribution can be neglected because the distance between the tip

and the counter-electrode is on the millimeter range and the image charges originate from

the Madelung potential, which is known to decay exponentially fast40,41 (cf. also hereafter).

The second set of image charges42 is quasi-punctual and located at the center of the asperity.

Hence, owing to the simplified geometry of the electrode, the problem is reduced to a sphere

with radius Ra at zero potential in the influence of two infinite planes, i.e. the slab and

its image, which are anti-symmetrically spaced with respect to the sphere. This procedure

ensures a zero-potential on the approximated plane within which the asperity is embedded.

Again, it is more convenient to use a spherical coordinate system centered on the asperity.

Then, the surface charge density σµ = σ
(1)
µ +σ

(2)
µ is derived by normal derivation along areas

(1) and (2), namely:

σµ = − ǫ0
∂Vµ(r, θ, ϕ)

∂r︸ ︷︷ ︸
(1)=asperity

∣∣∣∣∣∣∣∣
r=Ra

− ǫ0
∂Vµ(r, θ, ϕ)

r∂θ︸ ︷︷ ︸
(2)=planar area

∣∣∣∣∣∣∣∣
θ=π/2

, (10)

The potential Vµ is derived from the Madelung potential of the ionic crystal, previously

referred to as Vs, by the method of the image charges and the Kelvin transform (influence
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on a sphere biased at zero potential)38, namely:

Vµ(r, θ, ϕ) =
{
Vs(r, θ, ϕ) − Ra

r
Vs

(
R2

a

r
, θ, ϕ

)}∣∣∣
slab

−
{
Vs(r, π − θ, ϕ) − Ra

r
Vs

(
R2

a

r
, π − θ, ϕ

)}∣∣∣
image slab

(11)

The former equation fulfills the boundary condition Vµ(r = Ra) = 0 everywhere along the

surface asperity or along the surface of the local planar area around it.

Vs can be estimated on the base of the work by Watson et al.40. When considering an

infinite planar slab of point charges, the authors state that the potential, so-called Madelung

surface potential, reaches its asymptotic value in a very short distance normal to the slab.

Consequently, the ions within the crystal at a distance only one lattice constant from the

surface have Madelung potentials which are indistinguishable from those of the bulk. In

other words, the tip will mainly be influenced by the surface potential and not by the one

arising from the bulk part of the ionic crystal. This is why a single, infinite, layer of point

charges is enough to describe the influence of the Madelung surface potential on the tip,

which motivates our initial assumption. The potential is written:

Vs (−→ρ , zµ) =
1

4πǫ0


2π

a′2

∑

−→
G

q(
−→
G)ei

−→
G.−→ρ e−Gzµ


 , (12)

where −→ρ = x̂i + yĵ is the polar vector of any ion of the surface slab in an orthogonal basis

(O, î, ĵ), O being the projection of the center of the asperity on the surface, î and ĵ the

unitary vectors of the fcc unit cell. The summation is performed over the vectors
−→
G of

the reciprocal lattice of an arbitrarily defined unit cell and a′ is proportional to the lattice

constant a of the fcc unit cell. q(
−→
G) is a structure factor:

q(
−→
G) =

1

G

∑

k

qke
i
−→
G.

−→
δ

‖
keGδ⊥

k (13)

It is summed over the ions within the defined unit cell. The kth ion carries an electrical

charge qk. Its planar and perpendicular coordinates from the origin of the cell are given by

the two vectors
−→
δ

‖
k and

−→
δ ⊥

k . The latter reflects the polarization effect felt by the ion within

the unit cell, previously referred to as δ⊥(Vb). In equ.13, it is assumed that the polarization

of the ions extends all over the (001) surface plane. In any case, it must extend over an

much larger area than the tip asperity. This assumption is consistent with the electric field
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produced by area (2), which is constant within an area roughly scaling as the mesoscopic

tip radius R. Vs is calculated from the unit cell defined in fig.2a (light grey). It consists of

4 anions and a cation weighting for a fourth and one, respectively. The vectors of the direct

lattice are −→α = a′̂i and
−→
β = a′ĵ, where a′ = a

√
2/2. Owing to the exponential decay of the

potential with zµ, visible in equ.12, the calculation of the structure factor can be restricted

to the first four reciprocal vectors, namely:
−→
G±

i or j = ±2π/a′(̂i or ĵ). The calculation yields:

Vs(x, y, zµ) = − q

πǫ0a′
cosh[δ̃⊥(Vb)]χ̃(x, y)e−

2π
a′

zµ (14)

with: δ̃⊥(Vb) = 2π
a′ δ

⊥(Vb) and χ̃(x, y) = cos
[

2π
a′ (x − x0)

]
+ cos

[
2π
a′ (y − y0)

]
, a spatial modu-

lation term. x0 and y0 are the x and y coordinates of the center of the asperity projected

onto the unit cell. Setting x0 = y0 = 0 locates the asperity and therefore the tip on top of

an anion, the reference ion within the defined unit cell. The above expression exhibits the

expected exponential decaying behavior as a function of zµ. The potential is reported in

fig.3 for a = 0.66 nm, δ⊥ = 11 pm and zµ = 4 Å. The value of δ⊥ will be justified in section

IV.

The expression of σµ = σ
(1)
µ + σ

(2)
µ can now be derived from equ.10. The calculation of

σ
(1)
µ yields:

σ
(1)
µ = q

a′2 cosh[δ̃⊥(Vb)]
{
χ̃(Ra, θ, ϕ)F (1)(θ)−

ζ̃(Ra, θ, ϕ)G(1)(θ)
}

e−
2π
a′

(zµ+Ra)
(15)

with χ̃(r, θ, ϕ), the expression of χ̃(x, y) in the spherical coordinate system centered on the

asperity and ζ̃(r, θ, ϕ), the spherical expression of another spatial modulation term given by:

ζ̃(x, y) = (x sin
[

2π
a′ (x − x0)

]
+y sin

[
2π
a′ (y − y0)

]
)/

√
x2 + y2. The functions F (1) and G(1) are

written:

F (1)(θ) =
2a′

πRa
sinh

(ηθ

2

)
− 8 cos θ cosh

(ηθ

2

)
(16)

and:

G(1)(θ) = 8 sin θ sinh
(ηθ

2

)
(17)

with: ηθ = 4πRa cos θ/a′ (see also the appendix). Thus, it was necessary to assume area (2)

as an infinite plane in order to derive the expression of σ
(1)
µ by means of the method of the
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images. In such a case, the expression of σ
(2)
µ is rigorously derived from equ.10 and is explic-

itly given in ref.[43]. For x and y positions large compared to Ra however, this description

does not fit with the geometry of the tip apex defined in problem B. The “infinite plane”

must actually be shrunk down to a spatially limited area around the asperity, as sketched

in fig.2d. This is made possible when assuming that any planar area is the asymptotic limit

of a sphere with large radius compared to its extension. The former statement is fulfilled

by the condition R ≫ Ra. The surface charge density of a sphere with radius R under the

influence of the surface potential Vs is also derivable from the Kelvin transform. Here, the

spherical coordinate system is centered on the sphere with radius R. σ
(2)
µ is written:

σ
(2)
µ = q

a′2 cosh[δ̃⊥(Vb)]
{
F (2)(θ)χ̃(R, θ, ϕ)−

G(2)(θ)ζ̃(R, θ, ϕ)
}

e−
2π
a′

(zµ+Ra)
(18)

The functions F (2) and G(2) are written:

F (2)(θ) =

(
a′

πR
− 4 cos θ

)
e−

2π
a′

R(cos θ+1) (19)

and:

G(2)(θ) = 4 sin θe−
2π
a′

R(cos θ+1) (20)

Since F (2)(θ) and G(2)(θ) decrease exponentially fast as one moves away from the foremost

position of the tip apex, it can readily be verified that equ.18 and the expression given in

ref.[43] do fit for x or y ∈ [Ra; 3Ra]. Thus, even in the vicinity of the asperity, expression 18

can be used instead of ref.[43]. Therefore, the most part of the contribution of the sphere

to σ
(2)
µ is restricted to a small area that can be assumed as locally planar.

The graph of the projection of σµ on the tip apex (areas (1) and (2)) is reported in fig.4

on top of an anion (positive charge density on the asperity) at a distance zµ = 4 Å from the

surface and for R = 5 nm and Ra = 1 Å. The oscillations of σµ at the surface of the tip due

to the image charges of the crystal are readily visible, although their amplitude decreases

exponentially fast along the sides of the asperity. The relevant oscillations in area (2) spread

out in a circular area with only two unit cells radius. Owing to the exponential decay of the

Madelung surface potential farther away from the asperity, the tip surface is too far from

the crystal surface to produce relevant image charges. On top of the asperity, the surface

13



charge density reaches about 2 × 10−2 C.m−2. For a half-sphere with radius Ra = 1 Å and

with δ⊥ = 11 pm, this results in a local charge carried by the tip of about 0.8 × 10−2 q.

III. ESTIMATION OF THE FORCE

A. Estimation of Fm

Owing to the geometry of the problem and since σm is equivalent to the surface charge

density of an isolated, conducting sphere, we can now fully evaluate the purely capacitive

component Fm to the total force. The force effectively acting on the mesoscopic part of the

tip apex can be derived from the image charge of the sphere −4πR2σm placed at a symmetric

position with respect to the counter-electrode, i.e. at a distance 2hd from the mesoscopic

apex:

Fm = −(4πR2σm)2

4πǫ0(2hd)2
= −πR2

h2
d

ǫ̃2
dǫ0V

2
b (21)

With ǫd ≃ 4.87 (ref.[44]) and K = 0.9 (arbitrarily), then ǫ̃d = Kǫd = 4.38. For a typical

ac modulation of the bias of about 0.5 V and considering R ≃ 5 nm and hd = 5 mm, the

former equation gives an estimation for the mesoscopic component of the electrostatic force:

Fm ≃ 8× 10−11 pN. As suspected, this contribution is negligible compared to the other two

components45. Therefore the expression of the total force simplifies to:

F = Fmµ + Fµ =

∫

tip

σmσµ

ǫ0
dS +

∫

tip

σ2
µ

2ǫ0
dS (22)

The reason why the tip has been restricted to its apex is now clear. Regarding the for-

mer capacitive force, owing to the distance between the tip and the counter-electrode, the

contribution of a macroscopic body in addition to the mesoscopic apex would not change

notably the total force. Regarding the other force components, Fmµ and Fµ, owing to the

exponential decay of the Madelung surface potential, the influence of the macroscopic body

of the tip is expected to be negligible as well.
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B. Estimation of Fµ

Let us first focus on Fµ. The integral must be performed over the asperity and the

mesoscopic sphere around it, areas (1) and (2), respectively. It is recalled that the two areas

do not overlap each together. For each of them, the spherical coordinate system must be

centered on the corresponding sphere. Thus:

Fµ = F
(1)
µ + F

(2)
µ = R2

a

2ǫ0

∫ π
π
2

∫ 2π

0
cos θ sin θσ

(1)
µ

2
dθdϕ+

R2

2ǫ0

∫ θM
π
2

∫ 2π

0
cos θ sin θσ

(2)
µ

2
dθdϕ

(23)

The radial coordinates are fixed to r = Ra and r = R in areas (1) and (2), respectively.

The polar integration in area (1) is performed with θ ∈ [π/2; π], whereas in area (2), it is

performed with θ ∈ [π/2; θM ], where θM = π − arcsin(Ra/R), which ensures the continuity

from (1) to (2). Regarding area (2), the choice of the beginning angle of the interval (π/2)

does not influence notably the result of the integration. In other words, owing to the

exponential decay of σ
(2)
µ , the exact shape of the mesoscopic part of the tip apex far from

the asperity is not relevant. This justifies a posteriori the choice, although simple, of a

spherical geometry. Both integrations over the azimuthal angle must be performed over

ϕ ∈ [0; 2π]. Note that in each of the former integrals, the term cos θ stands for the vertical

projection of the force, as stated initially. Although the integration over the azimuthal angle

yield an analytical result, the integration over θ does not, which requires to evaluate some

integrals numerically. The expression of F
(1)
µ is written:

F
(1)
µ = q2R2

a

2ǫ0a′4 cosh2[δ̃⊥(Vb)]e
− 4π

a′
(zµ+Ra)

{
A(1)+

B(1) [cos (x̃0) + cos (ỹ0)] + 2C(1) cos (x̃0) cos (ỹ0)
} (24)

with: x̃0 = 2πx0/a
′ and ỹ0 = 2πy0/a

′, the reduced coordinates of the tip above the crystal

surface. The integral forms of coefficients A(1), B(1) and C(1) are reported in the appendix

as functions of Ra and a′. Taking a typical lattice constant for alkali halides a′ = a
√

2/2 ≃
0.45 nm and assuming Ra ≃ 1 Å, we get:

A(1) ≃ −130 B(1) ≃ −70 C(1) ≃ A(1) ≃ −130 (25)

Thus, F
(1)
µ explicitly depends on the spatial modulation of the surface potential. Note also

the exponential decay with the distance, actually faster than the distance dependence of the
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Madelung surface potential and also the doubling spatial period term.

Similar integration on area (2) yields:

F
(2)
µ = q2R2

2ǫ0a′4 cosh2[δ̃⊥(Vb)]e
− 4π

a′
(zµ+Ra)

{
A(2)+

B(2) [cos (x̃0) + cos (ỹ0)] + 2C(2) cos (x̃0) cos (ỹ0)
} (26)

The integral forms of coefficients A(2), B(2) and C(2) are derived from those of coefficients A(1),

B(1) and C(1), by replacing Ra, F (1)(θ) and G(1)(θ) with R, F (2)(θ) and G(2)(θ), respectively.

The integration is now performed with θ ∈ [π/2; θM ]. With similar parameters than before

and setting R = 5 nm, we now get:

A(2) ≃ −8 B(2) ≃ C(2) ≃ 0 (27)

The striking discrepancy between A(2), B(2) and C(2) is due to the combined contribution of

the Bessel functions and the exponential decay of the functions F (2)(θ) and G(2)(θ) occurring

in the integral forms of the coefficients B(2) and C(2). Hence, the force simplifies to:

F (2)
µ =

q2R2

2ǫ0a′4
cosh2[δ̃⊥(Vb)]e

− 4π
a′

(zµ+Ra)A(2) (28)

The spatial modulation of the potential does not influence the mesoscopic part of tip while

scanning the surface. This contribution acts as a static shift to the total electrostatic force,

similarly as the Van der Waals long-range interaction for the short-range chemical interac-

tions which are responsible for the topographic atomic contrast in nc-AFM.

C. Estimation of Fmµ

The geometrical splitting in terms of areas (1) and (2) used for the estimation of Fµ, can

equivalently be applied to Fmµ. Thus:

Fmµ = F
(1)
mµ + F

(2)
mµ =

R2
a

ǫ0

∫ π
π
2

∫ 2π

0
cos θ sin θσ

(1)
m σ

(1)
µ dθdϕ+

R2

ǫ0

∫ θM
π
2

∫ 2π

0
cos θ sin θσ

(2)
m σ

(2)
µ dθdϕ

(29)

σ
(1)
m and σ

(2)
m are the surface charge densities on areas (1) and (2) within the frame of problem
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A. The calculation of F
(1)
mµ yields:

F
(1)
mµ = 3ǫ̃dqR2

a

a′2R
Vb cosh[δ̃⊥(Vb)]e

− 2π
a′

(zµ+Ra)×
D(1) [cos (x̃0) + cos (ỹ0)]

(30)

The integral form of D(1) is reported in the appendix. The numerical integration results in

D(1) ≃ −15. Similar integration over area (2) gives a similar expression of F
(2)
mµ by replacing

indexes (1) with indexes (2) and Ra with R. The integral form of the coefficient D(2) is

similar to the one of D(1), except that the term cos2 θ is replaced by cos θ. The numerical

integration of D(2) yields almost zero. This was expected since the integration is performed

over the oscillations of the charge density σ
(2)
µ due to the image charges of the surface

potential (cf. fig.4). On the opposite, this was not observed in F
(2)
µ because the integration

was performed on the square of σ
(2)
µ . Therefore Fmµ is finally written:

Fmµ = F (1)
mµ (31)

Hence, the former equation states that the coupling of the force to the bias Vb actually

occurs only by means of the microscopic surface charge density at the foremost part of the

tip, i.e. on the asperity. Owing to the integration over the mesoscopic part of the tip apex

and the subsequent cancellation due to the oscillations of σ
(2)
µ , no relevant coupling between

the bias voltage and the mesoscopic part of the tip apex can occur. This aspect strongly

suggests that the effect we are reporting is mainly controlled by the foremost structure of

the tip. The effect is expected to be much enhanced in case of tips with sharper geometries,

particularly those with apexes including atomically sharp edges.

The expression for the vertical contribution of the total force acting on the tip due to

the combined influence of the capacitive coupling and of the Madelung surface potential is

finally written: F = Fmµ +Fµ = F
(1)
mµ +F

(1)
µ +F

(2)
µ , with F

(1)
mµ given by equ.30, F

(1)
µ by equ.24

and F
(2)
µ by equ.28. The graph of the total force and of its components is reported in fig.5

for similar parameters than previously, namely: a = 0.66 nm, δ⊥ = 11 pm and zµ = 4 Å.

A typical value of bias has been set, Vb = +1 V. Thus, it is visible that the term F
(1)
µ is

negligible compared to others. This is due to the prefactor R2
a/a

′4 vs. R2/a′4 for F
(2)
µ . The

total electrostatic force F finally simplifies to:

F = F (1)
mµ + F (2)

µ (32)
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In fig.5, the force reaches an average value of about 9 pN (absolute value) and a corrugation

of about 2 pN (peak to peak).

IV. IMPLICATIONS FOR KPFM

A. Estimation of δ⊥(Vb)

The net displacement δ⊥(Vb) of the topmost ionic layer induced by the polarization can

be estimated out of the electric field
−→
E between the tip and the surface (cf. equ.2). Section

IIA has shown that the field induced by the bias voltage was essentially controlled by the

mesoscopic radius of the tip, R, and not by the foremost asperity. Therefore, owing to equs.4

or 8: E ≃ Vb/R. The expression of δ⊥(Vb) can now be deduced using equ.2:

δ⊥(Vb) =
χd

q
E = Vb

χd

qR
(33)

An order of magnitude for δ⊥(Vb) can now be calculated as follows: with Vb ≃ 1 V, R = 5 nm,

αi = 70×10−30 m3 (ref.[36]) and nv = 8
√

2/a3 ≃ 40×1027 m−3 (number of polarizable ionic

species per volume unit in a fcc crystal of KBr with a lattice constant a = 0.66 nm), we get

E = 2 × 108 V.m−1, χd ≃ 9 × 10−39 F.m2 and therefore δ⊥ ≃ 11 pm.

B. Detected signal in KPFM: connection with the local CPD

When performing KPFM experiments, the bias voltage Vb is modulated with a frequency

fk and may as well include a static component to compensate for the long-range electrostatic

forces. This is the reason why the average value of the experimental CPD image shown in

fig.1a reaches -3.9 V. It is not rare that, on ionic surfaces, many volts are required to

compensate for the long-range electrostatic forces due to trapped charges while the cleavage

of the cristal16. Thus:

Vb = Vdc + Vac sin(2πfkt) (34)

The electrostatic force is thus triggered at fk and then detected as an additional low- or high-

frequency component when doing FM- or AM-KPFM, respectively. In both techniques, a

proper dc bias voltage produced by an external controller, hereafter referred to as V
(c)
dc , is
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applied between the tip and the counter-electrode to cancel the modulated component at

fk, i.e. the oscillation amplitude of the second bending eigenmode of the cantilever in AM-

KPFM, or the one of the frequency shift in FM-KPFM. When applied to the tip (i.e. with

the counter-electrode grounded), this dc bias is the opposite of the local CPD defined in

equ.1: V
(c)
dc = −Vcpd.

In order to stick to the AM-KPFM experiments (fig.1), it is necessary to estimate the

amplitude of the second eigenmode of the cantilever and then derive a condition on the dc

value of the bias ultimately able to nullify it. On the one hand, it is therefore mandatory

to check carefully all the occurrences of the modulated component of the bias voltage in

the expression of the force. This includes explicit dependencies, such as those due to the

polarization, but also implicit ones, as discussed hereafter. On the other hand, an expression

of the oscillation amplitude of the mode modulated at fk must be derived.

We first address the problem of explicit and implicit bias dependencies in the expression

of the electrostatic force. Owing to the explicit Vb dependence in δ⊥, which has been kept

throughout the description of the model, it can be seen that the polarization effect is mainly

included in the cosh function of F
(1)
mµ and F

(2)
µ through a linear and a quadratic dependence,

respectively (cf. equs.30 and 28). Furthermore, since δ⊥ is small compared to a′, cosh[δ̃⊥(Vb)]

can be expanded in series. To first order:

cosh[δ̃⊥(Vb)] ≃ 1 + δ̃⊥(Vb)
2 = 1 +

4π2

a′2
δ⊥(Vb)

2 = 1 + (χ′
dVb)

2 (35)

with χ′
d = 2πχd/(a′qR). Replacing this expansion in the expressions of the components of

the force and keeping the linear and quadratic terms in Vb yields, with compact notations:

F (1)
mµ = ǫ̃dK

(1)
mµΦ(1)

mµ

qVb

R
(36)

and:

F (2)
µ = K(2)

µ Φ(2)
µ [1 + 2(χ′

dVb)
2]

q2

ǫ0a′2
, (37)

where K
(1)
mµ and K

(2)
µ are two dimensionless coefficients standing for geometrical factors of

areas (1) and (2), respectively:

K(1)
mµ =

3R2
a

a′2
D(1) and K(2)

µ =
R2

2a′2
A(2) (38)
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Φ
(1)
mµ, Φ

(2)
µ are also two dimensionless coefficients carrying the spatial dependence of each

force component:

Φ(1)
mµ = e−

2π
a′

(zµ+Ra) [cos (x̃0) + cos (ỹ0)] (39)

and:

Φ(2)
µ = e−

4π
a′

(zµ+Ra) (40)

Implicit Vb dependencies are now discussed. In the two former equations, particular attention

must be paid to zµ. So far, this parameter was defined as the tip-surface distance and set to

an arbitrary, constant, value. However, when dealing with AM-KPFM, zµ is not static but

actually coupled to the bias and to the oscillation amplitude of the fundamental eigenmode

of the cantilever. In the following, for the sake of clarity, the variables related to the

fundamental eigenmode of the cantilever will be denoted with index “0” and those of the

second eigenmode with index “1”. Thus, let z0, z1 and D be the instantaneous position of the

fundamental eigenmode of the cantilever, the instantaneous position of the second eigenmode

of the cantilever and the distance between the surface and the equilibrium position of the

cantilever at rest, respectively. Therefore, zµ(t) = D − z0(t) − z1(t). Hence, if Vb has the

form given in equ.34, one can postulate, to first order: z1(t) = A1 sin(2πfkt + ϕ1). A1 and

ϕ1 stand for the oscillation amplitude of this mode and its phase lag with respect to the

electrostatic actuation, respectively. Their exact expressions are not easily derivable, but it

must be noticed that A1 must be connected to the amplitude of the modulation, namely

Vac. When fk accurately matches the actual resonance frequency of the second eigenmode46,

then ϕ1 = −π/2. z0 is experimentally driven by the control electronics of the microscope at

the actual resonance frequency of the fundamental mode of the cantilever, f0. It is known

that it has an almost harmonic behavior of the form: z0(t) = A0 sin(2πf0t − π/2). Thus,

Φ
(1)
mµ and Φ

(2)
µ have a component at f0 which is further modulated by the dynamics of the

second eigenmode, electrostatically actuated at fk.

We can now propose a self-consistent approximated solution to the equation of motion

for z1(t) and thus derive the expression of the oscillation amplitude A1. This equation has
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the standard form:

z̈1(t) +
ω1

Q1
ż1(t) + ω2

1z1(t) =
Fext

m1
+

F
(1)
mµ + F

(2)
µ

m1
, (41)

where Fext is an external force oscillating at f0 which controls the dynamics of z0(t). Let us

assume: i- A1 ≪ A0, i.e. the amplitude of the mode is much smaller than the one of the

fundamental mode, ii- A1 ≪ a′, where a′ = a
√

2/2, a being the lattice constant of the crystal

and iii- that the dynamics of z1(t) is mainly influenced by components at fk. Assumptions

i- and ii- are not too strong, since the experimental estimations of A1 yield a few tens of

picometers. Assumption i- implies that the dynamics of the fundamental mode is not much

influenced by the one of the second eigenmode. Hence, the solution of the equation of

motion of z0(t) has indeed the form postulated above. Assumption ii- allows us to linearize

Φ
(1)
mµ and Φ

(2)
µ with respect to z1(t). Finally, assumption iii-, which is consistent with the

postulated solution for z1(t), z1(t) = A1 sin(2πfkt+ϕ1), simplifies further the above equation

of motion. Now, owing to the former assumptions, equ.41 can be solved by injecting the

postulated expressions of both eigenmodes and keeping only the terms oscillating at fk. For

that purpose, the exponential term wherein z0(t) occurs must be expanded in Fourier series.

Then, the only possibility to preserve terms at fk is to keep the lone static component of the

Fourier expansion, hereafter referred to as a0 (expansion of Φ
(1)
mµ) and b0 (exansion of Φ

(2)
µ ).

After linearization, Φ
(1)
mµ and Φ

(2)
µ can finally be written as:

Φ
(1)
mµ

i-, ii-︷︸︸︷≃
[
1 − 2π

a′ z1(t)
]
e−

2π
a′

(D−A0+Ra)×

{a0 +

∞∑

n=1

an cos(2πnf0t)

︸ ︷︷ ︸
neglected, owing to iii-

} [cos (x̃0) + cos (ỹ0)]
(42)

and:

Φ(2)
µ ≃

[
1 − 4π

a′
z1(t)

]
e−

4π
a′

(D−A0+Ra){b0 +

∞∑

n=1

bn cos(2πnf0t)

︸ ︷︷ ︸
neglected, owing to iii-

} (43)

With:

an = e−
2π
a′

A0I
[
n, 2π

a′ A0

]

bn = e−
4π
a′

A0I
[
n, 4π

a′ A0

] (44)
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I is the modified Bessel function of the first kind. When replacing equs.42 and 43 with

z1(t) = A1 sin(2πfkt + ϕ1) in equ.41, it is possible to derive an expression for A1. The

condition on V
(c)
dc to match A1 = 0 is finally written:

V
(c)
dc = − ǫ̃dǫ0a

′2

4Rqχ′
d
2

a0

b0

K
(1)
mµ

K
(2)
µ

e
2π
a′

(D+Ra−A0)[cos(x̃0) + cos(ỹ0)] (45)

The graph of V
(c)
dc is reported in fig.6 for a = 0.66 nm, δ⊥ = 11 pm, A0 = 5 nm (hence

a0 = 0.0487 and b0 = 0.0344) and (D − A0) = 3.5 Å. The value of A0 has been chosen

consistently with the experimental conditions. On the contrary, the tip-surface distance

has been chosen arbitrary, but however in a range where the atomic contrast is usually

experimentally achieved. In fig.6, the lateral periodicity of the underlying lattice is readily

visible, but surprisingly, the potential scales between -0.6 to +0.6 V from an anionic to a

cationic site, respectively. At similar height, this is three times larger than the Madelung

surface potential (cf. fig.3b). The comparison with the experimental results is more severe

since the theoretical prediction is one order of magnitude larger. At this point, it is recalled

that the strong tip geometry dependence of the problem makes a straightforward comparison

between the theoretical prediction (equ.45) and the experimental results difficult, since our

analytical expression of V
(c)
dc = −Vcpd relies on a somewhat unrealistic tip.

C. Experimental implications for AM-KPFM

The figure and the above formula show that the bias voltage to be applied on the tip to

compensate for the electrostatic force is governed by three main factors:

• the dielectric properties of the sample such as its dielectric permittivity and lattice

constant.

• a subtle balance between mesoscopic and microscopic geometric factors of the tip.

• a lateral periodicity similar to the Madelung surface potential of the crystal.

A straightforward consequence is that the atomic corrugation of the CPD reported ex-

perimentally might stand for the spatial fluctuations of the Madelung surface potential,

however with an amplitude that depends on the surface polarization and hence on the ap-

plied ac voltage. It is also important to notice that the CPD compensation is proportional
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to K
(1)
mµ, i.e. to the asperity size. The former being also the source of the coupling between

the tip/dieletric/counter-electrode capacitor and the Madelung surface potential, i.e. the

source of the KPFM signal, the atomic contrast of the CPD is therefore closely connected

with the geometry of the very foremost part of the tip. This is consistent with the short-

range character of the interaction. But, on the other hand, the explicit dependence with

geometric factors of the tip, unambiguously proves that quantitative measurements of the

local CPD are unlikely to be performed in KPFM, unless the tip geometry be accurately

known, which is practically never true.

Furthermore, although equ.45 explicitly exhibit a distance dependence, consistently with

the experimental observations in the above mentioned references, an increase of the compen-

sated CPD as a function of the distance is nevertheless surprising. The residual exponential

dependence originates from Φ
(2)
µ , i.e. from the influence of the Madelung surface potential on

the mesoscopic tip apex. As discussed above, the CPD compensation being partly governed

by the asperity, a tip-surface distance increase ∆zµ produces a decrease of the related force

F
(1)
mµ proportional to exp (−2π∆zµ/a

′) (cf. Φ
(1)
mµ, equs.39 or 42). This abrupt change is com-

pensated by an equivalent exponential increase of the compensated CPD. This process can

obviously not occur at any tip-surface distance. Prior to being cancelled, the fk component

must stand for a measurable signal. Therefore the above discussion stands within a narrow

range of distances from the surface, typically a few times the asperity radius.

Nevertheless, an increase of the measured local CPD as a function of the distance is still

expected to occur if the distance dependence in Φ
(2)
µ decays faster than the one in Φ

(1)
mµ. In

other words V
(c)
dc must increase with the distance as soon as the distance dependence of the

force induced by the influence of the Madelung surface potential on the mesoscopic part of

the tip decays faster than the one of the force induced on the asperity due to the capacitive

coupling with the image charges of the surface.

Let us finally point out that such a distance dependence of the CPD might make the

experimental achievement of the atomic contrast easier, which strengthens the argument of

an intrinsic imaging process of the local CPD. Indeed, no major tip and/or surface distortion

is expected to occur in an equivalent range of distance (≥ 3 Å, ref.[47]). In that case,

instabilities due to adsorbed and/or mobile atomic or ionic species at the tip apex are less

likely to occur, which makes the imaging process robust, as experimentally observed.
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To conclude, the analytical approach, although restricted to a tip with a basic geometry,

remains helpful, primarily because it provides an expression of the short-range electrostatic

force that can be connected to the nc-AFM-KPFM simulator. There are obvious limitations

to our approach, the most important one being the use of classical, continuous electrostatics

to treat the angstrom-size nanoasperity. This obviously must break down at a certain point,

and be replaced by a proper quantum mechanical treatment of the problem. In the near

future, the electrostatic model should be extended to a bit more complex systems such as

local dipoles, charges or defects at the surface and at steps of ionic crystals.

V. CONCLUSION

The aim of this work was to provide a consistent approach to describe the short-range

electrostatic force between the tip of an nc-AFM and the (001) surface of a perfect ionic

crystal. In order to develop an analytical expression for the total electrostatic force, the tip

has been restricted to a simple geometry and the influence of the sample has been described

by means of its Madelung surface potential. In such a way, an analytical solution for the total

electrostatic force was found within the boundary-value problem assuming a thick dielectric

sample and an infinite top-layer of ionic surface charges.

Two major contributions to the electrostatic force can be extracted: the first stands

for a coupling term between the microscopic structure of the tip apex and the capacitor

formed between the tip, the dielectric ionic crystal and the counter-electrode due to the

bias voltage Vb; the second term depicts the influence of the fluctuations of the Madelung

surface potential arising at the surface of the ionic crystal on the mesoscopic part of the tip,

independently from its microscopic structure. The former has the lateral periodicity of the

Madelung surface potential whereas the latter only acts as a static component which shifts

the total force.

Beyond the dielectric properties of the crystal, which are explicitly included in the model,

the ionic polarization of the sample due to the influence of the bias voltage applied to the

tip/counter-electrode capacitor is mainly responsible for the atomic contrast of the KPFM

signal. Typical orders of magnitude give a net displacement of the ions of about ±10 pm

from their equilibrium positions. Note that this displacement only occurs if a tip-sample

bias is applied (ac or dc), which is always the case in KPFM experiments.
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A detailed analysis of the bias voltage required to compensate for the electrostatic force

shows that the compensated CPD has the lateral periodicity of the Madelung surface po-

tential. However, there is a strong dependence on the tip geometry, the applied modulation

voltage as well as the tip-sample distance, which can even lead to an overestimation of the

real surface potential.

For a quantitative evaluation of KPFM results, it is thus essential to account for all

the parameters of the experiment, among which the tip shape. The analytical expression

developed in this work provides an alternative tool to elucidate the contrast formation in

KPFM on ionic crystals, and in combination with the nc-AFM simulator it might enable us

to interpret our results more accurately.

APPENDIX

After integration of F
(1)
µ over the azimuthal angle ϕ ∈ [0; 2π] , we have:

F
(1)
µ = q2R2

a

2ǫ0a′4 cosh2[δ̃⊥(Vb)]e
− 4π

a′
(zµ+Ra)

{
A(1)+

B(1) [cos (x̃0) + cos (ỹ0)] + 2C(1) cos (x̃0) cos (ỹ0)
} (46)

where:

A(1) = π

∫ π

π
2

cos θ sin θ[2F (1)2(θ) + G(1)2(θ)]dθ (47)

B(1) = π
∫ π

π
2

cos θ sin θ
{(

F (1)2(θ) − G(1)2(θ)
2

)
J0 (ηθ)−

2F (1)(θ)G(1)(θ)J1 (ηθ) + G(1)2 (θ)
2

J2 (ηθ)
}

dθ
(48)

and:

C(1) = π
∫ π

π
2

cos θ sin θ
{

2F (1)2(θ)J0 (η′
θ)−

2
√

2F (1)(θ)G(1)(θ)J1 (η′
θ) +

G(1)2(θ)J2 (η′
θ)

}
dθ

(49)

with: ηθ = 4πRa sin θ/a′ and η′
θ = 2

√
2πRa sin θ/a′. J0, J1 and J2 are the Bessel functions

of the first kind.
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Regarding F
(1)
mµ, the integration over the azimuthal angle ϕ ∈ [0; 2π] yields:

F
(1)
mµ = 3ǫ̃dqR2

a

a′2R
cosh[δ⊥(Vb)]VbD

(1)
[
cos

(
2π
a′ x0

)
+

cos
(

2π
a′ y0

)] (50)

where:

D(1) = −2π
∫ π

π
2

cos2 θ sin θ
{
F (1)(θ)J0

(
ηθ

2

)
−

G(1)(θ)J1

(
ηθ

2

)}
dθ

(51)
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FIG. 1: a- Experimental image showing the atomic contrast of the compensated CPD measured

on a (001) surface of KBr in ultra-high vacuum by means of AM-KPFM. The vertical contrast

ranges from -3.95 to -3.85 V from dark to white spots. The dashed line depicts the cross section

shown in b-. The dotted square depicts the area corresponding to the ball model shown in fig.2a.

b- Corresponding cross section.
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FIG. 2: a- KBr lattice with a fcc structure corresponding to the dotted square shown in fig.1a. The

white spots of the experimental image have been placed on top of anions arbitrarily. b- Scheme

of the KPFM experiment defining the electrostatic boundary-value problem to be solved. The

metallic tip is biased with respect to a metallic counter-electrode placed a few millimeters far from

it owing to the thickness of the ionic crystal. The bias voltage polarizes the crystal, which results,

at the surface, in a modulation of the positions of the ions. c- and d- Schemes of the splitting

of the original electrostatic boundary-value problem schemed in b- defining problems A and B,
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FIG. 3: (Color online). a- Madelung surface potential calculated from equ.14 for a = 0.66 nm,

δ⊥ = 11 pm and zµ = 4 Å. The vertical contrast ranges from −100 (blued spots) to +100 mV

(reddish spots). The unit cell depicted with a dotted line is centered on a cation. b- Distance

dependence of the potential on top of an anion (dotted curve) and on top of a cation (continuous

curve) showing the exponential decay of the potential. c- Cross section along the dotted line shown

in a-.
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FIG. 4: (Color online) a- Perspective view of the projection of the microscopic surface charge

density σµ on the tip calculated on top of an anion from equs.15 and 18 with Ra = 1 Å and

R = 5 nm. σµ is strongly increased on top of the asperity. Then, owing to the exponential decay

of the Madelung surface potential, the surface charge density strongly decreases, which makes the

contribution of the mesoscopic apex weak. b- Top view of σµ. The oscillations due to the image

charges of the ions at the surface of the crystal are well visible. The most part of the attenuation

of σµ occurs within a single unit cell. Two unit cells apart from the asperity, σµ is almost zero. c-.

Cross section along the dotted white line shown in b.
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FIG. 5: (Color online). a- Total electrostatic force over a unit cell calculated from F = F
(1)
mµ +

F
(1)
µ + F

(2)
µ for a = 0.66 nm, δ⊥ = 11 pm, zµ = 4 Å and Vb = +1 V. The unit cell depicted with a

dotted line is centered on a cation. The vertical contrast ranges from -10 (blued spots) to -8 pN

(reddish spots). The force is more repulsive on top of cations (central ion) than on top of anions,

consistently with the bias polarity. b- zµ dependence of the electrostatic force on top of an anion

(dotted curve) and on top of a cation (continuous curve). c- Cross section along the dotted line

shown in a- showing the total force (thick continuous line), F
(1)
mµ (dashed line), F

(1)
µ (dotted line)

and F
(2)
µ (greyed line). F

(1)
µ is negligible compared to the others.
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FIG. 6: (Color online). a- V
(c)
dc bias voltage required to compensate the local CPD calculated from

equ.45 for a = 0.66 nm, δ⊥ = 11 pm, A0 = 5 nm and zµ = 3.5 Å. The vertical contrast ranges from

-0.6 (blued spots) to +0.6 V (reddish spots). The unit cell depicted with a dotted line is centered

on a cation. b- Distance dependence of the potential on top of an anion (dashed curve) and on top

of a cation (continuous curve). c- Cross section along the dotted line in a-.
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