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Modal Intervals Revisited

Part 2: A Generalized Interval Mean-Value

Extension

Alexandre Goldsztejn ∗†‡

Abstract

In Modal Intervals Revisited Part 1, new extensions to generalized in-
tervals (intervals whose bounds are not constrained to be ordered), called
AE-extensions, have been defined. They provide the same interpretations
as the extensions to modal intervals and therefore enhance the interpreta-
tions of the classical interval extensions (for example, both inner and outer
approximations of function ranges are in the scope of the AE-extensions).
The construction of AE-extensions is similar to the one of classical interval
extensions. In particular, a natural AE-extension has been defined from
the Kaucher arithmetic which simplified some central results of the modal
intervals theory.

Starting from this framework, the mean-value AE-extension is now
defined. It represents a new way to linearize a real function, which is
compatible with both inner and outer approximations of its range. With
a quadratic order of convergence for real-valued functions, it allows to
overcome some difficulties which were encountered using a precondition-
ing process together with the natural AE-extensions. Some application
examples are finally presented, displaying the application potential of the
mean-value AE-extension.

1 Introduction

Classical intervals

One fundamental concept of the classical intervals theory is the extension of
real functions to intervals (see [15, 2, 16]). These extensions are constructed
so as to provide supersets of the range of real functions over boxes. However,
computing the minimal interval extension of a real function, i.e. the interval
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hull of the range of a function over a box, is a NP-hard problem with respect to
the number of variables (see [14]). One of the main work of interval researchers
has been to construct computable extensions which lead to good approximations
of functions ranges. Some intensively used interval extensions are for example
the natural extensions and the mean-value extensions. This latter has better
properties than the natural extension and have been intensively studied (see
[4, 19, 1, 17]). It relies upon a linearization of the function which leads to an
interval linear function whose range contains the range of the original non-linear
function. This provides the mean-value extension with a good behavior when
evaluated over small enough intervals: formally, the mean-value extension has
a quadratic order of convergence. Furthermore it allows to apply to non-linear
interval systems some algorithms dedicated to linear interval systems.

AE-extensions

The modal intervals theory enhances the classical intervals theory providing
richer interpretations (see [23, 24] for a description of the theory and [3, 20, 21,
8, 9] for some promising applications of the enhanced interpretations). In par-
ticular, both inner and outer approximations of the function ranges over boxes
are in the scope of extensions to modal intervals. The modal intervals theory
has been revisited and reformulated in Modal Intervals Revisited Part 1 (see
[5]). New extensions to generalized intervals, called AE-extensions, have been
defined which provide the same enhanced interpretations as the modal inter-
vals theory. However, the construction of the AE-extensions is similar to the
construction of the extensions to classical intervals. In particular, the natural
AE-extensions have been defined and the order of convergence of AE-extensions
has been introduced. If the natural AE-extension was proved to have a linear
order of convergence in Modal Intervals Revisited Part 1, it was also illustrated
that such an order of convergence was not sufficient in some situations in par-
ticular when some preconditioning process has to be involved.

Contribution

The mean-value AE-extensions are defined. They provide a new way to linearize
a nonlinear function which is compatible with the enhanced interpretations of
AE-extensions (in particular with both inner and outer approximations of the
function range over boxes). Similarly to the classical interval mean-value ex-
tensions, the mean-value AE-extensions are proved to have a quadratic order of
convergence in the case of real-valued functions f : Rn −→ R. The usefulness of
the mean-value AE-extension is illustrated. Given a continuously differentiable
function f : Rn −→ Rn, the mean-value AE-extension is used so as to construct
a parallelepiped which is included inside the range of f over a box x.
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Outline of the paper

Basic definitions related to generalized intervals and AE-extensions are pre-
sented in Section 2. The mean-value AE-extensions for real-valued and vector-
valued functions are defined in Section 3. Their order of convergence are in-
vestigated in Section 4. The mean-value AE-extension is used together a pre-
conditioning process so as to construct a inner approximation of the range of a
function over a box in Section 5.

Notations

When dealing with sets, the usual set union, set intersection and set difference
are respectively denoted by A ∪B, A ∩B and A\B and defined by

x ∈ A ∪B ⇐⇒ x ∈ A ∨ x ∈ B

A ∩B = {x ∈ A|x ∈ B} and A\B = {x ∈ A|x /∈ B}.
Intervals, interval functions and interval matrices will be denoted by boldface

letters, for example x, f and A. The set of classical intervals is denoted by IR.
An interval x ∈ IRn is equivalently considered as a subset of Rn or as vector of
intervals. The interval hull of a subset E of Rn is denoted by � E. The lower
and upper bounds of an interval x are denoted respectively by inf x and sup x.
The interval join and meet operations, which are different from the set union
and intersection, will be respectively denoted by the symbols ∨ and ∧ (the join
of two intervals is sometimes called their hull). Given E ⊆ Rn, it will be useful
to denote {x ∈ IRn|x ⊆ E} by IE. The notations of classical intervals will be
used for generalized intervals and their related objects, the set of generalized
intervals being denoted by KR (see Section 2.1 for more details). The following
notation will be used:
Notation. Sets of indices are denoted by calligraphic letters. Let I = {i1, . . . , in}
be an ordered set of indices with ik ≤ ik+1. Then, the vector (xi1 , . . . , xin)T is
denoted by xI .

This notation is similar to the one proposed in [13]. It will be used with any
kind of objects, for example real vectors, interval vector or function vectors.
The involved set of indices will be ordered with the usual lexicographic order.
Intervals of integers are denoted by [n..m] ⊆ N where n,m ∈ N with n ≤ m.
The vector x[1..n] = (x1, . . . , xn)T will be denoted by the usual notation x when
no confusion is possible.

The real functions f : Rn −→ R and f : Rn −→ Rm are respectively called
real-valued functions and vector-valued functions when emphasis has to be put
on this difference. Their derivatives are defined homogeneously in the following
way: f ′(x) ∈ Rm×n is defined by(

f ′(x)
)
ij

=
∂fi
∂xj

(x)

So, if m = 1 then f ′(x) ∈ R1×n is the gradient of f ; if m = n = 1 then
f ′(x) ∈ R1×1 is identified to the usual derivative of f . Finally, vectors of
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Rn (respectively IRn or KRn) are identified to the column matrices of Rn×1

(respectively IRn×1 or KRn×1). Therefore, with x, y ∈ Rn, the matrix product
xT × y stands for ∑

i∈[1..n]

xiyi

2 AE-extensions of real functions

This section presents the generalized intervals and the new formulation of the
modal intervals theory that was proposed in Modal Intervals Revisited Part
1 ([5]). Only results that are relevant for the developments proposed in the
present paper are summarized in this section.

2.1 Generalized intervals

Generalized intervals are intervals whose bounds are not constrained to be or-
dered, for example [−1, 1] or [1,−1] are generalized intervals. They have been
introduced in [18, 11, 12] so as to improve both the algebraic structure and
the order structure of the classical intervals. The set of generalized intervals is
denoted by KR and is decomposed into three subsets:

• The set of proper intervals which bounds are ordered increasingly. These
proper intervals are identified with classical intervals. The set of proper
intervals is denoted by the same symbol as the one used for classical in-
tervals, i.e. IR = {[a, b]|a ≤ b}.

• The set of improper intervals which bound are orderer decreasingly. It is
denoted by IR = {[a, b]|a ≥ b}.

• The set of degenerated intervals [a, a], where a ∈ R, which are both proper
and improper. A degenerated interval [a, a] will be identified to the cor-
responding real a.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two
generalized intervals [a, b] and [b, a]. It will be useful to change one to the other
keeping the underlying set of reals unchanged using the following operators:

• dual operator: dual [a, b] = [b, a];

• proper projection: pro [a, b] = [min{a, b},max{a, b}];

The operations mid , rad and | . | are defined as in the case of classical intervals.

• mid [a, b] = a+b
2 ;

• rad [a, b] = b−a
2 ;

• |[a, b]| = max{|a|, |b|}.
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The width is defined as wid x = 2 rad x. Both the radius and the width are
positive for proper intervals and negative for improper intervals (and null for
degenerated intervals). Given a set of indices E with cardE = n and a general-
ized interval xE ∈ KRn, the following functions allow to pick up the indices of
the proper and improper components of xE :

• P(xE) = {i ∈ E|xi ∈ IR}

• I(xE) = {i ∈ E|xi /∈ IR}

Remark. Degenerated components are counted as proper intervals by conven-
tion. The other choice would have been equivalent.

The distance between two generalized intervals x ∈ KR and y ∈ KR is defined
in the following way:

dist(x,y) = max{|x− y|, |x− y|}

As shown in [11, 12], KR then becomes a complete metric space. The generalized
intervals are ordered by an inclusion which prolongates the inclusion of classical
intervals. Consider two generalized intervals x = [x,x] and y = [y,y]

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y

The generalized interval join and meet are formally the same as their classical
counterparts: consider E ⊆ KR bounded set of generalized interval then

(∨E) = [ inf
x∈E

(inf x) , sup
x∈E

(sup x) ]

and (∧E) = [ sup
x∈E

(inf x) , inf
x∈E

(sup x) ].

Remark. In the context of generalized intervals, it becomes important to use two
different signs for the set intersection and for the interval meet. For example,
[0, 1]

⋂
[2, 3] = ∅ whereas [0, 1] ∧ [2, 3] = [2, 1].

The inclusion is related to the dual operation in the following way.

x ⊆ y ⇐⇒ (dual x) ⊇ (dual y)

The so-called Kaucher arithmetic extends the classical interval arithmetic. Its
definition can be found in [11, 12] or in [22]. When it is not misunderstanding,
the Kaucher multiplication will be denoted by xy instead of x×y. The Kaucher
arithmetic has better algebraic properties than the classical interval arithmetic:
The Kaucher addition is a group. The opposite of an interval x is −dual x, i.e.

x + (−dual x) = x− dual x = [0, 0]

The Kaucher multiplication restricted to generalized intervals which proper pro-
jection do not contains 0 is also a group. The inverse of such a generalized
interval x is 1/(dual x), i.e.

x× (1/dual x) = x/(dual x) = [1, 1]
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A useful property of the Kaucher arithmetic is its monotonicity with respect to
the inclusion: whatever are ◦ ∈ {+,×,−,÷} and x,y,x′,y′ ∈ KR,

x ⊆ x′ ∧ y ⊆ y′ =⇒ (x ◦ y) ⊆ (x′ ◦ y′)

Furthermore, the Kaucher arithmetic is linked to the distance between general-
ized intervals in the following way: for any intervals x,y,x′,y′ ∈ KR,

dist(xy,xy′) ≤ |x| dist(y,y′)
dist(x + y,x′ + y′) ≤ dist(x,x′) + dist(y,y′)

Generalized interval vectors x ∈ KRn and generalized interval matrices A ∈
KRn×n are defined like in the classical interval theory. The operations mid ,
rad , | . |, dual and pro are performed on vectors and matrices elementwise. The
metric is extended to vectors and matrices in the usual way: given x,y ∈ KRn
and A,B ∈ KRn,

dist(x,y) = max
i∈[1..n]

dist(xi,yi) and dist(A,B) = max
i∈[1..n]
j∈[1..m]

dist(Aij ,Bij)

Given E ⊆ Rn, it will be useful to denote the set of generalized interval {x ∈
KRn|pro x ⊆ E} by KE. Finally, the distance is used to define a continuity:
in the sequel the local Lipschitz continuity will be useful.

Definition 2.1 (Goldsztejn, [5]). The interval function f : KRn −→ KRm is
locally Lipschitz continuous if and only if for any xref ∈ IRn, there exists λ > 0
which satisfies for all x,y ∈ Kxref ,

dist(f(x), f(y)) ≤ λ dist(x,y)

Remark. This definition is naturally specialized to functions f : IRn −→ IRm
and f : Rn −→ Rm considering respectively all x,y ∈ Ixref and all x, y ∈ xref .
Also, it stands for functions f : IRn −→ IRm×p.

Obviously, a function f is locally Lipschitz continuous if and only if all its
components fi are locally Lipschitz continuous.

2.2 AE-extensions

The classical interval extensions are defined so as to compute outer approxi-
mations of functions ranges over boxes. The condition range (f,x) ⊆ z can be
equivalently stated by the following quantified proposition:(

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
The AE-extensions are defined allowing more general quantified propositions.
The quantifier corresponding to a variable is determined using the proper/improper
quality of the generalized interval corresponding to this variable. The denom-
ination ”AE” is related to the specific ordering of the quantifier, the universal
quantifiers preceding the existential ones (”A(ll)E(xists)”). The following defi-
nition formalizes this idea.
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Definition 2.2 (Goldsztejn, [5]). Let f : Rn −→ Rm, x ∈ KRn and z ∈
KRm. The interval z is interpretable with respect to f and x (or shortly (f,x)-
interpretable) if and only if the following quantified proposition is true:(

∀xP ∈ xP
)(
∀zI′ ∈ pro zI′

)(
∃zP′ ∈ zP′

)(
∃xI ∈ pro xI

)(
z = f(x)

)
(1)

where z = g(x) and P = P(x), I = I(x), P ′ = P(z) and I ′ = I(z) are the sets
of indices corresponding respectively to the proper and improper components of
x and z (if one of these sets of indices is empty then the corresponding quantifier
block it canceled).

When m = 1, the quantified proposition (1) can be formulated using a
quantifier which depends on the proper/improper quality of the interval z:(

∀xP ∈ xP
)(

Q(z)z ∈ z
)(
∃xI ∈ pro xI

)(
z = f(x)

)
where Q(z) = ∃ if z ∈ IR and Q(z) = ∀ otherwise. Here are some possible
interpretations of a (f,x)-interpretable interval z in the special case m = 1:

1. When x is proper, z has to be proper and a (f,x)-interpretable interval z
satisfies (

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
,

i.e. z is an outer approximation of range (f,x).

2. When x is improper, z can be either proper or improper.

(a) If z is improper then it satisfies(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
z = f(x)

)
,

i.e. pro z is an inner approximation of range (f,x).

(b) If z is proper then it satisfies(
∃z ∈ pro z

)(
∃x ∈ pro x

)(
z = f(x)

)
,

i.e. pro z ∩ range (f, pro x) 6= ∅.

3. When x1 is proper and x2 is improper, z can be either proper or improper.

(a) If z is improper then it satisfies(
∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
z = f(x)

)
,

i.e. for any fixed z0 ∈ pro z, the interval x1 is inside the projection
of the relation f(x1, x2) = z0 on the axis x1.

(b) If z is proper then it satisfies(
∀x1 ∈ x1

)(
∃z ∈ z

)(
∃x2 ∈ x2

)(
z = f(x)

)
.
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When m > 1, some additional interpretations are available. In all cases, the
more interesting interpretations are (1), (2a) and (3a).

The inclusion between generalized intervals provides a way to compare (f,x)-
interpretable intervals: as illustrated by the next example, if two (f,x)-interpretable
intervals z and z′ are related by z ⊆ z′ then z is more accurate than z′ (i.e. z
provides more information than z′).

Example 2.1. Consider the function f(x) = x2 and the proper interval x =
[−1, 3]. So range (f,x) = [0, 9]. The proper intervals [−1, 10] and [−2, 11] are
both (f,x)-interpretable. As [−1, 10] ⊆ [−2, 11], the first is more accurate
than the second. Indeed, the first is a more accurate outer approximation of
range (f,x) than the second. Now, the improper intervals [8, 1] and [7, 2] are
both (f, dual x)-interpretable: indeed both pro [8, 1] and pro [7, 2] are inner
approximations of range (f,x)). As [8, 1] ⊆ [7, 2], the first is more accurate
than the second. Indeed, pro [8, 1] is a more accurate inner approximation of
range (f,x) than pro [7, 2].

This leads naturally to the following definition for the minimality of (f,x)-
interpretable intervals: the (f,x)-interpretable interval z is minimal if and only
if for any (f,x)-interpretable interval z′,

z′ ⊆ z =⇒ z′ = z

This definition of minimality generalizes its corresponding one in the context of
classical interval extensions. Indeed, if x is proper, then the only minimal (f,x)-
interpretable interval is � range (f,x) (as in the context of classical interval
extensions). However, when x is not proper, there are in general several minimal
(f,x)-interpretable intervals. This is illustrated by the next example.

Example 2.2. Let f(x) = Mx with M =
(

1 1
−1 1

)
and x =

(
[1,−1]
[1,−1]

)
∈ IR2

.

An improper (f,x)-interpretable interval z ∈ IR is an inner approximation of
range (f, pro x), i.e. it satisfies(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
z = f(x)

)
.

If the inner approximation (pro z) is maximal then z is an minimal (f,x)-
interpretable interval (see [5]). The following improper intervals have a proper
projection which is a maximal inner approximation of range (f, pro x):

zλ =
1
2

(
[1− λ , λ− 1]

[λ+ 1 , −λ− 1]

)
where λ ∈ [−1, 1]. Therefore, they are minimal (f,x)-interpretable and in this
case there is a manifold of minimal (f,x)-interpretable intervals.

The definition of the AE-extensions is constructed from the usual definition
of an extension to classical intervals changing the condition ”range (f,x) ⊆ z”
by its generalization to generalized intervals ”z is (f,x)-interpretable”.
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Definition 2.3 (Goldsztejn, [5]). Consider a continuous real function f : Rn −→
Rm. An interval function g : KRn −→ KRm is an AE-extension of f if and only
if both following conditions are satisfied:

1.
(
∀x ∈ Rn

)(
g(x) = f(x)

)
2.
(
∀x ∈ KRn

)(
g(x) is (f,x)-interpretable

)
Also, g is minimal if for all x ∈ KRn the (f,x)-interpretable interval g(x) is
minimal.

Remark. As in [5], the following simplification will be used: all the functions met
in the sequel will be defined in Rn. When other functions have to be considered,
some attention should be given to the involved definition domains.

This definition is indeed a generalization of the definition of classical interval
extensions as when x is proper, g(x) has to be proper and we have(

∀x ∈ x
)(
∃z ∈ z

)(
z = f(x)

)
,

that is, range (f,x) ⊆ g(x). When dealing with rounded computations, an AE-
extension cannot satisfy (1). An interval function which only satisfies (2) is
called a weak AE-extension. Some questions which are obvious in the context
of classical interval extensions have to be investigated when dealing with AE-
extensions. It is proved in [5] that:

• every continuous function has at least one AE-extension.

• for every AE-extension, there exists an minimal AE-extension which is
more accurate.

Once the minimality has been defined, the quality of AE-extensions can be mea-
sured using the order of convergence. Generalizing its definition in the context
of classical interval extensions, the order of convergence of AE-extensions can
be defined in the following way:

Definition 2.4 (Goldsztejn, [5]). Let f : Rn −→ Rm be a continuous function
and g : KRn −→ KRm be an AE-extension of f . The AE-extension g has
a convergence order α ∈ R, α > 0, if and only if the exists an minimal AE-
extension f of f more accurate that g such that for any xref ∈ IRn, there exists
γ > 0 such that for any x ∈ Kxref ,

dist(g(x), f(x)) ≤ γ(||wid x||)α

Remark. It is obvious that an AE-extension which has an order of convergence
α has also an order of convergence α′ for any 0 < α′ ≤ α. Also, the usually
considered orders of convergence are integers. An order of convergence 1 is
called a linear order of convergence, and an order of convergence 2 a quadratic
order of convergence.
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It is proved in [5] that any locally Lipschitz continuous AE-extension has a
linear order of convergence.

The construction of AE-extensions is done in two steps: first, the special
case of real-valued functions is investigated leading to the expressions of the
minimal AE-extensions of a class of elementary functions. Then, the natural
AE-extensions of compound real functions are defined.

2.3 AE-extensions of real-valued functions

Any continuous real-valued function f : Rn −→ R has an unique minimal AE-
extension which is denoted by f∗ : KRn −→ KR. From the definition of the
minimality of AE-extensions, f∗ is the only interval function which satisfies for
all z ∈ KRn,

z is (f,x)-interpretable ⇐⇒ f∗(x) ⊆ z

From this latter characterization, one can get the following expression of f∗:

f∗(x) = ∨
xP∈xP

∧
xI∈(pro xI)

f(x)

= [ min
xP∈xP

max
xI∈(pro xI)

f(x) , max
xP∈xP

min
xI∈(pro xI)

f(x)]

where P = P(x) et I = I(x).

Remark. When P = ∅ or I = ∅, the expressions of f∗ are respectively

f∗(x) = [ max
x∈(pro x)

f(x), min
x∈(pro x)

f(x)] and f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)]

Computing f∗(x) is NP-hard in general. However, it can be easily computed
for simple functions that present good monotonicity properties. In particular,
the AE-extensions of elementary functions can be computed from this expres-
sion of f∗. The elementary functions here considered are the following, their
definition domain being the usual ones:

• two variables functions: Ω = { x+ y , x− y , x× y , x/y}

• one variable functions: Φ = { expx, lnx, sinx, cosx, tanx, arccosx,
arcsinx, arctanx, absx, xn, n

√
x}

In the cases of +, −, × and /, it is proved in [5] that f∗ coincides with the
Kaucher arithmetic.

Example 2.3. Consider the function f(x, y) = x + y, x ∈ KR and y ∈ KR.
Then z = x + y is the unique minimal (f,x,y)-interpretable interval. For
example,

[−1, 1] + [12, 8] = [11, 9]

means that the reals [9, 11] is the largest interval z which satisfies(
∀z ∈ z

)(
∀x ∈ [−1, 1]

)(
∃y ∈ [8, 12]

)(
z = x+ y

)
10



The minimal AE-extensions of monotonic one variable elementary function
are easily computed: for example, exp(x) = [exp(inf x), exp(sup x)] and, for
pro x ⊆ [−1, 1], arccos(x) = [arccos(sup x), arccos(inf x)]. In the cases of non
monotonic functions, the algorithms dedicated to the computation of the clas-
sical interval extensions can be used with only minor modifications regarding
rounded computations.

Remark. Not all continuous functions can be considered as elementary functions.
See [5] for the condition which has to be satisfied by the elementary functions.
For example the two variable function f(x, y) = 1−(x−y)2 cannot be considered
as an elementary function.

2.4 The natural AE-extension

The interval evaluation f(x) of an expression f of a function f using the min-
imal AE-extensions of the involved elementary functions is (f,x)-interpretable
provided that each variable has only one occurrence inside the expression.

Example 2.4. Consider the function f(u, v, w) = u(v + w) and the intervals
u = [1, 2], v = [−1, 1] and w = [20, 8]. The expression of f involving only one
occurrence of each variable, the interval z = u(v + w) = [19, 18] is (f,u,v,w)-
interpretable, that is, the following quantified proposition is true:(

∀u ∈ u
)(
∀v ∈ u

)(
∀z ∈ pro z

)(
∃w ∈ pro w

)(
z = f(u, v, w)

)
(2)

Such special cases of expressions are sufficient for the coming developments.
The construction of the natural AE-extensions of more general functions is de-
scribed in [5] and needs some modifications of the expressions f (some oper-
ations pro have to be inserted before all but one occurrences of each vari-
able). Now, two properties of the interval evaluation of an expression contain-
ing only one occurrence of each variable are provided. First, in the special case
of bilinear functions f(x, y) = xT × y, the interval evaluation is minimal, i.e.
f∗(x,y) = xT × y. Second, Proposition 2.1 will play a key role in the following
developments. Skolem functions of quantified propositions like(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
φ(xA⋃

E)
)

(3)

where A and E are disjoint sets of indices such that cardA + card E = n and
xA⋃

E ∈ IRn and φ is a real relation of Rn, are defined using an analogy with
first order logic Skolem functions (see e.g. [25]): a Skolem function of (3) is a
function

sE : xA −→ xE s.t. xE = sE(xA) =⇒ φ(xA⋃
E).

Remark. It is implied that the previous implication stands for all xA ∈ xA.

Example 2.5. The quantified proposition (2) is true. Therefore it has a
Skolem function, i.e. a function s : (u,v,pro z)T −→ pro w that satisfies
w = s(u, v, z) =⇒ z = f(u, v, w).
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Proposition 2.1 (Goldsztejn, [5]). Let f : Rn −→ R be a continuous function
and f an expression of this function involving elementary functions of Ω and
Φ where each variable has only one occurrence. For any x[1..n] ∈ KRn,
define x0 = f(x[1..n]) where the evaluation is done using the Kaucher arith-
metic. Furthermore define the sets of indices A = P(x[1..n])

⋃
I(x{0}) and

E = I(x[1..n])
⋃
A(x{0}) (so that A contains the indices of the universally quan-

tified variable and E contains the indices of the existentially quantified ones).
Then both A and E are nonempty and the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
f(x[1..n]) = x0

)
has a continuous Skolem function (and is therefore true).

Example 2.6. Proposition 2.1 proves that the quantified proposition (2) has a
continuous Skolem function.

3 The mean-value AE-extension

The mean-value AE-extension is first defined for continuously differentiable
functions f : Rn −→ R in Subsection 3.2. Then the AE-extensions of con-
tinuously differentiable functions f : Rn −→ Rm are defined in Subsection 3.3.
First of all, an improved mean-value theorem is needed.

3.1 An improved mean-value theorem

Given a continuously differentiable function f : R −→ R, x ∈ IR, x̃ ∈ x and
∆ ⊇ range (f ′,x), the mean-value theorem (see appendix A) entails the following
quantified proposition(

∀x ∈ x
)(
∃δ ∈ ∆

)(
f(x) = f(x̃) + δ(x− x̃)

)
The next proposition provides a stronger property: it proves that this quantified
proposition has a continuous Skolem function.

Proposition 3.1. Let f : Rn −→ R be a continuously differentiable function,
x ∈ IRn, x̃ ∈ x and ∆ ∈ IRn such that for all k ∈ [1..n],

∆k ⊇ range
(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
Then, the quantified proposition(

∀x ∈ x
)(
∃δ ∈ ∆

)(
f(x) = f(x̃) + δT (x− x̃)

)
has a continuous Skolem function (and is therefore true).
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Proof. We have to prove that there exists a continuous function s : x −→ ∆
which satisfies f(x) = f(x̃)+s(x)T ×(x− x̃). To this end, the function f(x[1..n])
is written in following way:

f(x[1..n]) = f(x̃[1..n]) +
∑

k∈[1..n]

gk(x[1..n]), (4)

with

• g1(x[1..n]) = f(x1, x̃[2..n])− f(x̃[1..n])

• gk(x[1..n]) = f(x[1..k], x̃[k+1..n])− f(x[1..k−1], x̃[k..n]) for k ∈ [2..n− 1]

• gn(x[1..n]) = f(x[1..n])− f(x[1..n−1], x̃n).

Example. For n = 2, the previous expression becomes

f(x[1..2]) = f(x̃[1..2]) + g1(x[1..2]) + g2(x[1..2])

= f(x̃[1..2]) +
(
f(x1, x̃2)− f(x̃[1..2])

)
+
(
f(x[1..2])− f(x1, x̃2)

)
.

Example. For n = 3, the previous expression becomes

f(x[1..3]) = f(x̃[1..3]) + g1(x[1..3]) + g2(x[1..3]) + g2(x[1..3])

= f(x̃[1..3]) +
(
f(x1, x̃2, x̃3)− f(x̃[1..3])

)
+
(
f(x1, x2, x̃3)− f(x1, x̃2, x̃3)

)
+
(
f(x[1..3])− f(x1, x2, x̃3)

)
.

Let us define sk(x) in the following way:

sk(x) =
gk(x)
xk − x̃k

if xk 6= x̃k

and
sk(x) =

∂f

∂xk
(x[1..k−1], x̃[k..n]) otherwise.

Three claims has to be proved.
Claim 1: f(x) = f(x̃) + s(x)T × (x − x̃). Thanks to (4) we just have to

prove that gk(x) = sk(x)(xk − x̃k) for all x ∈ x. On one hand, if xk 6= x̃k then

sk(x)(xk − x̃k) =
gk(x)
xk − x̃k

(xk − x̃k) = gk(x).

On the other hand, if xk = x̃k then gk(x) = 0 = sk(x)× 0.
Claim 2: sk in continuous inside x. Let us consider x ∈ x and prove that

sk is continuous at x. On one hand, if xk 6= x̃k then sk is a composition of
continuous functions and is therefore continuous. On the other hand, if xk = x̃k

13



we consider a sequence x(i) which converges to x. Then, we have by definition
sk(x) = ∂f

∂xk
(x[1..k−1], x̃[k..n]) and thanks to the mean-value theorem

sk(x(i)) =
f(x(i)

[1..k], x̃[k+1..n])− f(x(i)
[1..k−1], x̃[k..n])

x
(i)
k − x̃k

=
∂f

∂xk
(x[1..k−1], ξ

(i)
k , x̃[k+1,n])

with ξ
(i)
k ∈ x

(i)
k ∨ x̃k. As x(i)

k converges to x̃k, the sequence ξ(i)k also converges
to x̃k. Therefore, sk(x(i)) converges to sk(x) because ∂f

∂xk
is continuous. As a

consequence, sk is eventually continuous at x.
Claim 3: sk(x) ∈ ∆k. On one hand, if xk 6= x̃k then the mean-value

theorem proves that for any x ∈ x,

f(x[1..k], x̃[k+1..n])− f(x[1..k−1], x̃[k..n])
xk − x̃k

∈ range
(
∂f

∂xk
, x[1..k−1], xk ∨ x̃k, x̃[k+1..n]

)
⊆ ∆k

On the other hand, if xk = x̃k then sk(x) ∈ ∆k by definition of sk.

Remark. The use of the expression

∆k ⊇ range
(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
instead of

∆k ⊇ range
(
∂f

∂xk
,x
)

was initially proposed in [7], in the context of classical intervals extensions.
The second expression, which is simpler, will be used in the sequel so as to
simplify the proposed statements. It can be replaced by the first expression
with no influence on the statements then providing significant improvements in
the computations.

Remark. Obviously, the hypothesis x̃ ∈ x can be changed to x̃ ∈ Rn provided
that

∆k ⊇ range
(
∂f

∂xk
,x1, . . . ,xk, x̃k+1, . . . , x̃n

)
is changed to

∆k ⊇ range
(
∂f

∂xk
,x1 ∨ x̃1, . . . ,xk ∨ x̃k, x̃k+1, . . . , x̃n

)
.

3.2 The mean-value AE-extension of real-valued functions

The mean-value AE-extension is first illustrated on the special case of a one
variable function. Given a continuously differentiable function f : R −→ R,
x ∈ IR, x̃ ∈ pro x and ∆ ⊇ range (f ′,pro x), define the interval z by

z = f(x̃) + ∆(x− x̃) (5)
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which is improper (multiplication by an improper interval which contains 0 leads
to an improper interval which contains 0). Therefore, so as to prove that z is
(f,x)-interpretable, the validity of the following quantified proposition has to
be proved: (

∀z ∈ pro z
)(
∃x ∈ pro x

)(
z = f(x)

)
(6)

On one hand, the expression (5) corresponds to the natural AE-extension of the
function m(x, δ) = f(x̃) + δ(x− x̃) evaluated at x ∈ IR and ∆ ∈ IR. Therefore
the quantified proposition(

∀δ ∈ ∆
)(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
z = m(x, δ)

)
(7)

has a continuous Skolem function by Proposition 2.1. I.e. there exists a con-
tinuous function s′ : (∆,pro z)T −→ pro x that satisfies x = s′(δ, z) =⇒ z =
m(x, δ). On the other hand, Proposition 3.1 proves that the quantified propo-
sition (

∀x ∈ pro x
)(
∃δ ∈ ∆

)(
f(x) = m(x, δ)

)
(8)

also has a continuous Skolem function. I.e. there exists a continuous function
s′′ : pro x −→ ∆ which satisfies δ = s′′(x) =⇒ f(x) = m(x, δ). In order to
prove (6), the continuous function s : (pro x,pro z)T −→ pro x is constructed
in the following way: s(x, z) = s′(s′′(x), z). One can easily check that it satisfies

x = s(x, z) =⇒
(
∃δ ∈ ∆

)(
x = s′(δ, z) ∧ δ = s′′(x)

)
=⇒

(
∃δ ∈ ∆

)(
z = m(x, δ) ∧ f(x) = m(x, δ)

)
=⇒ z = f(x)

(9)

Now, for each z ∈ pro z, the continuous function s(., z) has pro x as domain and
pro x as co-domain. So, by the Brouwer fixed point theorem (see appendix A)
it has a fixed point x ∈ pro x. Therefore, the following quantified proposition
is true: (

∀z ∈ pro z
)(
∃x ∈ pro x

)(
x = s(x, z)

)
Finally, thanks to (9), the previous quantified proposition entails (6) and z is
proved to be (f,x)-interpretable. The next theorem generalizes the previous
argumentation to any continuously differentiable functions f : Rn −→ R and to
any interval argument x ∈ KRn.

Theorem 3.1. Let f : Rn −→ R be a continuously differentiable function,
x ∈ KRn, c : IRn −→ Rn such that c(x) ∈ x and g : IRn −→ IR1×n be an
interval extension of f ′, i.e.

g1k(pro x) ⊇ range
(
∂f

∂xk
,pro x

)
.

Then, the interval function h defined by

h(x) = f(c(x)) + g(pro x)× (x− c(x))

is an AE-extension of f and is called a mean-value AE-extension of f .
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Proof. First of all, for any x ∈ Rn we have c(x) = x and therefore h(x) =
f(x) + g(pro x)× (x− x) = f(x). Then, for any x[1..n] ∈ KRn, define ∆[1..n] =
g(pro x[1..n])T ∈ IRn and x̃[1..n] = c(x[1..n]) and x0 := h(x[1..n]). We therefore
have

x0 = f(x̃[1..n]) + ∆T × (x− x̃) (10)

Furthermore define the set of indices A = P(x[1..n])∪I(x0) and E = I(x[1..n])∪
P(x0). So, we have to prove that the following quantified proposition is true:(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = f(x[1..n])

)
(11)

On one hand, by the expression (10), x0 is the generalized interval evaluation
of the real function

m(x[1..n], δ[1..n]) := f(x̃[1..n]) + δT × (x− x̃)

evaluated at x[1..n] and ∆[1..n]. As the expression of m involves only one oc-
currence of each variable we can apply Proposition 2.1 which proves that there
exists a continuous function

s′E : (pro xA,∆[1..n])T −→ pro xE

which satisfies

xE = s′E(xA, δ[1..n]) =⇒ x0 = m(x[1..n], δ[1..n]) (12)

On the other hand, as g is an interval extension of f ′ we have ∆T ⊇ range (f ′,pro x)
and we can apply Proposition 3.1 which proves that there exists a continuous
function

s′′[1..n] : pro x[1..n] −→ ∆[1..n]

which satisfies

δ[1..n] = s′′[1..n](x[1..n]) =⇒ f(x[1..n]) = g(x[1..n], δ[1..n]) (13)

Now, we construct the continuous function sE : pro xA∪E −→ pro xE composing
s′ and s′′ in the following way (notice that A ∪ [1..n] ⊆ A ∪ E):

sE(xA∪E) = s′E
(
xA, s

′′
[1..n](x[1..n])

)
(14)

Let us prove that
xE = sE(xA∪E) =⇒ x0 = f(x[1..n]) (15)

By the equation (14), sE(xA∪E) = xE implies

δ[1..n] = s′′[1..n](x[1..n]) ∧ xE = s′E(xA, δ[1..n])

Now, by (12) and (13), this latter implies

f(x[1..n]) = g(x[1..n], δ[1..n]) ∧ x0 = g(x[1..n], δ[1..n])
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That is eventually x0 = f(x[1..n]). Finally, thanks to the Brouwer fixed point
theorem, for each value of xA ∈ pro xA, the function sE(xA, .) : pro xE −→
pro xE has a fixed point. That is,(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
sE(xA∪E) = xE

)
which entails (11) thanks to the implication (15).

Remark. Similarly to the classical mean-value extension, if the interval function
g is not defined for all x ∈ IRn then the domain definition of the mean-value
AE-extension has to be adapted.

The next example illustrates the way the mean-value AE-extension computes
inner and outer approximations of the range of a continuously differentiable
function.

Example 3.1. Consider the real function f(x) = x2 and the interval x =
[1, 1.2]. As f is strictly increasing over x, the exact range range (f,x) can be
computed in the following:

range (f,x) = [f(x), f(x)] = [1, 1.44]

Consider the interval ∆ = [2, 2.4] which satisfies ∆ ⊇ range (f ′,x). When
evaluated at x, the mean-value AE-extension leads to

range (f,x) ⊆ f(x̃) + ∆(x−mid x) = [0.97, 1.45]

which is an outer approximation of the range of the original function f . When
evaluated at dual x, the mean-value AE-extension leads to

f(x̃) + ∆(dual x−mid x) = [1.41, 1.01]

The interval pro [1.41, 1.01] = [1.01, 1.41] is indeed included inside [1, 1.44]. The
figure 1 illustrates both the outer (left hand side graphic) and inner (right hand
side graphic) approximations obtained thanks to the linearization of f .

Theorem 3.1 has proved that the interval

z = f(x̃) + g(pro x)× (x− x̃)

is (f,x)-interpretable. As f∗ is the unique minimal AE-extension of f , this is
equivalently stated by f∗(x) ⊆ z. It will be useful for several purposes to build
an interval which is included inside f∗(x). The next proposition provides such
a construction.

Proposition 3.2. Let f : Rn −→ R be a continuously differentiable function,
x ∈ KRn, x̃ ∈ x and g : IRn −→ IR1×n be an interval extension of f ′. Define
the interval

z = f(x̃) +
(
dual g(pro x)

)
× (x− x̃)

Then, z ⊆ f∗(x).
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Figure 1: Graph of the function f(x) = x2 together with the cone of the deriva-
tives f(x̃) + f ′(x)(x− x̃). The left hand side (respec. right hand side) graphic
illustrates the outer (respec. inner) approximation of the range obtained thanks
to the cone of the derivatives.

Proof. Define the continuous real function

m(x, δ) = f(x̃) + δT × (x− x̃)

The interval z is then the natural AE-extension of m evaluated at x and dual ∆,
where ∆ = g(pro x)T ∈ IRn. As proved in [5], this natural AE-extension is
minimal. Therefore, we have z = m∗

(
x,dual ∆

)
. The interval z′ := f∗(x) is

(f,x)-interpretable so the following quantified proposition is true:(
∀xP ∈ xP

)(
Q(z′)z ∈ pro z′

)(
∃xI ∈ pro xI

)(
z = f(x)

)
Now, by Proposition 3.1 the following quantified proposition is also true:(

∀x ∈ pro x
)(
∃δ ∈ ∆

)(
f(x) = m(x, δ)

)
Both previous quantified propositions obviously entail the following one:(

∀xP ∈ xP
)(

Q(z′)z ∈ z′
)(
∃xI ∈ pro xI

)(
∃δ ∈ g(pro x)

)(
z = m(x, δ)

)
Therefore, the interval z′ = f∗(x) is

(
m,x,dual ∆

)
-interpretable, which implies

m∗
(
x,dual g(y)

)
⊆ f∗(x)

That is, z ⊆ f∗(x).
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3.3 The mean-value AE-extensions of vector-valued real
functions

Given a continuously differentiable vector-valued function f : Rn −→ Rm and
an interval x ∈ KRn, the mean-value AE-extensions of the real-valued functions
fi are now used in order to construct a (f,x)-interpretable interval z ∈ KRm,
i.e. z satisfies(
∀xA ∈ xA

)(
∀zA′ ∈ pro zA′

)(
∃zE′ ∈ zE′

)(
∃xE ∈ pro xE

)(
z = f(x)

)
(16)

where A = P (x), E = I(x), E′ = P (z) and A′ = I(z). This construction
is similar to the case of the natural AE-extensions for vector-valued functions
presented in [5]. For i ∈ [1..m] consider some mean-value AE-extensions hi of
the real-valued function fi. The interval z naively defined by zi = hi(x) is not
(f,x)-interpretable in general because the conjunction∧

i∈[1..m]

(
∀xA ∈ xA

)(
Q(zi)zi ∈ pro zi

)(
∃xE ∈ pro xE

)(
zi = fi(x)

)
(17)

where Q(zi) = ∃ if i ∈ P ′ and Q(zi) = ∀ if i ∈ I ′, does not implies (16) in general.

Example 3.2. Consider f : R3 −→ R2 and x1 ∈ IR and x2,x3 ∈ IR. Suppose
that both z1 = h1(x1,x2,x3) and z2 = h2(x1,x2,x3) are improper. Then both
following quantified propositions are true:(

∀x1 ∈ x1

)(
∀z1 ∈ pro z1

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z1 = f1(x)

)
and (

∀x1 ∈ x1

)(
∀z2 ∈ pro z2

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z1 = f2(x)

)
However, their conjunction does not imply(

∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z = f(x)

)
in general. So z ∈ IR2

is not (f,x)-interpretable in general.

In order to entail (16), the previous computations have to be modified in
such a way that each variable which is existentially quantified inside (16) is
existentially quantified in exactly one quantified proposition of the conjunction
(17) and universally quantified in all the others. This is done in the same way
as the natural AE-extension: an operation pro is inserted in before all but
one occurrences of each variable. In the case of the mean-value AE-extension,
each component has one occurrence of each variable. Therefore, the choice of
the occurrence which is not preceded of an operation pro is done choosing one
component of the vector-valued interval function.

Example 3.3. Like in the previous example, consider f : R3 −→ R2 and
x1 ∈ IR and x2,x3 ∈ IR. The following intervals are computed:

z1 = h1(x1,pro x2,x3) and z2 = h2(pro x1,x2,pro x3).
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Suppose that both z1 and z2 are improper. Then both following quantified
propositions are true (notice that x1 being proper we have (pro x1) = x1):(

∀x1 ∈ x1

)(
∀x2 ∈ pro x2

)(
∀z1 ∈ pro z1

)(
∃x3 ∈ pro x3

)(
z1 = f1(x)

)
and (

∀x1 ∈ x1

)(
∀x3 ∈ pro x3

)(
∀z2 ∈ pro z2

)(
∃x2 ∈ pro x2

)(
z2 = f2(x)

)
Under some additional hypothesis which are be fulfilled if the hi are the mean-
value AE-extensions of the functions fi, their conjunction implies(

∀x1 ∈ x1

)(
∀z ∈ pro z

)(
∃x2 ∈ pro x2

)(
∃x3 ∈ pro x3

)(
z = f(x)

)
Therefore, z ∈ IR2

is (f,x)-interpretable.

This can be formalized introducing a integral function π : [1..n] −→ [1..m]
which associates to the variable xj for j ∈ [1..n] the index of the AE-extension
hi for i ∈ [1..m] in which it will be existentially quantified (i.e. it will not
be preceded by an operation pro ). Then, the AE-extensions hi are used to
construct z in the following way:

zi = hi(y)

where for j ∈ [1..n] we have yj = xj if i = π(j) and yj = pro xj otherwise. The
proper components of x being not sensitive to the operation pro , the interval z
satisfies∧
i∈[1..m]

(
∀xA∪Ai ∈ xA∪Ai

)(
Q(zi)z ∈ pro zi

)(
∃xEi ∈ pro xEi

)(
z = f(x)

)
(18)

where Ei = E ∩ π−1(i) and Ai = E\Ei. Now, as each existentially quantified
variable appears in one and only one quantified proposition of the previous
conjunction and this latter is likely to entail the quantified proposition (16).

Example 3.4. In previous example, the function π is defined by

π : (1→ 1 ; 2→ 2 ; 3→ 1).

The implication ”(18)=⇒(16)” is true because the hi are the mean-value
AE-extensions of the functions fi (see [5] for a counter example for this im-
plication when other AE-extensions are used). Similarly to the proof of the
interpretation of the natural AE-extension of vector-valued functions, the proof
of the implication ”(18)=⇒(16)” involves the Brouwer fixed point theorem (see
Appendix A). In order to formulate the mean-value AE-extensions of vector val-
ued functions in a compact form, the following specific matrix/vector product
is first defined.
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Definition 3.1. Let A ∈ KRm×n, x ∈ KRn and π : [1..n] −→ [1..m]. The
matrix product A ∗π x ∈ KRn is then defined in the following way: for all
i ∈ [1..m],

(A ∗π x)i =
∑

j∈π−1(i)

Aijxj +
∑

j∈([1..n]\π−1(i))

Aij(pro x)

A special case will be met several times: if m = n and π = id then the
product A∗πx is simply denoted by A∗x. In this case, its definition is simplified
to

(A ∗ x)i = Aiixi +
∑

j∈([1..n]\{i})

Aij(pro xj)

Now, the mean-value AE-extension for vector valued function can be defined.

Theorem 3.2. Let f : Rn −→ Rm be a continuously differentiable function,
x ∈ KRn, c : IRn −→ Rn such that c(x) ∈ x and π : [1..n] −→ [1..m]. Consider
an interval extension extension g : IRn −→ IRm×n of f ′. Then the interval
function h defined by

h(x) = f(x̃) + g(pro x) ∗π (x− c(x))

is an AE-extension of f and is called a mean-value AE-extension of f .

Proof. First of all, whatever is x ∈ Rn we have h(x) = f(x)+g(pro x)×(x−x) =
f(x) because c(x) = x. Now consider any x[1..n] ∈ KRn and define the interval
matrix ∆ = g(pro x[1..n]) and x̃[1..n] = c(x[1..n]). So as to obtain homogeneous
notations, the evaluation of h is done in the following way:

x[n+1..n+m] = f(x̃[1..n]) + ∆ ∗π (x[1..n] − x̃[1..n]) (19)

We have to prove that x[n+1..n+m] is (f,x[1..n])-interpretable. Define the sets of
indices A = P (x[1..n]) ∪ I(x[n+1..n+m]) and E = I(x[1..n]) ∪ P (x[n+1..n+m]). So,
we have to prove that the following quantified proposition is true:(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
f(x[1..n]) = x[n+1..n+m]

)
(20)

Consider any i ∈ [1..m]. The ith line of the equality (19) is

xn+i = fi(x̃) +
∑

j∈[1..n]

∆ij(y
(i)
j − x̃)

where y(i)
j = xj if π(j) = i and y(i)

j = pro xj otherwise. This corresponds
to the mean-value AE-extension of the function fi evaluated at y(i). Define
Ei = E ∩ π−1(i) and Ai = E\Ei. We know that y(i)

j is proper if and only

if either xj is proper or j ∈ Ai or equivalently, y(i)
j is improper if and only if

j ∈ Ei. Using the same reasoning as in the proof of Theorem 3.1, we obtain for
each i ∈ [1..m] a continuous function

sEi
: xA∪Ai

−→ xEi
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which satisfies
xEi = sEi(xA∪Ai) =⇒ xn+i = fi(x[1..n]).

Thank to the definition of π, one can check the for any i ∈ [1..m] and i′ ∈ [1..m]
such that i 6= i′, we have Ei ∩Ei′ = ∅, and that ∪{Ei|i ∈ [1..m]} = E. We also
have ∪{A ∪ Ai|i ∈ [1..m]} = A ∪ E . So, the function sE : xA∪E −→ xE is well
defined, continuous and furthermore satisfies

sE(xA∪E) = xE =⇒
∧

i∈[1..m]

xEi = sEi(xA∪Ai)

=⇒
∧

i∈[1..m]

xn+i = fi(x[1..n])

=⇒ x[n+1..n+m] = f(x[1..n]).

Finally, thank to the Brouwer fixed point theorem, for any xA ∈ xA the function
sE(xA, .) : xE −→ xE has a fixed point. That is,(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
sE(xA∪E) = xE

)
which concludes the proof.

In the case m = 1, Theorem 3.2 coincides with Theorem 3.1. In this case,
there is only one possible integral function π which is π(i) = 1 for all i ∈ [1..n]
and

g(pro x) ∗π (x− c(x)) = g(pro x)× (x− c(x)).

Therefore, Theorem 3.2 can be used in general to define the mean-value AE-
extensions. Also, if x ∈ IRn then

g(pro x) ∗π (x− c(x)) = g(x)× (x− c(x))

and the mean-value AE-extension coincides with the classical interval mean-
value extension.

Example 3.5. Consider the function

f(x) =
(

81x2
1 + x2

2 + 18x1x2 − 100
x2

1 + 81x2
2 + 18x1x2 − 100

)
Consider the following interval extension of its derivative:

A =
(

162(pro x1) + 18(pro x2) 2(pro x2) + 18(pro x1)
2(pro x1) + 18(pro x2) 162(pro x2) + 18(pro x1)

)
Then, we can build the following mean-value AE-extension of f :

h(x) = f(mid x) + A ∗ (x−mid x)

That is explicitly(
f1(mid x) + A11(x1 −mid x1) + A12(pro x2 −mid x2)
f2(mid x) + A21(pro x1 −mid x1) + A22(x2 −mid x2)

)
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If x = ([1.1, 0.9], [1.1, 0.9])T the mean-value AE-extension leads to

h(x) = ( [14,−14] , [14,−14] )T

and so proves that pro h(x,y) ⊆ range (f, pro x,pro y). As a consequence,
there exists x ∈ pro x such that f(x) = 0. Indeed, f(1, 1) = 0.

4 On the quality of the mean-value AE-extension

In the particular case of real-valued functions, the mean-value extension has
a quadratic order of convergence. However, in the general case, its order of
convergence is linear.

Theorem 4.1. With the notations of Theorem 3.2, suppose that furthermore g
is locally Lipschitz continuous. Then,

• the mean-value AE-extension has a linear order of convergence.

• if m = 1, i.e. in the special case of Theorem 3.1, the mean-value AE-
extension has a quadratic order of convergence.

Proof. The mean value extension is a composition of: the minimal AE-extensions
of + and ×, the operation pro and the interval extension g of f ′. All are locally
Lipschitz continuous (see [5]). Therefore, their composition is also locally Lips-
chitz continuous. As a consequence, the mean-value AE-extension has a linear
order of convergence (Proposition 7.2 [5]).

Now, we study the special case m = 1. Denote g(pro x)T by ∆ ∈ IRn and
define both

z = h(x) = f(x̃) + ∆T × (x− x̃) and z′ = f(x̃) + (dual ∆)T × (x− x̃)

By Theorem 3.1 and Proposition 3.2, we have z′ ⊆ f∗(x) ⊆ z. Thanks to Lemma
2.5 of [12], this implies dist(f∗(x), z) ≤ dist(z, z′). Therefore, it remains to
bound the distance between z and z′. Using the relations between the distance,
the Kaucher addition and multiplication, we have

dist(z, z′) = dist
(
∆T × (x− x̃) , (dual ∆)T × (x− x̃)

)
≤

∑
i∈[1..n]

dist
(
∆i × (xi − x̃i), (dual ∆i)× (xi − x̃i)

)
≤

∑
i∈[1..n]

|xi − x̃i|dist(∆i,dual ∆i)

Now, as x̃ ∈ x, we have |xi − x̃i| ≤ |wid xi| ≤ ||wid x||. Furthermore, it is
obvious that dist(∆i,dual ∆i) = wid ∆i ≤ ||wid ∆||. Therefore we have

dist(z, z′) ≤ n ||wid x|| ||wid ∆||
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Now, as g : IRn −→ IR1×n is locally Lipschitz continuous, so is g′ : IR −→ IRn
defined by g′(x) = g(x)T . And because pro is locally Lipschitz continuous, the
composition g′ ◦ pro : KRn −→ IRn is also locally Lipschitz continuous (with
these notations we have ∆ = g′ ◦ pro (x)). So, for all xref ∈ IRn, there exists
γ > 0 such that whatever is y ∈ Kxref , we have

dist(∆,g′ ◦ pro (y)) ≤ γ dist(x,y)

So, choose y = mid x ∈ xref . On one hand, we have

|| rad ∆|| ≤ dist(∆,g′ ◦ pro (mid x))

because g′ ◦ pro (mid x) ∈ R. On the other hand, we have dist(x,mid x) =
|| rad x||. So we have || rad ∆|| ≤ γ|| rad x|| which is equivalent to ||wid ∆|| ≤
γ||wid x||. Therefore, dist(z, z′) ≤ nγ||wid x||2. Finally, we have therefore
proved that, for all xref ∈ IRn, there exists γ′ = nγ such that

dist(h(x), f∗(x)) ≤ γ′||wid x||2

where γ′ does not depend on the choice of the box xref , which correspond to
quadratic order of convergence.

The next example illustrates that the mean-value AE-extension does not
have a quadratic order of convergence for m > 1.

Example 4.1. Consider the function

f(x) =
(
x1 + 0.1x2

0.1x1 + x2

)
which derivative is

f ′(x) =
(

1 0.1
0.1 1

)
Denote this matrix by ∆. Consider the integral function π : [1..2] −→ [1..2]
defined by π(1) = 2 and π(2) = 1. The corresponding mean-value AE-extension
of f is

g(x) = f(mid x) + ∆ ∗π (x−mid x)

= f(mid x) +
(

(pro x1 −mid x1) + 0.1(x2 −mid x2)
0.1(x1 −mid x1) + (pro x2 −mid x2)

)
Define the intervals xε = ([ε,−ε], [ε,−ε])T , so

g(xε) = ([−0.9ε, 0.9ε], [−0.9ε, 0.9ε])T

Denote this interval by zε. This latter interval is (f,xε)-interpretable, that is
the following quantified proposition is true.(

∃z ∈ zε
)(
∃x ∈ pro xε

)(
f(x) = z

)
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Now, in order to investigate the order of convergence of this mean-value AE-
extension, we consider an minimal (f,xε)-interpretable interval z∗ε which is more
accurate than zε. As x is improper, at least one component of z∗ε is improper
(because a proper interval cannot be minimal if x is improper). Therefore, we
have

dist(zε, z∗ε ) ≥ || rad zε|| = 0.9||wid xε||

Finally, we have

dist(zε, z∗ε )
||wid xε||2

≥ 0.9 ||wid xε||
||wid xε||2

=
0.9

||wid xε||

This ratio is not upper bounded if ε→ 0, that is if wid xε → 0. Therefore, this
mean-value AE-extension does not have a quadratic convergence order.

This example also illustrates that the choice of the function π is important
for the quality of the AE-extension: the choice π(1) = 1 and π(2) = 2 would give
a much more accurate mean-value AE-extension. However, a efficient choice for
π is not always possible, as illustrated in [5]. In such cases, a preconditioning
step is necessary. The use of some preconditioning process together with the
mean-value AE-extension is illustrated in the next section.

5 Inner approximation of the range continuous
vector-valued real functions

The mean-value AE-extension is now used so as to build an inner approximation
of a continuous function f : Rn −→ Rn under the form of a skew box, i.e. under
the form of the image of a box through a linear map. To this end, the mean-
value AE-extension is associated to a preconditioning process. First of all, the
following lemma is needed.

Lemma 5.1. Let d ∈ IR and x ∈ IR such that mid x = 0.

1. if 0 /∈ d then wid
(
d(dual x)

)
= −〈d〉 (wid x) where 〈d〉 is the mignitude

of the interval x, i.e. 〈d〉 = min{|d|, |d|}.

2. wid
(
d x
)
= |d|(wid x)

Proof. Just apply the expressions of the Kaucher arithmetic in the following
way.
1. On one hand, if d > 0 then d(dual x) = [dx,dx] = 〈d〉 (dual x). On the
other hand, if d < 0 then d(dual x) = [dx,dx] = 〈d〉 (dual x) (the last equality
being a consequence of x = −x and d = −〈d〉). Finally, wid (〈d〉 (dual x)) =
−〈d〉 (wid x).
2. d x = [−|d|x, |d|x]. Therefore, wid

(
d x
)
= |d|(wid x).
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Theorem 5.1. Let f : Rn −→ Rn be a continuously differentiable function,
x ∈ IRn, x̃ ∈ x and C ∈ Rn×n be a non-singular matrix. Furthermore consider
an interval matrix A ∈ IRn×n which satisfies ∀x ∈ x, f ′(x) ∈ A. Define the
interval

u = Cf(x̃) + (CA) ∗ dual (x− x̃) (21)

If u is improper, then

{C−1u|u ∈ pro u} ⊆ range (f,x)

If furthermore u is strictly improper then A is regular (and even strongly regu-
lar).

Proof. As C is non-singular, f(x) = z is equivalent to Cf(x) = Cz. Now the
equation (21) corresponds to the mean-value AE-extension of the function Cf
evaluated at dual x (the Jacoby matrix of the function Cf is Cf ′(x)). Therefore,
if u is improper, then the following proposition holds.(

∀u ∈ pro u
)(
∃x ∈ x

)(
u = Cf(x)

)
Notice that u = Cf(x) is equivalent to C−1u = f(x). Therefore, the previous
quantified proposition is equivalent to the following one.(

∀z ∈ {C−1u|u ∈ pro u}
)(
∃x ∈ x

)(
z = f(x)

)
that is {C−1u|u ∈ u} ⊆ range (f,x). It remains to study the regularity of the
interval matrix A. Suppose that u is strictly improper and denote CA by A′.
The ith line of the equation (21) is

ui = (Cf(x̃))i + A′ii(dual xi − x̃i) +
∑
j 6=i

A′ij(xj − x̃j) (22)

Suppose that for some i ∈ [1..n] we have 0 ∈ A′ii. By the definition of the
Kaucher multiplication, a proper interval which contains 0 multiplied by an
improper interval which proper projection contains 0 gives [0, 0]. So, we have
A′ii(dual xi − x̃i) = 0 and therefore ui ∈ IR. This latter is in contradiction
with the hypothesis that u is strictly improper, therefore we have 0 /∈ A′ii for
all i ∈ [1..n]. Similarly, we have wid x > 0. Now, applying the lemma 5.1 to
(22) we obtain

wid ui = 0− 〈A′ii〉 (wid xi) +
∑
j 6=i

|A′ij |(wid xj)

Regrouping these componentwise equalities, we get

wid u = −〈A′〉 (wid x)

where 〈A′〉 is the comparison matrix of A′. Therefore, as −wid u > 0, there
exists a non null positive vector v = (wid x) such that 〈A′〉 v ≥ 0, which
corresponds to the definition of a M-matrix. As 〈A′〉 is a M-matrix, A′ = CA
is a H-matrix and A is finally a strongly regular matrix ([16] theorem 4.1.2 and
its corollary).
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Figure 2: Inner approximation of the range of a vector-valued function.

Example 5.1. Consider the function

f(x) =
(
x6

1 + x6
2 + x1x2

x6
1 − x6

2 − x1x2

)
and the interval x = ([0.99, 1.01], [0.99, 1.01])T . Consider the following interval
extension of f ′:

A =
(

6x5
1 + x2 6x5

2 + x1

6x5
1 − x2 −6x5

2 − x1

)
⊇ {f ′(x) | x ∈ x} .

Choosing C = (mid A)−1 and x̃ = mid x, the application of Theorem 5.1 leads
to

u ≈ ([0.18, 0.16], [0.27, 0.25])T .

As u is improper, Theorem 5.1 proves that following skew box is an inner
approximation of range (f,x):

{(mid A)u | u ∈ pro u} .

The exact range (continuous line) and the previous skew box (dotted line) are
displayed on Figure 2.

Now, an existence test is derived from Theorem 5.1 in a simple way.

Corollary 5.1. Let f : Rn −→ Rn be a continuously differentiable function,
x ∈ IRn be non degenerated box, x̃ ∈ x and C ∈ Rn×n be a non-singular
matrix. Furthermore consider an interval matrix A ∈ IRn×n which satisfies
∀x ∈ x, f ′(x) ⊆ A. Define the interval

u = Cf(x̃) + (CA) ∗ dual (x− x̃)
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If u ⊆ 0 then there exists x ∈ x such that f(x) = 0. If furthermore u is strictly
improper then there is only one solution inside x.

Proof. The inclusion u ⊆ 0 is equivalent to u is improper and 0 ∈ pro u.
Theorem 5.1 therefore entails

{C−1u|u ∈ pro u} ⊆ range (f,x) (23)

Now, 0 ∈ pro u entails 0 ∈ {C−1u|u ∈ pro u} which finally entails 0 ∈
range (f,x). Therefore, there exists x ∈ x such that f(x) = 0. The uniqueness
is proved noticing that u strictly improper entails A is strongly regular. Then,
the regularity of the interval matrix A entails the uniqueness of the solution
([16] theorem 5.1.6).

Surprisingly, this existence test is equivalent to existence test associated to
the classical Hansen-Sengupta operator. Indeed, the componentwise expression
of the test of the corollary 5.1 is

(Cf(x̃))i + (CA)ii(dual xi − x̃i) +
∑
j 6=i

(CA)ij(xj − x̃j) ⊆ 0

Now using the rules of the Kaucher arithmetic, this is equivalent to

−(Cf(x̃))i −
∑
j 6=i

(CA)ij(xj − x̃j) ⊆ dual
(
(CA)ii

)
(xi − x̃i)

which is eventually equivalent to

x̃i −
1

(CA)ii

(
(Cf(x̃))i +

∑
j 6=i

(CA)ij(xj − x̃j)
)
⊆ xi

because 0 /∈ pro (CA)ii. This last expression corresponds to the existence test
associated to the classical Hansen-Sengupta operator (see [16]). This link gives
new lights on the existence test associated to the Hansen-Sengupta operator.
Indeed, when this latter succeeds, it means that it has been proved that the
following quantified propositions are true:(

∀x2 ∈ x2

)(
∀x3 ∈ x3

)
· · ·
(
∀xn ∈ xn

)(
∃x1 ∈ x1

)(
f1(x) = 0

)(
∀x1 ∈ x2

)(
∀x3 ∈ x3

)
· · ·
(
∀xn ∈ xn

)(
∃x2 ∈ x2

)(
f2(x) = 0

)
...

...(
∀x1 ∈ x2

)(
∀x2 ∈ x2

)
· · ·
(
∀xn−1 ∈ xn−1

)(
∃xn ∈ xn

)(
fn(x) = 0

)
So that all these quantified propositions are true, the function f has to be close
to the identity. This explains why the Hansen-Sengupta existence test generally
needs a midpoint inverse preconditioning to succeed.
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6 Conclusion

In Modal Interval Revisited Part 1 ([5]), a new formulation of the modal intervals
theory has been proposed: new extensions to generalized intervals, called AE-
extensions, have been defined which enhance the interpretations of extensions
to classical intervals. Thanks to this new framework, a new linearization process
is proposed under the form of the mean-value AE-extension. This linearization
process is compatible with both inner and outer approximation of functions
ranges over boxes.

The advantages of the mean-value AE-extension in front of the natural AE-
extension (and therefore on the modal rational extensions) are the same than the
advantages of the classical mean-value extension in front of the classical natural
extension: on one hand, it is more accurate for small intervals (its quadratic
order of convergence has been established for real-valued functions). On the
other hand, thanks to the linearization process it provides, it allows to apply to
non-linear systems the algorithms dedicated to linear systems.

The usefulness of the mean-value AE-extension has been illustrated: some
inner approximation of the range of continuously differentiable functions f :
Rn −→ Rn over some small boxes has been constructed. Also, the well-known
existence and uniqueness test associated to the classical Hansen-Sengupta op-
erator has been easily derived from the mean-value AE-extension.

Future work

The newly introduced linearization process is compatible with inner approxi-
mation of non-linear AE-solution sets and this has to be investigated. Also, the
mean-value AE-extension has been defined only for continuously differentiable
functions. The introduction of slopes in place of derivatives should allow extend-
ing the scope of the mean-value AE-extension to non-differentiable functions like
abs(x) or max(x, y) and obtaining more accurate computations.
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A Some useful theorems from real analysis

The mean value-theorem is usually stated in the following way.

Theorem (The mean-value theorem). Let f : R −→ R be differentiable, a ∈ R
and b ∈ R. Then, there exists c ∈ a ∨ b which satisfies

f(b) = f(a) + f ′(c)(b− a)
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The Brouwer fixed point theorem is a famous classical existence theorem
(see for example [10] or [16]).

Theorem (Brouwer fixed point theorem). Let E ⊆ Rn be nonempty, compact
and convex, and f : E −→ E be continuous. Then, there exists x ∈ E such that
f(x) = x.
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