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Modal Intervals Revisited

Part 1: A Generalized Interval Natural Extension

Alexandre Goldsztejn ∗†‡

Abstract

The modal intervals theory is an extension of the classical intervals
theory which provides richer interpretations (including in particular inner
and outer approximations of the ranges of real functions). In spite of its
promising potential, the modal intervals theory is not widely used today
because of its original and complicated construction.

The present paper proposes a new formulation of the modal inter-
vals theory. New extensions of continuous real functions to generalized
intervals (intervals whose bounds are not constrained to be ordered) are
defined. They are called AE-extensions. These AE-extensions provide the
same interpretations as the ones provided by the modal intervals theory,
thus enhancing the interpretation of the classical interval extensions. The
construction of AE-extensions follows the model of the classical intervals
theory: starting from a generalization of the definition of the extensions
to classical intervals, the minimal AE-extensions of the elementary op-
erations are first built leading to a generalized interval arithmetic. This
arithmetic is proved to coincide with the well known Kaucher arithmetic.
Then the natural AE-extensions are constructed similarly to the classical
natural extensions. The natural AE-extensions represent an important
simplification of the formulation of the four ”theorems of ∗ and ∗∗ inter-
pretation of a modal rational extension” and ”theorems of coercion to ∗
and ∗∗ interpretability” of the modal intervals theory.

With a construction similar to the classical intervals theory, the new
formulation of the modal intervals theory proposed in this paper should
facilitate the understanding of the underlying mechanisms, the addition
of new items to the theory (e.g. new extensions) and its utilization. In
particular, a new mean-value extension to generalized intervals will be
introduced in the second part of this paper.

∗The developments proposed in this paper have been informally presented in [7]. Most of
this work was carried out when the author was supported by Thales Airborne Systems and
the ANRT (CIFRE number 2001119).
†University of Nice-Sophia Antipolis (Project CeP, I3S/CNRS), Route des colles, BP 145,

06903 Sophia Antipolis, France.
‡Email: Alexandre@Goldsztejn.com
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1 Introduction

Classical intervals

The modern interval theory was born in the late 50’s aiming reliable computa-
tions using finite precision computers (see [38, 36, 22] and [8, 28] for historical
and technical introductions). Since its birth, the interval theory has been devel-
oped and it proposes today a wide class of useful algorithms independently of
the finiteness of computations, although reliable computations are still today an
advantage of interval based algorithms (see [16, 12]). The fundamental concept
of the classical intervals theory is the extension of real functions to intervals
([22, 1, 27, 25]). These interval extensions are defined and constructed so as
to provide supersets of the ranges of real functions over boxes (i.e. cartesian
product of intervals): if g is an interval extension of f and x is box then

{f(x) | x ∈ x} ⊆ g(x).

As a direct application of interval extensions, when dealing with equations
f(x) = 0 (or equivalently with systems of equations) interval extensions have a
intrinsic disproving power: given an interval extension g of f and a box x, if
the interval g(x) does not contain 0 then it is proved that the range of f over
x does not contain 0 too. As a consequence, the equation f(x) = 0 is proved
not to have any solution inside x. Proving the existence of some solutions to a
system of equations can also be done using interval extensions in conjunction
with some existence theorems (e.g. Miranda theorem or Brouwer fixed point
theorem for n × n systems of equations): interval extensions are then used in
order to check rigorously that the hypothesis of these existence theorems are
satisfied (see [23, 24, 15] and [18, 17] for some surveys).

Modal intervals

The modal intervals have been introduced in [6] so as to enhance the interpreta-
tion provided by the classical intervals theory. The modal intervals extend the
classical intervals by coupling a quantifier to them: a modal interval is couple
(x,Q) where x is an interval and Q a quantifier (see [6, 34, 35]). Real functions
are extended to modal intervals taking advantage of the quantifier coupled with
the intervals, leading to interpretations richer than the one of the classical in-
terval extensions. In particular, both inner and outer approximations of the
range of real functions over boxes are in the scope of the modal interval exten-
sions. In contrast to the classical interval extensions, which need to be used
in conjunction with some existence theorems to prove the existence of a solu-
tion to a system of equations, the modal interval extensions have an intrinsic
proving power when dealing with systems of equations: indeed, modal interval
extensions can build an inner approximation z of the range {f(x) | x ∈ x} and
if 0 ∈ z then the equation f(x) = 0 is proved to have a solution inside x.

The enhanced interpretations offered by the modal intervals theory have
promising applications (see [37, 2, 29, 30, 31, 9, 10]). However, since its birth,
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the modal intervals theory have been used almost only by its creators. This
can be explained by some difficulties that are associated to the modal intervals
theory:

(i) The original construction of the modal intervals theory is complicated and
not similar to the classical intervals theory. For example, two kinds of extensions
with different interpretations are present in the modal intervals theory: the ∗-
extensions and the ∗∗-extensions. All the interpretation theorems are duplicated
to fit both kinds of modal extensions, although all the interpretations obtained
with a given kind of extensions can also be obtained with the other one. This
makes difficult the addition of new components to the theory (for example, some
new extensions).

(ii) The quantifiers coupled with intervals in modal intervals do not corre-
spond to the quantifiers present inside the interpretations of the modal interval
extensions. For example, the modal addition

(x,∃) + (y,∀) = (z,∃)

can be interpreted in two different ways: first, the ∗-interpretation of this modal
operation is (

∀x ∈ x
)(
∃z ∈ z

)(
∃y ∈ y

)(
z = x+ y

)
.

Second, the ∗∗-interpretation of this modal operation is(
∀y ∈ y

)(
∀z ∈ z

)(
∃x ∈ x

)(
z = x+ y

)
.

In none of the two interpretations the quantifiers coupled with intervals corre-
spond to the quantifiers met in the interpretations, which is quite misunder-
standing.

The new formulation of the modal intervals theory

A new formulation of the modal intervals theory is proposed in the framework
of generalized intervals (intervals whose bounds are not constrained to be or-
dered, initially defined in [26, 13]). This is the main difference with the original
formulation of the modal interval theory where generalized intervals were only
introduced as some auxiliary objects that eased computations and proofs.

New extensions to generalized intervals are defined which provide the same
enhanced interpretations as the modal interval extensions. They are called AE-
extensions because the universal quantifiers (All) are constrained to precede the
existential ones (Exist) inside their interpretations1. The AE-extensions of con-
tinuous real functions are built on the model of the classical interval extensions:
starting from a generalization of the definition of classical interval extensions,
the minimal AE-extensions of the elementary operations (i.e. +, ×, −, /, exp(x),√
x, etc.) are constructed leading to a generalized interval arithmetic. This

arithmetic is proved to coincide with the well known Kaucher arithmetic (an

1The use of the symbols ”AE” in order to insist on the constrained succession of the
quantifiers was proposed in [33] in the context of AE-solution sets.
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extension of the classical intervals arithmetic to generalized intervals which has
better algebraic properties and which plays a key role in the formal algebraic
approach to AE-solution set approximation, [14, 21, 33]). Then, the natural
AE-extensions are constructed using the generalized interval arithmetic in a
similar way to the classical natural extensions: they consists in evaluating the
expression of the function using the generalized interval arithmetic. However,
in contrast to the classical interval evaluation of an expression, the expression of
the function has to be modified before its generalized interval evaluation. A sim-
ple algorithm is provided for the modification of the function expression. The
natural AE-extensions represent an important simplification of the formulations
of the four ”theorems of ∗ and ∗∗ interpretation of a modal rational extension”
and ”theorems of coercion to ∗ and ∗∗ interpretability” initially proposed in the
modal intervals theory.

Some new concepts are also introduced in the new formulation of the modal
intervals theory: in particular, the concept of minimal AE-extensions (i.e. AE-
extensions for which no more accurate AE-extension exists) and the concept of
the order of convergence of an AE-extension (i.e. some bounds on the distance
to some minimal AE-extension) are defined as generalizations of their classical
counterparts. They allow to quantify the quality of AE-extensions. It is well
known that the classical interval natural extension is minimal if the expression
of the function contains only one occurrence of each variable. It is surprising
that the natural AE-extension of such function may not be minimal. This was
pointed out in [34] but no explanation has been proposed for this fact yet. An
explanation is now proposed. Furthermore, in spite of this lack of minimality,
the natural AE-extensions are proved to have a linear order of convergence and
to be minimal in the special case of bilinear functions.

Finally, the new theoretical framework proposed here allows providing some
new proofs for the new formulations of these modal theorems. This was neces-
sary as some gaps have been found in the proofs of some central theorems of
the modal intervals theory.

Outline of the paper

The generalized intervals and their properties are presented in Section 2. The
inclusion between generalized intervals will play an important role. Its inter-
pretation is presented in Section 3. The AE-extensions of real relations are
defined in Section 4. They represent a useful language which is used to define
the AE-extensions of continuous real functions in Section 5. The minimality
of an AE-extension and its order of convergence are defined in Section 6 and
Section 7 respectively. The outward rounding to the AE-extensions is presented
in Section 8. The special case of real-valued function is studied in Section 9
where the minimal AE-extension f∗ is defined. From the results of the previous
section are constructed the minimal AE-extensions of the elementary functions
in Section 10 leading to a generalized interval arithmetic. Its relationship with
the Kaucher arithmetic is investigated. Then, the natural AE-extensions are
defined in Section 11. The quality and the application scope of the natural
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AE-extensions are finally investigated in Section 12 and 13 respectively.

5



Contents

1 Introduction 2

2 Generalized intervals 8

3 Interpretation of the generalized intervals inclusion 13

4 Quantified propositions and generalized intervals 15
4.1 Quantified propositions in AE-form . . . . . . . . . . . . . . . . . 15
4.2 AE-extensions of real relations . . . . . . . . . . . . . . . . . . . 16

5 AE-extensions of continuous real functions 20
5.1 Definition of AE-extensions of real functions . . . . . . . . . . . . 20
5.2 Some interpretations of AE-extensions . . . . . . . . . . . . . . . 22
5.3 Some properties of AE-extensions . . . . . . . . . . . . . . . . . . 23

6 Minimal AE-extensions 25

7 Order of convergence of AE-extensions 30

8 Outward rounding for AE-extensions 32

9 The minimal AE-extension f∗ of real-valued functions 34

10 AE-extensions of elementary functions 36

11 The natural AE-extensions 39
11.1 Generalized interval evaluation of an expression which contains

only one occurrence of each variable . . . . . . . . . . . . . . . . 40
11.2 The natural AE-extensions . . . . . . . . . . . . . . . . . . . . . 43

12 On the quality of the natural AE-extension 47
12.1 Order of convergence . . . . . . . . . . . . . . . . . . . . . . . . . 47
12.2 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 On the scope of AE-extensions 50
13.1 Application to n× n systems of equations . . . . . . . . . . . . . 50
13.2 Application to parametric under-constrained systems of equations 51
13.3 Contractors for quantified constraints . . . . . . . . . . . . . . . 52

14 Conclusion 53

A The Brouwer fixed point theorem 53

B A counter example 54

C Proofs of some propositions of Section 10 55

6



Notation

When dealing with sets, the usual set union, set intersection and set difference
are respectively denoted by A

⋃
B, defined by

x ∈ A
⋃
B ⇐⇒ x ∈ A ∨ x ∈ B

A
⋂
B = {x ∈ A|x ∈ B} and A\B = {x ∈ A|x /∈ B}.

Interval notations follow the one proposed in [19]. Intervals and interval
functions will be denoted by boldface letters, e.g. x and f . The set of classical
intervals (i.e. closed, bounded and nonempty intervals) is denoted by IR. Reals
and intervals are identified to respectively real vectors and interval vectors of
dimension one. An interval x ∈ IRn is equivalently considered as a subset of
Rn or as vector of intervals. The interval hull of a nonempty bounded subset E
of Rn is the smallest interval of IRn which contains E and is denoted by �E.
The lower and upper bounds of an interval (vector) x are denoted respectively
by inf x and sup x. The interval join and meet operations, which are different
from the set union and intersection, will be respectively denoted by the symbols
∨ and ∧. Given E ⊆ Rn, it will be useful to denote {x ∈ IRn|x ⊆ E} by IE.
The notations of classical intervals will be used for generalized intervals and
their related objects, the set of generalized intervals being denoted by KR. The
following notation for component numbering of vectors will be used:

Notation. Sets of indices are denoted by calligraphic letters. Let I = {i1, . . . , in}
be an ordered set of indices with ik ≤ ik+1. Then, the vector (xi1 , . . . , xin)T is
denoted by xI .

This notation is similar to the one proposed in [19]. The involved set of
indices will be ordered with the usual lexicographic order. As illustrated by
next example, the notation can be applied to reals, intervals or functions.

Example. Consider I = {1, 2, 4} and I ′ = {(1 1), (1 2), 2, (3 4)}. Then,

fI = (f1, f2, f4)T

xI′ = (x11, x12, x2, x34)T

xI′\{2} = (x11, x12, x34)T

The vector equality is then treated in a natural way: xI = yI′\{2} stands for
x1 = y11, x2 = y12 and x4 = y34.

Intervals of integers are denoted by [n..m] = {n, n+ 1, . . . ,m− 1,m} where
n,m ∈ N with n ≤ m. The vector x[1..n] = (x1, . . . , xn)T will be denoted by the
usual notation x when no confusion is possible.

The real functions f : Rn −→ R and f : Rn −→ Rm are respectively called
real-valued functions and vector-valued functions when emphasis has to be put
on this difference.
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2 Generalized intervals

The generalized intervals are now presented. They are the framework of new
formulation of the modal intervals theory. Furthermore, both the generalized
interval inclusion and the generalized interval arithmetic (called the Kaucher
arithmetic) will play some key roles in the new formulation of the modal interval
theory.

Classical intervals are closed, bounded and nonempty intervals. They are
defined by two bounds: [a, b] = {x ∈ R | a ≤ x ≤ b}. Generalized intervals ex-
tend classical intervals relaxing the constraint that bounds have to be ordered,
e.g. [−1, 1] or [1,−1] are generalized intervals. They have been introduced in
the late 60’s in [26, 13] so as to improve both the classical interval algebraic
structure and the order structure associated to the classical interval inclusion.
The set of generalized intervals is denoted by KR and is decomposed into three
subsets:

• The set of proper intervals whose bounds are ordered increasingly. The
proper intervals are identified to classical intervals, and therefore to the
underlying sets of reals. Therefore, the set of proper intervals is denoted
by IR = {[a, b]|a ≤ b}.

• The set of improper intervals whose bounds are orderer decreasingly. It is
denoted by IR = {[a, b]|a ≥ b}.

• The set of degenerated intervals [a, a] with a ∈ R. These intervals are
both proper and improper and are identified to real numbers.

Therefore, from a set of reals {x ∈ R|a ≤ x ≤ b}, one can build the two
generalized intervals [a, b] and [b, a]. It will be useful to change one to the
other keeping unchanged the underlying set of reals using the following three
operations:

• Dual operation: dual [a, b] = [b, a].

• Proper projection: pro [a, b] = [min{a, b},max{a, b}] ∈ IR.

• Improper projection: imp [a, b] = [max{a, b},min{a, b}] ∈ IR.

The classical definitions of midpoint, radius, width and magnitude are extended
to generalized intervals keeping the same formula: given a generalized interval
x = [x, x],

mid x =
1
2

(x+ x) ; rad x =
1
2

(x− x) ; |x| = max{|x|, |x|}.

The width is defined as wid x = 2 rad x. Both the radius and the width are
positive for proper intervals and negative for improper intervals. Two general-
ized intervals are related by x ≤ y if and only if sup x ≤ inf y. Also, x < y
stands for sup x < inf y. When dealing with generalized interval vectors, the
same componentwise rules as in classical intervals theory are used. Given a set
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of indices K with cardK = n and xK ∈ KRn, the following functions allow to
pick up the indices of the proper and improper components of xK:

• P(xK) = {k ∈ K|xk ∈ IR},

• I(xK) = {k ∈ K|xk /∈ IR}.

Remark 1. Degenerated components are considered as proper intervals by con-
vention. Although the other choice would have been coherent, the convention
chosen here is more convenient due to the identification of proper intervals to
classical intervals.

Three different structures are attached to the set of generalized intervals: A met-
ric structure, an order structure associated to the generalized interval inclusion
and an algebraic structure.

Metric structure

The distance between two generalized intervals x ∈ KR and y ∈ KR is defined
in the following way:

dist(x,y) = max{|x− y|, |x− y|}.

As shown in [13, 14], KR then becomes a complete metric space. This metric is
extended to KRn in the usual way: given x ∈ KRn and y ∈ KRn,

dist(x,y) = max
k∈[1..n]

dist(xk,yk).

A norm is also defined by ||x|| = |x| for x ∈ KR and by ||x|| = maxk∈[1..n] ||xk||
for x ∈ KRn.

Order structure associated to the generalized interval in-
clusion

The generalized intervals are partially ordered by an inclusion which prolongates
the inclusion of classical intervals. Given two generalized intervals x = [x, x]
and y = [y, y], the inclusion is defined by the same formal expression as the
classical interval inclusion:

x ⊆ y ⇐⇒ y ≤ x ∧ x ≤ y.

Example 2.1. The following inclusions can be checked using the previous def-
inition: [−1, 1] ⊆ [−2, 2], [2,−2] ⊆ [1, 3] and [2,−2] ⊆ [1,−1]. The first has a
natural interpretation as it coincides with the classical intervals inclusion. The
last two will be interpreted in Section 3.

This inclusion is related to the dual operation in the following way:

x ⊆ y ⇐⇒ (dual x) ⊇ (dual y).
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The usual least upper bound and greatest lower bound operations are defined
from the inclusion, leading to the join and meet operations of generalized inter-
vals: given a bounded set of generalized intervals E ⊆ KR, its join and meet
are respectively denoted by ∨E and ∧E and are respectively defined by(

∀z ∈ KR
)(

z ⊇ (∨E) ⇐⇒ ∀x ∈ E, z ⊇ x
)

and
(
∀z ∈ KR

)(
z ⊆ (∧E) ⇐⇒ ∀x ∈ E, z ⊆ x

)
.

Remark 2. When E contains only two elements x and y, the usual notations
x ∨ y and x ∧ y are used instead of ∨{x,y} and ∧{x,y}.

These two definitions lead to the following equivalent characterizations of
the generalized interval join and meet (which are formally the same as their
classical counterparts):

(∨E) = [ inf
x∈E

(inf x) , sup
x∈E

(sup x) ]

and (∧E) = [ sup
x∈E

(inf x) , inf
x∈E

(sup x) ].

Remark 3. In the context of generalized intervals, it becomes important to use
two different signs for the set intersection and for the interval meet. For example,
[0, 1]

⋂
[2, 3] = ∅ whereas [0, 1] ∧ [2, 3] = [2, 1].

Due to the relationship between the inclusion and the operation dual , we
have

∨E = dual ∧{dual x|x ∈ E} and ∧ E = dual ∨{dual x|x ∈ E}

That is e.g. x ∨ y = dual ((dual x) ∧ (dual y)) in the case where E contains
two generalized intervals.

Algebraic structure

In Kaucher[14], continuous real functions are extended to generalized intervals.
Given a continuous real function f : Rn −→ R, its extension to generalized
intervals is denoted by fKR : KRn −→ KR and is defined in the following way:

fKR(x1, . . . ,xn) =
∨∧x1

x1∈pro x1
· · ·
∨∧xn

xn∈pro xn

f(x)

where ∨∧x
=
{
∨ if x ∈ IR
∧ otherwise

In the case where all the interval arguments are proper, only join operations are
involved in the computation and therefore

fKR(x1, . . . ,xn) = range (f,x1, ...,xn) .

In order to differentiate these extensions from the one which will be defined
later in this paper, they will be called the KR-extensions of real functions. In
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Table 1: The Kaucher multiplication
x× y y ∈ P y ∈ Z y ∈ −P y ∈ dual Z

x ∈ P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ Z [x y, x y]
[min{x y, x y},
max{x y, x y}] [x y, x y] 0

x ∈ −P [x y, x y] [x y, x y] [x y, x y] [x y, x y]

x ∈ dual Z [x y, x y] 0 [x y, x y]
[max{x y, x y},

min{x y, x y}]

where P = {x ∈ KR|0 ≤ x ∧ 0 ≤ x}, −P = {x ∈ KR|0 ≥ x ∧ 0 ≥ x},
Z = {x ∈ KR|x ≤ 0 ≤ x} and dual Z = {x ∈ KR|x ≥ 0 ≥ x}.

the special cases of the real arithmetic operations, i.e. f(x, y) = x ◦ y with
◦ ∈ {+,−,×,÷}, the KR-extensions lead to the so-called Kaucher arithmetic:
these operations between generalized intervals are defined by x ◦y = fKR(x,y).
Due to the monotonicity properties of these latter real operations, some simple
formula can be derived from the original definition of KR-extensions, leading to
the following expressions:

• x + y = [x+ y, x+ y].

• x− y = [x− y, x− y] = x + (−y) where −y = [−y,−y].

• The Kaucher multiplication x× y is described in Table 1.

• The Kaucher division x/y of generalized intervals is defined for generalized
intervals x and y such that 0 /∈ (pro y) by x/y = x× [1/y, 1/y].

When restricted to proper intervals, these operations coincide with the classical
interval arithmetic. The Kaucher arithmetic operations satisfy

(dual x) ◦ (dual y) = dual (x ◦ y).

This relation shows that operations between improper intervals can be computed
using the classical interval arithmetic, e.g.

[2, 1] + [4, 3] = dual ([1, 2] + [3, 4]) = [6, 4].

When proper and improper interval are involved, e.g. [1, 2] + [4, 3] = [5, 5],
the introduction of classical inner operations is needed to forecast the result of
the generalized interval operations (see [5]). The Kaucher arithmetic has better
algebraic properties than the classical interval arithmetic: the Kaucher addition
is a group. The opposite of a generalized interval x is −dual x, i.e.

x + (−dual x) = 0.
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The Kaucher multiplication restricted to generalized intervals whose bounds
are non-null and share the same sign is also a group. The inverse of a such a
generalized interval x is 1/(dual x), i.e.

x× (1/dual x) = 1.

Finally, the KR-extensions of exp and ln are easily obtained:

exp x = [exp(inf x), exp(sup x)]
ln x = [ln(inf x), ln(sup x)] for x > 0.

Furthermore, it is easy to check that for any x ∈ KR and y ∈ KR

exp(x + y) = (exp x)(exp y) and ln exp x = x.

If furthermore x > 0 and y > 0 then

ln(xy) = ln y + ln y.

So the reciprocal bijections ln and exp changes the generalized intervals additive
group into the generalized interval multiplicative group, like in the case of real
numbers.

Links between the different structures

The metric and order structures allow the introduction of continuity and mono-
tonicity. The continuity which will be useful for the coming developments is the
local Lipschitz continuity. It is defined in the following way:

Definition 2.1. A function f : KRn −→ KRm is locally Lipschitz continuous
if and only if for all xref ∈ IRn, there exists a real γ > 0 such that for any
generalized intervals x,y ∈ Kxref ,

dist
(
f(x), f(y)

)
≤ γ dist(x,y)

Remark 4. This definition is naturally specialized to functions f : IRn −→ IRm
and f : Rn −→ Rm considering respectively all x,y ∈ Ixref and all x, y ∈ xref .

It is shown in Kaucher[14] that KR-extensions of locally Lipschitz continu-
ous real functions (in particular the operations of the Kaucher arithmetic) are
locally Lipschitz continuous. Furthermore, the Kaucher arithmetic operations
are inclusion monotone, i.e.

x ⊆ x′ =⇒ x ◦ y ⊆ x′ ◦ y

In the special cases of addition and multiplication by intervals whose proper pro-
jection does not contain zero, the equivalence holds in place of the implication.
Finally, the metric and norm are related by dist(x,y) = ||x− dual y||.

12



3 Interpretation of the generalized intervals in-
clusion

When restricted to proper intervals, the generalized intervals inclusion coincides
with the classical intervals one and therefore has a natural interpretation in
terms of sets of reals:

x ⊆ y ⇐⇒ {x ∈ R|x ∈ x} ⊆ {y ∈ R|y ∈ y}

An interpretation in terms of sets of reals is now provided for the other cases
of inclusion between generalized intervals. Next lemma first proves that the
inclusion between a proper interval and an improper interval is related to the
intersection between the related sets of reals (this property was already pointed
out e.g. in [32]).

Lemma 3.1. Let x ∈ IR and y ∈ IR. Then,

x
⋂

y 6= ∅ ⇐⇒ (dual x) ⊆ y

Proof. Clearly, the proper intervals x and y have a non-null intersection if and
only if ¬

(
y < x ∨ x < y

)
. Distributing the negation, one obtains the equivalent

condition y ≥ x∧x ≥ y. It remains to notice that (dual x) = [x, x] so using the
expression of the inclusion we eventually have (dual x) ⊆ y ⇐⇒ y ≥ x ∧ x ≥
y.

Example 3.1. Consider the intervals x = [−1, 1] and y = [0, 2]. On one hand
x
⋂

y 6= ∅. On the other hand (dual x) ⊆ y, i.e. [1,−1] ⊆ [0, 2], can be checked
using the rules of the generalized intervals inclusion (0 ≤ 1 and −1 ≤ 2).

The following proposition allows to interpret all the the cases of inclusion
between generalized intervals in terms of proper intervals, i.e. in terms of sets
of real:

Proposition 3.1. Let x ∈ KR and y ∈ KR. Then, x ⊆ y is equivalent to the
disjunction of the four following conditions:

1. x ∈ IR ∧ y ∈ IR ∧ x ⊆ y

2. x ∈ IR ∧ y ∈ IR ∧ (pro x)
⋂

y 6= ∅

3. x ∈ IR ∧ y ∈ IR ∧ (pro x) ⊇ (pro y)

4. x ∈ IR ∧ y ∈ IR ∧ x = y = [x, x].

Proof. The inclusion x ⊆ y is equivalent to

(x ∈ IR ∧ y ∈ IR ∧ x ⊆ y) ∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y)
∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y) ∨ (x ∈ IR ∧ y ∈ IR ∧ x ⊆ y)

because a generalized interval is either proper or improper. Therefore the four
cases can be proved independently. (1) This case corresponds to the classical
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interval inclusion. (2) One can apply Lemma 3.1 so as to obtain (pro x)
⋂

y 6=
∅ ⇐⇒ (imp x) ⊆ y. Finally, as x is improper, (imp x) = x and therefore
(pro x)

⋂
y 6= ∅ ⇐⇒ x ⊆ y. (3) First x ⊆ y ⇐⇒ (dual x) ⊇ (dual y)

and remark that, x and y being improper, (dual x) = (pro x) and (dual y) =
(pro y) and therefore (pro y) ⊆ (pro x) ⇐⇒ x ⊆ y. (4) This last case is less
interesting. This is a direct consequence of the definition of the inclusion.

An example is now proposed for first three cases of the previous proposition.

Example 3.2.

1. [−1, 1] ⊆ [−2, 2] is interpreted like the classical set inclusion;

2. [2,−2] ⊆ [1, 3] is interpreted as [−2, 2]
⋂

[1, 3] 6= ∅;

3. [2,−2] ⊆ [1,−1] is interpreted as [−1, 1] ⊆ [−2, 2].

The next corollary of cases (2) and (3) of Proposition 3.1 will be useful.

Corollary 3.1. Let x ∈ IR and y ∈ KR. Then,

x ⊆ y ⇐⇒
(
Q(y)t ∈ pro y

)(
t ∈ pro x

)
where Q(y) = ∃ if y ∈ IR and Q(y) = ∀ otherwise.

Proof. First suppose that y ∈ IR. Then, thanks to Proposition 3.1, x ⊆ y ⇐⇒
(pro x)

⋂
y 6= ∅ which is eventually equivalent to

(
∃t ∈ y

)(
t ∈ pro x

)
. Now

suppose that y ∈ IR. Then thanks to Proposition 3.1, x ⊆ y ⇐⇒ (pro x) ⊇
(pro y) which is eventually equivalent to

(
∀t ∈ pro y

)(
t ∈ pro x

)
.

This section is ended with an informal presentation of the interpretation of
the join and meet operations between generalized intervals. These interpreta-
tions are not detailed here because they will not be used in the sequel. They
are direct consequences of Proposition 3.1 and of the basic definitions of least
upper bound and greatest lower bound.

Example 3.3. The following four cases summarize the possible interpretations
of the generalized interval meet operation:

• [−1, 1] ∧ [0, 2] = [0, 1] so the proper interval [0, 1] is the biggest interval
included inside both [−1, 1] and [0, 2]. This corresponds to the interpre-
tation of the classical interval meet operation.

• [−1, 1] ∧ [2, 3] = [2, 1] so the proper interval [1, 2] is interpreted as the
smallest interval which intersects both [−1, 1] and [2, 3].

• [−1, 1] ∧ [3, 2] = [3, 1] so the proper interval [1, 3] is interpreted as the
smallest interval which both intersects [−1, 1] and contains [2, 3].

• [1,−1] ∧ [3, 2] = [3,−1] so the proper interval [−1, 3] is interpreted as the
smallest interval which contains both [−1, 1] and [2, 3].
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The join and meet being related by

x ∨ y = z ⇐⇒ (dual x) ∧ (dual x) = (dual z)

the interpretations of the join operation between generalized intervals are ob-
tained thanks to the interpretations of the meet operation.

4 Quantified propositions and generalized inter-
vals

This section presents the quantified propositions that will be met in the sequel.
These quantified propositions will be expressed as extensions of real relations to
generalized intervals leading to a convenient language for their manipulation.

4.1 Quantified propositions in AE-form

The quantified proposition encountered in the sequel are of the following kind:
they are closed (no free variable), in prenex form(the quantifiers occurs in front
of the proposition) and in AE-form (the universal quantifiers precede the ex-
istential ones). Furthermore, the quantifiers act over interval domains. Such
quantified propositions can be written in the following way:(

∀xA ∈ xA
)(
∃xE ∈ xE

)(
φ(xA⋃

E)
)

(1)

where A and E are disjoint sets of indices such that cardA + card E = n and
xA⋃

E ∈ IRn and φ is a real relation of Rn.

Remark 5. The quantified proposition (1) is actually a short cut for the exact
formulation (

∀xA
)(
∃xE

)(
xA ∈ xA =⇒ xE ∈ xE ∧ φ(x)

)
,

where the domains of x and y are respectively Rn and Rm (see e.g. [39]).

It will be convenient to define Skolem functions of quantified propositions
like (1). Using an analogy with first order logic Skolem functions (see e.g. [39]),
a Skolem function of (1) is a function

sE : xA −→ xE s.t. xE = sE(xA) =⇒ φ(xA⋃
E).

Remark 6. It is implied that the previous implication stands for all xA ∈ xA.

Obviously, the quantified proposition (1) is true if and only if it has a Skolem
function.

Example 4.1. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x2
1 +x2

2−
9 = 0. The quantified proposition

(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
has the

following Skolem function: s2 : [−1, 1] −→ [2, 4] defined by s2(x1) =
√

9− x2
1.

Indeed x2 = s(x1) implies φ(x). As a consequence, the previous quantified
proposition is true.
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An important topic in the sequel will be to prove that a quantified proposi-
tion has a continuous Skolem function. This can be understood as the possi-
bility to choose the existentially quantified variables continuously with respect
to the values of the universally quantified variables.

4.2 AE-extensions of real relations

Given a real relation φ of Rn, its extension to generalized intervals is now defined.
The AE-extensions of real relations are introduced because they represent a
useful language for the description of the quantified propositions like (1) and of
their properties.

Definition 4.1. Let φ be a relation of Rn. The AE-extension of φ is denoted
by the same symbol φ and is defined for x ∈ KRn by

φ(x) ⇐⇒
(
∀xI ∈ pro xI

)(
∃xP ∈ xP

)(
φ(x)

)
where P = P(x) and I = I(x) are respectively the set of indices of proper and
improper components of x.

Remark 7. The general notation which is used in the definition 4.1 also stands
for the cases where P = ∅ or I = ∅. These cases correspond respectively to(
∀x ∈ x

)(
φ(x)

)
and

(
∃x ∈ x

)(
φ(x)

)
.

When restricted to proper intervals, the definition proposed here does not
exactly coincide with the definition proposed in [4, 3] where an implication
is involved in place of the equivalence. The following examples illustrate the
interpretations of AE-extensions of real relations.

Example 4.2. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x2
1 +x2

2−
9 = 0 and the generalized interval x = ([1,−1], [2, 4])T . Then φ(x) is equivalent
to the quantified proposition

(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
and is true as

shown in Example 4.1.

The next example illustrates the way AE-extensions of real relations will be
related to interval extensions of real functions in the next section.

Example 4.3. Consider a continuous function f : Rn −→ Rm and two intervals
x ∈ KRn and z ∈ IRm. Denote by φ(x, z) the real relation of Rn+m defined by
φ(x, z) ⇐⇒ f(x) = z. Now, if x is proper then the evaluation φ(dual x, z) is
equivalent to the following quantified proposition:

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
.

Indeed, dual x is improper so x is universally quantified and z is proper so z is
existentially quantified. Therefore, φ(dual x, z) is equivalent to range (f,x) ⊆ z.
Now, if x is improper then dual x is proper and φ(dual x, z) is equivalent to
the following quantified proposition:

(
∃x ∈ pro x

)(
∃z ∈ z

)(
f(x) = z

)
, i.e.

range (f,x)
⋂

z 6= ∅.

The central role played by the generalized interval inclusion in the coming
developments is due to its strong relationship with the AE-extensions of real
relations. This important relationship is described by the following proposition:
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Proposition 4.1. Let φ be a relation of Rn, x ∈ KRn and y ∈ KRn. Then

x ⊆ y ∧ φ(x) =⇒ φ(y).

Proof. Define the following sets of indices:

P = P(x)
⋂
P(y) ; I = I(x)

⋂
I(y) ; K = [1..n]\(P

⋃
I).

We suppose that the three previously defined set of indices are not empty (the
other cases are similar and simpler). Thanks to the Proposition 3.1, we know
that the inclusion x ⊆ y entails

• k ∈ P entails xk ⊆ yk and therefore xP ⊆ yP

• k ∈ I entails pro yk ⊆ pro xk and therefore pro yI ⊆ pro xI

• k ∈ K entails xk ∈ IR, yk ∈ IR and (pro xk)
⋂

yk 6= ∅ and therefore
(pro xK)

⋂
yK 6= ∅

φ(x) is true if and only if
(
∀xI ∈ pro xI

)(
∀xK ∈ pro xK

)(
∃xP ∈ xP

)(
φ(x)

)
and φ(y) is true if and only if

(
∀xI ∈ pro yI

)(
∃xK ∈ yK

)(
∃xP ∈ yP

)(
φ(x)

)
.

We just have to prove that the former implies the latter. This is obviously true
because xP ⊆ yP , pro yI ⊆ pro xI and (pro xK)

⋂
yK 6= ∅.

Example 4.4. Consider the relation φ(x) of R2 defined by φ(x) ⇐⇒ x2
1 +

x2
2− 9 = 0 and x = ([1,−1], [2, 4])T and y = ([0.9,−0.9], [1.9, 4.1])T . Then both

x ⊆ y and φ(x) are true therefore φ(y) is true by Proposition 4.1. Indeed,
the quantified proposition

(
∀x1 ∈ [−1, 1]

)(
∃x2 ∈ [2, 4]

)(
φ(x)

)
clearly entails the

quantified proposition
(
∀x1 ∈ [−0.9, 0.9]

)(
∃x2 ∈ [1.9, 4.1]

)(
φ(x)

)
.

Finally, the next two propositions are technical results which will be useful
in the sequel.

Proposition 4.2. Let φ be a relation of Rn and x ∈ KRn be a generalized
interval. When �{x ∈ (pro x)|φ(x)} is defined (i.e. when {x ∈ (pro x)|φ(x)}
is nonempty), denote this interval by a. Then the three following implications
are true:

(i) φ(x) =⇒ {x ∈ (pro x)|φ(x)} 6= ∅

(ii) φ(x) =⇒ (imp a) ⊆ x

(iii) φ(x) =⇒ φ(x ∧ a).

Proof. Define the set of indices P = P(x) and I = I(x). Suppose that both P
and I are not empty, the other cases being similar and simpler.

(i) As φ(x) is true the following quantified proposition holds:(
∀xI ∈ pro xI

)(
∃xP ∈ xP

)(
φ(x)

)
. (2)
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Choose x̃I ∈ pro xI . By the previous quantified proposition, there exists x̃P ∈
xP such that φ(x̃) holds. Therefore x̃ ∈ {x ∈ (pro x)|φ(x)} which concludes
the proofs of the first assertion.

(ii) On one hand, the definition of a obviously entails a ⊆ pro x and hence
aP ⊆ xP . Therefore (imp aP) ⊆ xP . On the other hand, define uI = inf xI
and vI = sup xI so by the quantified proposition (2) there exists uP ∈ xP and
vP ∈ xP such that φ(u) and φ(v). Therefore, u ∈ a and v ∈ a and finally
u ∨ v ⊆ a. Now by construction (u ∨ v)I = pro xI so (pro xI) ⊆ aI . This
entails (dual aI) ⊆ (dual pro xI) and because aI is proper and xI is improper
(imp aI) ⊆ xI .

(iii) Denote x ∧ a by z. We have proved previously that aP ⊆ xP and
(pro xI) ⊆ aI the latter implying xI ⊆ aI because xI is improper. There-
fore zP = aP and zI = xI . Now as φ(x) is true the quantified proposition
corresponding to its interpretation (i.e. (2)) has a Skolem function, i.e. there
exists a function sP : pro xI −→ xP such that xP = sP(xI) =⇒ φ(x). Now,
by construction of a, for any xI ∈ xI , φ(x) implies xP ∈ aP . Therefore the
actual range of s is a subset of aP . As a consequence, the quantified proposition
that corresponds to the interpretation of φ(z) has a Skolem function and φ(z)
is finally true.

The next proposition needs the following lemma which is a direct conse-
quence of the fact that the distance between proper intervals corresponds to the
Hausdorff distance between the corresponding sets of reals:

dist(x,y) = max{ max
y∈y

min
x∈x

dist(x, y) , max
x∈x

min
y∈y

dist(x, y) }

where the distance between reals is dist(x, y) = maxk∈[1..n] |xk − yk|.

Lemma 4.1. Let z(k) ∈ IRp be a sequence of intervals which converges to
z ∈ IRp. Then both following statements are true.

(i) Any sequence (z(k))k∈N which satisfies z(k) ∈ z(k) has at least one accu-
mulation point and all its accumulation points are in z.

(ii) For any z ∈ z, there exists a convergent sequence (z(k))k∈N which satisfies
z(k) ∈ z(k) whose limit is z.

Proof. (i) The sequence z(k) being convergent, it is also bounded. Therefore,
any sequence z(k) ∈ z(k) is bounded. This latter hence have at least one accu-
mulation point thanks to the Bolzano-Weierstrass theorem. By the definition
of the Hausdorff distance and because z(k) ∈ z(k), we have whatever is k ∈ N

dist(z(k), z) ≥ max
z∈z(k)

min
y∈z

d(z, y) ≥ min
y∈z

dist(z(k), y) ≥ 0. (3)

As the sequence z(k) converges to z, we also have limk→∞ dist(z(k), z) = 0.
Therefore, using the inequalities (3), we obtain

lim
k→∞

min
y∈z

dist(z(k), y) = 0.
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As a direct consequence of the definition of an accumulation point z∗ of the
sequence z(k), we have miny∈z dist(z∗, y) = 0. Finally, as z is closed inside Rn,
we have z∗ ∈ z.

(ii) Whatever is k ∈ N, the interval z(k) being closed inside Rn, there exists
z(k) ∈ z(k) which satisfies

dist(z(k), z) = min
y∈z(k)

dist(y, z).

Similarly to the first case, we can prove that

lim
k→∞

min
y∈z(k)

dist(y, z) = 0.

Finally, limk→∞ dist(z(k), z) = 0 so we have constructed a sequence z(k) ∈ z(k)

which converges to z.

By definition, given a set E and a subset F of E, F is closed inside E if and
only if any point of E which is the limit of a converging sequence of points of
F is also in F .

Proposition 4.3. Let φ be a relation of Rn. If the graph of φ is closed inside
Rn then the graph of the AE-extension of φ is closed inside KRn.

Proof. Consider any convergent sequence of intervals (x(k))k∈N such that φ(x(k))
holds for all k ∈ N. We just have to prove that φ(x(∞)) holds, where x(∞) stands
for the limit of the sequence (x(k))k∈N. We first pick up a subsequence (y(k))k∈N
of (x(k))k∈N whose elements have constant componentwise proper/improper
qualities. This is indeed possible, otherwise there would exists only a finite
number of intervals for each possible 2n proper/improper qualities of the com-
ponents, that is a finite number of x(k), which is absurd. As the subsequence
converges to the same limit that the original sequence we just have to prove
that φ(y∞) is true. Now, y(∞) has the same componentwise proper/improper
qualities that the elements y(k) because both IR and IR are closed inside KR.
Define P = P (y(k)) = P (y(∞)) and I = I(y(k)) = I(y(∞)). We suppose that
both P and I are not empty, the other cases being similar and simpler. Then,
for all k ∈ N, the following proposition is true:(

∀xI ∈ pro y(k)
I
)(
∃xP ∈ y(k)

P
)(
φ(x)

)
. (4)

Now, by Lemma 4.1, for any xI ∈ pro y(∞)
I , there exists a sequence x

(k)
I ∈

pro y(k)
I which converges to xI . Then using the quantified proposition (4), for

all k ∈ N there exists x(k)
P ∈ y(k)

P such that φ(x(k)). The sequence (x(k))k∈N has
at least one accumulation point x∗ ∈ pro y(∞) by Lemma 4.1. Obviously, we
have x∗I = xI . Furthermore, φ(x∗) holds because the graph of φ is closed inside
Rn. Therefore, we have eventually proved the following quantified proposition:(

∀xI ∈ pro y(∞)
I
)(
∃xP ∈ y(∞)

P
)(
φ(x)

)
.

Therefore that φ(y(∞)) is true.
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5 AE-extensions of continuous real functions

The AE-extensions of continuous real functions are now defined. Their richer
interpretations with respect to the classical interval extensions are obtained tak-
ing advantage of the additional freedom degree offered by the proper/improper
quality of the generalized intervals.

5.1 Definition of AE-extensions of real functions

The definition of extensions to classical intervals is first reformulated using AE-
extensions of real relations. This new formulation of the definition of classical
interval extensions will be applicable to generalized intervals, leading to the
definition of AE-extensions. First recall the definition of extensions to classical
intervals.

Definition 5.1 (Neumaier [25]). Consider a continuous real function f : Rn −→
Rm. An interval function g : IRn −→ IRm is an interval extension of f if and
only if both following conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ IRn

) (
range (f,x) ⊆ g(x)

)
Also, an interval function that only satisfies 2. is called a weak interval extension
of f .

Remark 8. The following simplification is used: all the functions met in the
sequel will be defined in Rn. When other functions have to be considered (for
example 1/x or ln(x)) some attention should be given to the involved definition
domains.

As illustrated by Example 4.3, the condition range (f,x) ⊆ g(x) is equivalent
to the quantified proposition(

∀x ∈ x
)(
∃z ∈ g(x)

)(
f(x) = z

)
.

This quantified proposition is also equivalent to φ(dual x,g(x)) where φ is the
real relation defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z. Therefore, the defini-
tion of the extensions to classical intervals can be reformulated in the following
way:

Definition 5.2 (Reformulation of Definition 5.1). Consider a continuous real
function f : Rn −→ Rm. An interval function g : IRn −→ IRm is an interval
extension of f if and only if both following conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ IRn

) (
φ(dual x,g(x))

)
where the real relation φ(x, z) is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z.
Also, an interval function that only satisfies 2. is called a weak interval extension
of f .
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The definition of AE-extensions of real functions is eventually obtained ex-
tending the previous definition to generalized intervals.

Definition 5.3. Consider a continuous real function f : Rn −→ Rm. A gener-
alized interval function g : KRn −→ KRm is an AE-extension of f if and only
if both following conditions are satisfied:

1.
(
∀x ∈ Rn

) (
g(x) = f(x)

)
2.
(
∀x ∈ KRn

) (
φ(dual x,g(x))

)
where the real relation φ(x, z) is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z.
Also, an interval function that only satisfies 2. is called a weak AE-extension of
f .

Informally, when all involved intervals are proper, the definition of AE-
extensions coincides with the one of interval extensions. When, an improper
interval is involved in place of an proper one, the related quantifier is changed,
taking attention to keep the order AE inside the obtained quantified proposition.

Formally, defining z = g(x), g is an AE-extension of f if and only if the
following quantified proposition is true:(

∀xP ∈ xP
)(
∀zI′ ∈ pro zI′

)(
∃zP′ ∈ zP′

)(
∃xI ∈ pro xI

)(
f(x) = z

)
where P = P(x), I = I(x), P ′ = P(z) and I ′ = I(z). In the special case of
real-valued function, i.e. f : Rn −→ R, the previous quantified proposition can
be written using the dependent quantifier introduced in Corollary 3.1 (page 14):(

∀xP ∈ xP
)(

Q(z)z ∈ pro z
)(
∃xI ∈ pro xI

)(
f(x) = z

)
where Q(z) is defined by Q(z) = ∃ if z ∈ IR and Q(z) = ∀ otherwise. The block(
Q(z)z ∈ pro z

)
is written at the center of the proposition in order to keep the

succession AE in the proposition whatever is the quantifier Q(z), i.e. whatever
is the proper/improper quality of z.

The aim of the developments proposed hereafter is to construct generalized
intervals g(x) that satisfy these latter propositions and to study their properties.
Such generalized intervals g(x) are displayed by the following definition:

Definition 5.4. Consider a continuous real function f : Rn −→ Rm, x ∈ KRn
and z ∈ KRm. The interval z is said to be interpretable with respect to f and
x (or shortly (f,x)-interpretable) if and only if φ(dual x, z) is true, where the
real relation φ(x, z) is defined in Rn+m by φ(x, z) ⇐⇒ f(x) = z.

As a consequence of this definition, AE-extensions of f are defined so as
to construct (f,x)-interpretable intervals. The next subsection provides some
examples of interpretations of (f,x)-interpretable intervals.
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5.2 Some interpretations of AE-extensions

The AE-extensions can be used for many purposes: they can either be used
to compute inner or outer approximations of functions ranges over boxes, or
prove that a box is inside the projection of a relation f(x) = z0. Some exam-
ples of these interpretations are now provided. Are considered in this section
a continuous function f : R2 −→ R and two intervals x ∈ KR and y ∈ KR.
The interpretations of some (f,x,y)-interpretable intervals z ∈ KR are inves-
tigated. Also, these examples will show that the generalized interval inclusion
allows comparing the accuracy of (f,x,y)-interpretable intervals. This use of
the generalized intervals inclusion will be formalized in Section 6.

Suppose that x ∈ IR and y ∈ IR

In this case, z has to be proper. If z was not proper, i.e. was improper and
non-degenerated, a quantified proposition(

∀x ∈ x
)(
∀y ∈ y

)(
∀z ∈ pro z

)(
f(x, y) = z

)
would have to be true, with pro z non-degenerated, which is absurd (see Propo-
sition 5.1 for a formal argumentation). Therefore z is (f,x,y)-interpretable if
and only if (

∀x ∈ x
)(
∀y ∈ y

)(
∃z ∈ z

)(
f(x) = z

)
,

that is z ⊇ range (f,x,y). Consider two (f,x)-interpretable intervals z and z′

related by z′ ⊆ z. So, both following quantified propositions are true:(
∀x ∈ x

)(
∀y ∈ y

)(
∃z ∈ z

)(
f(x, y) = z

)
(
∀x ∈ x

)(
∀y ∈ y

)(
∃z ∈ z′

)(
f(x, y) = z

)
.

It can be noticed that, because z′ ⊆ z, the first quantified proposition provides
less information than the second one (because the second implies the first).
So z′ can be considered as more accurate than z. In this case, the compari-
son between (f,x,y)-interpretable intervals is similar to the classical interval
extensions context.

Suppose that x ∈ IR and y ∈ IR

In this case, a (f,x,y)-interpretable interval can either be proper or improper.
Consider two (f,x,y)-interpretable intervals z ∈ IR and z′ ∈ IR. So, both
following quantified propositions are true:(

∃z ∈ z
)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
(
∀z ∈ pro z′

)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.

So, z
⋂

range (f, pro x,pro y) 6= ∅ and pro z′ ⊆ range (f, pro x,pro y) are the
two possible interpretations of a (f,x,y)-interpretable interval in this case. Now,
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consider a third (f,x,y) interpretable interval z′′ ∈ IR and suppose that z′′ ⊆
z′ ⊆ z. So, the next quantified proposition is also true.(

∀z ∈ pro z′′
)(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.

On one hand, z′′ ⊆ z′ implies pro z′ ⊆ pro z′′ and therefore the second quanti-
fied proposition provides less information than the third one (because the third
implies the second). On the other hand, z′ ⊆ z implies pro z′

⋂
z 6= ∅ and there-

fore the first quantified proposition provides less information than the second
one (because the second implies the first). So, the interval z′′ can be considered
as more accurate than z′, and z′ as more accurate than z. The inclusion between
generalized intervals can be used to model the accuracy of (f,x,y)-interpretable
intervals.

Suppose that x ∈ IR and y ∈ IR

In this case, a (f,x)-interpretable interval can be either proper or improper. As
before, consider two (f,x)-interpretable intervals z ∈ IR and z′ ∈ IR. So, both
following quantified propositions are true:(

∀x ∈ x
)(
∃z ∈ z

)(
∃y ∈ pro y

)(
f(x, y) = z

)
(
∀x ∈ x

)(
∀z ∈ pro z′

)(
∃y ∈ pro y

)(
f(x, y) = z

)
.

If the first one does not offer any interesting interpretation, the second means
that the interval x is a subset of the projection of the relation f(x, y) = z0
on the x-axis whatever is z0 ∈ pro z′. As in the previous case, if z′ ⊆ z
then pro z′

⋂
z 6= ∅ and therefore the first quantified proposition provides less

information than the second. Once more, the inclusion between generalized
intervals can be used to model the accuracy of (f,x,y)-interpretable intervals.

5.3 Some properties of AE-extensions

Some general properties of AE-extensions are now investigated. First off all,
the next proposition states formally that when restricted to proper intervals
arguments AE-extensions coincide with the extensions to classical intervals, i.e.
the image of a proper interval is a proper interval that contains the range of the
function.

Proposition 5.1. Let f : Rn −→ Rm be a continuous function, x ∈ IRn a
proper interval and z ∈ KRm. The interval z is (f,x)-interpretable if and only
if

z ⊇ � range (f,x) ,

which implies in particular that z is proper.

Proof. z ⊇ � range (f,x) obviously implies that z is (f,x)-interpretable. It
remains to prove that if z is (f,x)-interpretable then z ⊇ � range (f,x). By
definition, z satisfies(

∀x ∈ x
)(
∀zI ∈ pro zI

)(
∃zP ∈ zP

)(
f(x) = z

)
.

23



The latter quantified proposition obviously implies the following one:(
∀x ∈ x

)(
∀zI ∈ pro zI

)(
fI(x) = zI

)
.

Now, suppose that zI is not degenerated. So there exists zI ∈ pro zI and
z′I ∈ pro zI which satisfies zI 6= z′I . So, for any x ∈ x we have fI(x) = zI
and fI(x) = z′I , which is absurd. So zI is degenerated and thus also proper.
Therefore z has to be proper. As it is also (f,x)-interpretable, it satisfies

(
∀x ∈

x
)(
∃z ∈ z

)(
f(x) = z

)
, that is z ⊇ � range (f,x).

Then, a question arises: does any continuous real function have at least one
AE-extension? The next proposition provides a positive answer to this question.

Proposition 5.2. Let f : Rn −→ Rm be a continuous function and r : KRn −→
IRm defined by r(x) = � range (f, pro x). Then, r is an AE-extension of f .

Proof. First notice that r(x) = f(x) for all x ∈ Rn. Denote the relation f(x) =
z by φ(x, z) and consider any x ∈ KRn. As r(x) = � range (f, pro x), the
following quantified proposition is true:(

∀x ∈ pro x
)(
∃z ∈ r(x)

)(
f(x) = z

)
.

That is, φ(imp x, r(x)) holds (as dual (pro x) = imp x). Now, as the inclusion
(imp x) ⊆ (dual x) holds for any x ∈ KRn, the Proposition 4.1 can be applied
so as to prove that φ(dual x, r(x)) holds. Therefore, the generalized interval
r(x) is (f,x)-interpretable.

Example 5.1. Consider a two variables function f and two generalized intervals
x1 ∈ IR and x2 ∈ IR. Define z = � range (f,x1,pro x2). Then, by construction
of z the quantified proposition(

∀x1 ∈ x1

)(
∀x2 ∈ pro x2

)(
∃z ∈ z

)(
f(x) = z

)
is true. It obviously implies(

∀x1 ∈ x1

)(
∃x2 ∈ pro x2

)(
∃z ∈ z

)(
f(x) = z

)
.

Therefore, the interval z is (f,x1,x2)-interpretable.

Finally, the next proposition gives a lower bound (in the sense of the inclu-
sion) for any AE-extension. It will be useful for the coming developments.

Proposition 5.3. Let f : Rn −→ Rm be a continuous function, x ∈ KRn and
z ∈ KRm be a (f,x)-interpretable. Then imp r(x) ⊆ z holds, where r(x) =
� range (f, pro x).

Proof. Denote the relation f(x) = z by φ(x, z). By definition, the interval z
is (f,x)-interpretable implies that φ(dual x, z) is true. Then, define y by y =
�{(x, z) ∈ (pro x,pro z)|φ(x, z)}, which is well defined by the first assertion
of Proposition 4.2. We obviously have y ⊆ (pro x, r(x)). As r(x) and y are
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proper, dualizing both sides of this inclusion raises
(
imp x, imp r(x)

)
⊆ imp y.

Furthermore, applying the second assertion of the Proposition 4.2, we prove the
φ(dual x, z) =⇒ (imp y) ⊆ (dual x, z). Combining both previous inclusions
raises

(
imp x, imp r(x)

)
⊆ (dual x, z), which eventually implies

(
imp r(x)

)
⊆ z

(notice that imp x ⊆ dual x is true whatever is x).

6 Minimal AE-extensions

In the context of classical interval extensions, if two extensions g and h of a real
function f are related by the inclusion g(x) ⊆ h(x), then g is more accurate
than h. This is justified because once g(x) is evaluated, h(x) does not give any
additional information. Or equivalently, because if g is an interval extension of
f then any interval function h which satisfies g(x) ⊆ h(x) is also an extension
of f . Subsection 5.2 has illustrated that this comparison between the accuracy
of two classical interval extensions can be carried to AE-extensions, leading to
the following definition:

Definition 6.1. Let f : Rn −→ Rm be a continuous real function and x ∈ KRn.
Consider two (f,x)-interpretable intervals z ∈ KRm and z′ ∈ KRm. Then z is
more accurate than z′ if and only if z ⊆ z′. Also, z is strictly more accurate
than z′ if furthermore z 6= z′.

This definition is justified by the following proposition, which generalizes the
informal ideas presented in Subsection 5.2:

Proposition 6.1. Let f : Rn −→ Rm be a continuous real function and x ∈
KRn. Consider a (f,x)-interpretable intervals z ∈ KRm and an interval z′ ∈
KRm. If z ⊆ z′ then z′ is also (f,x)-interpretable.

Proof. Define the relation φ by φ(x, z) ⇐⇒ f(x) = z. So, the interval z
is (f,x)-interpretable if and only if φ(dual x, z) is true and the interval z′ is
(f,x)-interpretable if and only if φ(dual x, z′) is true. Now, as z ⊆ z′ and
because dual x ⊆ dual x, we have (dual x, z)T ⊆ (dual x, z′)T . Therefore,
the Proposition 4.1 proves that φ(dual x, z) =⇒ φ(dual x, z′). Finally, if z is
(f,x)-interpretable then z′ is also (f,x)-interpretable.

Example 6.1. Consider f(x, y) = x + y and x = [−1, 1] and y = [5, 2]. The
interval z = [4, 3] can be proved to be (f,x,y)-interpretable2. Therefore, the
following quantified proposition is true:(

∀x ∈ x
)(
∀z ∈ [3, 4]

)(
∃y ∈ y

)(
x+ y = z

)
Using the generalized interval inclusion, one can raise less accurate (f,x,y)-
interpretable intervals. E.g. z ⊆ [3.9, 3.1] so the following quantified proposition
is true: (

∀x ∈ x
)(
∀z ∈ [3.1, 3.9]

)(
∃y ∈ y

)(
x+ y = z

)
2Actually, z = x + y using the Kaucher arithmetic. See Section 10 where the Kaucher

arithmetic is proved to raise (f,x,y)-interpretable intervals.
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Clearly the latter quantified proposition provides less information than the for-
mer. Also z ⊆ [3.9, 3.1] ⊆ [3.5, 5] so the following quantified proposition is
true: (

∀x ∈ x
)(
∃z ∈ [3.5, 5]

)(
∃y ∈ y

)(
x+ y = z

)
Once more, the latter quantifier proposition provides less information than the
firsts two.

Once Definition 6.1 is stated, a definition of minimal AE-extensions can be
proposed in the following natural way: an AE-extension is minimal if and only
if there does not exist any AE-extension which would be strictly more accurate.

Definition 6.2. Let f : Rn −→ Rm be a continuous function and x ∈ KRn.
A (f,x)-interpretable interval z ∈ KRm is minimal if and only if for any (f,x)-
interpretable interval z′ ∈ KRm,

z′ ⊆ z =⇒ z′ = z.

An AE-extension g : KRn −→ KRm of f is minimal if and only if for all x ∈ KRn
the (f,x)-interpretable interval g(x) is minimal.

In the special cases where x is either proper or improper, the minimality of
the AE-extensions is related to the minimality (respectively maximality) of the
outer (respectively inner) approximations of the range of the extended function:

Proposition 6.2. Let f : Rn −→ Rm be a continuous function and x ∈ KRn
and z ∈ KRm.

(i) Suppose x ∈ IRn. In this case, the interval z is a minimal (f,x)-interpretable
interval if and only if z = � range (f,x), i.e. the unique minimal outer
approximation of range (f,x).

(ii) Suppose x ∈ IRn. In this case, if the interval z is improper and pro z is
an maximal inner approximation of the range of f over pro x then z is
an minimal (f,x)-interpretable interval.

Proof. (i) As proved in Subsection 5.2, if x is proper then z is (f,x)-interpretable
if and only if it is both proper and an outer approximation of range (f,x). There-
fore, z is a minimal (f,x)-interpretable interval if and only if z = � range (f,x).

(ii) Consider any (f,x)-interpretable interval z′ ∈ KRm which satisfies z′ ⊆
z. We just have to prove that z′ = z. Due to z′ ⊆ z ∈ IR, z′ is also improper.
Therefore, pro z′ is an inner approximation of range (f, pro x) and pro z ⊆
pro z′. So by the maximality of the inner approximation pro z, we get pro z′ =
pro z, and eventually z′ = z.

Remark 9. The counterpart of the case (ii) of Proposition 6.2 is false. I.e. there
exists some quantified proposition(

∀z1 ∈ z1

)(
∃z2 ∈ z2

)(
∃x1 ∈ x1

)(
∃x2 ∈ x2

)(
z = f(x)

)
where neither z1 can be enlarged nor z2 can be retracted keeping the truth of
the proposition. Therefore minimal (f,x)-interpretable intervals with x ∈ IRn

can be non-improper.
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Proposition 6.2 allows the construction of some minimal AE-extension of a
one variable real-valued function f : R −→ R.

Example 6.2. Consider the function exp(x). As it is a one variable function,
the interval x ∈ KR is either proper or improper and the Proposition 6.2 can be
applied for any interval argument x. Define the interval function exp∗ : KR −→
KR in the following way:

• if x ∈ IR, then

exp∗(x) = range (exp,x) = [exp(x), exp(x)].

• if x ∈ IR, then

exp∗(x) = dual range (exp,pro x) = [exp(x), exp(x)].

The general expression of exp∗ is therefore exp∗(x) = [exp(x), exp(x)]. Then
Proposition 6.2 proves that exp∗ is a minimal AE-extension of exp. It will be
proved in Section 9 that there does not exist any other minimal AE-extension
of the function exp. In the same way, one can compute a minimal AE-extension
of lnx: for any x ∈ KR such that x > 0, we have ln∗ x = [lnx, lnx].

Remark 10. It can be noticed that the minimal AE-extensions of exp and ln
coincide with their extensions defined by Kaucher (see Subsection 2 page 10).
This coincidence will be proved to happen for any one variable function in
Section 10. In this case, both extensions f∗ and fKR will be denoted by the
symbol f .

A question then arises: does always exist a minimal AE-extension which is
more accurate than a given AE-extension? The next proposition gives a positive
answer to this question. First of all, the next technical result is needed.

Lemma 6.1. Let E ⊆ KRn be non-empty, closed and bounded. Then E contains
at least one inclusion minimal element, i.e. an element which is not included
in any other element of E.

Proof. Consider the order preserving homeomorphism σ : KRn −→ R2n intro-
duced in [32], i.e.

σ(x) = (− inf x1, ...,− inf xn, sup x1, ..., sup xn).

As σ is order preserving, if x∗ is a minimal element of σ(E) then σ−1(x∗) is a
minimal element of E. E being closed in the complete space KRn and bounded,
it is compact. Finally as σ is continuous, σ(E) is compact and nonempty.
Therefore, σ(E) have at least one minimal element .

Proposition 6.3. Let f : Rn −→ Rm be a continuous function and g be an
AE-extension of f . Then there exists an minimal AE-extension of f which is
more accurate than g.
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Proof. We just have to prove that for any x ∈ KRn, there exists a minimal
(f,x)-interpretable interval which is more accurate than g(x). So, consider any
x ∈ KRn and define E = {z|z ⊆ g(x)} and F = {z ∈ KRm|φ(dual x, z)}
where φ(x, z) ⇐⇒ f(x) = z. Therefore, the intervals of E

⋂
F are both (f,x)-

interpretable and more accurate than g(x). On one hand, E is obviously closed.
On the other hand, the graph of φ is closed inside Rn because f is continuous
and therefore F is closed thanks Proposition 4.3 (page 19). Therefore, E

⋂
F

is closed. Furthermore, E
⋂
F is bounded thanks to Proposition 5.3 (page 24)

which proves that z ∈ E
⋂
F entails dual � range (f, pro x) ⊆ z ⊆ g(x). Fi-

nally, E
⋂
F is not empty because g(x) ∈ E

⋂
F . Therefore, we can apply

Lemma 6.1 which proves that E
⋂
F has at least one minimal element, which

is an minimal (f,x)-interpretable interval by definition of E of F .

In particular, Proposition 6.3 proves that any box included inside the range
of a continuous function range (f,x) can be extended to a box which is a max-
imal inner approximation. It may happen that a function has several different
minimal AE-extensions, in particular when the AE-extensions are used to com-
pute inner approximations of the ranges of vector-valued functions. The next
proposition gives a sufficient condition for an interval function to be the unique
minimal AE-extension of a continuous real function.

Proposition 6.4. Let f : Rn −→ Rm be a continuous function and x ∈ KRn.
The interval z ∈ KRm is the unique minimal (f,x)-interpretable interval if and
only if for any z′ ∈ KRm,

z′ is (f,x)-interpretable ⇐⇒ z ⊆ z′.

Proof. (=⇒) Suppose that z is the unique minimal (f,x)-interpretable interval.
On one hand, by the Proposition 6.1, we have z ⊆ z′ implies that z′ is (f,x)-
interpretable. On the other hand, consider any z′ which is (f,x)-interpretable.
Then, by the Proposition 6.3, there exists an minimal (f,x)-interpretable inter-
val z′′ ∈ KRm which satisfies z′′ ⊆ z′. Finally, z′′ = z because z is the unique
minimal (f,x)-interpretable interval and we have proved z ⊆ z′.
(⇐=) Suppose that z′ is (f,x)-interpretable if and only if z ⊆ z′. In particular,
z ⊆ z implies that z is (f,x)-interpretable. Consider any (f,x)-interpretable
z′ ∈ KRn which satisfies z′ ⊆ z. By hypothesis z ⊆ z′ because z′ is (f,x)-
interpretable. So we have z′ = z. Therefore, by the definition of z minimality, z
is minimal. Finally consider any minimal (f,x)-interpretable z′ ∈ KRn. As z′

is (f,x)-interpretable, we have by hypothesis z ⊆ z′ and, because z′ is supposed
to be minimal, the definition of minimality entails z = z′.

In particular, the previous proposition will be used in Section 9 in order to
prove that any continuous real-valued function f : Rn −→ R has an unique
minimal AE-extension. The next proposition provides an interesting property
which is available when the uniqueness of the minimal (f,x)-interpretable in-
terval is proved: like in the case of classical interval extensions (where minimal
extensions are always unique) one can construct a (f,x)-interpretable interval
intersecting two (f,x)-interpretable intervals.
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Proposition 6.5. Let f : Rn −→ Rm be a continuous function and x ∈ KRn.
Suppose that z∗ ∈ KRm is the unique minimal (f,x)-interpretable interval and
consider two (f,x)-interpretable intervals z, z′ ∈ KRm. Then the interval z∧ z′

is also (f,x)-interpretable (and is obviously more accurate than z and z′).

Proof. By Proposition 6.4, we have both z∗ ⊆ z and z∗ ⊆ z′. Therefore, z∗ ⊆
z ∧ z′ which eventually entails that z ∧ z′ is (f,x)-interpretable.

Finally, the next proposition is a technical result which will be used in Section
7. First, the following lemma has to be established:

Lemma 6.2. Let f : Rn −→ Rm be a continuous function, x ∈ KRn and z
be an minimal (f,x)-interpretable interval. Then, z ⊆ r(x) where r(x) =
� range (f, pro x).

Proof. Denote the relation f(x) = z by φ(x, z). Therefore φ(dual x, z) holds
because z is (f,x)-interpretable. Define y = �{(x, z) ∈ (pro x,pro z)|φ(x, z)},
which is well defined thanks to the first assertion of Proposition 4.2 (page 17).
Obviously, y ⊆ (pro x, r(x)). Now, by the third assertion of Proposition 4.2, we
have φ(dual x, z) =⇒ φ

(
y ∧ (dual x, z)

)
, and by the Proposition 4.1 (page 17),

φ
(
y ∧ (dual x, z)

)
=⇒ φ

(
(pro x, r(x)) ∧ (dual x, z)

)
. Now, because dual x ⊆

pro x, we have (dual x)∧(pro x) = dual x and therefore φ(dual x, z∧r(x)), i.e.
z ∧ r(x) is (f,x)-interpretable. Furthermore, z ∧ r(x) ⊆ z so by the minimality
of z, we have z ∧ r(x) = z. This eventually entails z ⊆ r(x).

Proposition 6.6. Let f : Rn −→ Rm be a locally Lipschitz continuous function
and f be one minimal AE-extension of f . Then for all xref ∈ IRn, there exists
γ ∈ R, γ > 0, such that for any x ∈ Kxref ,

||wid f(x)|| ≤ γ||wid x||.

Proof. By Proposition 5.3 (page 24) and Lemma 6.2 we have

imp r(x) ⊆ f(x) ⊆ r(x),

where r(x) = � range (f, pro x). These two inclusion obviously imply

|| rad f(x)|| ≤ || rad r(x)||. (5)

Now, it is proved in [14] that if f is locally Lipschitz continuous then so is
r(x) (this is a particular case of Theorem 2.6 proved there). Therefore, for all
xref ∈ IRn, there exists a γ ∈ R, γ > 0 such that for any x ∈ Kxref and any
y ∈ Kxref ,

dist(r(x), r(y)) ≤ γ dist(x,y).

Choose y = mid x ∈ Kxref and notice that dist(x,mid x) = || rad x|| so as
to obtain dist(r(x), f(mid x)) ≤ γ|| rad x||. Finally, notice that || rad r(x)|| ≤
dist(r(x), z) obviously holds for any z ∈ Rn and hence in particular for z =
f(mid x). Therefore, thanks to (5), we have proved || rad f(x)|| ≤ γ|| rad x||,
which is equivalent to the statement of the proposition.
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7 Order of convergence of AE-extensions

In the context of classical interval extensions, the quality of an extension is
characterized through its order of convergence. This notion is carried to AE-
extensions.

Definition 7.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→
KRm be an AE-extension of f . The AE-extension g has a convergence order
α ∈ R, α > 0, if and only if there exists a minimal AE-extension f of f more
accurate that g such that for any xref ∈ IRn, there exists γ > 0 such that for
any x ∈ Kxref ,

||wid g(x)− wid f(x)|| ≤ γ(||wid x||)α.

Remark 11. It is obvious that an AE-extension which has an order of con-
vergence α has also an order of convergence α′ for any 0 < α′ ≤ α. Also, the
usually considered orders of convergence are integers. An order of convergence 1
is called a linear order of convergence, and an order of convergence 2 a quadratic
order of convergence.

Remark 12. For any AE-extension g of f , the existence of at least one minimal
AE-extension of f which is more accurate than g was established by Proposition
6.3. Therefore, the statement of the previous definition cannot fail due to a
lack of minimal AE-extensions. Also, if the existence of an unique minimal AE-
extension is assumed, the definition of the order of convergence of AE-extensions
coincides with its usual definition in the context of the classical intervals theory.

In the context of classical interval extensions, the order of convergence is
related to the distance to the minimal extension. So as to extend this property
to the AE-extensions, the following lemma is first established:

Lemma 7.1. Let z ∈ KRm and z′ ∈ KRm be such that z′ ⊆ z. Then,

1
2
||wid z− wid z′|| ≤ dist(z, z′) ≤ ||wid z− wid z′||.

Proof. The inclusion z′ ⊆ z entails 0 ⊆ z−dual z′ and therefore u := z−dual z′

is proper and contains 0. Then notice that both ||wid z−wid z′|| = ||wid (z−
dual z′)|| = ||wid u|| and dist(z, z′) = ||u||. Finally the following inequality
obviously hold for any proper interval that contains 0: || rad u|| ≤ ||u|| ≤
||wid u||. This corresponds to the statement of the lemma.

The order of convergence of an AE-extension is now proved to be related to
the distance to some minimal AE-extension.

Proposition 7.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→
KRm be an AE-extension of f . The AE-extension g has a convergence order
α ∈ R, α > 0, if and only if there exists an minimal AE-extension f of f more
accurate that g such that for any xref ∈ IRn, there exists γ > 0 such that for
any x ∈ Kxref ,

dist(g(x), f(x)) ≤ γ(||wid x||)α.
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Proof. Suppose that g has an order of convergence α, that is there exists an
minimal AE-extension f more accurate than g such that for all xref , there exists
γ, for all x ∈ Kxref ,

||wid g(x)− wid f(x)|| ≤ γ(||wid x||)α.

Then, by the Lemma 7.1, dist(g(x), f(x)) ≤ ||wid g(x)−wid f(x)|| which proves
that the property stated by the present proposition is true. Now suppose that
this property is true, that is there exists an minimal AE-extension f more accu-
rate than g such that for all xref , there exists γ, for all x such that pro x ⊂ xref ,

dist(g(x), f(x)) ≤ γ(||wid x||)α.

Then, by the Lemma 7.1, 1
2 ||wid g(x) − wid f(x)|| ≤ dist(g(x), f(x)) which

shows that g has an order of convergence α using the definition 7.1 with γ′ =
2γ.

Finally, next proposition states that any locally Lipschitz continuous AE-
extension has a linear order of convergence. This property generalizes a well
known property of classical intervals extensions.

Proposition 7.2. Let f : Rn −→ Rm be a continuous function and g : KRn −→
KRm be an AE-extension of f . If g is locally Lipschitz continuous then it has
a linear order of convergence.

Proof. First of all, it is easy to check that if g is locally Lipschitz continuous,
then so is f (because f(x) = g(x) for all x ∈ Rn). Then pick up a minimal
AE-extension f more accurate than g (which exists thanks to Proposition 6.3).
We use the local Lipschitz continuity of g and Proposition 6.6 (page 29) so as
to prove that for all xref ∈ IRn, there exists γ > 0 and γ′ > 0 such that for all
x ∈ Kxref and all y ∈ Kxref ,

||wid f(x)|| ≤ γ||wid x|| and dist(g(x),g(y)) ≤ γ′ dist(x,y).

Then choosing y = [mid x,mid x] ⊆ xref , we obtain

dist(g(x),g(mid x)) ≤ γ′|| rad x||

We have || rad g(x)|| ≤ dist(g(x),g(mid x)) (because g(mid x) is degenerated)
and therefore || rad g(x)|| ≤ γ′|| rad x||. Now define γ′′ = max{γ, γ′}. There-
fore, we have proved that

||wid f(x)|| ≤ γ′′||wid x|| and ||wid g(x)|| ≤ γ′′||wid x||.

So, we have ||wid g(x)− wid f(x)|| ≤ 2γ′′||wid x|| (the worth case happening
when wid g(x) = −wid f(x)).
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8 Outward rounding for AE-extensions

When using computers, one has to deal with the finiteness of the real numbers
representation. This leads to incorrect computations. In the context of classical
intervals theory, outward rounding is compatible with semantic of the interval
extensions and therefore allows conducting reliable computations using a finite
precision for numbers representation. In the context of AE-extensions, it is
now proved that outward rounding can be used in a similar way. Similarly
to the classical interval extensions, the outward rounding of AE-extensions is
proceeded in two steps:

1. outward rounding of the interval arguments

2. outward rounding of the AE-extension

The outward rounding of an interval x ∈ KRn is denoted by ♦x and satisfies by
definition x ⊆ ♦x. On the one and, the outward rounding of a proper interval en-
larges the involved set of reals: for example ♦[−1, 1] could be equal to [−1.1, 1.1].
On the other hand, the outward rounding of an improper interval retracts the
involved set of reals: for example ♦[1,−1] could be equal to [0.9,−0.9]. It can
also happen that the outward rounding changes the proper/improper quality of
an interval: for example ♦[0.05,−0.05] could be equal to [−0.05, 0.05]. The out-
ward rounding of an AE-extension g is denoted by g♦ and satisfies by definition
g(x) ⊆ g♦(x) for any x ∈ KRn. The next proposition proves that this outward
rounding process is compatible with the interpretations of the AE-extensions.

Proposition 8.1. Let f : Rn −→ Rm be a continuous function and g : KRn −→
KRm be an AE-extension of f . Then, the interval function h : KRn −→ KRm
defined by h(x) = g♦(♦x) is a weak AE-extension of f .

Proof. Denote the relation f(x) = z by φ(x, z). Then, as g is an AE-extension
of f , the interval g(♦x) is (f,♦x)-interpretable for all x ∈ KRn, that is

φ(dual ♦x,g(♦x))

is true. As dual ♦x ⊆ dual x and g(♦x) ⊆ g♦(♦x) we can apply Proposition
4.1 which proves that

φ(dual x,g♦(♦x))

is true (for example, ∀x ∈ ♦x,∃z ∈ g(♦x), z = f(x) implies ∀x ∈ x,∃z ∈
♦g(♦x), z = f(x)). Therefore, h(x) is (f,x)-interpretable.

The weak AE-extension g♦(♦x) involves only representable numbers, and
hence can be used in the context of a finite representation of real numbers. The
next example illustrates how the minimal AE-extension of ln can be rounded.

Example 8.1. One wants to compute some inner and outer approximations of

range (ln,x) = [1, 2]

32



with x = [e, e2] using a two decimals precision. Consider first the outer approxi-
mation: to compute an outer approximation of the range, a rounded approxima-
tion of ln∗(x) has to be computed. First x is rounded to ♦[e, e2] = [2.71, 7.39].
Then, the rounded AE-extension gives

♦ ln∗(♦x) = ♦[0.99694863... , 2.0001277...] = [0.99, 2.01],

which is indeed an outer approximation of the range. Now consider the inner
approximation: so as to compute an inner approximation of the range, a rounded
approximation of ln∗(dual x) has to be computed. First, dual x = [e2, e] is
rounded to ♦[e2, e] = [7.38, 2.72]. Notice that the outward rounding of an
improper interval computes an inner rounding on its proper projection: the
underlying set of reals has been retracted by the outward rounding. Then, the
rounded AE-extension leads to

♦ ln∗(♦(dual x)) = ♦[1.9987736... , 1.0006319...] = [1.99, 1.01].

Once more, the outward rounding of an improper interval computes an inner
rounding of its proper projection, and the final result is indeed an inner approx-
imation of the range.

Finally, the AE-extensions which will be met in the sequel will be com-
posed of several interval functions. Suppose that an AE-extension g is obtained
through the composition of some interval functions gk. Suppose that these
interval functions are increasing with respect to the inclusion. Then, the inter-
val function obtained through the composition of the outward rounded interval
functions g♦

k is obviously an outward rounding of g. Therefore, rounding com-
pound AE-extensions can be done rounding the interval functions met in its
composition.

Now, an outward rounded AE-extension can also be obtained if the expres-
sion of g contains non-increasing interval functions provided that their argu-
ments are leaves of the g expression. For example, consider g(x) = (pro x) +
(pro x). Although the interval function pro is not increasing, the interval func-
tion g♦(x) = (pro ♦ x) +♦ (pro ♦ x) is an outward rounding of the function g.
Indeed, (pro ♦ x) ⊇ (pro x) because pro ♦ x is an outward rounding of pro . As
+ is increasing,

(pro x) + (pro x) ⊆ (pro ♦ x) + (pro ♦ x),

and because +♦ is an outward rounding of +,

(pro ♦ x) + (pro ♦ x) ⊆ (pro ♦ x) +♦ (pro ♦ x).

All AE-extensions proposed in this paper fulfill this hypothesis and thus can
easily be rounded.
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9 The minimal AE-extension f ∗ of real-valued
functions

The special case of real valued functions, i.e. f : Rn −→ R, is now investigated.
The next theorem proves that the lattice operations of generalized intervals gives
rise to a useful expression of the unique minimal AE-extension of a real-valued
function.

Theorem 9.1. Let f : Rn −→ R be a continuous function and x ∈ KRn. Then,
z ∈ KR is (f,x)-interpretable if and only if

∨xP∈xP ∧xI∈(pro xI) f(x) ⊆ z, (6)

where P = P(x) and I = I(x) (if one of these sets of indices is empty, the
corresponding operation is simply canceled in (6)).

Proof. We have to prove that whatever is z ∈ KR, the following quantified
proposition (

∀xP ∈ xP
)(

Q(z)z ∈ pro z
)(
∃xI ∈ pro xI

)(
f(x) = z

)
(7)

is true if and only if (6) is true, the quantifier Q(z) being defined like in Corollary
3.1. We suppose that both P and I are not empty, the other cases being similar
and simpler. For any values of xP ∈ xP , the set

{
z ∈ R|

(
∃xI ∈ xI

)(
f(x) = z

)}
is an interval because f is continuous. This interval is denoted by r(xP ,xI) and
we have both

r(xP ,xI) = ∨
xI∈(pro xI)

f(x) and dual r(xP ,xI) = ∧
xI∈(pro xI)

f(x).

Now,
(
∃xI ∈ pro xI

)(
f(x) = z

)
is equivalent to z ∈ r(xP ,xI). So the quanti-

fied proposition (7) is equivalent to(
∀xP ∈ xP

)(
Q(z)z ∈ pro z

)(
z ∈ r(xP ,xI)

)
.

Applying the corollary 3.1, we have(
Q(z)z ∈ pro z

)(
z ∈ r(xP ,xI)

)
⇐⇒ z ⊇ (dual r(xP ,xI)).

Therefore, the quantified proposition (7) is equivalent to(
∀xP ∈ xP

)(
z ⊇ (dual r(xP ,xI))

)
.

Finally, by the definition of the least upper bound, this is equivalent to

z ⊇ ∨
xP∈xP

(dual r(xP ,xI)),

which concludes the proof.
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As direct consequence of Proposition 6.4 (page 28), the interval

∨xP∈xP ∧xI∈(pro xI f(x)

is the unique minimal (f,x)-interpretable interval. The same notation f∗ as in
[34] is kept:

Definition 9.1. Let f : Rn −→ R be a continuous function. The generalized
interval function f∗ : KRn −→ KR is defined in the following way:

f∗(x) = ∨
xP∈xP

∧
xI∈(pro xI)

f(x)

= [ min
xP∈xP

max
xI∈(pro xI)

f(x) , max
xP∈xP

min
xI∈(pro xI)

f(x)],

where P = P(x) et I = I(x).

Remark 13. When P = ∅ or I = ∅, the expressions of f∗ are respectively

f∗(x) = [ max
x∈(pro x)

f(x), min
x∈(pro x)

f(x)] and f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)].

However, the use of the general expressions of Definition 9.1 in all cases is
allowed in the sequel.

The next three examples illustrate some computations and some interpreta-
tions of f∗.

Example 9.1. Consider the function f(x, y) = x2 +y2 and the proper intervals
x = [−3, 3] et y = [4, 6]. Then,

f∗(x,y) = [min
x∈x

min
y∈y

f(x, y) , max
x∈x

max
y∈y

f(x, y)]

= [min
x∈x

x2 + y2 , max
x∈x

x2 + y2]

= [0 + y2 , x2 + y2]
= [16 , 9 + 36] = [16, 45].

As f∗ is the unique minimal AE-extension of f , the previous computation proves
that z = [16, 45] is the smallest interval that satisfies(

∀x ∈ x
)(
∀y ∈ y

)(
∃z ∈ z

)(
x2 + y2 = z

)
.

Example 9.2. In the same situation as in the previous example, compute now

f∗(dual x,dual y) = [max
x∈x

max
y∈y

f(x, y) , min
x∈x

min
y∈y

f(x, y)]

= [45, 16].

As f∗ is the unique minimal AE-extension of f , the previous computation proves
that z = pro [45, 16] = [16, 45] is the largest interval that satisfies(

∀z ∈ z
)(
∃x ∈ x

)(
∃y ∈ y

)(
x2 + y2 = z

)
.
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Example 9.3. In the same situation as the two previous examples, now com-
pute

f∗(x,dual y) = [min
x∈x

max
y∈y

f(x, y) , max
x∈x

min
y∈y

f(x, y)]

= [min
x∈x

x2 + y2 , max
x∈x

x2 + y2]

= [0 + y2 , x2 + y2]
= [36 , 9 + 16] = [36, 25].

As f∗ is the unique minimal AE-extension of f , the previous computation proves
that z = pro [36, 25] = [25, 36] is the largest interval that satisfies(

∀z ∈ z
)(
∀x ∈ x

)(
∃y ∈ y

)(
x2 + y2 = z

)
Computing f∗ is NP-hard with respect to the number of variables, as the

exact computation of the range of a function over a box is a special case of
computing f∗ and is NP-hard (see [20]). As in the context of the classical
interval extensions, approximations of f∗ will be constructed in the following
way:

1. f∗ is computed for a set of elementary functions, leading to a generalized
interval arithmetic. This arithmetic will be proved to coincide with the
Kaucher arithmetic (Section 10).

2. Some natural AE-extensions (generalized interval evaluations of some ex-
pression) are defined using the generalized interval arithmetic (Section
11).

10 AE-extensions of elementary functions

The elementary functions considered here are the following, their definition do-
main being the usual ones:

• two variables functions: Ω = { x+ y , x− y , x× y , x/y}

• one variable functions: Φ = { expx, lnx, sinx, cosx, tanx, arccosx,
arcsinx, arctanx, absx, xn, n

√
x}.

In the cases of these simple functions, the minimal AE-extension f∗ can be
computed formally, leading to a generalized interval arithmetic. However the
explicit computations of these expressions will not be presented: using some
properties of the Kaucher arithmetic, the expressions of f∗ are proved to raise
the same results than the expressions of fKR for these operations.

Also, some properties of the minimal AE-extensions of these elementary
functions are stated through Proposition 10.1 and Proposition 10.2. These im-
portant properties will be used in the next section in order to investigate the
generalized interval evaluation of an expression.
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One variable elementary functions

In the case of one variable elementary functions, the definitions of f∗ and fKR

coincide:
f∗(x) = fKR(x) =

∨∧x

x∈pro x

[f(x), f(x)]

That is,

• if x ∈ IR then

f∗(x) = [min
x∈x

f(x),max
x∈x

f(x)] = range (f,x) ;

• if x ∈ IR then

f∗(x) = [ max
x∈pro x

f(x), min
x∈pro x

f(x)] = dual range (f, pro x) .

In the sequel, both interval extensions f∗ and fKR of the elementary functions
of Φ will be denoted by the symbol of the original function.

Example 10.1. Few minimal AE-extension are presented.

• exp(x) = [exp(x), exp(x)]

• ln(x) = [ln(x), ln(x)] is defined if both x > 0 and x > 0

•
√

x = [
√
x,
√
x] is defined if both x ≥ 0 and x ≥ 0.

In general, the algorithms dedicated to the computation of the classical inter-
val arithmetic are easily adapted to compute the generalized interval arithmetic:
only the rounding process has to be adapted.

Now that the AE-extensions of the elementary functions are built, one addi-
tional property is needed for the coming developments: each quantified propo-
sition that corresponds to the interpretation of theses minimal AE-extensions
must have a continuous Skolem function. This is formally stated by the next
proposition.

Proposition 10.1. Let f be an elementary function of Φ and x{0,1} ∈ KR2 that
satisfies x0 = f∗(x1). Define the following sets of indices: A = P(x{1})

⋃
I(x{0})

and E = I(x{1})
⋃
P(x{0}) (so that A contains the indices of the universally

quantified variables and E contains the indices of the existentially quantified
ones). Then both A and E are nonempty (so either A = {0} and E = {1} or
A = {1} and E = {0}) and the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = f(x1)

)
has a continuous Skolem function.

Proof. Provided in Appendix C page 55.
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Example 10.2. Consider f(x) = x2 and x = [2,−1] and z = x2 = [4, 0]. So
the following quantified proposition is true:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
f(x) = z

)
,

that is pro z ⊆ range (f, pro x). Proposition 10.1 proves that there exists a
continuous function s : pro z −→ pro x which satisfies x = s(z) =⇒ z = f(x).
This function is s(z) =

√
x and indeed range (s,pro z) ⊆ pro x and x =

√
z =⇒

x2 = z.

Remark 14. There exist continuous one variable real functions which does not
satisfy Proposition 10.1 (e.g. consider the function f(x) = x3 − x and the
interval x = [1,−1]). Therefore, before adding a new elementary function to Φ,
one has to check that it satisfies Proposition 10.1.

Two variables elementary functions

In the case of two variables elementary functions, the expressions of f∗(x,y)
and fKR(x,y) coincide in the following cases:

• x ∈ IR and y ∈ IR

• x ∈ IR and y ∈ IR

• x ∈ IR and y ∈ IR.

It remains to investigate the case where x ∈ IR and y ∈ IR. In this case, the
expressions of f∗ and fKR are

f∗(x,y) = ∨x∈x ∧y∈(pro y) f(x, y) ; fKR(x,y) = ∧y∈(pro y) ∨x∈x f(x, y).

These two expressions lead to different results in general. However, it is now
proved that they are equal in the cases of the elementary functions of Ω. Given
an operation ◦ ∈ Ω, the operation of the Kaucher arithmetic is denoted by ◦KR

and the minimal AE-extension by ◦∗. First consider a function ◦ ∈ {+,×}. If
x ∈ IR and y ∈ IR, then by the definitions of f∗ and fKR, the expression of x◦∗y
coincides with the expression of y ◦KR x. Finally, because ◦KR is commutative,
we have

x ◦∗ y = y ◦KR x = x ◦KR y.

In the case of the subtraction, we have x−KR y = (−y) +KR x which is proved
to be equal to x−∗ y in the following way:

(−y) +KR x = ∨v∈(−y) ∧x∈(pro x) v + x

= ∨y∈y ∧x∈(pro x) (−y) + x = x−∗ y.

Finally, in the case of the division, we have x/KRy = (1/y) ×KR x which is
proved to be equal to x/∗y in the same way that previously. Therefore, the AE-
extensions of the elementary functions of Ω coincide with their KR-extensions.
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Their expressions are given in Section 2. In the sequel, both interval extensions
◦∗ and ◦KR of the elementary functions of Ω will be denoted by the symbol of
the original function ◦.

Like in the cases of one variable elementary functions, each quantified propo-
sition that corresponds to the interpretation of theses minimal AE-extensions
must have a continuous Skolem function. This is formally stated by the next
proposition.

Proposition 10.2. Let ◦ ∈ Ω and x{0,1,2} ∈ KR3 such that x0 = x1◦x2. Define
the following sets of indices: A = P(x{1,2})

⋃
I(x{0}) and E = I(x{1,2})

⋃
P(x{0})

(so that A contains the indices of the universally quantified variables and E con-
tains the indices of the existentially quantified ones). Then both A and E are
nonempty and the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
x0 = x1 ◦ x2

)
has a continuous Skolem function.

Proof. Provided in Appendix C page 55.

Example 10.3. Consider f(x, y) = x + y and x = [1,−1], y = [0, 1] and
z = x + y = [1, 0]. The following quantified proposition is therefore true:(

∀x ∈ pro x
)(
∀z ∈ pro z

)(
∃y ∈ y

)(
x+ y = z

)
The previous proposition provides a stronger statement: it proves that there
exists a continuous function s : (y,pro z)T −→ pro x which satisfies x =
s(y, z) =⇒ z = f(x, y). In this case, the function s can easily be computed:
s(y, z) = z − y. Indeed range (s,y,pro z) = pro z − y = [−1, 1] and x =
z − y =⇒ z = x+ y.

Remark 15. There exist continuous two variables real functions which do not
satisfy the previous proposition. For example, consider the function

f(x, y) = 1− (x− y)2

and the generalized interval ([1,−1], [1,−1])T . Therefore, before adding a new
elementary function to Φ, one has to check that it satisfies Proposition 10.2
(see Appendix B for a false assertion entailed by the use of some elementary
functions that do not satisfy Proposition 10.2).

11 The natural AE-extensions

The natural AE-extensions consist in evaluating the expression of the function
(or a closely related expression) for generalized interval arguments using the
Kaucher arithmetic. The natural AE-extensions are constructed in two steps:

1. In the case of continuous functions f : Rn −→ Rm whose expression con-
tains only one occurrence of each variable, the generalized interval evalu-
ation is proved to raise (f,x)-interpretable intervals (Subsection 11.1).
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2. In the case of continuous functions f : Rn −→ Rm, multiple occurrences
of variables are taken into account: the expression of the function has
to be modified before its evaluation with generalized interval arguments
(Subsection 11.2).

11.1 Generalized interval evaluation of an expression which
contains only one occurrence of each variable

An introducing example is first investigated. Consider the function f(x) = (x1+
x2)(x3 + x4) and the generalized interval x = ([−2, 2], [1,−1], [−1, 1], [2,−2])T .
The generalized interval evaluation of the expression of f is decomposed in the
following way: t1 = x1 + x2 = [−1, 1] and t2 = x3 + x4 = [1,−1]. Finally
z = t1 × t2 = [0, 0]. From t1 = x1 + x2, the following quantified proposition is
true: (

∀x1 ∈ x1

)(
∃t1 ∈ t1

)(
∃x2 ∈ pro x2

)(
x1 + x2 = t1

)
. (8)

From t2 = x3 + x4, the following quantified proposition is true:(
∀x3 ∈ x1

)(
∀t2 ∈ pro t2

)(
∃x4 ∈ pro x4

)(
x3 + x4 = t2

)
. (9)

Finally from z = t1 × t2 the following quantified proposition is true:(
∀t1 ∈ t1

)(
∃t2 ∈ pro t2

)(
t1 × t2 = 0

)
. (10)

Now, from (9) and (10), the following quantified proposition is entailed:(
∀x3 ∈ x1

)(
∀t1 ∈ t1

)(
∃x4 ∈ pro x4

)(
∃t2 ∈ pro t2

)(
x3 + x4 = t2 ∧ t1 × t2 = 0

)
.

(11)

Finally from (11) and (8), the following quantified proposition is entailed:(
∀x1 ∈ x1

)(
∀x3 ∈ x1

)(
∃x4 ∈ pro x4

)(
∃x2 ∈ pro x2

)(
∃t1 ∈ t1

)(
∃t2 ∈ pro t2

)(
x3 + x4 = t2 ∧ t1 × t2 = 0 ∧ x1 + x2 = t1

)
,

that is

(
∀x1 ∈ x1

)(
∀x3 ∈ x1

)(
∃x4 ∈ pro x4

)(
∃x2 ∈ pro x2

)(
f(x) = 0

)
. (12)

Therefore, the interval z = [0, 0] is proved to be (f,x)-interpretable. Now, in
addition to the (f,x)-interpretability of z, the quantified proposition (12) must
be proved to have a continuous Skolem function, i.e. there exists a continuous
function s{2,4} : x{1,3} −→ pro x{2,4} that satisfies x{2,4} = s{2,4}(x{1,3}) =⇒
f(x) = 0. In the context of this introducing example, such a function s{2,4} is
constructed in the following way: applying Proposition 10.2 to t1 = x1 + x2,
t2 = x3 +x4 and z = t1×t2 respectively proves that the quantified propositions
(8), (9) and (10) have some continuous Skolem functions, i.e. proves the
existence of the following continuous functions:

s′{t1,x2} : x1 −→ (t1,pro x2)T s.t. (t1, x2) = s′{t1,x2}(x1) =⇒ t1 = x1 + x2

s′x4
: (pro t2,x3)T −→ pro x4 s.t. x4 = s′x4

(t2, x3) =⇒ t2 = x3 + x4

s′t2 : t1 −→ pro t2 s.t. t2 = s′t2(t1) =⇒ t1 × t2 = 0
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The function s{2,4} : x{1,3} −→ pro x{2,4} is then constructed in the following
way:

s2(x{1,3}) = s′x2
(x1)

s4(x{1,3}) = s′x4

(
s′t2
(
s′t1(x1)

)
, x3

) (13)

As a consequence of these definitions, x{2,4} = s{2,4}(x{1,3}) implies the exis-
tence of t1 ∈ t1 and t2 ∈ pro t2 such that x4 = s′x4

(t2, x3) and t2 = s′t2(t1)
and (t1, x2) = s′{t1,x2}(x1). Using the properties satisfied by these three Skolem
functions, one obtains t1 = x1 + x2 and t2 = x3 + x4 and t1 × t2 = 0, that is
f(x[1..4]) = 0. The function s{2,4} is therefore a continuous Skolem function
of the quantified proposition (12).

The next proposition generalizes this introducing example. It will play a key
role in the construction of AE-extensions.

Proposition 11.1. Let f : Rn −→ R be a continuous function and f an expres-
sion of this function involving elementary functions of Ω and Φ where each vari-
able has only one occurrence. For any x[1..n] ∈ KRn, define x0 = f(x[1..n])
where the evaluation is done using the Kaucher arithmetic. Furthermore define
the sets of indices A = P(x[1..n])

⋃
I(x{0}) and E = I(x[1..n])

⋃
A(x{0}) (so that

A contains the indices of the universally quantified variable and E contains the
indices of the existentially quantified ones). Then both A and E are nonempty
and the quantified proposition(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
f(x[1..n]) = x0

)
has a continuous Skolem function (and is therefore true).

Proof. The proof is conducted by induction over the expression f. First, by
the propositions 10.1 and 10.2, the present proposition is true for any elemen-
tary functions of Ω and Φ. Therefore, it only remains to prove the induction
step of the proposition. Consider the two continuous functions g : Rm −→ R
and h : Rm′ −→ R (whose expressions are respectively g and h) that satisfy
the proposition. We just have to prove that their composition also satisfies
the proposition (the hypothesis that each variable has only one occurrence is
implicitly used here: this composition of two functions does not allow any de-
pendences between some variables). Their composition f is defined using a
special numbering of the variables in order to consider the temporary variable
in a homogeneous way: the function f : Rm+m′−1 −→ R is defined by

f(xN ) = g
(
x[1..m−1], h(x[m+1..m+m′])

)
where N = [1..m− 1]

⋃
[m+ 1..m+m′].

Example. Defining f(x{1,3,4}) = g(x1, h(x{3,4})) allows to decompose the eval-
uation into x0 = g(x{1,2}) and x2 = h(x{3,4}).

Then consider any xN ∈ KRm+m′−1, and define x0 = f(xN ) and xm =
h(x[m+1..m+m′]) so that x0 = g(x[1..m]). Also define the sets of indices A =
P(xN )

⋃
I(x{0}) and E = I(xN )

⋃
P(x{0}). We have to prove on one hand
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that both A and E are nonempty and on the other hand that there exists a
continuous function

sE : pro xA −→ pro xE s.t. xE = sE(xA) =⇒ x0 = f(xN ). (14)

Applying the induction hypothesis, we get two continuous functions s′E′ :
pro xA′ −→ pro xE′ and s′′E′′ : pro xA′′ −→ pro xE′′ which satisfy respectively

xE′ = s′E′(xA′) =⇒ x0 = g(x[1..m])

and
xE′′ = s′′E′′(xA′′) =⇒ xm = h(x[m+1..m+m′]),

where A′ and E ′ (respectively A′′ and E ′′) are the subsets of [0..m] (respectively
[m..m + m′]) defined like in the statement of the proposition applied to the
evaluation x0 = g(x[1..m]) (respectively xm = h(x[m+1..m+m′])):

• A′ = P(x[1..m])
⋃
I(x{0});

• E ′ = I(x[1..m])
⋃
P(x{0});

• A′′ = P(x[m+1..m+m′])
⋃
I(x{m});

• E ′′ = I(x[m+1..m+m′])
⋃
P(x{m}).

Two cases have to be studied: either xm ∈ IR or xm ∈ IR. On one hand, if
xm ∈ IR then A = (A′\{m})

⋃
A′′ and E = E ′

⋃
(E ′′\{m}). On the other hand,

if xm ∈ IR then A = A′
⋃

(A′′\{m}) and E = (E ′\{m})
⋃
E ′′. Therefore, as

A′, E ′, A′′ and E ′′ are nonempty by induction hypothesis, A and E are also
nonempty in both cases. It remains to construct the function sE :

1. If xm ∈ IR then A = (A′\{m})
⋃
A′′ and E = E ′

⋃
(E ′′\{m}) and sE is

defined by
sE′(xA) = s′E′(yA′)

where yA′ is defined by yA′\{m} = xA′\{m} and ym = s′′m(xA′′), and

sE′′\{m}(xA) = s′′E′′\{m}(xA′′).

2. If xm ∈ IR then A = A′
⋃

(A′′\{m}) and E = (E ′\{m})
⋃
E ′′ and sE is

defined by
sE′\{m}(xA) = s′E′\{m}(xA′)

and
sE′′(xA) = s′′E′′(yA′′)

where yA′′ is defined by ym = s′m(xA′) and yA′′\{m} = xA′′\{m}.
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In both cases, the following implication holds:

xE = sE(xA) =⇒
(
∃xm ∈ pro xm

)(
xE′ = s′E′(xA′) ∧ xE′′ = s′′E′′(xA′′)

)
.

In the first case, xm = s′′m(xA′′) and in the second case, xm = s′m(xA′). There-
fore, thanks to the definitions of s′ and s′′, xE = sE(xA) implies(

∃xm ∈ pro xm
)(
x0 = g(x[1..m]) ∧ xm = h(x[m+1,m+m′])

)
.

This eventually entails xE = sE(xA) =⇒ x0 = f(xN ). Therefore, the function s
satisfies (14).

The next corollary will be useful for the proof of Theorem 11.1. It generalizes
Proposition 11.1 to vector-valued functions.

Corollary 11.1. Let f[1..m](x[1..n]) : Rn −→ Rm be a continuous function and
f[1..m] an expression of this function involving elementary functions of Ω and Φ
where each variable has only one occurrence. Consider x[1..n] ∈ KRn
and evaluate x0k = fk(x[1..n]). Define M0 = {(0, 1), . . . , (0,m)} and A =
P(x[1..n])

⋃
I(M0) and E = I(x[1..n])

⋃
P(M0). Then the quantified propo-

sition (
∀xA ∈ pro xA

)(
∃xE ∈ pro xE

)(
f[1..m](x[1..n]) = xM0

)
has a continuous Skolem function.

Remark 16. The vectorial equality f[1..m](x[1..n]) = xM0 means fk(x[1..m]) = x0k

for all k ∈ [1..m].

Proof. The proof is trivial. One just has to apply Proposition 11.1 to each
x0k = fk(x[1..n]).

11.2 The natural AE-extensions

This subsection is dedicated to the construction of natural AE-extensions of
vector-valued functions f = (f1, . . . , fm)T . This construction also stands for
real-valued functions. In contrast with the classical interval natural extensions,
the expression of the function f has to be modified before applying a general-
ized interval evaluation. Some examples are now presented in order to introduce
Theorem 11.1. The following example displays a situation where multiple oc-
currences can be handle without any modification of the function expression
(these situations actually correspond to the classical interval extensions, i.e. to
expressions evaluated with proper arguments).

Example 11.1. Consider f(x) = x − x and x = [−1, 1]. The generalized
interval evaluation raises z = x − x = [−2, 2]. Clearly z is (f,x)-interpretable,
i.e. the quantified proposition

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
is true. In order to

prove this interpretation, one has to use Proposition 11.1. To this end, he has
to consider the auxiliary expression f̃(x1, x2) = x1−x2 where each occurrence is
considered as an independent variable. We have z = f̃(x,x). As f̃ contains only
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one occurrence of each variable, one can apply Proposition 11.1 which proves
that the following quantified proposition is true:(

∀x1 ∈ x
)(
∀x2 ∈ x

)(
∃z ∈ z

)(
f̃(x1, x2) = z

)
.

Finally, restricting (x1, x2)T to the diagonal of (x,x)T one validates the quan-
tified proposition

(
∀x ∈ x

)(
∃z ∈ z

)(
f̃(x, x) = z

)
. It remains to notice that

f̃(x, x) = f(x).

An example is now presented which shows that a generalized interval eval-
uation without any modification of the expression does not raise interpretable
generalized intervals in general.

Example 11.2. Consider f(x) = x − x and x = [1,−1]. The generalized
interval evaluation raises z = x − x = [2,−2]. If z was (f,x)-interpretable
then the quantified proposition

(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
f(x) = z

)
would be

true. This quantified proposition is actually false. Let us enlighten the reason
why this generalized interval evaluation fails to provide a (f,x)-interpretable
interval. As in Example 11.1 the auxiliary expression f̃(x1, x2) = x1 − x2 has
to be used in order to apply Proposition 11.1. Following the argumentation
presented in Example 11.1, the generalized interval evaluation z = f̃(x,x) allows
using Proposition 11.1 to validate the quantified proposition(

∀z ∈ pro z
)(
∃x1 ∈ pro x

)(
∃x2 ∈ pro x

)(
f̃(x1, x2) = z

)
.

This quantified proposition does not imply
(
∀z ∈ pro z

)(
∃x ∈ pro x

)(
f̃(x, x) =

z
)

in general (because the two occurrences of x cannot be linked anymore
through a diagonal argument) and this explains why z is not (f,x)-interpretable.

In view of the previous example, the problem that prevents from using
the generalized interval evaluation with expressions that contains multiple oc-
currence of variable is the impossibility of linking two occurrences that are
both existentially quantified. The idea to overcome this difficulty is to change
the quantifier associated to one occurrence so that the quantified proposition(
∀x1 ∈ x

)(
Q(z)z ∈ z

)(
∃x2 ∈ x

)(
f̃(x1, x2) = z

)
is actually validated by the

generalized interval evaluation. Then one will be in position to prove that z is
(f,x)-interpretable. This process is illustrated by the next example.

Example 11.3. In the situation of Example 11.2, the auxiliary expression
g(x) = pro x − x is now considered. The generalized interval evaluation now
raises z = g(x) = [−1, 1]− [1,−1] = [0, 0]. Therefore we have to prove that the
quantified proposition(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
f(x) = z

)
(15)

is true. Notice that z = f̃(pro x,x). Therefore, applying Proposition 11.1 to
the evaluation f̃(pro x,x) = z one proves that the quantified proposition(

∀x1 ∈ pro x
)(
∀z ∈ pro z

)(
∃x2 ∈ pro x

)(
f̃(x1, x2) = z

)
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has a continuous Skolem function, i.e. on proves the existence of a continuous
function s : pro z× pro x −→ pro x that satisfies x2 = s(z, x1) =⇒ f̃(x1, x2) =
z. Now fix any value z ∈ pro z (in the case of this example, pro z contains
only one real) so s(z, .) now has pro x as domain and pro x has co-domain.
Therefore one can apply the Brouwer fixed point theorem (see Appendix A)
that proves the existence of x ∈ pro x such that s(z, x) = x. As this holds for
any z ∈ pro z the following quantified proposition is true:(

∀z ∈ pro z
)(
∃x ∈ pro x

)(
s(z, x) = x

)
.

Finally, s(z, x) = x implies z = f̃(x, x) which implies z = f(x). Therefore the
quantified proposition (15) is proved to hold.

The next theorem generalizes the previous argumentations providing the
construction of natural AE-extensions.

Theorem 11.1. Let f[1..m] : Rn −→ Rm be a continuous function and f[1..m] an
expression of f[1..m] involving elementary functions from Ω and Φ. Define the
expression g[1..m] from f[1..m] by inserting the operation pro before all but one
occurrences of each variable (see Example 11.4 and Example 11.5). Then the
interval function x[1..n] 7−→ g[1..m](x[1..n]) is an AE-extension of f[1..m] which is
called a natural AE-extension of f .

Proof. Denote [1..n] and [1..m] by N andM respectively. First, we clearly have
gM(xN ) = fM(xN ) for all x ∈ Rn because pro x = x and the AE-extension
h of any elementary function h satisfies h(x) = h(x). It remains to prove that
gM(xN ) is (fM,xN )-interpretable for all xN ∈ KRn. Consider any xN ∈ KRn
and define for all k ∈M the interval x0k = gk(xN ). We have to prove that the
following quantified proposition is true:(

∀xA ∈ pro xA
)(
∃xE ∈ pro xE

)(
fM(xN ) = xM0

)
(16)

whereM0 = {(0, k)|k ∈M}, A = P(xN )
⋃
I(xM0) and E = I(xN )

⋃
P(xM0).

Remark 17. The sets of indicesM andM0 have the same cardinality. Therefore
the equality fM(xN ) = xM0 is well defined and means fi(xN ) = x0i for all
i ∈ [1..m].

In order to use Corollary 11.1, each occurrence of each variable has to be con-
sidered as an independent variable. To this end, define the auxiliary expression
f̃M as the expression obtained from fM considering as independent variables
each occurrence of each variable. Denote the number of occurrences of the vari-
able xi by ni and the jth occurrence of the variable xi by xij . Define the set of
indices K = {(i, j) ∈ N2|i ∈ [1..n], j ∈ [1..ni]}. Provided that all occurrences of
each variable has the same value in the evaluation of f̃M then the latter equals
to f. In order to formalize this idea, define σK : Rn −→ R

∑
ni by σij(xN ) = xi.

As a consequence, we have fM(xN ) = f̃M
(
σK(xN )

)
for all xN ∈ Rn.

The choice of one occurrence of each variable made in the statement of the
proposition (where no operation pro is inserted) can now be formalized by a
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function π : N −→ K. Define xK ∈ KR
∑
ni by xij = xi if xi is proper or

π(i) = (i, j) and xij = pro xi otherwise. As a consequence of these definitions
we have gM(xN ) = f̃M(xK) and therefore f̃M(xK) = xM0 .

Now, as f̃M is compound elementary functions from Ω and Φ and contains
only one occurrence of each variable, we can apply Corollary 11.1 to the evalua-
tion f̃(xK) = xM0 which proves the existence of a continuous function sKE that
satisfies

sKE : pro xKA −→ pro xKE s.t. xKE = sKE (xKA) =⇒ xM0 = f̃M(xK)

where KA = P(xK)
⋃
I(xM0) and KE = I(xK)

⋃
P(xM0).

Denote KA
⋃
KE (which is equal to K

⋃
M0) by L and define the function

σ′L : pro xA⋃
E −→ pro xL by σ′M0

(xA⋃
E) = xM0 (so σ′0k(xA⋃

E) = x0k and
the co-domain of σ0k(xA⋃

E) is indeed pro x0k) and σ′K(xA⋃
E) = σK(xN ) (so

σ′ij(xA⋃
E) = xi by definition of σK and the co-domain of σij(xA⋃

E) is pro xi
which equals pro xij by definition of xij). Let us display two properties of σ′L:
fix any xA⋃

E ∈ pro xA⋃
E then

Claim one: f̃M(σ′K(xA⋃
E)) = fM(xN ). Indeed, f̃M(σ′K(xA⋃

E)) = f̃M(σK(xN ))
by definition of σ′K and fM(xN ) = f̃M

(
σK(xN )

)
as seen previously.

Claim two: σ′KE (xA⋃
E) = xE . By definition, E = I(xN )

⋃
P(xM0) and

KE = I(xK)
⋃
P(xM0). Let us denote temporarily I(xN ) = {e1, . . . , es}

(where ek ∈ N) and P(xM0) = {m1, . . . ,mt} (where mk ∈ N2). By defini-
tion of xK, xij is improper if and only if i ∈ I(xN ) (i.e. xi is existentially
quantified) and π(i) = (i, j) (i.e. xij is the occurrence of xi which is not
preceded by an operation pro in the expression of g). As a consequence, we
have I(xK) = {π(e1), . . . , π(es)}. Respecting the lexicographic order, we have
E = {m1, . . . ,mt, e1, . . . , es} and KE = {m1, . . . ,mt, π(e1), . . . , π(es)}. There-
fore, writing the equality σ′KE (xA⋃

E) = xE componentwise, we just have to
prove that σ′mk

(xA⋃
E) = xmk

for k ∈ [1..t] and σ′π(ek)(xA
⋃
E) = xek

for
k ∈ [1..s]. This is actually true because of the definitions of σ′L and σK.

Now define s′E : pro xA⋃
E −→ pro xE by s′E(xA

⋃
E) = sKE

(
σ′KA(xA⋃

E)
)
.

Now as by construction A
⋂
E = ∅, fixing xA to any value in pro xA the function

s′E then has pro xE as domain and pro xE as co-domain. Therefore we can apply
the Brouwer fixed point theorem (see Appendix A) that proves the existence of
xE ∈ pro xE such that s′E(xA

⋃
E) = xE . As this holds for any xA ∈ pro xA, the

following quantified proposition is true:(
∀xA ∈ pro xA

)(
∃xE ∈ pro xE

)(
s′E(xA⋃

E) = xE
)
. (17)

We now finally prove that s′E(xA
⋃
E) = xE implies xM0 = fM(xN ). Suppose

that s′E(xA
⋃
E) = xE . Then by definition of s′E we have sKE (σ′KA(xA⋃

E)) = xE .
As by Claim two xE = σ′KE (xA⋃

E), we have sKE (σ′KA(xA⋃
E)) = σ′KE (xA⋃

E).
Using the property satisfied by sKE we obtain σ′M0

(xA⋃
E) = f̃M(σ′K(xA⋃

E)).
As σ′M0

(xA⋃
E) = xM0 by definition of σ′L, we have xM0 = f̃M(σ′K(xA⋃

E)).
That is xM0 = fM(xN ) thanks to Claim one. Therefore, the quantified propo-
sition (17) implies the quantified proposition (16).
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A real functions has several natural AE-extensions, depending on the way the
operations pro are inserted. This is illustrated by the following two examples.

Example 11.4. Consider the function f(x, y) = xy + x(x+ y). The following
interval functions are the natural AE-extensions of f :

xy + (pro x)(pro x + pro y) ; x(pro y) + (pro x)(pro x + y)
(pro x)y + x(pro x + pro y) ; (pro x)(pro y) + x(pro x + y)

(pro x)y + (pro x)(x + pro y) ; (pro x)(pro y) + (pro x)(x + y)

Example 11.5. Consider the function f(x, y) = (xy , x(x + y))T . Its natural
AE-extensions are(

xy , (pro x)(pro x + pro y)
)T ;

(
x(pro y) , (pro x)(pro x + y)

)T(
(pro x)y , x(pro x + pro y)

)T ;
(
(pro x)(pro y) , x(pro x + y)

)T(
(pro x)y , (pro x)(x + pro y)

)T ;
(
(pro x)(pro y) , (pro x)(x + y)

)T
If the expression of f contains only one occurrence of each variable then no

operation pro is inserted. E.g. the natural AE-extension of f(x[1..n], y[1..n]) =∑
xkyk is f(x[1..n],y[1..n]) =

∑
xkyk. Finally, the set of elementary functions

Ω and Φ cannot be extended without taking care that the new functions sat-
isfy Proposition 10.1 and Proposition 10.2. This is illustrated by the counter
example presented in Appendix B (page 54).

12 On the quality of the natural AE-extension

Two theoretical results on the quality of the natural AE-extensions are now
provided.

12.1 Order of convergence

First, the order of convergence of the natural AE-extensions is investigated.
The statement of Theorem 12.1 is an extension of a well known results in the
classical intervals theory.

Lemma 12.1. The operation pro : KR −→ KR is Lipschitz continuous, and
therefore locally Lipschitz continuous.

Proof. It is clear that dist(pro x,pro y) ≤ dist(x,y), that is, pro is Lipschitz
continuous.

Theorem 12.1. The natural AE-extensions have a linear order of convergence
excepted if its expression contains some n

√
x which has to be evaluated at 0 (see

next remark).
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Proof. In this case, the natural AE-extension is composed on one hand of ele-
mentary AE-extensions which are locally Lipschitz continuous (see [14]) and on
the other hand of the operation pro which is also locally Lipschitz continuous.
So the natural AE-extension is locally Lipschitz continuous. This eventually
entails a linear order of convergence thanks to the Proposition 7.2.

Remark 18. As pointed out in [25], the elementary functions n
√
x are not locally

Lipschitz continuous inside [0,+∞[ because they have an infinite derivative at
0 (however, they are locally Lipschitz continuous inside ]0,+∞[). Therefore, a
natural AE-extension which involves such an elementary function which has to
be evaluated at 0 may not have a linear order of convergence. Check for example
that the natural AE-extension of f(x) =

√
absx does not have a linear order of

convergence inside xref = [−1, 1].

12.2 Minimality

Contrary to the classical interval natural extension, an expression which con-
tains only one occurrence of each variable does not compute a minimal (f,x)-
interpretable interval in general. The next example is taken from [34].

Example 12.1. Consider f(x) = (x1+x2)(x3+x4) and the generalized interval
x = ([−2, 2], [1,−1], [−1, 1], [2,−2])T . In this case, f∗(x) = [1.5,−1.5] so the
quantified proposition(

∀x1 ∈ x1

)(
∀x3 ∈ x3

)(
∀z ∈ [−1.5, 1.5]

)(
∃x2 ∈ pro x2

)(
∃x4 ∈ pro x4

)(
f(x) = z

)
is true. The natural AE-extension leads to (x1 + x2)(x3 + x4) = [0, 0] which is
less accurate and allows to validate the less informative quantified proposition(

∀x1 ∈ x1

)(
∀x3 ∈ x3

)(
∃x2 ∈ pro x2

)(
∃x4 ∈ pro x4

)(
f(x) = 0

)
. (18)

No explanation for this kind of situations was proposed in [34]. An explana-
tion is now proposed thanks to the proof of Proposition 11.1: Proposition 11.1
applied to the computation (x1 +x2)(x3 +x4) = [0, 0] proves that the quantified
proposition (18) has a continuous Skolem function, i.e. proves that there exists
a continuous function

s{2,4} : (x1,x3)T −→ (x2,x4)T

which satisfies
(x2, x4)T = s{2,4}(x1, x3) =⇒ f(x) = 0.

However, when one looks inside the proof of Proposition 11.1, he notices that
the function s2 actually does not depend on x3 (see the introducing example of
Subsection 11.1 page 40 where the expression of s{2,4} is provided). Therefore,
the choice of x2 in the quantified proposition (18) actually does not depend on
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the values of x3. Therefore, the quantified proposition which is validated by the
computation (x1 + x2)(x3 + x4) = [0, 0] is actually(

∀x1 ∈ x1

)(
∃x2 ∈ pro x2

)(
∀x3 ∈ x3

)(
∃x4 ∈ pro x4

)(
f(x) = 0

)
.

This explains why this natural AE-extension is not minimal although the in-
volved expression has one occurrence of each variable: it actually solves a more
difficult problem!

Remark 19. This more accurate interpretation of the generalized interval eval-
uation may be useful in practice but this has not yet been studied.

Finally, next proposition states that the natural AE-extension of bilinear
real functions is minimal.

Theorem 12.2. Consider the bilinear function

f : R2n −→ R ; (x, y) 7−→
∑

i∈[1..n]

xiyi

The natural AE-extension of f is minimal.

Proof. Define N = [1..2n] so

f(xN ) =
∑

i∈[1..n]

xixi+n.

Consider any xN ∈ KR2n. The following equality has to be established:

f∗(xN ) =
∑

i∈[1..n]

xixi+n

Suppose that xi is proper for i ∈ [1..n] and xi is improper for i ∈ [n + 1, 2n]
so that xixi+n is the product of a proper and an improper interval. The other
cases (involving products of proper intervals and products of improper intervals)
are similar and simpler. By definition,

f∗(xN ) =
[

min
xP∈xP

max
xI∈xI

∑
i∈[1..n]

xixi+n , max
xP∈xP

min
xI∈xI

∑
i∈[1..n]

xixi+n

]
(19)

where P = P(xN ) = [1..n] and I = I(xN ) = [n + 1..2n]. Also, applying
the definition of the AE-multiplication and the formula of the AE-addition,∑
i∈[1..n] xixi+n is equal to[ ∑

i∈[1..n]

min
xi∈xi

max
xi+n∈xi+n

xixi+n ,
∑

i∈[1..n]

max
xi∈xi

min
xi+n∈xi+n

xixi+n

]
. (20)

The generalized intervals (19) and (20) must be proved to be equal. This equality
is proved without any difficulty noticing the following two properties

max
u∈u

(
a(u) + b

)
=
(
max
u∈u

a(u)
)

+ b
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and
min
u∈u

(
a(u) + b

)
=
(
min
u∈u

a(u)
)

+ b

where a : R −→ R and b ∈ R.

Some additional functions may be proved to have a minimal natural AE-
extension using a similar proof. The case of bilinear functions is displayed
because their minimality has interesting consequence. E.g. the central necessary
and sufficient condition provided by Theorem 5.1 of [33] for the membership to
linear AE-solution sets can be obtained thanks to the Theorem 12.2.

13 On the scope of AE-extensions

The natural AE-extensions are a reformulation of the modal ”theorems of ∗ and
∗∗ interpretation of a modal rational extension” and ”theorems of coercion to ∗
and ∗∗ interpretability” and their n-dimensional versions. Therefore the appli-
cations which were proposed in the context of modal intervals are in the scope
of AE-extensions. The next examples focuses on some positive and negatives
aspects of the natural AE-extensions.

13.1 Application to n× n systems of equations

First, an example is presented where the natural AE-extension succeeds in prov-
ing the existence of a solution to a 2× 2-system of equations.

Example 13.1. Consider the function

f(x, y) =
(

81x2 + y2 + 18xy − 100
x2 + 81y2 + 18xy − 100

)
One of its natural AE-extension is

g(x,y) =
(

81x2 + (pro y)2 + 18(pro x)(pro y)− 100
(pro x)2 + 81y2 + 18(pro x)(pro y)− 100

)
If x = y = [1.1, 0.9] this natural AE-extension leads to

g(x,y) = ( [13.4,−11, 4] , [13.4,−11, 4] )T

and therefore proves that pro g(x,y) ⊆ range (f, pro x,pro y). In particular,
the system of equations f(x, y) = 0 is proved to have a solution inside (x,y)T .

Classical methods (like the Miranda theorem or interval Newton operators,
see e.g. [25]) also succeed in proving the existence of a solution for the previous
example. As it was explained in the previous section, the natural AE-extension
splits the problem(

∃x ∈ x
)(
∃y ∈ y

)(
f1(x, y) = 0 ∧ f2(x, y) = 0

)
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into two sub-problems, for example(
∀y ∈ y

)(
∃x ∈ x

)(
f1(x, y) = 0

)
and

(
∀x ∈ x

)(
∃y ∈ y

)(
f2(x, y) = 0

)
However, this decomposition is not efficient in general. The next example pro-
vides a situation where the natural AE-extension cannot prove the existence of
a solution.

Example 13.2. Consider the linear function

f(x, y) =
(

2y + x
2y − x

)
and the intervals x = [−ε, ε] and y = [−ε, ε] for ε > 0. Both f1 and f2 satisfy(

∀x ∈ x
)(
∃y ∈ y

)(
fk(x, y) = 0

)
and none satisfies (

∀y ∈ y
)(
∃x ∈ x

)(
fk(x, y) = 0

)
So whatever is ε > 0, the natural AE-extension will never be able to prove the
existence of a solution to the system f(x, y) = 0 although (0, 0)T is a solution
to this simple system.

The classical approach to such a problem is to precondition the equation
so as to obtain a near-identity equivalent system: the preconditioned system
g(x, y) = Mf(x, y) is considered, where M is a non-singular real matrix. So
f(x, y) = 0 ⇐⇒ g(x, y) = 0 and M can be chosen so that g is close to the
identity map. However, such a preconditioning process drastically increases the
number of occurrences, as gk(x, y) = Mk1f1(x, y)+Mk2f2(x, y). In the classical
interval theory, a preconditioning process is usually coupled with a linearization
process (e.g. a mean-value extension) which efficiently decreases the influence
of the growing number of occurrences.

13.2 Application to parametric under-constrained systems
of equations

A situation where the AE-extensions have a promising potential is the study
of parametric under-constrained systems of equations. The next example illus-
trates this idea.

Example 13.3. Consider the function f(a, x) = a1x1 + a2x2 + a3x3 − 5 and
the intervals

x = ([0, 2], [0, 2], [0, 2])T and a = ([0.9, 1.1], [0.9, 1.1], [0.9, 1.1])T .

We want to prove that (
∀a ∈ a

)(
∃x ∈ x

)(
f(a, x) = 0

)
.
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We can use the natural AE-extension of f evaluated at (a,dual x)T :

f(a,dual x) = a1(dual x1) + a2(dual x2) + a3(dual x3)
= [0.4,−5]

This proves the following quantified proposition:(
∀a ∈ a

)(
∀z ∈ [−5, 0.4]

)(
∃x ∈ x

)(
f(a, x) = z

)
which indeed entails the first quantified proposition.

The classical techniques based on the Miranda theorem or the interval New-
ton operators do not easily handle parametric under-constrained systems. This
academic example illustrates that AE-extensions can provide promising tools in
such situations.

13.3 Contractors for quantified constraints

An other promising application of AE-extensions is proposed in [10] (in the
framework of the original formulation of the modal intervals theory). It consists
in contracting a domain without loosing any solution to a quantified constraint.
Consider for example a quantified constraint φ on x ∈ R like

φ(x) ⇐⇒
(
∀u ∈ u

)(
∃v ∈ v

)(
f(u, v, x) ≥ 0

)
.

The aim of a contractor is to prove that a given interval x does not contain any
real that satisfies φ(x), i.e. to prove that(

∀x ∈ x
)(
∃u ∈ u

)(
∀v ∈ v

)(
f(u, v, x) < 0

)
. (21)

It is proved in [10] that a sufficient condition of the quantified proposition (21)
is

¬
((
∀u ∈ u

)(
∃x ∈ x

)(
∃v ∈ v

)(
f(u, v, x) ≥ 0

))
, (22)

Finally, a sufficient condition for (22) can be obtained using the optimal AE-
extension f∗ of f : it is proved in [10] that

f∗(u,dual v,dual x) 6⊆ [0,+∞[3

implies (22). A a consequence, one can discard a box x provided that he
proves that the previous inclusion is false. This can be done computing an
inner approximation of f∗(u,dual v,dual x), i.e. an interval z that satisfies
z ⊆ f∗(u,dual v,dual x). Such an interval cannot be computed using the de-
velopments exposed in the presented paper (as the present paper is dedicated to
the computation of intervals z that satisfies f∗(u,dual v,dual x) ⊆ z). In [10]
a branch and prune algorithm is proposed in order to compute such intervals
z. In ”Modal Intervals Revisited Part 2: A Generalized Interval Mean-Value
Extension”, a new way to compute such intervals will be proposed, relying on
some linearization of f .

3Infinite generalized intervals are not formally defined, but extending the inclusion to such
intervals does not present any difficulty.
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14 Conclusion

The modal intervals theory has been reformulated in the context of generalized
intervals (intervals whose bounds are not constrained to be ordered). New ex-
tensions to generalized intervals have been defined, called AE-extensions. These
AE-extensions provide the same interpretations than the extensions to modal
intervals. The following differences with the modal intervals theory can be
pointed out:

The construction of AE-extensions is similar to the construction of exten-
sions to classical intervals. In particular, the central modal ”theorems of ∗ and
∗∗ interpretation of a modal rational extension” and ”theorems of coercion to
∗ and ∗∗ interpretability” and their n-dimensional versions are summarized in
the natural AE-extensions. Furthermore, all the defined concepts are general-
izations of their classical counterparts: the definition of the minimality of AE-
extensions is more general than the optimality of modal interval extensions. On
one hand the new definition for minimality is natural and generalizes the defini-
tion of minimality of classical interval extensions. On the other hand, it allows
to introduce the concept of order of convergence, which is widely used in the
classical intervals theory in order to measure the quality of an extension. Like in
the context of extensions to classical intervals, the natural AE-extensions have
been proved to have a linear order of convergence (provided that no function
n
√
x is evaluated at zero).
The proofs proposed in this paper are new. They intend to fill some gaps

which were found in the proof of the modal ”theorems of ∗ and ∗∗ interpretation
of a modal rational extension” and their n-dimensional versions.

Finally, the modal ”theorems of ∗ and ∗∗ partially optimal coercion” have
not been cast into the new formulation of the modal intervals theory. They
would allow to introduce new AE-extensions which would be more accurate
than the natural AE-extensions thanks to the study of the monotonicity of the
functions. This choice is motivated by the possibility to introduce a mean-value
AE-extension in the new formulation of the modal intervals theory. This is the
subject of a the second part of the paper.
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A The Brouwer fixed point theorem

The Brouwer fixed point theorem is a famous classical existence theorem (see
for example [11] or [25]).
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Theorem (Brouwer fixed point theorem). Let E ⊆ Rn be nonempty, compact
and convex, and f : E −→ E be continuous. Then, there exists x ∈ E such that
f(x) = x.

B A counter example

Consider the operation � defined by x � y := 1 − (x − y)2 as an elementary
function of Ω. It is now proved that this conducts to a wrong assertion. The
generalized interval operation x � y is defined as the optimal AE-extension of
x� y. Now consider the continuous function f : R2 −→ R2 defined by

f(x, y) =
(
x� y
x− y

)
and the intervals x = [1,−1] and y = [1,−1]. One of its natural AE-extension
is

z =
(

(pro x)� y
x− (pro y)

)
.

The interval (pro x)� y is computed in the following way:

(pro x)� y = ∨x∈pro x ∧y∈y x� y
= ∨

x∈pro x
dual range (f1, x,pro y)

= ∨
x∈pro x

[1 , 1− (1 + |x|)2]

= [1 , max
x∈pro x

1− (1 + |x|)2]

= [1, 0].

So, the natural AE-extension evaluation leads to z = ([1, 0], [0, 0])T and the
following quantified proposition must be true:(

∀z1 ∈ [0, 1]
)(
∀z2 ∈ [0, 0]

)(
∃y ∈ pro y

)(
∃x ∈ pro x

)(
f(x, y) = z

)
.

However, this latter quantified proposition is false: indeed it entails(
∃y ∈ pro y

)(
∃x ∈ pro x

)(
f(x, y) = 0

)
.

However f2(x, y) = 0 implies x = y, and therefore f1(x, y) = 0 implies 1− (x−
x)2 = 0, which is absurd.
Remark 20. The papers describing the modal intervals theory do not focus on
such cases. For example, some care should be given when applying the results
of the section III.4 of [34] so as to be sure that the situation displayed in this
section cannot occur.

The wrong conclusion obtained considering � as an elementary operation
is explained in the following way: the computations (pro x) � y = [1, 0] and
x− (pro y) = [0, 0] validates both following quantified propositions:(

∀x ∈ pro x
)(
∃y ∈ pro y

)(
x� y = 0

)
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and
(
∀y ∈ pro y

)(
∃x ∈ pro x

)(
x− y = 0

)
.

However, these two quantified propositions do not imply(
∃x ∈ pro x

)(
∃y ∈ pro y

)(
x� y = 0 ∧ x− y = 0

)
.

This is due to the fact that in the first quantified proposition, the choice of
the values of y cannot be done continuously with respect to x (and that is the
reason why � cannot be considered as a elementary function of Ω).

C Proofs of some propositions of Section 10

First of all, the following case is trivial for all functions (one variable or two
variables elementary functions):

Proposition C.1. Let f : x[1..n] −→ R be a continuous function where x[1..n] ∈
IRn. Define x0 = f∗(x[1..n]) which is proper. Then there exists a continuous
function s : x[1..n] −→ x0 which satisfies

x0 = s(x[1..n]) =⇒ x0 = f(x[1..n])

Proof. The function s is nothing but f and is therefore continuous.

One variable elementary functions

In the case of one variable functions, there are only two cases: either x ∈ IR or
x ∈ IR. The first case has already been treated by the Proposition C.1, so it
remains to study the second one. The next proposition stands for the functions
expx, lnx, tan, arccosx, arcsinx, arctanx, xn for n odd and, x

1
n .

Proposition C.2. Let f : R −→ R be continuous and strictly increasing or
decreasing and x ∈ IR. Define z = f∗(x), which is improper. Then there exists a
continuous function s : pro z −→ pro x which satisfies x = s(z) =⇒ z = f(x).

Proof. By definition of f∗, pro z = range (f, pro x). As f is continuous and
strictly monotone, it is an homeomorphism between pro x and z. Therefore, it
inverse f−1 : pro z −→ pro x is also continuous. Finally, x = f−1(z) =⇒ z =
f(x) so f−1 (restricted to pro x) is the wanted continuous function.

Finally, the next proposition stands for sinx, cosx, absx, xn for n even.

Proposition C.3. Let f : R −→ R be continuous and x ∈ IR. Suppose
that f has no local maximum or minimum in pro x excepted maybe on the
bounds of pro x and that f is strictly monotonic between its different mini-
mum and maximum (local or global). Then there exists a continuous function
s : pro z −→ pro x which satisfies x = s(z) =⇒ z = f(x).
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Proof. Pick up a global minimum x1 ∈ pro x and a global maximum x2 ∈ pro x
which are not separated by any minimum or maximum. This is possible thanks
to the hypothesis that there are no local extrema in the interior of pro x. Define
x′ = x1∨x2. The function f |x′ is either strictly increasing or strictly decreasing,
so the previous proposition applies. Finally, s(x) ∈ x′ ⊆ x and x = s(z) =⇒
z = f |x′(x) = f(x).

Two variables elementary functions

In the case of two variables elementary functions, the case where x ∈ IR and
y ∈ IR is already treated. First of all, only + and × are now considered because

x− y = x + (−y) et x/y = x× (1/y)

The next proposition stands for all the two variable elementary functions and
for x ∈ IR and y ∈ IR. In the sequel, we suppose that pro x1 and pro x2 are
not degenerated, the other cases being similar and simpler.

Proposition C.4. Let x1 ∈ IR, x2 ∈ IR and x0 = x1◦x2 for ◦ ∈ {+,×}. Then
x0 is also improper and there exists a continuous function s : x0 −→ pro x{1,2}
which satisfies x{1,2} = s(x0) =⇒ x0 = f(x1, x2) where f(x1, x2) = x1 ◦ x2.

Proof. x0 is improper because the result of the Kaucher arithmetic operations
applied to improper intervals is also improper. Define x′1 = pro x1, x′2 = pro x2

and x′0 = pro x0. Using the expressions of the Kaucher arithmetic, we have
x′0 = range (f,x′1,x

′
2). So, x′0 = [u1 ◦ u2, v1 ◦ v2] with u{1,2} ∈ x′{1,2} and

v{1,2} ∈ x′{1,2} (u1 ◦ u2 < v1 ◦ v2 because x′0 is not degenerated by hypothesis).
Now define the continuous function m{1,2} : [0, 1] −→ x′{1,2} by

m{1,2}(t) = u{1,2}(1− t) + v{1,2}t

and the continuous function g : [0, 1] −→ x′0 by

g(t) = f(m{1,2}(t)) =
(
u1(1− t) + v1t

)
◦
(
u2(1− t) + v2t

)
We have g(0) = inf x′0 and g(1) = sup x′0 so range (g, [0, 1]) = x′0. We now prove
that the propositions C.2 and C.3 applies to g whatever is ◦:

◦ = + We have g(t) = (u1 + u2)(1 − t) + (v1 + v2)t which is strictly increasing
because we supposed u1 + u2 < v1 + v2. So C.2 applies.

◦ = × We have g(t) = at2 + bt+ c. If a 6= 0 the Proposition C.3 applies. If a = 0
and b 6= 0 then Proposition C.2 applies. We cannot have a = 0 and b = 0
since x′0 is supposed not to be degenerated.

Therefore, there exists a continuous function s̃ : x′0 −→ [0, 1] which satisfies

t = s̃(x0) =⇒ x0 = g(t). (23)
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It eventually easy to check that the wanted continuous function is s(x0) =
m{1,2}(s̃(x0)): on one hand s(x0) ∈ x′{1,2} by construction of m{1,2}. On
the other hand, x{1,2} = s(x0) implies x{1,2} = m{1,2}(s̃(x0)) which implies
f(x{1,2}) = f(m{1,2}(s̃(x0))) = g(s̃(x0)). This latter is equal to x0 thanks to
(23).

It remains to study the cases where x1 and x2 do not have the same proper/improper
quality. The next proposition stands for the Kaucher addition.

Proposition C.5. Let x1 ∈ KR, x2 ∈ KR and x0 = x1 + x2. Define the
following sets of indices: A = P(x{1,2})

⋃
I(x0) and E = I(x{1,2})

⋃
P(x0) (A

contains the indices of the universally quantified variable and E contains the
indices of the existentially quantified ones). Then both A and E are nonempty
and there exists a continuous function s : xA −→ xE which satisfies xE =
s(xA) =⇒ x0 = x1 + x2.

Proof. We have only two cases to study because x1 + x2 = x2 + x1.
(1) x1 ∈ IR, x2 ∈ IR and x0 ∈ IR. We have to prove the existence of a contin-
uous function s{0,2} : x1 −→ pro x{0,2} which satisfies x{0,2} = s{0,2}(x1) =⇒
x0 = x1 + x2. Thanks to the rules of the Kaucher arithmetic, we have x0 =
x1 + x2 ⇐⇒ (dual x1) = (dual x0)− x2. Then, we can apply the Proposition
C.4 to this latter operation, which proves the existence of a continuous function
s{0,2} : x1 −→ pro x{0,2} which satisfies x{0,2} = s{0,2}(x1) =⇒ x1 = x0 − x2.
Therefore, as x1 = x0 − x2 ⇐⇒ x0 = x1 + x2, s{0,2} is the wanted continuous
function.
(2) x1 ∈ IR, x2 ∈ IR and x0 ∈ IR. We have to prove the existence of a continu-
ous function s2 : pro x{0,1} −→ pro x2 which satisfies x2 = s2(x0, x1) =⇒ x0 =
x1 +x2. It is proved in the same way than previously, noticing that x0 = x1 +x2

is equivalent to (dual x2) = (dual x0) − x1. All the intervals being proper in
this latter expression, we can apply Proposition C.1.

Now, the Kaucher multiplication is studied.

Proposition C.6. Let x1 ∈ KR, x2 ∈ KR and x0 = x1x2. Define the following
sets of indices: A = P(x{1,2})

⋃
I(x0) and E = I(x{1,2})

⋃
P(x0) (A contains

the indices of the universally quantified variable and E contains the indices of
the existentially quantified ones). Then both A and E are nonempty and there
exists a continuous function s : xA −→ xE which satisfies xE = s(xA) =⇒
x0 = x1x2.

Proof. Define x′1 = pro x1, x′2 = pro x2 and x′0 = pro x0. First, if the involved
intervals do not contain 0 we can come back to the Kaucher addition using the
exp and ln bijections:
(1) x1 > 0 and x2 > 0. Apply ln to x0 = x1x2 in order to obtain the equivalent
expression ln x0 = ln x1 + ln x2 which is written x̃0 = x̃1 + x̃2 with x̃k = ln xk.
Then, the wanted continuous function is built using the one obtained thanks to
the application of the Proposition C.5 to x̃0 = x̃1 + x̃2: the function ln keeps
unchanged the proper/improper quality of the intervals, so the Proposition C.5
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proves the existence of a continuous function s̃ : pro x̃A −→ pro x̃E which sat-
isfies x̃E = s̃(x̃A) =⇒ x̃0 = x̃1 + x̃2. Then define s(xA) = exp s̃(lnxA) (here the
functions ln and exp are applied to vectors componentwise). One one hand, we
have pro ln xk = ln pro xk, so s is defined inside x′A with values inside x′E , i.e.
s : x′A −→ x′E . On the other hand, using the definitions and properties of s and
s̃, we have xE = s(xA) =⇒ xE = exp s̃(lnxA) =⇒ lnxE = s̃(lnxA) =⇒ lnx0 =
lnx1 + lnx2 =⇒ x0 = x1x2.
(1’) 0 /∈ x′1 and 0 /∈ x′2. We come back to the first case in the following way: for
k ∈ {1, 2} define εk ∈ {−1, 1} such that εkxk > 0. So x1x2 = (ε1ε2)(ε1x1)(ε2x2).
(2-4) It remains to study only three cases where x1 ∈ IR and x2 ∈ IR, because
x0x1 = x1x0.
(2) 0 ∈ x′1 and 0 /∈ x′2 which imply x0 ∈ IR. The existence of the continuous
function s is proved in a similar way to the case (1) of the Proposition C.5, con-
sidering that x0 = x1x2 ⇐⇒ (dual x1) = (dual x0)/x2, which is well defined
because 0 /∈ x′2. All intervals are improper in the latter expression, so we can
apply Proposition C.4 in order to get the wanted continuous function.
(3) 0 /∈ x′1 and 0 ∈ x′2 which imply x0 ∈ IR. In the same way as previously, we
consider the equivalent expression (dual x2) = (dual x0)/x1 where all intervals
are proper. So we can apply Proposition C.1 in order to get the wanted contin-
uous function.
(4) 0 ∈ x′1 and 0 ∈ x′2. In this case, x0 = [0, 0], and the wanted continuous func-
tion is for example s2(x1, x0) = 0 ∈ x′2 as x2 = s(x1, x0) =⇒ x1 × x2 = x0.
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