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The link between the rheology of 3D aqueous foam and the adhesion of neighbouring bubbles is
tested by confronting experiments at two different length scales. On the one hand, the dynamics
of adhesion are probed by measuring how the shape of two bubbles in contact changes as their
center-to-center distance is modulated. On the other hand, the linear viscoelastic behavior of 3D
foam prepared with the same soapy solution is characterized by its complex shear modulus. To
connect the two sets of data we present a model of foam viscoelasticity taking into account bubble
adhesion.

PACS numbers: 82.70.Rr, 47.55.D-, 83.80.Iz, 83.85.Cg

Liquid foams exhibit complex mechanical behavior
[1, 2]. When subjected to a small shear stress they re-
spond like a linearly elastic solid, but if the applied stress
is increased above the yield stress foams flow like shear-
thinning fluids. This behavior is related to the foam
structure on the bubble scale. The elasticity is due to
the reversible increase of interfacial energy induced when
the bubbles are strained. Yielding and flow occur if the
applied stress is large enough to trigger irreversible lo-
cal bubble rearrangements [3, 4]. In the linear regime
where strain induced bubble rearragements do not exist
[5] such a simple description of foam rheology would pre-
dict perfectly elastic response at frequencies sufficiently
low for viscous friction to be insignificant. This is at
odds with macroscopic rheological measurements of the
slow linear viscoelastic response to stresses well below
the yield stress. Such experiments have evidenced sig-
nificant mechanical dissipation [2, 6–8]. This behaviour
has recently been explained as the consequence of the
coarsening of the foam, driven by gas diffusion between
neighboring bubbles [8, 9]. Indeed, coarsening induces
intermittent bubble rearrangements which locally relax
stress. A simple homogenization argument predicts that
these relaxations yield a Maxwell liquid behaviour where
the following dependence of the complex shear modulus
G∗ on angular frequency ω is expected [8]:

G∗ = G′ + iG′′ = G0

iωτ

1 + iωτ
(1)

G0 is the static foam elasticity that would be observed
in the absence of any rearrangements. The character-
istic relaxation time τ is proportionnal to the average
time interval between coarsening-induced bubble rear-
rangements at a given place in the foam [8].
Morevoer, at frequencies ω >> 1/τ , the experimentally
observed loss modulus G” increases as ω1/2, indicat-
ing that here, additional relaxation processes must be

active[6, 7]. Such behavior is common to several disor-
dered close packings of small soft units such as concen-
trated emulsions[10] or pastes[11]. Liu et al. have pro-
posed a generic model of viscoelasticity in these materials
based on weak regions where the units (droplets, grains,
bubbles... ) can slip on each other along planes whose
orientation is given by the local packing structure[10]. It
predicts the scaling law: G∗ = G0(1 +

√

ω/ωc) where
the characteristic frequency varies with the liquid viscos-
ity η as ωc ∝ G0/η. In contrast Buzza and Cates have
discussed a variety of possible origins of viscoelastic dis-
sipation which are specific to foams and emulsions, such
as surfactant transport processes and viscous friction at
the gas/liquid interfaces [12]. Therefore new experimen-
tal information is needed to identify among these possible
mechanisms the dominant one that governs the fast rhe-
ological response of liquid foam.

In this paper, we present experiments probing how
the rheology of the liquid films is linked to the macro-
scopic mechanical response of foams. This is done by
confronting the experimentally observed dynamic adhe-
sive properties of bubbles to the macroscopic viscoelas-
tic response of foams produced with the same surfactant
solution. We also present a theoretical model of the cou-
pling between interfacial film viscoelasticity and macro-
scopic foam viscoelasticity.

All the investigated bubbles and foams are made using
a solution of tetramethyltetradecylammonium bromide
diluted at a concentration of 3g/l in a water/glycerol mix-
ture (volume ratio of 75/25). To produce the foam, the
solution and the gas are injected into a column filled with
glass spheres as described in [13]. The gas is constituted
of nitrogen saturated with perfluorohexane vapor to slow
down the coarsening. We determine the liquid fraction
Φl of the foam obtained at the column outlet by weighing
a sample of known volume. We adjust the gas and liquid
flow rates to produce foams with Φl = (5.0 ± 0.2)%. Us-
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FIG. 1: (a) Image of two contacting bubbles. (b) Adhesion
profile obtained after fitting the shape of the bubbles using
the Young-Laplace equation. The contact radius rc and the
contact angle θ are determined from the intersection of the
reconstructed profiles.

ing diffusive light transmission, the mean bubble radius
is measured: It is equal to 24µm ± 2.0µm at the age of
12 minutes and 26µm ± 3µm at 30 minutes. The age is
the time elapsed since the instant of sample production.
Pictures of the foam confined between two glass plates do
not reveal any significant evolution of the polydispersity
up to 40 minutes.

The adhesion between bubbles is characterized using
the experimental setup described in [14]. Two hemi-
spherical bubbles are put into contact and their profiles
are recorded with a CCD camera (figure 1 (a)). Using
image analysis, we measure the contact radius rc and
the contact angle θ formed at the junction between the
two bubbles (figure 1 (b)). rc and θ are monitored as a
function of time t.

Macroscopic foam viscoelasticity is investigated using
a rheometer (Bohlin, CVOR 150) equipped either with a
plate/plate geometry (plate radius equal to 3 cm, gap of
3 mm) or with a cone/plate geometry ( cone radius = 3
cm, cone angle = 4°). For both geometries, the surfaces in
contact with the foam are grooved to avoid wall slip. All
along the experiment, the air in contact with the sample
in the rheometer is saturated with humidity. To erase
the memory of the strain applied to the sample during
the filling of the rheometer, the sample is pre-sheared
by an oscillating strain of frequency 1Hz and amplitude
ε=10−1, close to the yield strain. This preshear is applied
at a foam age of 3.5 minutes and lasts five minutes. The
rheological measurements start at a foam age of 12 min
and do not last more than 10 minutes.

The results of the dynamic bubble adhesion study have
been reported in detail in a recent paper [14]. The dis-
tance between the bubble supports is modulated in time
along the z-direction. We find that a sinusoidal modula-
tion induces a sinusoidal variation of the contact radius
rc(t) = rc0 + ∆rce

iωt accompanied by an oscillation of
the contact angle around its static value θstat such that
θ(t) = θstat +∆θ(t)eiωt. The amplitude of the oscillation
is found to be linearly related to the amplitude of the rel-
ative variation of the contact radius ∆rc/rc0. To describe

FIG. 2: Evolution with frequency of the angular moduli A′ (•
) and A′′ (◦) defined in Eq. 2. The dashed lines correspond
to the predictions of the moduli for the two limiting cases of
adhesive or sliding contacting bubbles.

this relation as well as the phase shift between the con-
tact radius and the contact angle oscillations, we intro-
duce the complex modulus A∗ whose real and imaginary
parts, A′ and A′′, describe the in-phase and out-of-phase
angular response:

∆θ(t) =
∆rc
rc0

(A′ + iA′′) (2)

The evolution of A′ and A′′ with frequency is compared
to that expected for either adhesive or sliding bubbles
(figure 2). It has been interpreted as the consequence of
surfactant transport between the bulk of the film and the
interfaces as well as along the interfaces [14].

In the linear regime, the frequency and temporal re-
sponses of a viscoelastic material provide equivalent in-
formation. Since creep experiments are more convenient
for probing the slow rheological response, we use this
test to study our foam samples over time intervals cho-
sen short enough so that the evolutions of bubble size
and bubble rearrangement rate are negligible. After the
preshear, at an age of 12 min, we apply to the foam a
shear stress step of amplitude σ0, chosen small enough
for the response to be linear and to avoid yielding. The
induced strain ε(t) is measured as a function of time,
and the response is decribed in terms of the compli-
ance J(t) = ε(t)/σ0 (figure 3). The data obtained us-
ing cone/plate and plate/plate geometries are consistent.
The asymptotically linear increase of J(t) with time is
consistent with the Maxwell model Eq. 1 that predicts
the following compliance :

J(t) =
1

G0

(

1 +
t

τ

)

(3)

The best fit to the data measured for t > 28s yields
G0 = 206Pa ± 4Pa and τ = 246s ± 10s. The transi-
tory response for t < 28s corresponds to a second slow
relaxation probably governed by the intrinsic viscosity of
the interfaces [8]. To simplify, we will neglect it since its
contribution to G∗ above 1 Hz is small.
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FIG. 3: Time evolution of the compliance during a creep ex-
periment with a constant stress σ0 applied during 100 s. The
compliance is averaged over 4 samples and 3 values of σ0 com-
prised between 3 Pa and 6 Pa. The dashed line corresponds
to the prediction of Eq. (3) (see text).

FIG. 4: Frequency dependence of G′ (closed symbols) and
G” (open symbols) measured for 6 samples. The diamonds
are deduced from the creep data while the other symbols cor-
respond to oscillatory data. The lines represent the moduli
predicted by (Eq. 1) with G0 = 206Pa and τ = 246s.

Moreover, the viscoelastic response is probed using an
oscillatory test in a frequency range between 0.01Hz and
10Hz. After the preshear, at an age of 12 min, a sinu-
soidal shear strain of amplitude 0.01 much smaller than
the yield strain (of the order of 0.1) is applied and the
complex modulus G∗ is measured. The data obtained us-
ing cone/plate and plate/plate geometries are consistent.
Figure 4 shows the elastic and viscous moduli measured
as a function of frequency. It also shows the moduli de-
duced using Eq. 1 with the values of G0 and τ obtained
in the creep experiments (FIG. 3). These data are limited
to frequencies below 0.01Hz because the step stress re-
sponse exhibits inertio-elastic vibrations at short times.
The elastic modulus is observed to be almost constant
over the whole range of frequencies while the loss modu-
lus goes through a minimum around 1Hz. The difference
between the measured G′′ and the Maxwell one means
that other relaxation processes must be taken into ac-
count.

To link the measured bubble adhesion to bulk foam
rheology, an analysis at the scale of the film network is
needed. We start from the model initially developed by
Princen for dry 2D foams [3]. The foam is simply pictured

FIG. 5: The Princen model for the deformation of a 2D hexag-
onal dry foam. (a) Initial structure. (b) After a small quasi-
static shear strain has been applied in the x direction, the
angles formed at the vertices remain equal to 120°.
as a regular 2D hexagonal lattice (figure 5(a)) obeying
Plateau’s rule which imposes a 120°angle between films
meeting at vertices. Moreover, each cell surface is con-
served when the foam is sheared, as if the gas contained in
the bubbles were incompressible. Princen calculated how
the orientations of the different films are modified by an
imposed static shear strain ε. For the structure shown in
figure 5(b) he found that to first order, the edges perpen-
dicular to the shear direction turn by an angle ψ = ε/2.
The surface tension forces of the films crossing the hori-
zontal dashed line in the figure and the spacing between
these films determines the macroscopic shear stress to
first order as σ = 2γψ/(

√
3r) where γ is the surface ten-

sion of the liquid gas interface. Thus, Princen predicted
the static shear modulus G0 = σ/ε = γ/(

√
3r). Under

dynamic conditions this relation remains unchanged but
the angles between films that meet at vertices no longer
follow Plateau’s rule. The direction of the films initially
perpendicular to the shear direction is now described by
the angle ψ + δψ where δψ is given by equation 2 [14],
by analogy with the double-bubble experiments. On this
basis, the complex shear modulus can be estimated as a
function of the complex angular modulus A∗:

G∗ = G0 [1 + α A∗] (4)

α is a geometrical constant, equal to
√

3 in the case of
the 2D hexagonal dry film network.

To compare our model to the measured rheological
data, we consider α as an adjustable parameter since
its value for a disordered 3D wet foam is difficult to pre-
dict theoretically. Moreover, for such a comparison one
must also take into account the slow relaxation due to
coarsening- induced bubble rearrangements. It has been
shown that these rearrangements can be modelized as
zones that are dispersed throughout an elastic matrix
and that temporarily loose their rigidity [8]. A homoge-
nization argument on this basis leads to the Maxwellian
viscoelastic behavior described by Eq. 1. The kind of ho-
mogenization used here can be generalized from elastic
to viscoelastic matrices [15]. The viscoelasticity due to
bubble adhesion can therefore be taken into account by
replacing in Eq. (1) G0 by the complex shear modulus
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FIG. 6: Comparison of measured and predicted evolutions
with frequency of the normalized elastic and loss moduli : The
measured data of figure 4 ( G′ : •, G” : ◦ ) are normalized by
G0. The prediction ( G′ : �, G” : �) of Eq. (5) with G0 =
206Pa, τ = 246s and α = 0.12 is based on the experimental
angular moduli of figure 2. The lines are guides to the eye.

predicted by Eq. (4):

G∗

G0

=
iωτ

1 + iωτ
[1 + αA∗ ] (5)

Figure 6 establishes the link between the macroscopic
shear modulus data and the prediction of our model
based on the two-bubble response (Eq. (5)). The elastic
and loss moduli (showed in figure 4) are normalized by
the value of G0 obtained from the creep experiment, and
averaged over results for several samples. The moduli de-
duced from the two-bubble measurements are predicted
using Eq. (5). The parameter α is set to 0.12 which
provides the best fit between the two sets of data. The
good agreement between all the data at high frequency
presented in figure (6) shows that the viscoelasticity in
this regime can be accounted for by the dissipation due to
surfactant transport in the liquid films. The discrepancy
between the predicted and measured dissipation at fre-
quencies between 0.01 Hz and 0.1 Hz suggests that here,
relaxation processes not yet taken into account in the
model are active, possibly related to intrinsic dilationnal
interfacial viscosity as evidenced in previous creep mea-
surements [8].

Moreover, the difference between the theoretical value
α =

√
3, and the fitted one, 0.12, underlines the limita-

tions of the proposed model. First, the Princen model de-
scribes 2D foams while our experiments probe 3D foam.
Secondly, the lattice considered in the model is ordered,
in contrast to the experimentally investigated foam. As
a perspective for further work, we note that at frequen-
cies so high that surfactant diffusion along the interfaces
becomes insignificant on the time scale of an oscillation,
one expects the complex angular modulus A∗ to be pro-
portional to the film dilational modulus E∗ [14]. Indeed,

if the interfacial elasticity is limited by the diffusion of
the surfactant from the bulk towards the interface, its
dilatational modulus E∗ is given by the Lucassen van
den Tempel model. In the limit where surfactants have
time to diffuse from the bulk to the surface, we expect
[16, 17]: E∗ ∼ E0

√
iωτd. E0 is the limit elasticity and

τd is a characteristic surfactant diffusion time. As a con-
sequence the complex shear modulus of foams at high
frequency should scale as the square root of frequency.
Such a frequency dependency has indeed been observed
in aqueous foams up to 60Hz by Gopal et al. [7]. Thus in-
terfacial dilatational viscoelasticity as taken into account
in our model predicts the same scaling with frequency of
the complex shear modulus as the model based on re-
laxations in generic weak regions mentionned above[10].
To conclude, we present a model that sucessfully pre-
dicts the fast linear viscoelastic response of bulk foam on
the basis of experiments probing the interfacial rheology
at the scale of two bubbles in contact. These findings
prepare the ground for a future model of foam rheology
that fully captures how local structure and physicochem-
ical behavior are coupled to the macroscopic response of
foams and similar complex fluids.
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