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GLOBAL REGULARITY FOR SOME CLASSES OF LARGE SOLUTIONS

TO THE NAVIER-STOKES EQUATIONS

JEAN-YVES CHEMIN, ISABELLE GALLAGHER, AND MARIUS PAICU

Abstract. In [4]-[6] classes of initial data to the three dimensional, incompressible Navier-
Stokes equations were presented, generating a global smooth solution although the norm
of the initial data may be chosen arbitrarily large. The main feature of the initial data
considered in [6] is that it varies slowly in one direction, though in some sense it is “well
prepared” (its norm is large but does not depend on the slow parameter). The aim of this
article is to generalize the setting of [6] to an “ill prepared” situation (the norm blows up as
the small parameter goes to zero). As in [4]-[6], the proof uses the special structure of the
nonlinear term of the equation.

1. Introduction

We study in this paper the Navier-Stokes equation with initial data which are slowly varying
in the vertical variable. More precisely we consider the system





∂tu + u · ∇u − ∆u = −∇p in R
+ ×Ω

div u = 0

u|t=0 = u0,ε,

where Ω = T
2 ×R (the choice of this particular domain will be explained later on) and u0,ε

is a divergence free vector field, whose dependence on the vertical variable x3 will be chosen
to be “slow”, meaning that it depends on εx3 where ε is a small parameter. Our goal is to
prove a global existence in time result for the solution generated by this type of initial data,
with no smallness assumption on its norm.

1.1. Recollection of some known results on the Navier-Stokes equations. The math-
ematical study of the Navier-Stokes equations has a long history, which we shall describe briefly
in this paragraph. We shall first recall results concerning the main global wellposedness re-
sults, and some blow-up criteria. Then we shall concentrate on the case when the special
algebraic structure of the system is used, in order to improve those previous results.

To simplify we shall place ourselves in the whole euclidian space R
d or in the torus T

d (or
in variants of those spaces, such as T

2 ×R in three space dimensions); of course results exist
in the case when the equations are posed in domains of the euclidian space, with Dirichlet
boundary conditions, but we choose to simplify the presentation by not mentioning explicitly
those studies (although some of the theorems recalled below also hold in the case of domains
up to obvious modifications of the statements and sometimes much more difficult proofs).

Key words and phrases. Navier-Stokes equations, global wellposedness.
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1.1.1. Global wellposedness and blow-up results. The first important result on the Navier-
Stokes system was obtained by J. Leray in his seminal paper [21] in 1933. He proved that any
finite energy initial data (meaning square-integrable data) generates a (possibly non unique)
global in time weak solution which satisfies an energy estimate; he moreover proved in [22]
the uniqueness of the solution in two space dimensions. Those results use the structure of
the nonlinear terms, in order to obtain the energy inequality. He also proved the uniqueness
of weak solutions in three space dimensions, under the additional condition that one of the
weak solutions has more regularity properties (say belongs to L2(R+;L∞): this would now
be qualified as a “weak-strong uniqueness result”). The question of the global wellposedness
of the Navier-Stokes equations was then raised, and has been open ever since. We shall now
present a few of the historical landmarks in that study.

The Fujita-Kato theorem [10] gives a partial answer to the construction of a global unique
solution. Indeed, that theorem provides a unique, local in time solution in the homogeneous

Sobolev space Ḣ
d
2
−1 in d space dimensions, and that solution is proved to be global if the

initial data is small in Ḣ
d
2
−1 (compared to the viscosity, which is chosen equal to one here

to simplify). The result was improved to the Lebesgue space Ld by F. Weissler in [32] (see
also [13] and [16]). The method consists in applying a Banach fixed point theorem to the
integral formulation of the equation, and was generalized by M. Cannone, Y. Meyer and F.
Planchon in [1] to Besov spaces of negative index of regularity. More precisely they proved

that if the initial data is small in the Besov space Ḃ
−1+ d

p
p,∞ (for p < ∞), then there is a unique,

global in time solution. Let us emphasize that this result allows to construct global solutions

for strongly oscillating initial data which may have a large norm in Ḣ
d
2
−1 or in Ld. A typical

example in three space dimensions is

uε
0(x)

def
= ε−α sin

(x3

ε

)(
−∂2ϕ(x), ∂1ϕ(x), 0

)
,

where 0 < α < 1 and ϕ ∈ S(R3; R). This can be checked by using the definition of Besov
norms:

∀s > 0, ∀(p, q) ∈ [1,∞], ‖f‖Ḃ−s
p,q

def
=

∥∥∥t
s
2‖et∆f‖Lp

∥∥∥
Lq(R+; dt

t
)
.

More recently in [17], H. Koch and D. Tataru obtained a unique global in time solution for
data small enough in a more general space, consisting of vector fields whose components are
derivatives of BMO functions. The norm in that space is given by

(1.1) ‖u0‖
2
BMO−1

def
= sup

t>0
t‖et∆u0‖

2
L∞ + sup

x∈R
d

R>0

1

Rd

∫

P (x,R)
|(et∆u0)(t, y)|2dy,

where P (x,R) stands for the parabolic set [0, R2]×B(x,R) while B(x,R) is the ball centered
at x, of radius R.

One should notice that spaces where global, unique solutions are constructed for small initial
data, are necessarily scaling-invariant spaces: thus all those spaces are invariant under the
invariant transformation for Navier-Stokes equation uλ(t, x) = λu(λ2t, λx). Moreover it can
be proved (as observed for instance in [5]) that if B is a Banach space continuously included
in the space S ′ of tempered distributions such that

for any (λ, a) ∈ R
+
⋆ ×R

d, ‖f(λ(· − a))‖B = λ−1‖f‖B ,
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then ‖ · ‖B ≤ C sup
t>0

t
1
2‖et∆u0‖L∞ . One recognizes on the right-hand side of the inequality

the Ḃ−1
∞,∞ norm, which is slightly smaller than the BMO−1 norm recalled above in (1.1):

indeed the BMO−1 norm takes into account not only the Ḃ−1
∞,∞ information, but also the fact

that first Picard iterate of the Navier-Stokes equations should be locally square integrable in
space and time. It thus seems that the Koch-Tataru theorem is optimal for the wellposedness
of the Navier-Stokes equations. This observation also shows that if one wants to go beyond
a smallness assumption on the initial data to prove the global existence of unique solutions,
one should check that the Ḃ−1

∞,∞ norm of the initial data may be chosen large.

To conclude this paragraph, let us remark that the fixed-point methods used to prove local
in time wellposedness for arbitrarily large data (such results are available in Banach spaces

in which the Schwartz class is dense, typically Ḃ
−1+ d

p
p,q for finite p and q) naturally provides

blow-up criteria. For instance, one can prove that if the life span of the solution is finite,

then the Lq([0, T ]; Ḃ
−1+ d

p
+ 2

q
p,q ) norm blows up as T approaches the blow up time. A natural

question is to ask if the Ḃ
−1+ d

p
p,q norm itself blows up. Progress has been made very recently

on this question, and uses the specific structure of the equation, which was not the case for
the results presented in this paragraph. We therefore postpone the exposition of those results
to the next paragraph.

We shall not describe more results on the Cauchy problem for the Navier-Stokes equations,
but refer the interested reader for instance to the monographs [20] and [24] for more details.

1.1.2. Results using the specific algebraic structure of the equation. If one wishes to improve
the theory on the Cauchy problem for the Navier-Stokes equations, it seems crucial to use
the specific structure of the nonlinear term in the equations, as well as the divergence-free
assumption. Indeed it was proved by S. Montgomery-Smith in [25] (in a one-dimensional
setting, which was later generalized to a 2D and 3D situation by two of the authors in [12])
that some models exist for which finite time blow up can be proved for some classes of large
data, despite the fact that the same small-data global wellposedness results hold as for the
Navier-Stokes system. Furthermore, the generalization to the 3D case in [12] shows that some
large initial data which generate a global solution for the Navier-Stokes equations (namely
the data of [4] which will be presented below) actually generate a blowing up solution for the
toy model.

In this paragraph, we shall present a number of wellposedness theorems (or blow up criteria)
which have been obtained in the past and which specifically concern the Navier-Stokes equa-
tions. In order to make the presentation shorter, we choose not to present a number of results
which have been proved by various authors under some additional geometrical assumptions
on the flow, which imply the conservation of quantities beyond the scaling (namely spherical,
helicoidal or axisymmetric conditions). We refer for instance to [18], [19], [28], or [31] for such
studies.

To start with, let us recall the question asked in the previous paragraph, concerning the blow

up of the Ḃ
−1+ d

p
p,q norm at blow-up time. A typical example of a solution with a finite Ḃ

−1+ d
p

p,q

norm at blow-up time is a self-similar solution, and the question of the existence of such
solutions was actually addressed by J. Leray in [21]. The answer was given 60 years later by
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J. Neças, M. Ruz̧içka and V. Şverák in [26]. By analyzing the profile equation, they proved
that there is no self-similar solution in L3 in three space dimensions. Later L. Escauriaza, G.
Seregin and V. Şverák were able to prove more generally that if the solution is bounded in L3,
then it is regular (see [9]): in particular any solution blowing up in finite time must blow up
in L3.

Now let us turn to the existence of large, global unique solutions to the Navier-Stokes system
in three space dimensions.

An important example where a unique global in time solution exists for large initial data is the
case where the domain is thin in the vertical direction (in three space dimensions): that was
proved by G. Raugel and G. Sell in [29] (see also the paper [15] by D. Iftimie, G. Raugel and
G. Sell). Another example of large initial data generating a global solution was obtained by A.
Mahalov and B. Nicolaenko in [23]: in that case, the initial data is chosen so as to transform
the equation into a rotating fluid equation (for which it is known that global solutions exist
for a sufficiently strong rotation).

In both those examples, the global wellposedness of the two dimensional equation is an im-
portant ingredient in the proof. Two of the authors also used such a property to construct
in [4] an example of periodic initial data which is large in Ḃ−1

∞,∞ but yet generates a global
solution. Such an initial data is given by

uN
0 (x)

def
= (Nuh(xh) cos(Nx3),− divh uh(xh) sin(Nx3)),

where ‖uh‖L2(T2) ≤ C(ln N)
1
4 , and its Ḃ−1

∞,∞ norm is typically of the same size. This was

generalized to the case of the space R
3 in [5].

Similarly in [6], that fact was used to prove a global existence result for large data which are
slowly varying in one direction. More precisely, if (vh

0 , 0) and w0 are two smooth divergence
free ”profile” vector fields, then they proved that the initial data

(1.2) u0,ε(xh, x3)
def
= (vh

0 (xh, εx3), 0) + (εwh
0 (xh, εx3), w

3
0(xh, εx3))

generates, for ε small enough, a global smooth solution. Here, we have denoted xh = (x1, x2).
Using for instance the language of geometrical optics in the context of fast rotating incom-
pressible fluids, and thinking of the problem in terms of convergence to the two dimensional
situation, this case can be seen as a ”well prepared” case. We shall be coming back to that
example in the next paragraph.

As a conclusion of this short (and of course incomplete) survey, let us present some results for
the Navier-Stokes system with viscosity vanishing in the vertical direction. Analogous results
to the classical Navier-Stokes system in the framework of small data are proved in [3], [14], [27]
and [8]). To circumvent the difficulty linked with the absence of vertical viscosity, the key
idea, which will be also crucial here (see for instance the proof of the second estimate of
Proposition 2.1) is the following: the vertical derivative ∂3 appears in the nonlinear term
of the equation with the prefactor u3, which has some additional smoothness thanks to the
divergence free condition which states that ∂3u3 = −∂1u1 − ∂2u2.
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1.2. Statement of the main result. In this work, we are interested in generalizing the
situation (1.2) to the ill prepared case: we shall investigate the case of initial data of the form

(
vh
0 (xh, εx3),

1

ε
v3
0(xh, εx3)

)
,

where xh belongs to the torus T
2 and x3 belongs to R. The main theorem of this article is

the following.

Theorem 1. Let a be a positive number. There are two positive numbers ε0 and η such that
for any divergence free vector field v0 satisfying

‖ea|D3|v0‖H4 ≤ η,

then, for any positive ε smaller than ε0, the initial data

u0,ε(x)
def
=

(
vh
0 (xh, εx3),

1

ε
v3
0(xh, εx3)

)

generates a global smooth solution of (NS) on T
2 ×R.

Remarks

• Such an initial data may be arbitrarily large in Ḃ−1
∞,∞, more precisely of size ε−1.

Indeed it is proved in [6], Proposition 1.1, that if f and g are two functions in S(T2)

and S(R) respectively, then hε(xh, x3)
def
= f(xh)g(εx3) satisfies, if ε is small enough,

‖hε‖
Ḃ−1

∞,∞
≥

1

4
‖f‖

Ḃ−1
∞,∞

‖g‖L∞ .

• As in the well prepared case studied in [6] and recalled in the previous paragraph,
the structure of the nonlinear term will have a crucial role to play in the proof of the
theorem.

• The reason why the horizontal variable is restricted to a torus is to be able to deal
with very low horizontal frequencies: as it will be clear in the proof of the theorem,
functions with zero horizontal average are treated differently to the others, and it
is important that no small horizontal frequencies appear other than zero. In that
situation, we are able to solve globally in time the equation (conveniently rescaled
in ε) for small analytic-type initial data. We recall that in that spirit, some local in
time results for Euler and Prandtl equation with analytic initial data can be found
in [30]. In this paper we shall follow a method close to a method introduced in [2].

• We finally note that we can add to our initial data any small enough data in Ḣ
1
2 , and

we still obtain the global existence of the solution. Indeed, by the results contained
in [11], if we fix an initial data which gives a global in time solution, then, all initial
data in a small neighborhood, give global in time solutions.

Acknowledgments

The authors wish to thank Vladimir Şverák for pointing out the interest of this problem to
them. They also thank Franck Sueur for suggesting the analogy with Prandlt’s problem.
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2. Structure of the proof

2.1. Reduction to a rescaled problem. We look for the solution under the form

uε(t, x)
def
=

(
vh(t, xh, εx3),

1

ε
v3(t, xh, εx3)

)
.

This leads to the following rescaled Navier-Stokes system.

(RNSε)





∂tv
h − ∆εv

h + v · ∇vh = −∇hq
∂tv

3 − ∆εv
3 + v · ∇v3 = −ε2∂3q
div v = 0
v|t=0 = v0

with ∆ε
def
= ∂2

1 + ∂2
2 + ε2∂2

3 . As there is no boundary, the rescaled pressure q can be computed
with the formula

(2.1) ∆εq =
∑

j,k

∂jv
k∂kv

j =
∑

j,k

∂j∂k(v
jvk).

It turns out that when ε goes to 0, ∆−1
ε looks like ∆−1

h . In the case of R
3, for low horizontal

frequencies, an expression of the type ∆−1
h (ab) cannot be estimated in L2 in general. This is

the reason why we work in T
2 ×R. In this domain, the problem of low horizontal frequencies

reduces to the problem of the horizontal average that we denote by

(Mf)(x3)
def
= f(x3)

def
=

∫

T
2
f(xh, x3)dxh.

Let us also define M⊥f
def
= (Id−M)f . Notice that, because the vector field v is divergence

free, we have v3 ≡ 0. The system (RNSε) can be rewritten in the following form.

(RNSε)





∂tw
h − ∆εw

h + M⊥
(
v · ∇wh + w3∂3v

h
)

= −∇hq

∂tw
3 − ∆εw

3 + M⊥(v · ∇w3) = −ε2∂3M
⊥q

∂tv
h − ε2∂2

3vh = −∂3M(w3wh)
div(v + w) = 0

(v,w)|t=0 = (v0, w0).

The problem to solve this sytem is that there is no obvious way to compensate the loss of one
vertical derivative which appears in the equation on wh and v and also, but more hidden, in
the pressure term. The method we use is inspired by the one introduced in [2] and can be
understood as a global Cauchy-Kowalewski result. This is the reason why the hypothesis of
analyticity in the vertical variable is required in our theorem.

Let us denote by B the unit ball of R
3 and by C the annulus of small radius 1 and large

radius 2. For non negative j, let us denote by L2
j the space FL2((Z2 ×R) ∩ 2jC) and by L2

−1

the space FL2((Z2 ×R) ∩ B) respectively equipped with the (semi) norms

‖u‖2
L2

j

def
= (2π)−d

∫

2jC
|û(ξ)|2dξ and ‖u‖2

L2
−1

def
= (2π)−d

∫

B
|û(ξ)|2dξ.

Let us now recall the definition of inhomogeneous Besov spaces modeled on L2.
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Definition 2.1. Let s be a nonnegative real number. The space Bs is the subspace of L2

such that

‖u‖Bs
def
=

∥∥(
2js‖u‖L2

j

)
j

∥∥
ℓ1

< ∞.

We note that u ∈ Bs is equivalent to writing ‖u‖L2
j
≤ Ccj2

−js‖u‖Bs where (cj) is a non

negative series which belongs to the sphere of ℓ1. Let us notice that B
3
2 is included in F(L1)

and thus in the space of continuous bounded functions. Moreover, if we substitute ℓ2 to ℓ1 in
the above definition, we recover the classical Sobolev space Hs.

The theorem we actually prove is the following.

Theorem 2. Let a be a positive number. There are two positive numbers ε0 and η such that
for any divergence free vector field v0 satisfying

‖ea|D3|v0‖
B

7
2
≤ η,

then, for any positive ε smaller than ε0, the initial data

u0,ε(x)
def
=

(
vh
0 (xh, εx3),

1

ε
v3
0(xh, εx3)

)

generates a global smooth solution of (NS) on T
2 ×R.

2.2. Definition of the functional setting.

2.2.1. Study of a model problem. In order to motivate the functional setting and to give a
flavour of the method used to prove the theorem, let us study for a moment the following
simplified model problem for (RNSε), in which we shall see in a rather easy way how the
same type of method as that of [2] can be used (as a global Cauchy-Kowaleswski technique):
the idea is to control a nonlinear quantity, which depends on the solution itself. So let us
consider the equation

∂tu + γu + a(D)(u2) = 0,

where u is a scalar, real-valued function, γ is a positive parameter, and a(D) is a Fourier
multiplier of order one. We shall sketch the proof of the fact that if the initial data satisfies,
for some positive δ and some small enough constant c,

‖u0‖X
def
=

∫
eδ|ξ||û(ξ)| dξ ≤ cγ,

then one has a global smooth solution, say in the space F(L1) as well as all its derivative.
The idea of the proof is the following: we want to control the same kind of quantity on the
solution, but one expects the radius of analyticity of the solution to decay in time. So let us
introduce θ(t) the ”loss of analyticity” of the solution, solving the following ODE:

θ̇(t)
def
=

∫
e(δ−λθ(t))|ξ||û(ξ)|dξ with θ(0) = 0.

The parameter λ will be chosen large enough at the end and we will prove that δ − λθ(t)
remains positive for all times. The computations that follow hold as long as that assumption
is true (and a bootstrap will prove that in fact it does remain true for all times). We define
the notation

uθ(t) = F−1
(
e(δ−λθ(t))|·|| û(t, ·)|

)
.



8 J.-Y. CHEMIN, I. GALLAGHER, AND M. PAICU

Notice that

(2.2) θ̇(t) = ‖uθ(t)‖F(L1) and θ(t) =

∫ t

0
‖uθ(t

′)‖F(L1) dt′.

Taking the Fourier transform of the equation gives

|û(t, ξ)| ≤ e−γt|û0(ξ)| + C

∫ t

0
e−γ(t−t′) |ξ| |F(u2)(t′, ξ)| dt′.

Using the fact that

(δ − λθ(t)) |ξ| ≤ (δ − λθ(t′)) |ξ − η| + (δ − λθ(t′)) |η| − λ|ξ|

∫ t

t′
θ̇(t) dt′′ ,

we infer that

|ûθ(t, ξ)| ≤ e−γteδ|ξ||û0(ξ)| + C

∫ t

0
e−γ(t−t′)−λ|ξ|

∫ t

t′
θ̇(t) dt′′ |ξ| |F(u2

θ)|(t
′, ξ) dt′.

We note the important fact that
∫ t

0
e−λ|ξ|

∫ t

t′
θ̇(t) dt′′ |ξ| θ̇(t′) dt′ ≤

C

λ
,

which is very useful in what follows. As F(ab) = (2π)−d(â ⋆ b̂), we have, for any t′ ≤ t,

|F(u2
θ)|(t

′, ξ) ≤
(

sup
0≤t′≤t

|ûθ(t
′, ·)|

)
⋆ |ûθ(t

′, ·)|.

Recalling that F(L1) is an algebra, we infer that
∥∥∥ sup

0≤t′≤t

|ûθ(t
′)|

∥∥∥
L1

≤ ‖u0‖X +
C

λ

∥∥∥ sup
0≤t′≤t

|ûθ(t
′)|

∥∥∥
L1

and

θ(t) ≤ Cγ

(
‖u0‖X +

∥∥∥ sup
0≤t′≤t

|ûθ(t
′)|

∥∥∥
L1

θ(t)
)
.

This allows by bootstrap to obtain the global in time existence of the solution, as soon as the
initial data is small enough; we skip the computations, as they will be presented in full detail
for the case of the system (RNSε).

2.2.2. Functional setting. In the light of the computations of the previous section, let us
introduce the functional setting we are going to work with to prove the theorem. The proof
relies on exponential decay estimates for the Fourier transform of the solution. Thus, for any
locally bounded function Ψ on R

+ ×Z
2 ×R and for any function f , continuous in time and

compactly supported in Fourier space, we define

(fΨ)(t)
def
= F−1

(
eΨ(t,·)f̂(t, ·)

)
.

Now let us define the key quantity we wish to control in order to prove the theorem. In order
to do so, let us consider the Friedrichs approximation of the original (NS) system





∂tu − ∆u + Pn(u · ∇u + ∇p) = 0

div u = 0

u|t=0 = Pn u0,ε,
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where Pn denotes the orthogonal projection of L2 on functions the Fourier transform of which
is supported in the ball Bn centered at the origin and of radius n. Thanks to the L2 energy
estimate, this approximated system has a global solution the Fourier transform of which is
supported in Bn. Of course, this provides an approximation of the rescaled system namely

(RNSε,n)





∂tw
h − ∆εw

h + Pn,ε M⊥
(
v · ∇wh + w3∂3v + ∇hq

)
= 0

∂tw
3 − ∆εw

3 + Pn,ε M⊥
(
v · ∇w3 + ε2∂3q

)
= 0

∂tv
h − ε2∂2

3vh + Pn,ε ∂3M(w3wh) = 0
div(v + w) = 0

(v,w)|t=0 = (v0, w0),

where Pn,ε denotes the orthogonal projection of L2 on functions the Fourier transform of which

is supported in Bn,ε
def
= {ξ / |ξε|

2 def
= |ξh|

2 +ε2ξ2
3 ≤ n2}. We shall prove analytic type estimates

here, meaning exponential decay estimates for the the solution of the above approximated
system. In order to make notation not too heavy we will drop the fact that the solutions
we deal with are in fact approximate solutions and not solutions of the original system. A
priori bounds on the approximate sequence will be derived, which will clearly yield the same
bounds on the solution. In the spirit of [2] (see also (2.2) in the previous section), we define
the function θ (we drop also the fact that θ depends on ε in all that follows) by

(2.3) θ̇(t) = ‖w3
Φ(t)‖

B
7
2

+ ε‖wh
Φ(t)‖

B
7
2

and θ(0) = 0

where

(2.4) Φ(t, ξ) = t
1
2 |ξh| + a|ξ3| − λθ(t)|ξ3|

for some λ that will be chosen later on (see Section 2.4). Since the Fourier transform of w is
compactly supported, the above differential equation has a unique global solution on R

+. If
we prove that

(2.5) ∀t ∈ R
+ , θ(t) ≤

a

λ
,

this will imply that the sequence of approximated solutions of the rescaled system is a bounded
sequence of L1(R+; Lip). So is, for a fixed ε, the family of approximation of the original
Navier-Stokes equations. This is (more than) enough to imply that a global smooth solution
exists.

2.3. Main steps of the proof. The proof of Inequality (2.5) will be a consequence of the
following two propositions which provide estimates on vh, wh and w3. For technical reasons,
these statements require the use of a modified version (introduced in [7]) of L∞

T (Bs) spaces.

Definition 2.2. Let s be a real number. We define the space L̃∞
T (Bs) as the subspace of

functions f of L∞
T (Bs) such that the following quantity is finite:

‖f‖
L̃∞

T
(Bs)

def
=

∑

j

2js‖f‖L∞

T
(L2

j ).

Theorem 2 will be an easy consequence of the following propositions, which will be proved in
the coming sections.

The first one uses only the fact that the function Φ is subadditive.
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Proposition 2.1. A constant C
(1)
0 exists such that, for any positive λ, for any initial data v0,

and for any T satisfying θ(T ) ≤ a/λ, we have

θ(T ) ≤ ε‖ea|D3|wh
0‖B

7
2

+ ‖ea|D3|w3
0‖B

7
2

+ C
(1)
0 ‖vΦ‖

L̃∞

T
(B

7
2 )

θ(T ).

Moreover, we have the following L∞-type estimate on the vertical component:

‖w3
Φ‖L̃∞

T
(B

7
2 )

≤ ‖ea|D3|w3
0‖B

7
2

+ C
(1)
0 ‖vΦ‖

2

L̃∞

T
(B

7
2 )

.

The second one is more subtle to prove, and it shows that the use of the analytic-type norm
actually allows to recover the missing vertical derivative on vh, in a L∞-type space. It should
be compared to the methods described in Section 2.2.1.

Proposition 2.2. A constant C
(2)
0 exists such that, for any positive λ, for any initial data v0,

and for any T satisfying θ(T ) ≤ a/λ, we have

‖vh
Φ‖L̃∞

T
(B

7
2 )

≤ ‖ea|D3|vh
0‖B

7
2

+ C
(2)
0

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
‖vh

Φ‖L̃∞

T
(B

7
2 )

.

2.4. Proof of the theorem assuming the two propositions. Let us assume these two
propositions are true for the time being and conclude the proof of Theorem 2. It relies on a
continuation argument.

For any positive λ and η, let us define

Tλ
def
=

{
T / max{‖vΦ‖

L̃∞

T
(B

7
2 )

, θ(T )} ≤ 4η
}
,

As the two functions involved in the definition of Tλ are non decreasing, Tλ is an inter-
val. As θ is an increasing function which vanishes at 0, a positive time T0 exists such
that θ(T0) ≤ 4η. Moreover, if ‖ea|D|3|v0‖

B
7
2

≤ η then, since ∂tv = Pn F (v) (recall that

we are considering Friedrich’s approximations), a positive time T1 (possibly depending on n)
exists such that ‖vΦ‖

L̃∞

T1
(B

7
2 )

≤ 4η. Thus Tλ is the form [0, T ⋆) for some positive T ⋆. Our

purpose is to prove that T ⋆ = ∞. As we want to apply Propositions 2.1 and 2.2, we need
that λθ(T ) ≤ a. This leads to the condition

(2.6) 4λη ≤ a.

From Proposition 2.1, defining C0
def
= C

(1)
0 + C

(2)
0 , we have, for all T ∈ Tλ,

‖vΦ‖
L̃∞

T
(B

7
2 )

≤ ‖ea|D3|v0‖
B

7
2

+
C0

λ
‖vΦ‖

L̃∞

T
(B

7
2 )

+ C0‖vΦ‖
2

L̃∞

T
(B

7
2 )

.

Let us choose λ =
1

2C0
· This gives

‖vΦ‖
L̃∞

T
(B

7
2 )

≤ 2‖ea|D3|v0‖
B

7
2

+ 4C0η‖vΦ‖
L̃∞

T
(B

7
2 )

.

Choosing η =
1

12C0

, we infer that, for any T ∈ Tλ,

(2.7) ‖vΦ‖
L̃∞

T
(B

7
2 )

≤ 3‖ea|D3|v0‖
B

7
2
.
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Propositions 2.1 and 2.2 imply that, for all T ∈ Tλ,

θ(T ) ≤ ε‖ea|D3|wh
0‖B

7
2

+ ‖ea|D3|w3
0‖B

7
2

+ C0ηθ(T ).

This implies that

θ(T ) ≤ 2ε‖ea|D3|wh
0‖B

7
2

+ 2‖ea|D3|w3
0‖B

7
2
.

If 2ε‖ea|D3|wh
0‖B

7
2

+ 2‖ea|D3|w3
0‖B

7
2
≤ η and ‖ea|D3|vh

0 ‖B
7
2
≤ η, then the above estimate and

Inequality (2.7) ensure (2.5). This concludes the proof of Theorem 2.

3. The action of subadditive phases on (para)products

It will be useful to consider, for any function f , the inverse Fourier transform of |f̂ |, defined as

f+ def
= F−1|f̂ |.

Let us notice that the map f 7→ f+ preserves the norm of all Bs spaces. In all this section, Ψ
will denote a locally bounded function on R

+ ×T
2 ×R which satisfies the following inequality

(3.1) Ψ(t, ξ) ≤ Ψ(t, ξ − η) + Ψ(t, η).

In all the following, we will denote by C or c universal constants, which do not depend on any
of the parameters of the problem, and which may change from line to line. We will denote
generically by cj any sequence in ℓ1(Z) of norm 1.

We shall denote by Eε f the solution of ∂tg−∆εg = f with initial data equal to 0. We use also
a very basic version of Bony’s decomposition. Let us define (using the notation introduced in
Section 2.1),

Tab
def
= F−1

∑

j

∫

2jC∩B(ξ,2j)
â(ξ − η)̂b(η)dη and Rab

def
= F−1

∑

j

∫

2jC∩B(ξ,2j+1)
â(ξ − η)̂b(η)dη.

We obviously have ab = Tab + Rba.

The way the Fourier multiplier eΨ acts on bilinear functionals is described by the following
lemma.

Lemma 3.1. For any positive s, a constant C exists which satisfies the following properties.
For any function Ψ satisfying (3.1), for any function b in L1

T (Bs), a positive sequence (cj)j∈Z

exists in the sphere of ℓ1(Z) such that, for any a in L1
T (B

3
2 ), and any t ∈ [0, T ], we have

‖(Tab)Ψ(t)‖L2
j
+ ‖(Rab)Ψ(t)‖L2

j
≤ Ccj2

−js‖a(t)‖
B

3
2

min
{
‖b(t)‖Bs , ‖b‖

L̃∞

T
(Bs)

}
.

Proof. We prove only the lemma for R, the proof for T being strictly identical. Let us first
investigate the case when the function Ψ is identically 0. We first observe that for any ξ in
the annulus 2jC, we have

F(Rab(t))(ξ) =
∑

j′≥j−2

∫

2j′C∩B(ξ,2j′+1)
â(t, ξ − η)̂b(t, η)dη.
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As B
3
2 is included in F(L1), we infer that, by definition of ‖ · ‖

L̃∞

T
(Bs)

,

‖Rab(t)‖L2
j
≤ C‖a(t)‖

B
3
2

∑

j′≥j−2

cj′2
−j′s min

{
‖b(t)‖Bs , ‖b‖

L̃∞

T
(Bs)

}
.

Defining c̃j =
∑

j′≥j−2

2(j−j′)scj′ which satisfies
∑

j

c̃j ≤ Cs, we obtain

(3.2) ‖Rab(t)‖L2
j
≤ Cc̃j2

−js‖a(t)‖
B

3
2

min
{
‖b(t)‖Bs , ‖b‖

L̃∞

T
(Bs)

}
.

The lemma is then proved in the case when the function Ψ is identically 0. In order to treat
the general case, let us write that

eΨ(t,ξ)F(Rab)(ξ) = eΨ(t,ξ)
∑

j

∫

2jC∩B(ξ,2j)
â(ξ − η)̂b(η)dη

≤
∑

j

∫

2jC∩B(ξ,2j)
eΨ(t,ξ−η)â+(ξ − η)eΨ(t,η) b̂+(η)dη.

This means exactly that |F(Rab)Ψ(t, ξ)| ≤ F(Ra+
Ψ
b+
Ψ)(t, ξ). Then, the estimate (3.2) implies

the lemma. �

Corollary 3.1. If s is positive, we have, for any function Ψ satisfying (3.1),

‖(Tab)Ψ‖L̃∞

T
(Bs) + ‖(Rab)Ψ‖L̃∞

T
(Bs) ≤ C‖aΨ‖

L∞

T
(B

3
2 )
‖bΨ‖L̃∞

T
(Bs) and

‖(Tab)Ψ‖L1
T

(Bs) + ‖(Rab)Ψ‖L1
T

(Bs) ≤ C min
{
‖aΨ‖

L1
T

(B
3
2 )
‖bΨ‖L̃∞

T
(Bs)

,

‖aΨ‖
L∞

T
(B

3
2 )
‖bΨ‖L1

T
(Bs)

}
.

Proof. Taking the L∞ norm in time on the inequality of Lemma 3.1 gives that

‖(Tab)Ψ‖L∞

T
(L2

j ) + ‖(Rab)Ψ‖L∞

T
(L2

j ) ≤ Ccj2
−js‖a‖

L∞

T
(B

3
2 )
‖b‖

L̃∞

T
(Bs)

.

which is the first inequality of the corollary. The proof of the second one is analogous. �

4. The action of the phase Φ on the heat operator

The purpose of this section is the study of the action of the multiplier eΦ on Eε f . Let us

recall that the function Φ is defined in (2.4) by Φ(t, ξ) = t
1
2 |ξh|+a|ξ3|−λθ(t)|ξ3|. This action

is described by the following lemma.

Lemma 4.1. A constant C0 exists such that, for any function f with compact spectrum, we
have, for any s,

‖(Eε M⊥f)Φ‖L̃∞

T
(Bs) ≤ C0‖gΦ‖L̃∞

T
(Bs) and

‖(Eε M⊥f)Φ‖L1
T

(Bs) ≤ C0‖gΦ‖L1
T

(Bs) where g
def
= F−1

( 1

|ξh|
|FM⊥f |

)
.
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Proof. Let us write Eε in terms of the Fourier transform. We have, for any ξ ∈ (Z2 \{0})×R,

F (Eε f)Φ (t, ξ) = eΦ(t,ξ)

∫ t

0
e−(t−t′)|ξε|2f(t′, ξ)dt′,

with, as in all that follows, |ξε|
2 def

= |ξh|
2 + ε2|ξ3|

2. Thus we infer, for any ξ ∈ (Z2 \{0}) × R,

|F ((Eε f)Φ) (t, ξ)| ≤

∫ t

0
e−(t−t′)|ξε|2+Φ(t,ξ)−Φ(t′,ξ)F(f+

Φ )(t′, ξ)dt′.

By definition of Φ, we have (see [2], estimate (24))

(4.1) Φ(t, ξ) − Φ(t′, ξ) ≤ −λ|ξ3|

∫ t

t′
θ̇(t′′)dt′′ +

t − t′

2
|ξh|

2.

Thus we have, for any ξ ∈ (Z2 \{0}) × R,

(4.2) |F ((Eε f)Φ) (t, ξ)| ≤

∫ t

0
e−

(t−t′)
2

|ξh|
2−ε2(t−t′)|ξ3|2F(f+

Φ )(t′, ξ)dt′.

Let us define Ch
def
= {1 ≤ |ξh| ≤ 2} × R. The above inequality means that we have, for any ξ

in 2jC ∩ 2kCh,

|F((Eε f)Φ)(t, ξ)| ≤ C

∫ t

0
e−c(t−t′)22k

2k ĝΦ(t′, ξ)dt′.

Taking the L2 norm in ξ in that inequality gives

(4.3) ‖(Eε f)Φ(t)‖FL2(2jC∩2kCh) ≤

∫ t

0
e−c(t−t′)22k

2k‖gΦ(t′)‖L2
j
dt′.

By definition of the L̃∞
T (Bs) norm, this gives, for any t ≤ T ,

2js‖(Eε f)Φ‖L∞

T
(L2(2jC∩2kCh)) ≤ Ccj‖gΦ‖L̃∞

T
(Bs)

∫ t

0
e−c(t−t′)22k

2kdt′

≤ Ccj2
−k‖gΦ‖L̃∞

T
(Bs).

Now, writing that

‖(Eε M⊥f)Φ‖L∞

T
(L2

j ) ≤

∞∑

k=0

‖Eε(fΦ)‖L∞

T
(L2(2jC∩2kCh))

gives the first inequality of the lemma.

In order to prove the second one, let us use the definition of the norm of the space Bs and (4.3);
this gives

∑

j

2js‖(Eε f)Φ‖L1
T

(L2
j
) ≤

∑

j,k

2js‖Eε(fΦ)‖L1
T

(FL2(2jC∩2kCh))

≤ C
∑

j,k

∫

[0,T ]2
1t≥t′e

−c22k(t−t′)2kcj(t
′)‖gΦ(t′)‖Bsdt′dt.

Integrating first in t gives
∑

j

2js‖(Eε fΦ)‖L1
T

(L2
j ) ≤ C

∑

j,k

∫

[0,T ]
2−kcj(t

′)‖gΦ(t′)‖Bsdt.
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As the index k is nonnegative, we get the second estimate of the lemma. �

The following lemma is a key one. It is here that the function θ allows the gain of the vertical
derivative, in the spirit of the example presented in Section 2.2.1.

Lemma 4.2. Let a(D) and b(D) be two Fourier multipliers such that |a(ξ)| ≤ C|ξ3| and |b(ξ)| ≤
C|ξ|2. We have

‖(Eε a(D)Rb(D)w3f)Φ‖
L̃∞

T
(B

7
2 )

+ ‖(Eε a(D)Tb(D)w3f)Φ‖
L̃∞

T
(B

7
2 )

≤ C
(1

λ
+ ‖w3

Φ‖L̃∞

T
(B

7
2 )

)
‖fΦ‖

L̃∞

T
(B

7
2 )

.

Proof. We give only the proof for the first term, the second term is estimated exactly along
the same lines. Let us write Eε in Fourier variables. We have

F(Eε a(D)Rb(D)w3f)Φ(t, ξ) = eΦ(t,ξ)

∫ t

0
e−(t−t′)|ξε|2a(ξ)F(Rb(D)w3f)(t′, ξ)dt′.

Thus, using that |a(ξ)| ≤ C|ξ3|, we obtain

|F(Eε a(D)Rw3f)Φ(t, ξ)| ≤ C

∫ t

0
e−(t−t′)|ξε|2+Φ(t,ξ)−Φ(t′,ξ)|ξ3| |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Taking into account Inequality (4.1), we have

|F(Eε a(D)Rw3f)Φ(t, ξ)| ≤ C

∫ t

0
e−

t−t′

2
|ξε|2−λ|ξ3|

∫ t

t′
θ̇(t′′)dt′′ |ξ3| |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Let us denote by Ψ the Fourier multiplier Ψa
def
= F−1(1|ξh|≤2|ξ3|â). If |ξh| ≤ 2|ξ3| and ξ is

in 2jC, then, we have that |ξ3| ∼ 2j . Thus, we infer that, for any ξ in 2jC,

|FΨ(Eε a(D)Rb(D)w3f)Φ(t, ξ)| ≤

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

Taking the L2 norm gives

‖Ψ(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2
j
≤

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖(Rb(D)w3f)Φ)(t′)‖L2

j
dt′.

Using Lemma 3.1, we get

2j 7
2‖Ψ(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2

j
≤ Ccj‖fΦ(t)‖

L̃∞

T
(B

7
2 )

×

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖b(D)w3

Φ(t′, ·)‖
B

3
2
dt′

≤ Ccj‖fΦ(t)‖
L̃∞

T
(B

7
2 )

×

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j‖w3

Φ(t′, ·)‖
B

7
2
dt′

≤ Ccj‖fΦ(t)‖
L̃∞

T
(B

7
2 )

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j θ̇(t′)dt′

≤
C

λ
cj‖fΦ(t)‖

L̃∞

T
(B

7
2 )

.
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By summation in j, we deduce that

(4.4) ‖Ψ(Eε a(D)Rw3f)Φ‖
L̃∞

T
(B

7
2 )

≤
C

λ
‖fΦ(t)‖

L̃∞

T
(B

7
2 )

.

If 2|ξ3| ≤ |ξh|, then, for any ξ in 2jC, |ξh| is equivalent to 2j and |ξ3| is less than 2j . So we
infer that for any ξ in 2jC,

|F(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ(t, ξ)| ≤

∫ t

0
e−c(t−t′)22j

2j |F((Rb(D)w3f)Φ)(t′, ξ)|dt′.

By definition of ‖ · ‖
L̃∞

T
(B

7
2 )

, taking the L2 norm of the above inequality gives

2j 7
2‖(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ(t, ·)‖L2

j
≤

∫ t

0
e−c22j(t−t′)2j2j 7

2‖(Rb(D)w3f)Φ)(t′)‖L2
j
dt′

≤ Ccj‖(Rb(D)w3f)Φ‖
L̃∞

T
(B

7
2 )

.

After a summation in j, Corollary 3.1 implies that

‖(Id−Ψ)(Eε a(D)Rb(D)w3f)Φ‖
L̃∞

T
(B

7
2 )

≤ C‖b(D)w3
Φ‖L̃∞

T
(B

3
2 )
‖fΦ‖

L̃∞

T
(B

7
2 )

≤ C‖w3
Φ‖L̃∞

T
(B

7
2 )
‖fΦ‖

L̃∞

T
(B

7
2 )

.

Together with (4.4), this concludes the proof of the lemma. �

Lemma 4.3. A constant C0 exists such that, for any function f with compact spectrum, we
have for α in {1, 2},

∥∥(
Eε(ε∂3)

αM⊥f
)
Φ

∥∥
L̃∞

T
(Bs)

≤ C0‖fΦ‖L̃∞

T
(Bs) and

∥∥(
Eε(ε∂3)

αM⊥f
)
Φ

∥∥
L1

T
(Bs)

≤ C0‖fΦ‖L1
T

(Bs).

Proof. Let us start with the case when α = 2. Recalling (4.2), we have (for 0 < ε < 1),

ε2|F(Eε ∂2
3f)Φ(t, ξ)| ≤

∫ t

0
e−ε2 (t−t′)

2
|ξ|2ε2ξ2

3F(f+
Φ )(t′, ξ)dt′.

Writing that |ξ3| ≤ |ξ|, we infer that

ε2
∥∥(Eε ∂2

3f)Φ(t)
∥∥

L2
j

≤

∫ t

0
e−cε2(t−t′)22j

ε222j‖f(t′)‖L2
j
dt′.

The estimates follow directly by applying Young’s inequality in t.

In the case when α = 1, we decompose f into two parts,

f = f (1) + f (2), with f (1) = F−1(1ε|ξ3|≤|ξh|f̂).

Let us start by studying the first contribution. We simply write that

ε
∣∣F

(
Eε ∂3f

(1)
)
Φ
(t, ξ)

∣∣ ≤

∫ t

0
e−

(t−t′)
2

|ξε|2ε|ξ3|F(f
(1)
Φ )+(t′, ξ)dt′

≤

∫ t

0
e−

(t−t′)
2

|ξε|2|ξh|F(f
(1)
Φ )+(t′, ξ)dt′
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which amounts exactly to the computation (4.3), with g replaced by f (1). On the other hand,

for f (2) we can write

ĝ(2)(ξ)
def
=

1

|ξh|
1ε|ξ3|≥|ξh||FM⊥f (2)(ξ)|

so that

ε
∣∣∣F

(
Eε ∂3M

⊥f (2)
)
Φ
(t, ξ)

∣∣∣ ≤
∫ t

0
e−

(t−t′)
2

|ξh|
2−ε2(t−t′)|ξ3|2ε|ξ3||ξh|ĝ

(2)(t′, ξ)dt′.

Since |ξh| ≤ ε|ξ3|, we are reduced to the case when α = 2 and the conclusion comes from the

fact that ‖g
(2)
Φ ‖Bs ≤ ‖M⊥f

(2)
Φ ‖Bs ≤ ‖fΦ‖Bs . That proves the lemma. �

5. Classical analytic-type parabolic estimates

The purpose of this section is to prove Proposition 2.1. We shall use the algebraic structure
of the Navier-Stokes system and the fact that the function Φ is subadditive.

Let us first bound the horizontal component. We recall that

wh
Φ(t) = et∆ε+Φ(t,D)wh(0) −

(
Eε M⊥(v · ∇wh)

)
Φ
(t) −

(
Eε M⊥(w3∂3v

h)
)
Φ
(t) −

(
Eε(∇hq)

)
Φ
(t).

We note that v · ∇wh = divh(vh ⊗wh) + ∂3(w
3wh), recalling that v3 = w3. On the one hand,

using Lemma 4.1 and Corollary 3.1, we can write

ε‖Eε(divh(vhwh))Φ‖
L1

T
(B

7
2 )

≤ Cε‖(vhwh)Φ‖
L1

T
(B

7
2 )

≤ C‖vΦ‖
L̃∞

T
(B

7
2 )

ε‖wh‖
L1

T
(B

7
2 )

.

By definition of θ, we infer that

(5.1) ε‖Eε(divh(vhwh))Φ‖
L1

T
(B

7
2 )

≤ Cθ(T )‖vh
Φ‖L̃∞

T
(B

7
2 )

.

On the other hand, Lemma 4.3 and Corollary 3.1 imply that

‖Eε

(
ε∂3M

⊥(w3wh)
)
Φ
‖

L1
T

(B
7
2 )

≤ C‖w3wh‖
L1

T
(B

7
2 )

≤ Cθ(T )‖vh
Φ‖L̃∞

T
(B

7
2 )

.(5.2)

For the second term, we use paradifferential calculus which gives

w3∂3v
h = Tw3∂3v

h + R∂3vhw3

= ∂3Tw3vh − T∂3w3vh + R∂3vhw3.

Using again Lemma 4.3 and Corollary 3.1, we get

‖Eε

(
ε∂3M

⊥Tw3vh)Φ‖
L1

T
(B

7
2 )

≤ C‖(Tw3vh)Φ‖
L1

T
(B

7
2 )

≤ C‖w3
Φ‖L1

T
(B

7
2 )
‖vh‖

L̃∞

T
(B

7
2 )

.

By definition of θ, we infer

(5.3) ‖Eε

(
ε∂3M

⊥Tw3vh)Φ‖
L1

T
(B

7
2 )

≤ Cθ(T )‖vh
Φ‖L̃∞

T
(B

7
2 )

.
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By Lemma 4.1 and Corollary 3.1, we can write that

‖Eε

(
εM⊥T∂3w3vh)Φ‖

L1
T

(B
7
2 )

≤ Cε‖(T∂3w3vh)Φ‖
L1

T
(B

7
2 )

≤ Cε‖w3
Φ‖L1

T
(B

7
2 )
‖vh‖

L̃∞

T
(B

7
2 )

so that

(5.4) ‖Eε

(
εM⊥T∂3w3vh)Φ‖

L1
T

(B
7
2 )

≤ Cθ(T )‖vh
Φ‖L̃∞

T
(B

7
2 )

,

and finally along the same lines we have

(5.5) ‖Eε

(
εM⊥R∂3vhw3)Φ‖

L1
T

(B
7
2 )

≤ Cθ(T )‖vh
Φ‖L̃∞

T
(B

7
2 )

.

Now we are left with the study of the pressure. Some of its properties are described in the
following lemma.

Lemma 5.1. Let us define ∇ε
def
= (∇h, ε∂3). The following two inequalities on the rescaled

pressure hold:

ε‖(Eε ∇εM
⊥q)Φ‖

L̃∞

T
(B

7
2 )

≤ C‖vΦ‖
2

L̃∞

T
(B

7
2 )

and

ε‖(Eε ∇εM
⊥q)Φ‖

L1
T

(B
7
2 )

≤ C‖vΦ‖
L̃∞

T
(B

7
2 )

θ(T ).

Proof. Using the formula (2.1) on the rescaled pressure and the divergence free condition on v,
let us decompose it as εq = q1,ε − q2,ε with

q1,ε
def
=

2∑

k=1

∂k∂ℓ∆
−1
ε (εwkvℓ) +

∑

1≤k≤2

∂k(ε∂3)∆
−1
ε (w3vk) and

q2,ε
def
= 2ε∂3∆

−1
ε (w3 divh wh).

Let us start with q1,ε. We have

∇εq1,ε =

2∑

k=1

∂k

( 2∑

ℓ=1

∇ε∂ℓ∆
−1
ε (εwkvℓ) + ∇ε(ε∂3)∆

−1
ε (w3vk)

)
.

As ∇2
ε∆

−1
ε is a family of bounded Fourier multipliers (uniformly with respect to ε), we infer

from Lemma 4.1 and Corollary 3.1 that

ε‖(Eε(∇εM
⊥q1,ε))Φ‖

L̃∞

T
(B

7
2 )

≤ C‖vΦ‖
2

L̃∞

T
(B

7
2 )

and(5.6)

ε‖(Eε(∇εM
⊥q1,ε))Φ‖

L1
T

(B
7
2 )

≤ C‖vΦ‖
L̃∞

T
(B

7
2 )

θ(T ).(5.7)

In order to study q2,ε, let us observe that

w3 divh wh = Rdivh whw3 + Tw3 divh wh

= Rdivh whw3 +

2∑

k=1

(
∂kTw3wk − T∂kw3wk

)
.(5.8)
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As above we get, using Lemma 4.1 and Corollary 3.1,

ε‖(Eε(∇εM
⊥q2,ε))Φ‖

L̃∞

T
(B

7
2 )

≤ C‖vΦ‖
2

L̃∞

T
(B

7
2 )

and

ε‖(Eε(∇εM
⊥q2,ε))Φ‖

L1
T

(B
7
2 )

≤ C‖vΦ‖
L̃∞

T
(B

7
2 )

θ(T ).

Together with estimates (5.6) and (5.7), this concludes the proof of the lemma. �

The above Lemma 5.1, together with estimates (5.1) to (5.4), implies that

(5.9) ε‖wh‖
L1

T
(B

7
2 )

≤ ε‖ea|D3|wh
0‖B

7
2

+ C
(1)
0 ‖vΦ‖

L̃∞

T
(B

7
2 )

θ(T ).

Let us prove the estimates on the vertical component. It turns out that it is better behaved
because of the special structure of the system. Indeed, thanks to the divergence free condition,
almost no vertical derivatives appear in the equation of w3: we have (since w3 = v3)

(5.10) ∂tw
3 − ∆εw

3 = −vh · ∇hw3 + w3 divh wh − ε2∂3q.

The Duhamel formula reads

w3(t) = et∆εw3(0) + Eε M⊥(w3 divh wh − vh · ∇hw3)(t) − Eε M⊥(ε2∂3q)(t).

Applying the Fourier multiplier eΦ(t,D) to the above relation gives

(5.11) w3
Φ(t) = et∆ε+Φ(t,D)w3(0)+

(
Eε M⊥(w3 divh wh−vh ·∇hw3)

)
Φ
(t)−

(
Eε M⊥ε2∂3q

)
Φ
(t).

Using (5.8) and then Lemma 4.1 and Corollary 3.1, we get
∥∥(

Eε M⊥(w3 divh wh)
)
Φ

∥∥
L̃∞

T
(B

7
2 )

≤ C‖w3
Φ‖L̃∞

T
(B

7
2 )
‖wh

Φ‖L̃∞

T
(B

7
2 )

and(5.12)

∥∥(
Eε M⊥(w3 divh wh)

)
Φ
‖

L1
T

(B
7
2 )

≤ C‖w3
Φ‖L1

T
(B

7
2 )
‖wh

Φ‖L̃∞

T
(B

7
2 )

.(5.13)

Writing that

vh · ∇ha =

2∑

k=1

(
Tvk∂ka + R∂kav

k
)

= −Tdivh wha +

2∑

k=1

(
∂kTvka + R∂kav

k
)

and using Lemma 4.1 and Corollary 3.1, we get
∥∥(

Eε M⊥(vh · ∇hw3)
)
Φ

∥∥
L̃∞

T
(B

7
2 )

≤ C‖w3
Φ‖L̃∞

T
(B

7
2 )
‖wh

Φ‖L̃∞

T
(B

7
2 )

and

∥∥(
Eε M⊥(vh · ∇hw3)

)
Φ
‖

L1
T

(B
7
2 )

≤ C‖w3
Φ‖L1

T
(B

7
2 )
‖wh

Φ‖L̃∞

T
(B

7
2 )

.

Together with estimates (5.12) and (5.13), and Lemma 5.1, this gives

‖w3‖
L1

T
(B

7
2 )

≤ ‖ea|D3|w3
0‖B

7
2

+ C
(1)
0 ‖vΦ‖

L̃∞

T
(B

7
2 )

θ(T ) and

‖w3
Φ‖L̃∞

T
(B

7
2 )

≤ ‖ea|D3|w3
0‖B

7
2

+ C
(1)
0 ‖vΦ‖

2

L̃∞

T
(B

7
2 )

.

Together with (5.9), this concludes the proof of Proposition 2.1.
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6. The gain of one vertical derivative on the horizontal part

In this section we shall prove Proposition 2.2. The proof will be separated into two parts:
first we shall consider the case of the horizontal average vh

Φ, and then the remainder wh
Φ.

6.1. The gain of one vertical derivative on the horizontal average. We shall study
in this section the equation on the horizontal average of the solution. We emphasize that in
the equation on v we cannot recover the vertical derivative appearing in the force term by the
regularizing effect. The fundamental idea to gain a vertical derivative is to use the analyticity
of the solution and therefore to estimate vΦ. The lemma is the following.

Lemma 6.1. A constant C0 exists such that, for any positive λ, for any initial data v0, and
for any T satisfying θ(T ) ≤ a/λ, we have

‖vh
Φ‖L̃∞

T
(B

7
2 )

≤ ‖ea|D3|vh
0‖B

7
2

+ C0

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
‖vh

Φ‖L̃∞

T
(B

7
2 )

.

Proof. The horizontal average v satisfies

(6.1) ∂tv − ε2∂2
3v = −∂3M(w3wh) and v|t=0 = v0.

Let us define G
def
= −∂3M(w3wk). Writing the solution of (6.1) in terms of the Fourier

transform, we get, using (4.1) with ξh = 0,

|F(vΦ)(t, ξ)| ≤ |Fv0(ξ)|e
a|ξ3| +

∫ t

0
e−λ|ξ3|

∫ t

t′
θ̇(t′′)dt′′ |F(GΦ)(t′, ξ)|dt′.

Then, taking the L2
j norm, we infer that

(6.2) ‖vΦ(t)‖L2
j
≤ ‖ea|D3|v0‖L2

j
+

∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′‖GΦ(t′)‖L2

j
dt′.

Now, let us estimate ‖GΦ(t′)‖L2
j
. For any function a, using the fact that the vector field w is

divergence free, let us write that

∂3(w
3a) = ∂3

(
Tw3a + Raw

3
)

= ∂3Tw3a + R∂3aw
3 − Ra divh wh

= ∂3Tw3a + R∂3aw
3 −

2∑

ℓ=1

∂ℓRaw
ℓ +

2∑

ℓ=1

R∂ℓaw
ℓ.(6.3)

Thus, we infer that

G = −∂3MTw3wk − M
(
R∂3wkw3 +

2∑

ℓ=1

R∂ℓw
kwℓ −

2∑

ℓ=1

∂ℓRw3wℓ
)

= −∂3MTw3wk − M
(
R∂3wkw3 +

2∑

ℓ=1

R∂ℓw
kwℓ

)
.(6.4)
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Now, let us study FM(Tab)Φ and FM(Rab)Φ for two functions a and b which have 0 horizontal
average. As the two terms are identical, let us study the first one. By definition, we have

F
(
Tab)(t, (0, ξ3)) =

∑

j

∫

2jC∩B((0,ξ3),2j)
â((0, ξ3) − η)̂b(η)dη.

As θ(T ) ≤ λ−1a, by definition of Φ we have, for any η ∈ (Z2 \{0}) × R,

Φ(t, (0, ξ3)) ≤ Φ(t, (0, ξ3 − η3)) + Φ(t, (0, η3))

≤ −2t
1
2 + Φ(t, ((0, ξ3) − η) + Φ(t,−η).

Thus we have

|(FM(Tab)Φ)(t, ξ)| ≤ e−2t
1
2 (FMT

a+
Φ
b+
Φ)(t, ξ).

Applied to (6.4), this implies that
∣∣FGΦ(t, ξ)

∣∣ ≤ |ξ3|F
(
T(w3

Φ)+(wk
Φ)+

)
(t, (0, ξ3))

+ e−2t
1
2 F

(
R(∂3wk

Φ)+(w3
Φ)+ +

2∑

ℓ=1

R(∂ℓw
k
Φ)+(wℓ

Φ)+
)
(t, (0, ξ3)).

Inequality (3.1) then implies that, for any t ∈ [0, T ],

(6.5) 2j 7
2‖GΦ(t)‖L2

j
≤ Ccj‖v

h
Φ‖L̃∞

T
(B

7
2 )

(
2j‖w3

Φ(t)‖
B

7
2

+ e−2t
1
2 ‖vΦ‖

L̃∞

T
(B

7
2 )

)
.

Then, by definition of θ, Inequalities (6.2) and (6.5) imply that

2j 7
2 ‖(vΦ)(t)‖L2

j
≤ 2j 7

2‖ea|D3|v0‖L2
j

+ Ccj‖vΦ‖
L̃∞

T
(B

7
2 )

(∫ t

0
e−cλ2j

∫ t

t′
θ̇(t′′)dt′′2j θ̇(t′)dt′ + ‖vΦ‖

L̃∞

T
(B

7
2 )

∫ t

0
e−2t′

1
2 dt′

)
.

This gives

2j 7
2‖vΦ‖L∞

T
(L2

j ) ≤ 2j 7
2 ‖ea|D3|v0‖L2

j
+ Ccj‖v

h
Φ‖L̃∞

T
(B

7
2 )

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
.

Taking the sum over j concludes the proof of the lemma. �

6.2. The gain of the vertical derivative on the whole horizontal term. Now let us
estimate the rest of the horizontal term, that is ‖wh

Φ‖L̃∞

T
(B

7
2 )

. As in Section 6.1, the function θ

will play a crucial role.

Lemma 6.2. A constant C0 exists such that, for any λ, for any initial data v0, and for any T
satisfying θ(T ) ≤ a/λ, we have

‖wh
Φ‖L̃∞

T
(B

7
2 )

≤ ‖ea|D3|wh
0‖B

7
2

+ C0

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
‖vh

Φ‖L̃∞

T
(B

7
2 )

.

Proof. The Duhamel formula writes

wh(t) = et∆εwh(0) − Eε divh(vh ⊗ vh)(t) − Eε M⊥∂3(w
3vh)(t) − Eε(∇hq)(t).
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Lemma 4.1 and Corollary 3.1 imply that

‖(Eε divh(vh ⊗ vh))Φ‖
L̃∞

T
(B

7
2 )

≤ C‖(vh ⊗ vh)Φ‖
L̃∞

T
(B

7
2 )

≤ C‖vh
Φ‖

2

L̃∞

T
(B

7
2 )

.(6.6)

Then using (6.3) we get, thanks to Leibnitz formula,

M⊥∂3(w
3vk) = M⊥∂3Tw3v

k + F k with

F k def
= M⊥

(
R∂3vkw3 −

2∑

ℓ=1

(
∂ℓRvkwℓ − R∂ℓvk

wℓ
))

.

Thanks to Lemma 4.1 and Corollary 3.1, we get

‖(Eε M⊥F k)Φ‖
L̃∞

T
(B

7
2 )

≤ ‖(F k)Φ‖
L̃∞

T
(B

7
2 )

≤ C‖vΦ‖
L̃∞

T
(B

7
2 )
‖vh

Φ‖L̃∞

T
(B

7
2 )

.

Together with Lemma 4.2, this gives

(6.7)
∥∥(

Eε M⊥∂3(w
3vh)

)
Φ

∥∥
L̃∞

T
(B

7
2 )

≤ C0

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
‖vh

Φ‖L̃∞

T
(B

7
2 )

.

Now let us study the pressure term. Formula (2.1) together with the divergence free condition
leads to the decomposition q = qh(wh) + q3(v) with

qh(wh)
def
= ∆−1

ε

(
(divh wh)2 +

∑

1≤k,ℓ≤2

∂kw
ℓ∂ℓw

k
)

and(6.8)

q3(v)
def
= ∆−1

ε

( ∑

1≤ℓ≤2

∂3v
ℓ∂ℓw

3
)
.(6.9)

For the first term we use Bony’s decomposition in order to obtain

∂kw
ℓ∂ℓw

k = T∂kwℓ∂ℓw
k + R∂ℓw

k∂kw
ℓ.

Then the Leibnitz formula implies that

(6.10) ∂kw
ℓ∂ℓw

k = ∂ℓT∂kwℓwk + ∂kR∂ℓw
kwℓ − T∂ℓ∂kwℓwk − R∂k∂ℓw

kwℓ.

On the other hand, again by paradifferential calculus, we can write that

(divh wh)2 = Tdivh wh divh wh + Rdivh wh divh wh

= divh

(
Tdivh whwh + Rdivh whwh

)
−

2∑

k=1

(
T∂k divh whwk + R∂k divh whwk

)
.(6.11)

Then Lemma 4.1 implies that

‖(Eε ∇hqh(wh))Φ‖
L̃∞

T
(B

7
2 )

≤ C0‖(M
⊥qh(wh))Φ‖

L̃∞(B
7
2 )

.

Using Corollary 3.1 and the fact that the operators ∇h∆−1
ε M⊥ and ∆−1

ε M⊥ are bounded
(uniformly in ε) Fourier multipliers, we obtain

(6.12)
∥∥(

Eε(∇hqh(wh))
)
Φ

∥∥
L̃∞

T
(B

7
2 )

≤ C0‖v
h
Φ‖

2

L̃∞

T
(B

7
2 )

.



22 J.-Y. CHEMIN, I. GALLAGHER, AND M. PAICU

For the second term, let us decompose q3(v) in the following way:

∂3v
ℓ∂ℓw

3 = T∂3vℓ∂ℓw
3 + R∂ℓw

3∂3v
ℓ

= ∂ℓT∂3vℓw3 + ∂3R∂ℓw
3vℓ − T∂3∂ℓvℓw3 − R∂3∂ℓw

3vℓ.

Using now Lemma 4.1 together with Corollary 3.1 and Lemma 4.2, we obtain

(6.13)
∥∥(

Eε(∇hq3(v))
)
Φ

∥∥
L̃∞

T
(B

7
2 )

≤ C0

( 1

λ
+ ‖vΦ‖

L̃∞

T
(B

7
2 )

)
‖vh‖

L̃∞

T
(B

7
2 )

.

The expected result is obtained putting together estimates (6.12) and (6.13) on the pressure
with estimates (6.6) and (6.7) on the nonlinear terms. �
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Journal of Differential Equations, 121, 1995, pages 314–328.

[8] J.-Y. Chemin and P. Zhang, On the global wellposedness of the 3-D incompressible anisotropic Navier-
Stokes equations, Communications in Mathematical Physics, 272, 2007, pages 529–566.
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