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Modal Intervals Revisited Part 2: A Generalized Interval Mean-Value Extension

In Modal Intervals Revisited Part 1, new extensions to generalized intervals (intervals whose bounds are not constrained to be ordered), called AE-extensions, have been defined. They provide the same interpretations as the extensions to modal intervals and therefore enhance the interpretations of the classical interval extensions (for example, both inner and outer approximations of function ranges are in the scope of the AE-extensions). The construction of AE-extensions is similar to the one of classical interval extensions. In particular, a natural AE-extension has been defined from the Kaucher arithmetic which simplified some central results of the modal intervals theory.

Starting from this framework, the mean-value AE-extension is now defined. It represents a new way to linearize a real function, which is compatible with both inner and outer approximations of its range. With a quadratic order of convergence for real-valued functions, it allows to overcome some difficulties which were encountered using a preconditioning process together with the natural AE-extensions. Some application examples are finally presented, displaying the application potential of the mean-value AE-extension.

Introduction

Classical intervals

One fundamental concept of the classical intervals theory is the extension of real functions to intervals (see [START_REF] Moore | Interval Analysis[END_REF][START_REF] Alefeld | Introduction to Interval Computations[END_REF][START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF]). These extensions are constructed so as to provide supersets of the range of real functions over boxes. However, computing the minimal interval extension of a real function, i.e. the interval 1 hull of the range of a function over a box, is a NP-hard problem with respect to the number of variables (see [START_REF] Kreinovich | Computational Complexity and Feasibility of Data Processing and Interval Computations[END_REF]). One of the main work of interval researchers has been to construct computable extensions which lead to good approximations of functions ranges. Some intensively used interval extensions are for example the natural extensions and the mean-value extensions. This latter has better properties than the natural extension and have been intensively studied (see [START_REF] Caprani | Mean Value Forms in Interval Analysis[END_REF][START_REF] Ratschek | Centered Forms[END_REF][START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF][START_REF] Neumaier | Taylor forms -use and limits[END_REF]). It relies upon a linearization of the function which leads to an interval linear function whose range contains the range of the original non-linear function. This provides the mean-value extension with a good behavior when evaluated over small enough intervals: formally, the mean-value extension has a quadratic order of convergence. Furthermore it allows to apply to non-linear interval systems some algorithms dedicated to linear interval systems.

AE-extensions

The modal intervals theory enhances the classical intervals theory providing richer interpretations (see [START_REF]Applications of Interval Analysis to Systems and Control[END_REF][START_REF]SIGLA/X group. Modal intervals[END_REF] for a description of the theory and [START_REF] Armengol | Application of modal intervals to the generation of error-bounded envelopes[END_REF][START_REF] Sainz | Formal Solution to Systems of Interval Linear or Non-Linear Equations[END_REF][START_REF] Sainz | Interval Estimations of Solutions Sets to Real-Valued Systems of Linear or Non-Linear Equations[END_REF][START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF][START_REF] Herrero | Quantified Set Inversion Algorithm with Applications to Control[END_REF] for some promising applications of the enhanced interpretations). In particular, both inner and outer approximations of the function ranges over boxes are in the scope of extensions to modal intervals. The modal intervals theory has been revisited and reformulated in Modal Intervals Revisited Part 1 (see [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). New extensions to generalized intervals, called AE-extensions, have been defined which provide the same enhanced interpretations as the modal intervals theory. However, the construction of the AE-extensions is similar to the construction of the extensions to classical intervals. In particular, the natural AE-extensions have been defined and the order of convergence of AE-extensions has been introduced. If the natural AE-extension was proved to have a linear order of convergence in Modal Intervals Revisited Part 1, it was also illustrated that such an order of convergence was not sufficient in some situations in particular when some preconditioning process has to be involved.

Contribution

The mean-value AE-extensions are defined. They provide a new way to linearize a nonlinear function which is compatible with the enhanced interpretations of AE-extensions (in particular with both inner and outer approximations of the function range over boxes). Similarly to the classical interval mean-value extensions, the mean-value AE-extensions are proved to have a quadratic order of convergence in the case of real-valued functions f : R n -→ R. The usefulness of the mean-value AE-extension is illustrated. Given a continuously differentiable function f : R n -→ R n , the mean-value AE-extension is used so as to construct a parallelepiped which is included inside the range of f over a box x.

Outline of the paper

Basic definitions related to generalized intervals and AE-extensions are presented in Section 2. The mean-value AE-extensions for real-valued and vectorvalued functions are defined in Section 3. Their order of convergence are investigated in Section 4. The mean-value AE-extension is used together a preconditioning process so as to construct a inner approximation of the range of a function over a box in Section 5.

Notations

When dealing with sets, the usual set union, set intersection and set difference are respectively denoted by A ∪ B, A ∩ B and A\B and defined by

x ∈ A ∪ B ⇐⇒ x ∈ A ∨ x ∈ B A ∩ B = {x ∈ A|x ∈ B} and A\B = {x ∈ A|x /
∈ B}. Intervals, interval functions and interval matrices will be denoted by boldface letters, for example x, f and A. The set of classical intervals is denoted by IR. An interval x ∈ IR n is equivalently considered as a subset of R n or as vector of intervals. The interval hull of a subset E of R n is denoted by E. The lower and upper bounds of an interval x are denoted respectively by inf x and sup x. The interval join and meet operations, which are different from the set union and intersection, will be respectively denoted by the symbols ∨ and ∧ (the join of two intervals is sometimes called their hull). Given E ⊆ R n , it will be useful to denote {x ∈ IR n |x ⊆ E} by IE. The notations of classical intervals will be used for generalized intervals and their related objects, the set of generalized intervals being denoted by KR (see Section 2.1 for more details). The following notation will be used: Notation. Sets of indices are denoted by calligraphic letters. Let I = {i 1 , . . . , i n } be an ordered set of indices with i k ≤ i k+1 . Then, the vector (x i1 , . . . , x in ) T is denoted by x I .

This notation is similar to the one proposed in [START_REF] Kearfott | Standardized Notation in Interval Analysis[END_REF]. It will be used with any kind of objects, for example real vectors, interval vector or function vectors. The involved set of indices will be ordered with the usual lexicographic order. Intervals of integers are denoted by [n..m] ⊆ N where n, m ∈ N with n ≤ m. The vector x [1..n] = (x 1 , . . . , x n ) T will be denoted by the usual notation x when no confusion is possible.

The real functions f : R n -→ R and f : R n -→ R m are respectively called real-valued functions and vector-valued functions when emphasis has to be put on this difference. Their derivatives are defined homogeneously in the following way: f (x) ∈ R m×n is defined by

f (x) ij = ∂f i ∂x j (x) So, if m = 1 then f (x) ∈ R 1×n is the gradient of f ; if m = n = 1 then f (x) ∈ R 1×1
is identified to the usual derivative of f . Finally, vectors of R n (respectively IR n or KR n ) are identified to the column matrices of R n×1 (respectively IR n×1 or KR n×1 ). Therefore, with x, y ∈ R n , the matrix product x T × y stands for i∈ [1..n]

x i y i

AE-extensions of real functions

This section presents the generalized intervals and the new formulation of the modal intervals theory that was proposed in Modal Intervals Revisited Part 1 ( [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Only results that are relevant for the developments proposed in the present paper are summarized in this section.

Generalized intervals

Generalized intervals are intervals whose bounds are not constrained to be ordered, for example [-1, 1] or [1, -1] are generalized intervals. They have been introduced in [START_REF] Ortolf | Eine Verallgemeinerung der Intervallarithmetik[END_REF][START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF][START_REF] Kaucher | Interval Analysis in the Extended Interval Space IR[END_REF]] so as to improve both the algebraic structure and the order structure of the classical intervals. The set of generalized intervals is denoted by KR and is decomposed into three subsets:

• The set of proper intervals which bounds are ordered increasingly. These proper intervals are identified with classical intervals. The set of proper intervals is denoted by the same symbol as the one used for classical intervals, i.e. IR = {[a, b]|a ≤ b}.

• The set of improper intervals which bound are orderer decreasingly. It is denoted by

IR = {[a, b]|a ≥ b}.
• The set of degenerated intervals [a, a], where a ∈ R, which are both proper and improper. A degenerated interval [a, a] will be identified to the corresponding real a.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two generalized intervals [a, b] and [b, a]. It will be useful to change one to the other keeping the underlying set of reals unchanged using the following operators:

• dual operator: dual [a, b] = [b, a]; • proper projection: pro [a, b] = [min{a, b}, max{a, b}];
The operations mid , rad and | . | are defined as in the case of classical intervals.

• mid [a, b] = a+b 2 ;

•

rad [a, b] = b-a 2 ; • |[a, b]| = max{|a|, |b|}.
The width is defined as wid x = 2 rad x. Both the radius and the width are positive for proper intervals and negative for improper intervals (and null for degenerated intervals). Given a set of indices E with card E = n and a generalized interval x E ∈ KR n , the following functions allow to pick up the indices of the proper and improper components of x E :

• P(x E ) = {i ∈ E|x i ∈ IR} • I(x E ) = {i ∈ E|x i / ∈ IR}
Remark. Degenerated components are counted as proper intervals by convention. The other choice would have been equivalent.

The distance between two generalized intervals x ∈ KR and y ∈ KR is defined in the following way:

dist(x, y) = max{|x -y|, |x -y|}
As shown in [START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF][START_REF] Kaucher | Interval Analysis in the Extended Interval Space IR[END_REF], KR then becomes a complete metric space. The generalized intervals are ordered by an inclusion which prolongates the inclusion of classical intervals. Consider two generalized intervals x = [x, x] and y = [y, y]

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y

The generalized interval join and meet are formally the same as their classical counterparts: consider E ⊆ KR bounded set of generalized interval then Remark. In the context of generalized intervals, it becomes important to use two different signs for the set intersection and for the interval meet. For example,

[0, 1] [2, 3] = ∅ whereas [0, 1] ∧ [2, 3] = [2, 1].
The inclusion is related to the dual operation in the following way.

x ⊆ y ⇐⇒ (dual x) ⊇ (dual y)

The so-called Kaucher arithmetic extends the classical interval arithmetic. Its definition can be found in [START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF][START_REF] Kaucher | Interval Analysis in the Extended Interval Space IR[END_REF] or in [START_REF] Shary | A new technique in systems analysis under interval uncertainty and ambiguity[END_REF]. When it is not misunderstanding, the Kaucher multiplication will be denoted by xy instead of x×y. The Kaucher arithmetic has better algebraic properties than the classical interval arithmetic: The Kaucher addition is a group. The opposite of an interval x is -dual x, i.e.

x + (-dual x) = x -dual x = [0, 0] The Kaucher multiplication restricted to generalized intervals which proper projection do not contains 0 is also a group. The inverse of such a generalized interval x is 1/(dual x), i.e.

x × (1/ dual x) = x/(dual x) = [START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF][START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF] A useful property of the Kaucher arithmetic is its monotonicity with respect to the inclusion: whatever are • ∈ {+, ×, -, ÷} and x, y, x , y ∈ KR, 

x ⊆ x ∧ y ⊆ y =⇒ (x • y) ⊆ (x • y ) Furthermore,

AE-extensions

The classical interval extensions are defined so as to compute outer approximations of functions ranges over boxes. The condition range (f, x) ⊆ z can be equivalently stated by the following quantified proposition:

∀x ∈ x ∃z ∈ z z = f (x)
The AE-extensions are defined allowing more general quantified propositions. The quantifier corresponding to a variable is determined using the proper/improper quality of the generalized interval corresponding to this variable. The denomination "AE" is related to the specific ordering of the quantifier, the universal quantifiers preceding the existential ones ("A(ll)E(xists)"). The following definition formalizes this idea. Definition 2.2 (Goldsztejn, [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Let f : R n -→ R m , x ∈ KR n and z ∈ KR m . The interval z is interpretable with respect to f and x (or shortly (f, x)interpretable) if and only if the following quantified proposition is true:

∀x P ∈ x P ∀z I ∈ pro z I ∃z P ∈ z P ∃x I ∈ pro x I z = f (x) (1) 
where z = g(x) and P = P(x), I = I(x), P = P(z) and I = I(z) are the sets of indices corresponding respectively to the proper and improper components of x and z (if one of these sets of indices is empty then the corresponding quantifier block it canceled).

When m = 1, the quantified proposition (1) can be formulated using a quantifier which depends on the proper/improper quality of the interval z:

∀x P ∈ x P Q (z) z ∈ z ∃x I ∈ pro x I z = f (x)
where

Q (z) = ∃ if z ∈ IR and Q (z) = ∀ otherwise.
Here are some possible interpretations of a (f, x)-interpretable interval z in the special case m = 1:

1. When x is proper, z has to be proper and a

(f, x)-interpretable interval z satisfies ∀x ∈ x ∃z ∈ z z = f (x) ,
i.e. z is an outer approximation of range (f, x).

When

x is improper, z can be either proper or improper.

(a) If z is improper then it satisfies

∀z ∈ pro z ∃x ∈ pro x z = f (x) ,
i.e. pro z is an inner approximation of range (f, x).

(b) If z is proper then it satisfies ∃z ∈ pro z ∃x ∈ pro x z = f (x) ,
i.e. pro z ∩ range (f, pro x) = ∅.

3. When x 1 is proper and x 2 is improper, z can be either proper or improper.

(a) If z is improper then it satisfies

∀x 1 ∈ x 1 ∀z ∈ pro z ∃x 2 ∈ pro x 2 z = f (x) ,
i.e. for any fixed z 0 ∈ pro z, the interval x 1 is inside the projection of the relation f (x 1 , x 2 ) = z 0 on the axis x 1 .

(b) If z is proper then it satisfies

∀x 1 ∈ x 1 ∃z ∈ z ∃x 2 ∈ x 2 z = f (x) .
When m > 1, some additional interpretations are available. In all cases, the more interesting interpretations are (1), (2a) and (3a).

The inclusion between generalized intervals provides a way to compare (f, x)interpretable intervals: as illustrated by the next example, if two (f, x)-interpretable intervals z and z are related by z ⊆ z then z is more accurate than z (i.e. z provides more information than z ). [START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF], the first is more accurate than the second. Indeed, the first is a more accurate outer approximation of range (f, x) than the second. Now, the improper intervals [START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF][START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF] and [START_REF] Hansen | On solving systems of equations using interval arithmetic[END_REF][START_REF] Alefeld | Introduction to Interval Computations[END_REF] are both (f, dual x)-interpretable: indeed both pro [START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF][START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF] and pro [START_REF] Hansen | On solving systems of equations using interval arithmetic[END_REF][START_REF] Alefeld | Introduction to Interval Computations[END_REF] are inner approximations of range (f, x)). As [8, 1] ⊆ [START_REF] Hansen | On solving systems of equations using interval arithmetic[END_REF][START_REF] Alefeld | Introduction to Interval Computations[END_REF], the first is more accurate than the second. Indeed, pro [START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF][START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF] is a more accurate inner approximation of range (f, x) than pro [START_REF] Hansen | On solving systems of equations using interval arithmetic[END_REF][START_REF] Alefeld | Introduction to Interval Computations[END_REF]. This leads naturally to the following definition for the minimality of (f, x)interpretable intervals: the (f, x)-interpretable interval z is minimal if and only if for any (f, x)-interpretable interval z ,

(f, x)-interpretable. As [-1, 10] ⊆ [-2,
z ⊆ z =⇒ z = z
This definition of minimality generalizes its corresponding one in the context of classical interval extensions. Indeed, if x is proper, then the only minimal (f, x)interpretable interval is range (f, x) (as in the context of classical interval extensions). However, when x is not proper, there are in general several minimal (f, x)-interpretable intervals. This is illustrated by the next example.

Example 2.2. Let f (x) = M x with M = 1 1 -1 1 and x = [1, -1] [1, -1] ∈ IR 2 .
An improper (f, x)-interpretable interval z ∈ IR is an inner approximation of range (f, pro x), i.e. it satisfies

∀z ∈ pro z ∃x ∈ pro x z = f (x) .
If the inner approximation (pro z) is maximal then z is an minimal (f, x)interpretable interval (see [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). The following improper intervals have a proper projection which is a maximal inner approximation of range (f, pro x):

z λ = 1 2 [1 -λ , λ -1] [λ + 1 , -λ -1]
where λ ∈ [-1, 1]. Therefore, they are minimal (f, x)-interpretable and in this case there is a manifold of minimal (f, x)-interpretable intervals.

The definition of the AE-extensions is constructed from the usual definition of an extension to classical intervals changing the condition "range (f, x) ⊆ z" by its generalization to generalized intervals "z is (f, x)-interpretable". Definition 2.3 (Goldsztejn, [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Consider a continuous real function f : R n -→ R m . An interval function g : KR n -→ KR m is an AE-extension of f if and only if both following conditions are satisfied:

1. ∀x ∈ R n g(x) = f (x) 2. ∀x ∈ KR n g(x) is (f, x)-interpretable Also, g is minimal if for all x ∈ KR n the (f, x)-interpretable interval g(x) is minimal.
Remark. As in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF], the following simplification will be used: all the functions met in the sequel will be defined in R n . When other functions have to be considered, some attention should be given to the involved definition domains. This definition is indeed a generalization of the definition of classical interval extensions as when x is proper, g(x) has to be proper and we have

∀x ∈ x ∃z ∈ z z = f (x) , that is, range (f, x) ⊆ g(x)
. When dealing with rounded computations, an AEextension cannot satisfy [START_REF] Alefeld | On the Approximation of the Range of Values by Interval Expressions[END_REF]. An interval function which only satisfies ( 2) is called a weak AE-extension. Some questions which are obvious in the context of classical interval extensions have to be investigated when dealing with AEextensions. It is proved in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] that:

• every continuous function has at least one AE-extension.

• for every AE-extension, there exists an minimal AE-extension which is more accurate.

Once the minimality has been defined, the quality of AE-extensions can be measured using the order of convergence. Generalizing its definition in the context of classical interval extensions, the order of convergence of AE-extensions can be defined in the following way:

Definition 2.4 (Goldsztejn, [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Let f : R n -→ R m be a continuous function and g : KR n -→ KR m be an AE-extension of f . The AE-extension g has a convergence order α ∈ R, α > 0, if and only if the exists an minimal AEextension f of f more accurate that g such that for any x ref ∈ IR n , there exists γ > 0 such that for any

x ∈ Kx ref , dist(g(x), f (x)) ≤ γ(|| wid x||) α
Remark. It is obvious that an AE-extension which has an order of convergence α has also an order of convergence α for any 0 < α ≤ α. Also, the usually considered orders of convergence are integers. An order of convergence 1 is called a linear order of convergence, and an order of convergence 2 a quadratic order of convergence.

It is proved in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] that any locally Lipschitz continuous AE-extension has a linear order of convergence.

The construction of AE-extensions is done in two steps: first, the special case of real-valued functions is investigated leading to the expressions of the minimal AE-extensions of a class of elementary functions. Then, the natural AE-extensions of compound real functions are defined.

AE-extensions of real-valued functions

Any continuous real-valued function f : R n -→ R has an unique minimal AEextension which is denoted by f * : KR n -→ KR. From the definition of the minimality of AE-extensions, f * is the only interval function which satisfies for

all z ∈ KR n , z is (f, x)-interpretable ⇐⇒ f * (x) ⊆ z
From this latter characterization, one can get the following expression of f * :

f * (x) = ∨ x P ∈x P ∧ x I ∈(pro x I ) f (x) = [ min x P ∈x P max x I ∈(pro x I ) f (x) , max x P ∈x P min x I ∈(pro x I ) f (x)]
where P = P(x) et I = I(x).

Remark. When P = ∅ or I = ∅, the expressions of f * are respectively

f * (x) = [ max x∈(pro x) f (x), min x∈(pro x) f (x)] and f * (x) = [min x∈x f (x), max x∈x f (x)]
Computing f * (x) is NP-hard in general. However, it can be easily computed for simple functions that present good monotonicity properties. In particular, the AE-extensions of elementary functions can be computed from this expression of f * . The elementary functions here considered are the following, their definition domain being the usual ones:

• two variables functions: Ω = { x + y , x -y , x × y , x/y} • one variable functions: Φ = { exp x, ln x, sin x, cos x, tan x, arccos x, arcsin x, arctan x, abs x, x n , n √ x}

In the cases of +, -, × and /, it is proved in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] that f * coincides with the Kaucher arithmetic.

Example 2.3. Consider the function f (x, y) = x + y, x ∈ KR and y ∈ KR.

Then z = x + y is the unique minimal (f, x, y)-interpretable interval. For example, [-1, 1] + [START_REF] Kaucher | Interval Analysis in the Extended Interval Space IR[END_REF][START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF] = [START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF][START_REF] Herrero | Quantified Set Inversion Algorithm with Applications to Control[END_REF] means that the reals [START_REF] Herrero | Quantified Set Inversion Algorithm with Applications to Control[END_REF][START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF] is the largest interval z which satisfies

∀z ∈ z ∀x ∈ [-1, 1] ∃y ∈ [8, 12] z = x + y
The minimal AE-extensions of monotonic one variable elementary function are easily computed: for example, exp(x) = [exp(inf x), exp(sup x)] and, for pro x ⊆ [-1, 1], arccos(x) = [arccos(sup x), arccos(inf x)]. In the cases of non monotonic functions, the algorithms dedicated to the computation of the classical interval extensions can be used with only minor modifications regarding rounded computations.

Remark. Not all continuous functions can be considered as elementary functions. See [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] for the condition which has to be satisfied by the elementary functions. For example the two variable function f (x, y) = 1-(x-y) 2 cannot be considered as an elementary function.

The natural AE-extension

The interval evaluation f(x) of an expression f of a function f using the minimal AE-extensions of the involved elementary functions is (f, x)-interpretable provided that each variable has only one occurrence inside the expression.

Example 2.4. Consider the function f (u, v, w) = u(v + w) and the intervals u = [1, 2], v = [-1, 1] and w = [START_REF] Sainz | Formal Solution to Systems of Interval Linear or Non-Linear Equations[END_REF][START_REF] Herrero | Quantified Set Inversion with Applications to Control[END_REF]. The expression of f involving only one occurrence of each variable, the interval z = u(v + w) = [START_REF] Ratschek | Centered Forms[END_REF][START_REF] Ortolf | Eine Verallgemeinerung der Intervallarithmetik[END_REF] is (f, u, v, w)interpretable, that is, the following quantified proposition is true:

∀u ∈ u ∀v ∈ u ∀z ∈ pro z ∃w ∈ pro w z = f (u, v, w) (2) 
Such special cases of expressions are sufficient for the coming developments. The construction of the natural AE-extensions of more general functions is described in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] and needs some modifications of the expressions f (some operations pro have to be inserted before all but one occurrences of each variable). Now, two properties of the interval evaluation of an expression containing only one occurrence of each variable are provided. First, in the special case of bilinear functions f (x, y) = x T × y, the interval evaluation is minimal, i.e. f * (x, y) = x T × y. Second, Proposition 2.1 will play a key role in the following developments. Skolem functions of quantified propositions like

∀x A ∈ x A ∃x E ∈ x E φ(x A E ) (3) 
where A and E are disjoint sets of indices such that card A + card E = n and x A E ∈ IR n and φ is a real relation of R n , are defined using an analogy with first order logic Skolem functions (see e.g. [START_REF] Manna | The Deductive Foundations of Computer Programming[END_REF]): a Skolem function of ( 3) is a function

s E : x A -→ x E s.t. x E = s E (x A ) =⇒ φ(x A E ).
Remark. It is implied that the previous implication stands for all x A ∈ x A . .n] ) A(x {0} ) (so that A contains the indices of the universally quantified variable and E contains the indices of the existentially quantified ones).

Then both A and E are nonempty and the quantified proposition

∀x A ∈ pro x A ∃x E ∈ pro x E f (x [1..n] ) = x 0
has a continuous Skolem function (and is therefore true).

Example 2.6. Proposition 2.1 proves that the quantified proposition (2) has a continuous Skolem function.

The mean-value AE-extension

The mean-value AE-extension is first defined for continuously differentiable functions f : R n -→ R in Subsection 3.2. Then the AE-extensions of continuously differentiable functions f : R n -→ R m are defined in Subsection 3.3. First of all, an improved mean-value theorem is needed.

An improved mean-value theorem

Given a continuously differentiable function f : R -→ R, x ∈ IR, x ∈ x and ∆ ⊇ range (f , x), the mean-value theorem (see appendix A) entails the following quantified proposition

∀x ∈ x ∃δ ∈ ∆ f (x) = f (x) + δ(x -x)
The next proposition provides a stronger property: it proves that this quantified proposition has a continuous Skolem function.

Proposition 3.1. Let f : R n -→ R be a continuously differentiable function, x ∈ IR n , x ∈ x and ∆ ∈ IR n such that for all k ∈ [1..n], ∆ k ⊇ range ∂f ∂x k , x 1 , . . . , x k , xk+1 , . . . , xn
Then, the quantified proposition

∀x ∈ x ∃δ ∈ ∆ f (x) = f (x) + δ T (x -x)
has a continuous Skolem function (and is therefore true).

Proof. We have to prove that there exists a continuous function s : x -→ ∆ which satisfies f (x) = f (x) + s(x) T × (x -x). To this end, the function f (x [1.

.n] ) is written in following way:

f (x [1..n] ) = f (x [1..n] ) + k∈[1..n] g k (x [1..n] ), (4) 
with

• g 1 (x [1..n] ) = f (x 1 , x[2..n] ) -f (x [1..n] ) • g k (x [1..n] ) = f (x [1..k] , x[k+1..n] ) -f (x [1..k-1] , x[k..n] ) for k ∈ [2..n -1] • g n (x [1..n] ) = f (x [1..n] ) -f (x [1..n-1] , xn ).
Example. For n = 2, the previous expression becomes

f (x [1..2] ) = f (x [1..2] ) + g 1 (x [1..2] ) + g 2 (x [1..2] ) = f (x [1..2] ) + f (x 1 , x2 ) -f (x [1..2] ) + f (x [1..2] ) -f (x 1 , x2 ) .
Example. For n = 3, the previous expression becomes

f (x [1..3] ) = f (x [1..3] ) + g 1 (x [1..3] ) + g 2 (x [1..3] ) + g 2 (x [1..3] ) = f (x [1..3] ) + f (x 1 , x2 , x3 ) -f (x [1..3] ) + f (x 1 , x 2 , x3 ) -f (x 1 , x2 , x3 ) + f (x [1..3] ) -f (x 1 , x 2 , x3 ) .
Let us define s k (x) in the following way:

s k (x) = g k (x) x k -xk if x k = xk and s k (x) = ∂f ∂x k (x [1..k-1] , x[k..n] ) otherwise.
Three claims has to be proved.

Claim 1: f (x) = f (x) + s(x) T × (x -x). Thanks to (4) we just have to prove that g k (x) = s k (x)(x k -xk ) for all x ∈ x. On one hand, if x k = xk then s k (x)(x k -xk ) = g k (x) x k -xk (x k -xk ) = g k (x).
On the other hand, if x k = xk then g k (x) = 0 = s k (x) × 0. Claim 2: s k in continuous inside x. Let us consider x ∈ x and prove that s k is continuous at x. On one hand, if x k = xk then s k is a composition of continuous functions and is therefore continuous. On the other hand, if x k = xk we consider a sequence x (i) which converges to x. Then, we have by definition

s k (x) = ∂f ∂x k (x [1..k-1] , x[k.
.n] ) and thanks to the mean-value theorem

s k (x (i) ) = f (x (i) [1..k] , x[k+1..n] ) -f (x (i) [1..k-1] , x[k..n] ) x (i) k -xk = ∂f ∂x k (x [1..k-1] , ξ (i) k , x[k+1,n] ) with ξ (i) k ∈ x (i) k ∨ xk . As x (i)
k converges to xk , the sequence ξ

(i)
k also converges to xk . Therefore, s k (x (i) ) converges to s k (x) because ∂f ∂x k is continuous. As a consequence, s k is eventually continuous at x. Claim 3: s k (x) ∈ ∆ k . On one hand, if x k = xk then the mean-value theorem proves that for any x ∈ x,

f (x [1..k] , x[k+1..n] ) -f (x [1..k-1] , x[k..n] ) x k -xk ∈ range ∂f ∂x k , x [1..k-1] , x k ∨ xk , x[k+1..n] ⊆ ∆ k
On the other hand, if

x k = xk then s k (x) ∈ ∆ k by definition of s k .
Remark. The use of the expression

∆ k ⊇ range ∂f ∂x k , x 1 , . . . , x k , xk+1 , . . . , xn instead of ∆ k ⊇ range ∂f ∂x k , x
was initially proposed in [START_REF] Hansen | On solving systems of equations using interval arithmetic[END_REF], in the context of classical intervals extensions. The second expression, which is simpler, will be used in the sequel so as to simplify the proposed statements. It can be replaced by the first expression with no influence on the statements then providing significant improvements in the computations.

Remark. Obviously, the hypothesis x ∈ x can be changed to x ∈ R n provided that

∆ k ⊇ range ∂f ∂x k , x 1 , . . . , x k , xk+1 , . . . , xn is changed to ∆ k ⊇ range ∂f ∂x k , x 1 ∨ x1 , . . . , x k ∨ xk , xk+1 , . . . , xn .

The mean-value AE-extension of real-valued functions

The mean-value AE-extension is first illustrated on the special case of a one variable function. Given a continuously differentiable function f : R -→ R, x ∈ IR, x ∈ pro x and ∆ ⊇ range (f , pro x), define the interval z by

z = f (x) + ∆(x -x) (5) 
which is improper (multiplication by an improper interval which contains 0 leads to an improper interval which contains 0). Therefore, so as to prove that z is (f, x)-interpretable, the validity of the following quantified proposition has to be proved:

∀z ∈ pro z ∃x ∈ pro x z = f (x) (6) 
On one hand, the expression (5) corresponds to the natural AE-extension of the function m(x, δ) = f (x) + δ(x -x) evaluated at x ∈ IR and ∆ ∈ IR. Therefore the quantified proposition

∀δ ∈ ∆ ∀z ∈ pro z ∃x ∈ pro x z = m(x, δ) (7) 
has a continuous Skolem function by Proposition 2.1. I.e. there exists a continuous function s : (∆, pro z) T -→ pro x that satisfies x = s (δ, z) =⇒ z = m(x, δ). On the other hand, Proposition 3.1 proves that the quantified propo-

sition ∀x ∈ pro x ∃δ ∈ ∆ f (x) = m(x, δ) (8) 
also has a continuous Skolem function. I.e. there exists a continuous function s : pro x -→ ∆ which satisfies δ = s (x) =⇒ f (x) = m(x, δ). In order to prove ( 6), the continuous function s : (pro x, pro z) T -→ pro x is constructed in the following way: s(x, z) = s (s (x), z). One can easily check that it satisfies

x = s(x, z) =⇒ ∃δ ∈ ∆ x = s (δ, z) ∧ δ = s (x) =⇒ ∃δ ∈ ∆ z = m(x, δ) ∧ f (x) = m(x, δ) =⇒ z = f (x) (9) 
Now, for each z ∈ pro z, the continuous function s(., z) has pro x as domain and pro x as co-domain. So, by the Brouwer fixed point theorem (see appendix A) it has a fixed point x ∈ pro x. Therefore, the following quantified proposition is true:

∀z ∈ pro z ∃x ∈ pro x x = s(x, z)
Finally, thanks to (9), the previous quantified proposition entails [START_REF] Goldsztejn | Modal Intervals Revisited: a Mean-Value Extension to Generalized Intervals[END_REF] and z is proved to be (f, x)-interpretable. The next theorem generalizes the previous argumentation to any continuously differentiable functions f : R n -→ R and to any interval argument x ∈ KR n .

Theorem 3.1. Let f : R n -→ R be a continuously differentiable function, x ∈ KR n , c : IR n -→ R n such that c(x) ∈ x and g : IR n -→ IR 1×n be an interval extension of f , i.e.

g 1k (pro x) ⊇ range ∂f ∂x k , pro x .
Then, the interval function h defined by

h(x) = f (c(x)) + g(pro x) × (x -c(x))
is an AE-extension of f and is called a mean-value AE-extension of f .

Proof. First of all, for any x ∈ R n we have c(x) = x and therefore h(x) = f (x) + g(pro x) × (x -x) = f (x). Then, for any x [1.

.n] ∈ KR n , define ∆ [1.

.n] = g(pro x [1..n] ) T ∈ IR n and x[1.

.n] = c(x [1.

.n] ) and x 0 := h(x [1.

.n] ). We therefore have

x 0 = f (x [1..n] ) + ∆ T × (x -x) (10) 
Furthermore define the set of indices A = P(x [1.

.n] ) ∪ I(x 0 ) and E = I(x [1.

.n] ) ∪ P(x 0 ). So, we have to prove that the following quantified proposition is true:

∀x A ∈ pro x A ∃x E ∈ pro x E x 0 = f (x [1..n] ) (11) 
On one hand, by the expression ( 10), x 0 is the generalized interval evaluation of the real function

m(x [1..n] , δ [1..n] ) := f (x [1..n] ) + δ T × (x -x) evaluated at x [1.
.n] and ∆ [1.

.n] . As the expression of m involves only one occurrence of each variable we can apply Proposition 2.1 which proves that there exists a continuous function

s E : (pro x A , ∆ [1..n] ) T -→ pro x E which satisfies x E = s E (x A , δ [1..n] ) =⇒ x 0 = m(x [1..n] , δ [1..n] ) (12) 
On the other hand, as g is an interval extension of f we have ∆ T ⊇ range (f , pro x) and we can apply Proposition 3.1 which proves that there exists a continuous function

s [1..n] : pro x [1..n] -→ ∆ [1..n] which satisfies δ [1..n] = s [1..n] (x [1..n] ) =⇒ f (x [1..n] ) = g(x [1..n] , δ [1..n] ) (13) 
Now, we construct the continuous function s E : pro x A∪E -→ pro x E composing s and s in the following way (notice that A ∪ [1.

.n] ⊆ A ∪ E):

s E (x A∪E ) = s E x A , s [1..n] (x [1..n] ) (14) 
Let us prove that

x E = s E (x A∪E ) =⇒ x 0 = f (x [1..n] ) (15) 
By the equation [START_REF] Kreinovich | Computational Complexity and Feasibility of Data Processing and Interval Computations[END_REF],

s E (x A∪E ) = x E implies δ [1..n] = s [1..n] (x [1..n] ) ∧ x E = s E (x A , δ [1..n ])
Now, by ( 12) and ( 13), this latter implies

f (x [1..n] ) = g(x [1..n] , δ [1..n] ) ∧ x 0 = g(x [1..n] , δ [1..n] )
That is eventually

x 0 = f (x [1.
.n] ). Finally, thanks to the Brouwer fixed point theorem, for each value of x A ∈ pro x A , the function s E (x A , .) : pro x E -→ pro x E has a fixed point. That is,

∀x A ∈ pro x A ∃x E ∈ pro x E s E (x A∪E ) = x E
which entails [START_REF] Kaucher | Uber metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Raume[END_REF] thanks to the implication [START_REF] Moore | Interval Analysis[END_REF].

Remark. Similarly to the classical mean-value extension, if the interval function g is not defined for all x ∈ IR n then the domain definition of the mean-value AE-extension has to be adapted.

The next example illustrates the way the mean-value AE-extension computes inner and outer approximations of the range of a continuously differentiable function.

Example 3.1. Consider the real function f (x) = x 2 and the interval x = [1, 1.2]. As f is strictly increasing over x, the exact range range (f, x) can be computed in the following:

range (f, x) = [f (x), f (x)] = [1, 1.44]
Consider the interval ∆ = [2, 2.4] which satisfies ∆ ⊇ range (f , x). When evaluated at x, the mean-value AE-extension leads to range (f, x) ⊆ f (x) + ∆(x -mid x) = [0.97, 1.45] which is an outer approximation of the range of the original function f . When evaluated at dual x, the mean-value AE-extension leads to

f (x) + ∆(dual x -mid x) = [1.41, 1.01]
The interval pro [1.41, 1.01] = [1.01, 1.41] is indeed included inside [1, 1.44]. The figure 1 illustrates both the outer (left hand side graphic) and inner (right hand side graphic) approximations obtained thanks to the linearization of f . Theorem 3.1 has proved that the interval

z = f (x) + g(pro x) × (x -x) is (f, x)-interpretable.
As f * is the unique minimal AE-extension of f , this is equivalently stated by f * (x) ⊆ z. It will be useful for several purposes to build an interval which is included inside f * (x). The next proposition provides such a construction. Proposition 3.2. Let f : R n -→ R be a continuously differentiable function, x ∈ KR n , x ∈ x and g : IR n -→ IR 1×n be an interval extension of f . Define the interval

z = f (x) + dual g(pro x) × (x -x)
Then, z ⊆ f * (x). Proof. Define the continuous real function

m(x, δ) = f (x) + δ T × (x -x)
The interval z is then the natural AE-extension of m evaluated at x and dual ∆, where ∆ = g(pro x) T ∈ IR n . As proved in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF], this natural AE-extension is minimal. Therefore, we have z = m * x, dual ∆ . The interval z := f * (x) is (f, x)-interpretable so the following quantified proposition is true:

∀x P ∈ x P Q (z ) z ∈ pro z ∃x I ∈ pro x I z = f (x)
Now, by Proposition 3.1 the following quantified proposition is also true:

∀x ∈ pro x ∃δ ∈ ∆ f (x) = m(x, δ)
Both previous quantified propositions obviously entail the following one:

∀x P ∈ x P Q (z ) z ∈ z ∃x I ∈ pro x I ∃δ ∈ g(pro x) z = m(x, δ) Therefore, the interval z = f * (x) is m, x, dual ∆ -interpretable, which implies m * x, dual g(y) ⊆ f * (x)
That is, z ⊆ f * (x).

The mean-value AE-extensions of vector-valued real functions

Given a continuously differentiable vector-valued function f : R n -→ R m and an interval x ∈ KR n , the mean-value AE-extensions of the real-valued functions f i are now used in order to construct a (f, x)-interpretable interval z ∈ KR m , i.e. z satisfies

∀x A ∈ x A ∀z A ∈ pro z A ∃z E ∈ z E ∃x E ∈ pro x E z = f (x) (16) 
where A = P (x), E = I(x), E = P (z) and A = I(z). This construction is similar to the case of the natural AE-extensions for vector-valued functions presented in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]. For i ∈ [1.

.m] consider some mean-value AE-extensions h i of the real-valued function f i . The interval z naively defined by

z i = h i (x) is not (f, x)-interpretable in general because the conjunction i∈[1..m] ∀x A ∈ x A Q (zi) z i ∈ pro z i ∃x E ∈ pro x E z i = f i (x) (17) 
where

Q (zi) = ∃ if i ∈ P and Q (zi) = ∀ if i ∈ I , does not implies (16) in general. Example 3.2. Consider f : R 3 -→ R 2 and x 1 ∈ IR and x 2 , x 3 ∈ IR. Suppose that both z 1 = h 1 (x 1 , x 2 , x 3 ) and z 2 = h 2 (x 1 , x 2 ,
x 3 ) are improper. Then both following quantified propositions are true:

∀x 1 ∈ x 1 ∀z 1 ∈ pro z 1 ∃x 2 ∈ pro x 2 ∃x 3 ∈ pro x 3 z 1 = f 1 (x)
and

∀x 1 ∈ x 1 ∀z 2 ∈ pro z 2 ∃x 2 ∈ pro x 2 ∃x 3 ∈ pro x 3 z 1 = f 2 (x)
However, their conjunction does not imply

∀x 1 ∈ x 1 ∀z ∈ pro z ∃x 2 ∈ pro x 2 ∃x 3 ∈ pro x 3 z = f (x) in general. So z ∈ IR 2 is not (f, x)-interpretable in general.
In order to entail [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF], the previous computations have to be modified in such a way that each variable which is existentially quantified inside ( 16) is existentially quantified in exactly one quantified proposition of the conjunction [START_REF] Neumaier | Taylor forms -use and limits[END_REF] and universally quantified in all the others. This is done in the same way as the natural AE-extension: an operation pro is inserted in before all but one occurrences of each variable. In the case of the mean-value AE-extension, each component has one occurrence of each variable. Therefore, the choice of the occurrence which is not preceded of an operation pro is done choosing one component of the vector-valued interval function.

Example 3.3. Like in the previous example, consider f : R 3 -→ R 2 and x 1 ∈ IR and x 2 , x 3 ∈ IR. The following intervals are computed:

z 1 = h 1 (x 1 , pro x 2 , x 3 ) and z 2 = h 2 (pro x 1 , x 2 , pro x 3 ).
which satisfies

x Ei = s Ei (x A∪Ai ) =⇒ x n+i = f i (x [1..n] ).
Thank to the definition of π, one can check the for any i ∈ [1..m] and i ∈ [1..m] such that i = i , we have E i ∩ E i = ∅, and that ∪{E i |i ∈ [1..m]} = E. We also have ∪{A ∪ A i |i ∈ [1..m]} = A ∪ E. So, the function s E : x A∪E -→ x E is well defined, continuous and furthermore satisfies

s E (x A∪E ) = x E =⇒ i∈[1..m] x Ei = s Ei (x A∪Ai ) =⇒ i∈[1..m] x n+i = f i (x [1..n] ) =⇒ x [n+1..n+m] = f (x [1..n] ).
Finally, thank to the Brouwer fixed point theorem, for any x A ∈ x A the function s E (x A , .) : x E -→ x E has a fixed point. That is,

∀x A ∈ x A ∃x E ∈ x E s E (x A∪E ) = x E
which concludes the proof.

In the case m = 1, Theorem 3.2 coincides with Theorem 3.1. In this case, there is only one possible integral function π which is π(i) = 1 for all i ∈ [1..n] and g(pro x) * π (x -c(x)) = g(pro x) × (x -c(x)).

Therefore, Theorem 3.2 can be used in general to define the mean-value AEextensions. Also, if x ∈ IR n then g(pro x) * π (x -c(x)) = g(x) × (x -c(x))

and the mean-value AE-extension coincides with the classical interval meanvalue extension.

Example 3.5. Consider the function

f (x) = 81x 2 1 + x 2 2 + 18x 1 x 2 -100 x 2
1 + 81x 2 2 + 18x 1 x 2 -100 Consider the following interval extension of its derivative: A = 162(pro x 1 ) + 18(pro x 2 ) 2(pro x 2 ) + 18(pro x 1 ) 2(pro x 1 ) + 18(pro x 2 ) 162(pro x 2 ) + 18(pro x 1 )

Then, we can build the following mean-value AE-extension of f :

h(x) = f (mid x) + A * (x -mid x)
That is explicitly

f 1 (mid x) + A 11 (x 1 -mid x 1 ) + A 12 (pro x 2 -mid x 2 ) f 2 (mid x) + A 21 (pro x 1 -mid x 1 ) + A 22 (x 2 -mid x 2 )
If x = ([1.1, 0.9], [1.1, 0.9]) T the mean-value AE-extension leads to h(x) = ( [14, -14] , [14, -14] ) T and so proves that pro h(x, y) ⊆ range (f, pro x, pro y). As a consequence, there exists x ∈ pro x such that f (x) = 0. Indeed, f (1, 1) = 0.

4 On the quality of the mean-value AE-extension

In the particular case of real-valued functions, the mean-value extension has a quadratic order of convergence. However, in the general case, its order of convergence is linear.

Theorem 4.1. With the notations of Theorem 3.2, suppose that furthermore g is locally Lipschitz continuous. Then,

• the mean-value AE-extension has a linear order of convergence.

• if m = 1, i.e. in the special case of Theorem 3.1, the mean-value AEextension has a quadratic order of convergence.

Proof. The mean value extension is a composition of: the minimal AE-extensions of + and ×, the operation pro and the interval extension g of f . All are locally Lipschitz continuous (see [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Therefore, their composition is also locally Lipschitz continuous. As a consequence, the mean-value AE-extension has a linear order of convergence (Proposition 7.2 [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Now, we study the special case m = 1. Denote g(pro x) T by ∆ ∈ IR n and define both z = h(x) = f (x) + ∆ T × (x -x) and z = f (x) + (dual ∆) T × (x -x) By Theorem 3.1 and Proposition 3.2, we have z ⊆ f * (x) ⊆ z. Thanks to Lemma 2.5 of [START_REF] Kaucher | Interval Analysis in the Extended Interval Space IR[END_REF], this implies dist(f * (x), z) ≤ dist(z, z ). Therefore, it remains to bound the distance between z and z . Using the relations between the distance, the Kaucher addition and multiplication, we have

dist(z, z ) = dist ∆ T × (x -x) , (dual ∆) T × (x -x) ≤ i∈[1..n] dist ∆ i × (x i -xi ), (dual ∆ i ) × (x i -xi ) ≤ i∈[1..n] |x i -xi | dist(∆ i , dual ∆ i ) Now, as x ∈ x, we have |x i -xi | ≤ | wid x i | ≤ || wid x||. Furthermore, it is obvious that dist(∆ i , dual ∆ i ) = wid ∆ i ≤ || wid ∆||. Therefore we have dist(z, z ) ≤ n || wid x|| || wid ∆||
Now, as g : IR n -→ IR 1×n is locally Lipschitz continuous, so is g : IR -→ IR n defined by g (x) = g(x) T . And because pro is locally Lipschitz continuous, the composition g • pro : KR n -→ IR n is also locally Lipschitz continuous (with these notations we have ∆ = g • pro (x)). So, for all x ref ∈ IR n , there exists γ > 0 such that whatever is y ∈ Kx ref where γ does not depend on the choice of the box x ref , which correspond to quadratic order of convergence.

The next example illustrates that the mean-value AE-extension does not have a quadratic order of convergence for m > 1. 

(x) = f (mid x) + ∆ * π (x -mid x) = f (mid x) + (pro x 1 -mid x 1 ) + 0.1(x 2 -mid x 2 ) 0.1(x 1 -mid x 1 ) + (pro x 2 -mid x 2 )
Define the intervals x = ([ , -], [ , -]) T , so g(x ) = ([-0.9 , 0.9 ], [-0.9 , 0.9 ]) T Denote this interval by z . This latter interval is (f, x )-interpretable, that is the following quantified proposition is true. This example also illustrates that the choice of the function π is important for the quality of the AE-extension: the choice π(1) = 1 and π(2) = 2 would give a much more accurate mean-value AE-extension. However, a efficient choice for π is not always possible, as illustrated in [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]. In such cases, a preconditioning step is necessary. The use of some preconditioning process together with the mean-value AE-extension is illustrated in the next section.

∃z ∈ z ∃x ∈ pro x f (x) = z Now,

Inner approximation of the range continuous vector-valued real functions

The mean-value AE-extension is now used so as to build an inner approximation of a continuous function f : R n -→ R n under the form of a skew box, i.e. under the form of the image of a box through a linear map. To this end, the meanvalue AE-extension is associated to a preconditioning process. First of all, the following lemma is needed. 

If u is improper, then

{C -1 u|u ∈ pro u} ⊆ range (f, x)
If furthermore u is strictly improper then A is regular (and even strongly regular).

Proof. As C is non-singular, f (x) = z is equivalent to Cf (x) = Cz. Now the equation ( 21) corresponds to the mean-value AE-extension of the function Cf evaluated at dual x (the Jacoby matrix of the function Cf is Cf (x)). Therefore, if u is improper, then the following proposition holds.

∀u ∈ pro u ∃x ∈ x u = Cf (x) Notice that u = Cf (x) is equivalent to C -1 u = f (x)
. Therefore, the previous quantified proposition is equivalent to the following one.

∀z ∈ {C -1 u|u ∈ pro u} ∃x ∈ x z = f (x) that is {C -1 u|u ∈ u} ⊆ range (f, x). It remains to study the regularity of the interval matrix A. Suppose that u is strictly improper and denote CA by A . The i th line of the equation ( 21) is

u i = (Cf (x)) i + A ii (dual x i -xi ) + j =i A ij (x j -xj ) (22) 
Suppose that for some i ∈ [1.

.n] we have 0 ∈ A ii . By the definition of the Kaucher multiplication, a proper interval which contains 0 multiplied by an improper interval which proper projection contains 0 gives [0, 0]. So, we have A ii (dual x i -xi ) = 0 and therefore u i ∈ IR. This latter is in contradiction with the hypothesis that u is strictly improper, therefore we have 0 / ∈ A ii for all i ∈ [1..n]. Similarly, we have wid x > 0. Now, applying the lemma 5.1 to [START_REF] Shary | A new technique in systems analysis under interval uncertainty and ambiguity[END_REF] we obtain wid u i = 0 -A ii (wid x i ) +

j =i |A ij |(wid x j )
Regrouping these componentwise equalities, we get wid u = -A (wid x)

where A is the comparison matrix of A . Therefore, as -wid u > 0, there exists a non null positive vector v = (wid x) such that A v ≥ 0, which corresponds to the definition of a M-matrix. As A is a M-matrix, A = CA is a H-matrix and A is finally a strongly regular matrix ( [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF] 

Conclusion

In Modal Interval Revisited Part 1 ( [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]), a new formulation of the modal intervals theory has been proposed: new extensions to generalized intervals, called AEextensions, have been defined which enhance the interpretations of extensions to classical intervals. Thanks to this new framework, a new linearization process is proposed under the form of the mean-value AE-extension. This linearization process is compatible with both inner and outer approximation of functions ranges over boxes.

The advantages of the mean-value AE-extension in front of the natural AEextension (and therefore on the modal rational extensions) are the same than the advantages of the classical mean-value extension in front of the classical natural extension: on one hand, it is more accurate for small intervals (its quadratic order of convergence has been established for real-valued functions). On the other hand, thanks to the linearization process it provides, it allows to apply to non-linear systems the algorithms dedicated to linear systems.

The usefulness of the mean-value AE-extension has been illustrated: some inner approximation of the range of continuously differentiable functions f : R n -→ R n over some small boxes has been constructed. Also, the well-known existence and uniqueness test associated to the classical Hansen-Sengupta operator has been easily derived from the mean-value AE-extension.

Future work

The newly introduced linearization process is compatible with inner approximation of non-linear AE-solution sets and this has to be investigated. Also, the mean-value AE-extension has been defined only for continuously differentiable functions. The introduction of slopes in place of derivatives should allow extending the scope of the mean-value AE-extension to non-differentiable functions like abs(x) or max(x, y) and obtaining more accurate computations.

(

  

Example 2 . 1 .

 21 Consider the function f (x) = x 2 and the proper interval x = [-1, 3]. So range (f, x) = [0, 9]. The proper intervals [-1, 10] and [-2, 11] are both

Example 2 . 5 .

 25 The quantified proposition[START_REF] Alefeld | Introduction to Interval Computations[END_REF] is true. Therefore it has a Skolem function, i.e. a function s : (u, v, pro z) T -→ pro w that satisfiesw = s(u, v, z) =⇒ z = f (u, v, w).Proposition 2.1 (Goldsztejn,[START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF]). Let f : R n -→ R be a continuous function and f an expression of this function involving elementary functions of Ω and Φ where each variable has only one occurrence. For anyx [1..n] ∈ KR n , define x 0 = f(x [1..n]) where the evaluation is done using the Kaucher arithmetic. Furthermore define the sets of indices A = P(x [1..n] ) I(x {0} ) and E = I(x[1.

Figure 1 :

 1 Figure 1: Graph of the function f (x) = x 2 together with the cone of the derivatives f (x) + f (x)(x -x). The left hand side (respec. right hand side) graphic illustrates the outer (respec. inner) approximation of the range obtained thanks to the cone of the derivatives.

  , we have dist(∆, g • pro (y)) ≤ γ dist(x, y) So, choose y = mid x ∈ x ref . On one hand, we have || rad ∆|| ≤ dist(∆, g • pro (mid x)) because g • pro (mid x) ∈ R. On the other hand, we have dist(x, mid x) = || rad x||. So we have || rad ∆|| ≤ γ|| rad x|| which is equivalent to || wid ∆|| ≤ γ|| wid x||. Therefore, dist(z, z ) ≤ nγ|| wid x|| 2 . Finally, we have therefore proved that, for all x ref ∈ IR n , there exists γ = nγ such that dist(h(x), f * (x)) ≤ γ || wid x|| 2

Example 4 . 1 .

 41 Consider the function f (x) = x 1 + 0.1x 2 0.1x 1 + x 2 Denote this matrix by ∆. Consider the integral function π : [1..2] -→ [1..2] defined by π(1) = 2 and π(2) = 1. The corresponding mean-value AE-extension of f is g

Lemma 5 . 1 . 1 .

 511 Let d ∈ IR and x ∈ IR such that mid x = 0. 1. if 0 / ∈ d then wid d(dual x) = -d (wid x) where d is the mignitude of the interval x, i.e. d = min{|d|, |d|}.2. wid d x = |d|(wid x) Proof. Just apply the expressions of the Kaucher arithmetic in the following way. On one hand, if d > 0 then d(dual x) = [dx, dx] = d (dual x). On the other hand, if d < 0 then d(dual x) = [dx, dx] = d (dual x) (the last equality being a consequence of x = -x and d = -d ). Finally, wid ( d (dual x)) = -d (wid x). 2. d x = [-|d|x, |d|x]. Therefore, wid d x = |d|(wid x). Theorem 5.1. Let f : R n -→ R n be a continuously differentiable function, x ∈ IR n , x ∈ x and C ∈ R n×n be a non-singular matrix. Furthermore consider an interval matrix A ∈ IR n×n which satisfies ∀x ∈ x, f (x) ∈ A. Define the interval u = Cf (x) + (CA) * dual (x -x)

  theorem 4.1.2 and its corollary).

Figure 2 : 6 1 + x 6 2 + x 1 x 2 x 6 1 -x 6 2 -x 1 x 2 andx 1 ⊇Corollary 5 . 1 .

 262622151 Figure 2: Inner approximation of the range of a vector-valued function.

  R n , it will be useful to denote the set of generalized interval {x ∈ KR n | pro x ⊆ E} by KE. Finally, the distance is used to define a continuity: in the sequel the local Lipschitz continuity will be useful.Remark. This definition is naturally specialized to functions f : IR n -→ IR m and f : R n -→ R m considering respectively all x, y ∈ Ix ref and all x, y ∈ x ref .Also, it stands for functions f : IR n -→ IR m×p .Obviously, a function f is locally Lipschitz continuous if and only if all its components f i are locally Lipschitz continuous.

	the Kaucher arithmetic is linked to the distance between general-
	ized intervals in the following way: for any intervals x, y, x , y ∈ KR,
	dist(xy, xy ) ≤ |x| dist(y, y )	
	dist(x + y, x + y ) ≤ dist(x, x ) + dist(y, y )
	Generalized interval vectors x ∈ KR n and generalized interval matrices A ∈
	KR n×n are defined like in the classical interval theory. The operations mid ,
	rad , | . |, dual and pro are performed on vectors and matrices elementwise. The
	metric is extended to vectors and matrices in the usual way: given x, y ∈ KR n
	and A, B ∈ KR n ,		
	dist(x, y) = max i∈[1..n]	dist(x i , y i ) and dist(A, B) = max i∈[1..n]	dist(A ij , B ij )
		j∈[1..m]	
	Given E ⊆ Definition 2.1 (Goldsztejn, [5]). The interval function f : KR n -→ KR m is
	locally Lipschitz continuous if and only if for any x ref ∈ IR n , there exists λ > 0
	which satisfies for all x, y ∈ Kx ref ,	
		dist(f (x), f (y)) ≤ λ dist(x, y)	

  in order to investigate the order of convergence of this mean-value AEextension, we consider an minimal (f, x )-interpretable interval z * which is more accurate than z . As x is improper, at least one component of z * is improper (because a proper interval cannot be minimal if x is improper). Therefore, we have dist(z , z * ) ≥ || rad z || = 0.9|| wid x || This ratio is not upper bounded if → 0, that is if wid x → 0. Therefore, this mean-value AE-extension does not have a quadratic convergence order.

	Finally, we have		
	dist(z , z * ) || wid x || 2 ≥	0.9 || wid x || || wid x || 2 =	0.9 || wid x ||
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Suppose that both z 1 and z 2 are improper. Then both following quantified propositions are true (notice that x 1 being proper we have (pro x 1 ) = x 1 ):

and

Under some additional hypothesis which are be fulfilled if the h i are the meanvalue AE-extensions of the functions f i , their conjunction implies

This can be formalized introducing a integral function π : [1.

.n] -→ [1.

.m] which associates to the variable x j for j ∈ [1.

.n] the index of the AE-extension h i for i ∈ [1..m] in which it will be existentially quantified (i.e. it will not be preceded by an operation pro ). Then, the AE-extensions h i are used to construct z in the following way:

where for j ∈ [1.

.n] we have y j = x j if i = π(j) and y j = pro x j otherwise. The proper components of x being not sensitive to the operation pro , the interval z satisfies [START_REF] Ortolf | Eine Verallgemeinerung der Intervallarithmetik[END_REF] where E i = E ∩ π -1 (i) and A i = E\E i . Now, as each existentially quantified variable appears in one and only one quantified proposition of the previous conjunction and this latter is likely to entail the quantified proposition [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF].

Example 3.4. In previous example, the function π is defined by

The implication "(18)=⇒( 16)" is true because the h i are the mean-value AE-extensions of the functions f i (see [START_REF] Goldsztejn | Modal Intervals Revisited Part 1: A Generalized Interval Natural Extension[END_REF] for a counter example for this implication when other AE-extensions are used). Similarly to the proof of the interpretation of the natural AE-extension of vector-valued functions, the proof of the implication "(18)=⇒( 16)" involves the Brouwer fixed point theorem (see Appendix A). In order to formulate the mean-value AE-extensions of vector valued functions in a compact form, the following specific matrix/vector product is first defined.

A special case will be met several times: if m = n and π = id then the product A * π x is simply denoted by A * x. In this case, its definition is simplified to

Now, the mean-value AE-extension for vector valued function can be defined.

Consider an interval extension extension g : IR n -→ IR m×n of f . Then the interval function h defined by

is an AE-extension of f and is called a mean-value AE-extension of f .

Proof. First of all, whatever is

.n] ∈ KR n and define the interval matrix ∆ = g(pro x [1.

.n] ) and x[1.

.n] = c(x [1.

.n] ). So as to obtain homogeneous notations, the evaluation of h is done in the following way:

We have to prove that x [n+1..n+m] is (f, x ). So, we have to prove that the following quantified proposition is true:

Consider any i ∈ [1..m]. The i th line of the equality ( 19) is

where y

= pro x j otherwise. This corresponds to the mean-value AE-extension of the function f i evaluated at y (i) . Define E i = E ∩ π -1 (i) and A i = E\E i . We know that y (i) j is proper if and only if either x j is proper or j ∈ A i or equivalently, y (i) j is improper if and only if j ∈ E i . Using the same reasoning as in the proof of Theorem 3.1, we obtain for each i ∈ [1..m] a continuous function

If u ⊆ 0 then there exists x ∈ x such that f (x) = 0. If furthermore u is strictly improper then there is only one solution inside x.

Proof. The inclusion u ⊆ 0 is equivalent to u is improper and 0 ∈ pro u. Theorem 5.1 therefore entails

Now, 0 ∈ pro u entails 0 ∈ {C -1 u|u ∈ pro u} which finally entails 0 ∈ range (f, x). Therefore, there exists x ∈ x such that f (x) = 0. The uniqueness is proved noticing that u strictly improper entails A is strongly regular. Then, the regularity of the interval matrix A entails the uniqueness of the solution ([16] theorem 5.1.6).

Surprisingly, this existence test is equivalent to existence test associated to the classical Hansen-Sengupta operator. Indeed, the componentwise expression of the test of the corollary 5.1 is

Now using the rules of the Kaucher arithmetic, this is equivalent to

ii . This last expression corresponds to the existence test associated to the classical Hansen-Sengupta operator (see [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF]). This link gives new lights on the existence test associated to the Hansen-Sengupta operator. Indeed, when this latter succeeds, it means that it has been proved that the following quantified propositions are true:

So that all these quantified propositions are true, the function f has to be close to the identity. This explains why the Hansen-Sengupta existence test generally needs a midpoint inverse preconditioning to succeed.

A Some useful theorems from real analysis

The mean value-theorem is usually stated in the following way. The Brouwer fixed point theorem is a famous classical existence theorem (see for example [START_REF] Istratescu | Fixed point theory : an introduction[END_REF] or [START_REF] Neumaier | Interval Methods for Systems of Equations[END_REF]).

Theorem (Brouwer fixed point theorem). Let E ⊆ R n be nonempty, compact and convex, and f : E -→ E be continuous. Then, there exists x ∈ E such that f (x) = x.