
HAL Id: hal-00294148
https://hal.science/hal-00294148

Preprint submitted on 8 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

42: Programmable Models of Computation for a
Component-Based Approach to Heterogeneous

Embedded Systems
Florence Maraninchi, Tayeb Bouhadiba

To cite this version:
Florence Maraninchi, Tayeb Bouhadiba. 42: Programmable Models of Computation for a Component-
Based Approach to Heterogeneous Embedded Systems. 2007. �hal-00294148�

https://hal.science/hal-00294148
https://hal.archives-ouvertes.fr

banner above paper title

42: Programmable Models of Computation for a
Component-Based Approach to Heterogeneous Embedded

Systems

Florence Maraninchi and Tayeb Bouhadiba
VERIMAG/INPGrenoble, 2 avenue de Vignate, F38610 GIERES

Florence.Maraninchi@imag.fr,Tayeb.Bouhadiba@imag.fr

Abstract
Every notion of acomponentfor the development of embedded
systems has to takeheterogeneityinto account: components may
be hardware or software or OS, synchronous or asynchronous,
deterministic or not, detailed w.r.t. time or not, detailed w.r.t. data or
not, etc. A lot of approaches, following Ptolemy, propose to define
several “Models of Computation and Communication” (MoCCs)
to deal with heterogeneity, and a framework in which they can be
combined hierarchically.

This paper presents the very first design of a component model
for embedded systems called 42. We aim at expressing fine-grain
timing aspects and several types of concurrency as MoCCs, but we
require that all the MoCCs be “programmed” in terms of more
basic primitives. 42 is meant to be an abstract description level,
intended to be translated into an existing language (e.g., Lustre) for
execution and property validation purposes.

Keywords Heterogeneous embedded systems, component-based
design, semantics, models-of-computation

1. Introduction
1.1 Component-Based Approaches for Heterogeneous

Embedded Systems

The notion of acomponentfor embedded systems has been dis-
cussed for some years now, and there are a lot of proposals. The
main motivations are the following: as time-to-market decreases,
it becomes unavoidable toreusea lot of previous work when de-
signing new systems. Reusing parts of a previous system requires
that these parts be properly defined ascomponents, equipped with
some form of aspecification(informal or formal). Thespecifica-
tion groups all information needed for using the component, with-
out knowing in details how it is built. This includes bothfunctional
and non functionalaspects, like timing performances, or energy
consumption.

There seem to be a wide agreement on the fact that the main
difficulty is due to the intrinsicheterogeneityof embedded systems,
which has numerous causes. We list the main ones below, including
intrinsic heterogeneity of the components that exist in the final

[copyright notice will appear here]

product, anddesignheterogeneity that occurs during the design
flow:
• A typical embedded system may be built from hardware and

software components (for the latter, both at the operating sys-
tem level, and at the application level);

• It is usually made ofconcurrentobjects, but the concurrency
model varies from pure synchrony (in mono-clock synchronous
circuits for instance) to pure asynchrony (representing the be-
haviors of a multi-computer system). Globally-Asynchronous-
Locally-Synchronous (GALS) systems are an interesting inter-
mediate case.

• The description of an embedded system may range from the
high levels of abstraction where the timing and the struc-
ture of the data is not detailed, to the low levels of abstrac-
tion often called “cycle-accurate, data-accurate”. The emerging
“Transaction-Level-Modeling” paradigm [14] is a very good ex-
ample of a component framework for embedded systems, al-
lowing to develop virtual prototypes of systems-on-a-chip at
various levels of abstraction.

• At the higher levels of description, components may also be
non-deterministic, because they are known as specifications
only (contractsfor instance, in the sense of [25]), not as detailed
descriptions yet.

• An embedded system that is the implementation of some con-
trol law benefits a lot from the possibility of describing the
physicalenvironmentas a component that lives in parallel of
its controller.

Despite these causes of heterogeneity, the system-level design of
embedded systems requires that we be able to reason precisely on
timing, atomicityandconcurrency.

1.2 Programming vs Architecture-Description Languages

Some people also present as a cause of heterogeneity the fact
that severalstylesare used to describe embedded systems, ranging
from pure imperative languages or explicit automata (Statecharts,
Stateflow in Simulink, UML activity diagrams) to pure dataflow
(Simulink1, Lustre/SCADE [15], Signal [21]), with notable combi-
nations like mode-automata [23] or the joint use of Simulink and
Stateflow. In this paper, we would like to concentrate on seman-
tical notions, not on the multi-paradigm programming problems.
We will give a definition of a component that is independent of
the programming language. By programming languagewe mean
the language that is used to describe the detailed behavior of the
individual components. In a component-based framework, there is
usually anarchitecture description language, which has little to do
with the programming language. It often has a dataflow style.

1 Simulink and Stateflow are trademarks of The MathWorks

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 1 2007/4/20

1.3 Ptolemy

Since 42 is inspired by Ptolemy [11], we recall here the main char-
acteristics of this component framework. Components are actors in
the sense of [19]; it is possible to form a new actor by putting a set
of actors together, with connections between them, and a localdi-
rector that defines how they behave together and what the connec-
tions mean. The director is the implementation of a so-calledModel
of Computation and Communication(MoCC). Heterogeneous de-
signs are obtained by using distinct directors, depending on the po-
sition in the hierarchy of components. The available MoCCs are
formalized independently of each other.

In Ptolemy, the notion of MoCC is somewhat extreme: given a
picture made of boxes and arrows, it is possible to consider it, ei-
ther as a dataflow diagram (with subdivisions of this MoCC into:
synchronous dataflow, synchronous reactive, etc.), or as an automa-
ton (the FSM domain), just by changing MoCCs. This means that
even the interpretation of the architecture-description (ADL) part is
left to the MoCC: the ADL, used to group components at a given
level of the hierarchy, may be dataflow (in which case the compo-
nents are implicitly in parallel), or given as an explicit automaton
(in which case the components execute sequentially), or anything
else that could be expressed in a new MoCC.

Another important aspect of Ptolemy is to allow the combina-
tion of discrete and continuous models in the same system descrip-
tion, which is really useful for embedded systems that may include
digital and analog parts.

1.4 Component-Based Virtual Prototyping with the
Synchronous Technology

42 is also inspired a lot by more than 10 years of experiments on us-
ing a dataflow synchronous language (Lustre [15] or Signal [21]) as
a very expressive component-based executable modeling language.

The dataflow style makes it very natural to use the language
as an architecture description language, and it is also a program-
ming language for individual components. Lustre is used to spec-
ify safety properties (for automatic testing or model-checking) by
means of so-calledobservers[16]. A notion of logical-timecon-
tract for a synchronous component has been proposed [22], using
the same notion of observer. The Lustre toolbox offers verification
tools that can be used to answer the classical questions about com-
ponents: is a component detailed description a correct implementa-
tion of a contract?, does an assemblage of components make sense,
based on the combination of their contracts?, etc.

The synchronous approach is adequate for modeling software
and hardware. Since the work by Milner [26] in the early eighties,
we also know that synchronous formalisms can be used to model
asynchronous parallelism. In fact, the synchronous paradigm may
be used to model all kinds of intermediate behaviors, between pure
synchrony and pure asynchrony [12, 17].

The main idea is as follows: for modeling purposes, all the com-
ponents are equipped with so-calledactivation conditionsand they
do nothing when this condition is false. These components are all
composed in a synchronous way, the activations conditions being
global additional inputs. If there is no constraint at all on these ad-
ditional inputs, the synchronous composition adequately describes
the pure asynchrony between the components. If the activations
conditions are equal, the same composition describes pure syn-
chrony. More complex conditions correspond to intermediate cases.
In order to give executable models, such a modeling principle re-
quires that components be equipped with activation conditions, and
that the context in which they evolve be described as additional
code thatgeneratesthe activation conditions. This additional code
is usually non-deterministic (which, again, has to be encoded into
the deterministic synchronous formalisms by adding inputs).

1.5 Motivations for 42

For the moment we have managed to describe a wide variety of sys-
tems by encoding everything into a synchronous formalism, but the
encoding may be heavy. There are at least three reasons for defin-
ing 42 (for the name, see [2]). First, it would save time if we could
express the main principles used for system-level descriptions as
abstract primitives, in some formalism that would then be automat-
ically translated into a synchronous framework; this would remove
the burden of detailing again and again the same kind of encod-
ings. Second, a definition of heterogeneous component modeling at
a higher level of abstraction than the synchronous encoding is be-
coming necessary to identify clearly the minimal set of notions that
are really needed. Finally, the modeling principles we have used so
far require a good knowledge of synchronous formalisms in order
to be understood precisely; defining 42 should be a way of explain-
ing these ideas in a more general setting.

1.6 Contributions and structure of the paper

42 is meant to be used as an abstract (but stillexecutable) descrip-
tion level for describing the concurrent and timed behavior of het-
erogeneous embedded systems components. It concentrates on a
precise modeling of time and concurrency for functional “system-
level” descriptions of embedded systems, where the main and more
serious errors appear. It is dedicated todiscretesystems, and offers
a support for the types of heterogeneity we have encountered in a
large number of cases-studies.

The 42 formalism is intended to be implemented into an existing
language like Lustre for simulation, automatic testing and property
validation purposes. In a longer term perspective, we will consider
the use of 42 as the new entry point for the model-driven imple-
mentation chain already developed around Lustre.

The paper is structured as follows: in Section 2 we define 42
informally; Section 3 shows how some known MoCCs can be
described in 42; Section 4 defines some classical problems of
component-based framework, in the context of 42; Section 5 is the
semantics; Section 6 lists some related work, and summarizes the
main choices that we made for 42; Section 7 is the conclusion.

2. Definition of 42
2.1 Components

Figure 1 shows a 42 component. A component is a black-box that
has input and output data ports, and input and output control ports.
The input control ports are used to ask it to perform one finite-
execution computationstep. Since there may be several input con-
trol ports, there may be severalentry-pointsthat toggle a step. A
step corresponds to a terminating (non-necessarily deterministic)
piece of code. A component has some internal memory. The input
and output data ports are used to communicate data between the
components. The output control ports will be used by the compo-
nents to send information to the controller (see below).

Figure 2 is an example code for such a component. For each
control input, the component executes a program that corresponds
to its computation step. It should terminate in finite time. The mem-
ory m is initialized when the component is instantiated somewhere,
is persistent across the successive activations of the component, and
is common to the various activations. A component does not nec-
essarily use all its data inputs for a given activation, and does not
necessarily produce all the control and data outputs (see the speci-
fication part in section 2.3.1 below).

2.2 Connections and the Architecture Description language

Components are connected by directedwires. An input data port
can be connected to an output data port of the same type (we will
assume this is always true in the sequel). The control ports are

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 2 2007/4/20

atomic
step

internal memory

id3
id2
id1

od3
od2
od1

ic1 ic2

oc1 oc2 Output
Control Ports

Data Ports
Input

Data Ports
Output

Control Ports
Input

Figure 1. A 42 Component

Component C (
control input ic1, ic2 : bool;
data input id1, id2, id3 :int;
data output od1, od2 ,od3 :int;
control output oc1, oc2: bool) {

var m : some_type = some_init_value ;
for ic1 do : {

int cpt = 0 ; if (id1 < 0) id1 = -id1 ;
while m >= 0 { m = m - id1 ; cpt ++ ; }
od1 = cpt ; oc1 = (m == 0) ; m = m+cpt ;

}
for ic2 do : { if (m ...) { ... } }

}

Figure 2. Example code for a component

connected to thecontroller, not directly to each other. A wire does
not mean a priori any synchronization, nor memorization.

A systemis made of components connected by wires (thearchi-
tecture) plus acontroller that activates the components and decides
what happens on the wires. The model is hierarchic: an architecture
plus a controller form a newcomponent. It exposes new input and
output control ports, and new input and output data ports.

Figure 3 is an example connection. The componentsA, B,
C, D are connected with the wires nameda, b, c, d, e, f.
Some of the data input and output ports of the subcomponents are
connected to the input and output ports of the assemblage. All the
components have input and output control ports (vertical arrows)
implicitly connected to acontroller.

2.3 The Controller

Once the components have been connected, we need to specify how
they behave together. The controller is in charge oftranslatingan
activation request on one control input port of the encapsulated sys-
tem (e.g.,xx, also referred to as amacro-stepin the sequel), into a
sequence of activations of the subcomponents and data exchanges
between them (also calledmicro-steps). To achieve this, the con-
troller may use some temporary variables explicitly associated with
the wires (because, if there is no connection between a portp1 on
a componentA, and a portp2 on a componentB, the controller
may not transmit directly the data produced onA.p1 to B.p2). The
memory associated with the wires serves only as temporary storage,
to build a macro-step, because not all MoCCs describe situations in
which the values produced by a component are immediately con-
sumed by another one. Hence the lifetime of the wires’ memory
is limited to the macro-step. If there is a need for storing informa-
tion between two macro-steps, then there should be a component
behaving as a memory.

Figure 4 is an example code for the controller, in some simple
imperative style. The choice of the temporary memory associated
with the wires, and a piece of code for each global control input
port likexx, constitute a particular MoCC.

u

v

w

o1

i1

y

p

xx

z k

yy

Controller

a

c

b

f
d

e
input data port
output data port

Comp

Comp

Comp
C

Comp
D

B

A

Control

Figure 3. Connecting Components, an Example

Controller is
var m : bool = true ;
for xx do : {

m_a, m_b, m_c: FIFO(1,int); m_d, m_e, m_f: FIFO(4,int);
if (m) {

m_a.put ; // reads i1
m_a.get ; D.z ; m_f.put ; m_f.get ;
A.u; m_b.put; m_d.put; m_b.get; B.v; m = m or p ;
m_c.put ; m_c.get ; // defines o1
m_d.get ; C.w ; m_e.put ; C.y ; m_e.put ;
m_e.get ; D.k ; m_e.get ; D.k ; m = ! m ;

} else { ... }
yy = true ;

}

Figure 4. Example controller code

The controller associates a bounded FIFO with each wire. On
Fig. 3,a, b, c are associated with the one-placeint FIFOsm a,
m b, m c, while the wiresd, e, f are associated with the 4-
placesint FIFOsm d, m e, m f. A FIFOM offers three methods:
M.get (resp.M.put) gets a value inM (resp. the producer port
connected to the wire) and puts it into the consumer port connected
to the wire (resp.M); M.init initializesM to an empty FIFO. It is
the responsibility of the controller to avoid writing in a FIFO when
it is full, or reading from an empty FIFO.

The programs of the controller may activate the individual com-
ponents, through their control input ports (e.g.,A.u, B.v). They
may copy the data outputs of the components into the wires, or
copy the wires into the data inputs. The program of the controller
may also copy the control outputs of the individual components,
into some memory local to the controller (m), and whose life span
may exceed the reaction toxx (inter-macro-step memorization).

On the example code, the controller executesD.z without pro-
viding an input on the wirem e. This is because a component does
not necessarily need all of its inputs (resp. produce all of its out-
puts) at all times (see below).m e receives 2 values before they are
consumed byD.

2.3.1 Specifying Components: Control Contracts

The example has shown that there is some need for a precise
specification of the components, in particular for declaring which
of the inputs are needed for each control input, and which of the
data and control outputs are produced.

In 42, we adopt the notion ofprotocol widely used in object-
oriented designs (see, for instance [33]). When specifying a class
in an object-oriented framework, a protocol can be used to specify
that methodm1 should always be called before methodm2, unless
methodm3 has been called at least twice. The idea in 42 is similar:

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 3 2007/4/20

protocols will be used to specify complex sequential constraints
between the control inputs and outputs by a finite state machine.
It can be viewed as acontrol contractfor a component, because it
expresses how the component should be activated, but tells noth-
ing on the values that it may accept or deliver. A 42 protocol is
also very similar to the notion ofconditional dependencythat can
be expressed between inputs and outputs in Signal; control ports
correspond toclocks.

(id2) ic2/oc2
(od2,od3)(id1) ic1/

α:=oc1 (od1)

(id2,if ¬α then id3) ic3/oc2
(od2,od3)

() ic2 ()

Figure 5. Example protocol for the component of Figure 1

Figure 5 shows an example protocol for the component C of
Figures 1 and 2. It is an automaton with an initial state (pointed to
by the little arrow) and several final states (denoted by a triangle).
Each transition has a label of the form:
(data req) control input / control outputs (data prod).
The(data req) part is a list of data input names, or conditional
expressions, depending on the values emitted by the component
previously, on its output control ports. This automaton expresses
that a correct use of C by a controller is such that, within a macro-
step executed by the controller, C is activated first with its control
input ic1, which requires the inputid1, and produces the control
outputoc1 (α:=oc1 means the value of the output at that point
is stored for further references) and the data outputod1. Then
it should be activated throughic2, which requires and produces
nothing. Then it should be activated withic3, oric2. ic3 requires
id2 and, if oc1 was false when it was produced as a result of the
first activation, it also requiresid3; it producesoc2, od2, od3.
ic2 requiresid2 only, and also producesoc2, od2, od3.

Any use of C by a controller that does not activate C in the
correct order, or stops before the protocol of C has reached a final
state, is an incorrect use of C. The controllers should be able to store
the control outputs produced by components during one activation,
in order to know what inputs to provide, and how to activate them
later.

3. Some Known MoCCs Expressed in 42
3.1 Mono-Clock Synchronous Circuits or Programs

In a pure synchronous model of computation (for describing syn-
chronous circuits for instance), the controller should be able to ex-
press the fact that, at each instant of a global clock, all the com-
ponents of the circuit take their inputs, and compute their outputs.
It may take some physical time to stabilize, but for non-cyclic cir-
cuits, it does stabilize.

Example Figures 6, 7 and 8 illustrate the componentization of a
Lustre program. We chose Lustre because its graphical form (as
used in the commercial tool SCADE) is very close to the diagram-
matic view used in synchronous hardware design. The program
of Fig. 6 is made of two instances of a basic integratorIntegr.
“o = i -> pre(o) + i” means: the outputo is equal to the in-
put i at the first instant, and then, forever, it is equal toi plus
its previous valuepre(o). The two copies are connected in the
nodeDoubleIntegr, with another addition operator. Figure 7 is a
flat and graphical view of the nodeDoubleIntegr, where the two
copies ofIntegr have been expanded.

Individual Components Figure 8 is the component view of the
program, at the level ofDoubleIntegr: the details of the two

node DoubleIntegr (i: i n t) r e t u r n s (o: i n t) ;
var x, y : i n t ;
l e t x = Integr (i + (0->pre y)) ;

y = Integr (x) ; o = y ;
t e l .
node Integr (i : i n t) r e t u r n s (o : i n t) ;
l e t o = i -> pre(o) + i ; t e l .

Figure 6. An Example Synchronous Program (in textual Lustre)

+

pre

i
o yx o

pre

0

+i +

pre

i
o

Figure 7. The same program in a graphical form

pre

0

+i

integr1

integr2

y

geto

geto

getogeto

controller

z

t

go

ox
geto

getogo

go

go

go go
u

w

v
D

Figure 8. A component view
controller is { var u, v, w, x, y, z, t : FIFO(1,int)

procedure stabilize is {
pre.geto ; z.put ;
z.get ; u.put // reads i
u.get ; plus.geto ; t.put ;
t.get ; integr2.geto ; x.put ;
x.get ; integr1.geto ; y.put ;
y.get ; D.geto ; v.put ; w.put ;
v.get ; } // defines o

for geto do: {stabilize ;}
for go do: {

stabilize ;
pre.go ;
integr1.go ;
D.go ;
integr2.go ;
plus.go ; }}

Figure 9. The programs of the controller

(id) geto (od)

(a) (b)
() geto (od)

(id) go ()(id) go ()

Figure 10. Protocols of the components

Component Pre (control input geto,go : bool;
data input id:int; data output od:int) {

var m : int = 0 ;
for geto do : { od = m ;} for go do : { m = id ; } }

Figure 11. Code of the PRE Component

//Component C is the main program. data input i, output o
initializations ;
while true {

i.put (read()) ; // reads input into the i wire
C.geto; write(o.get) ; // writes the value produced
C.go; }

Figure 12. Code of the main program
42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 4 2007/4/20

copies ofIntegr are hidden, they are considered as basic com-
ponents as+, pre (a flip-flop, or elementary memory point) or the
duplicatorD.

In order to obtain the normal behavior of a Lustre program (or a
synchronous circuit) with such a component view, the components
should be designed in such a way that they offer two control inputs
geto andgo. When asked withgeto, the component delivers its
outputs, depending on the internal memory and its data inputs,
but without changing internal states;go asks it to change internal
states. In this simple case, there is no need for control outputs.
The combinational components (the +, and the duplicator) have an
emptygo function.

The two Integr components could be further described as
composite components, in terms ofpre and plus. As an example,
Figure 11 is the code of thepre component (for integers).

The controller Assembling the two copies ofIntegr, a pre
operator, a plus operator and a duplicator gives a new component,
which itself has two control inputsgeto and go. The controller
associates one-place buffers with all wires. The “programs” it plays
when the globalgeto or go control inputs are activated are given
in Figure 9, in some imperative style.

When the global component is activated withgeto, the inputi
is supposed to be available. The controller asks each subcomponent
to produce its outputs, according to the values that are available
on its input wires. This is done in an order compatible with the
partial order of data dependencies. The only component that can
start is thepre component, because its output does not depend on
its input. Then the plus can play, thenIntegr2, thenIntegr1, then
the duplicatorD. At the end of this sequence, all the wires have a
value, the circuit has stabilized. Respecting the data dependencies
means that eachx.get is preceded by ax.put.

When the global component is activated withgo, the inputi is
supposed to be available. The controller asks each subcomponent to
change states according to its input. Notice thatgo should perform
the stabilization first, for thepre component, and the memories
hidden in the twoIntegr components, to have the correct inputs.
Thego activations of all the subcomponents are called, in any order.

These two programs are very similar to the code generated by
the Lustre or SCADE compilers (except that: copying the values
on the wires is not efficient and can be avoided in most cases;
the stabilization phase is not performed twice). The component
view of a Lustre program requires that there is indeed a possible
computation order, meaning that each cycle in the data dependency
graph is cut by apre component, at each level of abstraction. On
the contrary, if the sub-components are expanded (see Figure 7), it
is sufficient to have all the cycles broken somewhere, but it could
be inside the subcomponents.

The Protocols In the simple case described above, the protocols
for the components are those of Figure 10.(a) describes the pro-
tocol of any component in which the output may depend on the
input; (b) is the protocol of thepre component:od can be obtained
without input.

Partial Computation of the Outputs In general, components have
more than one input and one output. There are two choices: either
we consider that all the outputs depend on all the inputs, and in this
case we can apply the previous scheme. Or we can accept more
complex designs, in which the outputs do not necessarily depend
on all the inputs. In this case, each component has to specify the
dependency between its outputs and its inputs, and each component
has to be equipped with ago activation, and onegeto activation per
data output. The control contracts we presented in section 2.3.1 are
perfectly adequate to express the dependency between the inputs
and outputs. A transition(id1) geto1 / ... (o1,...) in such

a protocol means that only the data inputid1 is required for the
component to be activated withgeto1, and it produceso1.

The controller can then ask the components to produce specific
outputs, not all at a time, and interleave the computations of the
outputs of the subcomponents.

Comments This example shows that the expressive power of the
controllers in 42 is sufficient to express pure synchrony, which
hides a fix-point computation (the stabilization phase). It is easy to
componentize Lustre or a diagrammatic description of synchronous
circuits, and the model is exactly the same at all levels of abstrac-
tion. The code produced for a main program corresponding to a
component C is given Figure 12. The protocols of the subcompo-
nents, plus the architecture that gives the data dependencies, are
sufficient to generate the controller: we only need to find a partial
order for the computation of the outputs in thegeto function.

The simple example extends to conditional dependencies be-
tween outputs and inputs, as shown above, and also to multi-cycle
synchronous programs (in which a subprogram should be run at
speed s1, and another at speed s2 much slower than s1). The prin-
ciple of the component view can be used for separate compilation
of Lustre/SCADE programs, with some optimizations in memory
management.

3.2 Asynchronous Processes with Shared Memory

Example The example of Figure 13 shows how to model asyn-
chronous systems in 42. We consider two processesP1 and P2

(there could ben) running on the same processor, and access-
ing a shared memory. We model the two processesP1, P2 and
the memoryM as components, and we encapsulate them with a
controller that mimics the behavior of a non-preemptive and non-
deterministic scheduler. The controller also takes care of the syn-
chronous communication between the processor and the memory.

Each process may read (resp. write) something in memory (con-
nections namedrd1 andrd2, resp.wd1, wd2). This needs an ad-
dress (connectionsaddr1, addr2). The two processes are con-
nected to the same ports of the memory, which impliesMux compo-
nents. Similarly, the output port of the memory is connected to the
two input ports of the processes, which needs aDec component.

Individual components A process component can be made with
any imperative code, encapsulated in such a way that it exports the
data ports for the communication with the memory, and five control
ports:getwish asks the process whether its next move will be a
memory access (write or read) or an internal move, and whether it
will yield at the end of this operation; the process answers with
Wsh and yield; getAddr asks the process to emit a memory
address on its address data port;op asks the process to execute
one of its atomic operations. To model preemptive schedulers, the
code of the process should yield after each piece of code which
is guaranteed to be atomic (non interruptible) by the hardware, or
by languages features like thesynchronized keyword in Java. To
model SystemC, whose scheduler is non-preemptive, the code of
the processes shouldyield exactly when the SystemC code yields.

The memory has two input data ports (address and value to
write) and an output data port (value read). It has two control inputs
(read and write) and no control outputs.

The Mux anddec components are used to route data, they are
controlled by control inputsm1, m2, d1, d2 to choose the route.

The controller The controller acts as a scheduler (see Figure 16).
It selects a process randomly, then asks the process to perform
operations until it yields. To activate a process, the controller first
asks it whether it is about to perform an internal move, or a read,
or a write. Depending on the answerWsh, it asks the process to
perform a single operation, or it starts a synchronization of the
process with the memory. For a read operation, the process has to

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 5 2007/4/20

��

��
��

��

�	

� �
� �
� �
� �

� �� �

� �
� �
� �
� �

opg

wd

addr

rd

rd2

rd1
wd1

wd2

addr2

P2

P1
m1 m2

Mux2

Mux1

m1 m2

controller

dec

d1 d2

Memory

wr

getwish
op

getwishop
Wshyield

Wshyield

getAddr

addr1

getAddr

Figure 13. Asynchronous system

0

2
3

1
(α=”I” and ¬β)

op ()

(α!=”I”) getAddr (addr)

(α=”I” and β) op ()
(¬β and (IFα=”R” THEN rd))
op (IFα=”W” THEN wd)

() getwish /α:=Wsh;β := yield ()

op (IFα=”W” THEN wd)(β and (IFα=”R” THEN rd))

Figure 14. Protocols of the processes

01

(addr) r (rd)

(addr,wd) w ()

01 01

(addr2) m2 (addr)(rd) d2 (rd2)

(addr1) m1 (addr)(rd) d1 (rd1)

Figure 15. Protocols of the memory, Dec and Mux components

Controller is
var alpha in {"R","W","I"} ; beta : boolean ;
f o r opg do : {

addr1 ,addr2 ,addr ,rd1 ,rd2 ,rd,wd1 ,wd2 ,wd: FIFO(1,int)
P:= random(P1,P2) ;
do{ P.getwish ; alpha :=P.Wsh ; beta:=P.yield ;

i f (alpha="I"){ P.op ;}
i f (alpha !="I"){

P.getAddr ;
i f (P=P1) { addr1.put ; addr1.get ; Mux2.m1 ; }
i f (P=P2) { addr2.put ; addr2.get ; Mux2.m2 ; }
addr.put ; addr.get ;

i f (alpha =="R"){ M.r ; rd.put ; rd.get ;
i f (P=P1) { dec.d1 ; rd1.put ; rd1.get ; }
i f (P=P2) { dec.d2 ; rd2.put ; rd2.get ; }
P.op ; }

i f (alpha =="W"){P.op ;
i f (P=P1) { wd1.put ; wd1.get ; Mux1.m1 ; }
i f (P=P2) { wd2.put ; wd2.get ; Mux1.m2 ; }

wd.put ; wd.get ; M.w ; }
}}
wh i l e (not beta)}}

Figure 16. controller code

provide an address first (the controller asks this withgetAddr) then
the memory can be triggered, then the operation of the process. For
a write operation, the process also has to provide an address, then
it can be triggered (this produces a data to be written) and then the
memory can be triggered.
The protocols Figures 14 and 15 gives the protocols of the pro-
cesses, the memory, and theMux andDec components. The proto-
col of a process describes the dialogue that takes place between the
process and the memory before actually exchanging a value.
Comments The controller we gave is consistent with the proto-
cols of the components, but, contrary to the example of section 3.1,
the architecture and those protocols are not sufficient to produce
the controller. We would need additional constraints related to the
master/slave relationships between the processes and the memory.
Indeed, if one of the processes declares that it wants to write (or
read), then the memory should be activated with the corresponding
control input during the same macro-step.

The structure of the composed component does not reproduce
the structure of the sub-components. The modeling is not incre-
mental: if they are more processes to be scheduled, they should be
put in the same box. But the composed component could be reused
with another scheduler, describing a hierarchy of schedulers.

This 42 modeling of asynchronous behaviors with shared mem-
ory can be used to study the behavior of algorithms used in asyn-
chronous parallel programming, like the Peterson algorithm for
mutual-exclusion. The code of the controller can be used to pro-
duce all the possible interleavings of the two process behaviors,
together with their effect on the memory, as a Promela/Spin [20]
model would do.

4. Compatibility Issues
The code of a component should becompatiblewith its protocol:
for instance, if the protocols declares that only inputid is required,
the component should not make use of the other inputs. Checking
this property statically, in the general case, is a model-checking
problem. It can be checked dynamically if the protocol is used to
generate defensive code in the component (as it is done with Eiffel
or Java contracts for instance).

On the other hand, if we consider that the controller is writ-
ten independently of the protocols, then it should becompatible
with the protocols. For instance, in the asynchronous case, if the
controller triggers a process withop before having asked what it
is about to do (and possibly which address it is about to use), the
macro-step is incorrect. It can also be incorrect if the controller does
not provide the components with the data inputs they require. For
instance, triggering the memory (with read or write) before setting
a value for the address is incorrect.

The controller/protocol compatibility property can be checked
dynamically, considering the protocols asmonitorsthat run “in par-
allel”: at each macro-step, the controller starts the protocols of the
subcomponents in their initial states, and makes them evolve ac-
cording to the control inputs it chooses. If, at the end of the macro-
step, some of the component protocols have not reached their fi-
nal states, this macro-step is incorrect. Similarly, if the controller is
about to make a move that is not consistent with the current states of
the protocol components (for the availability of data for instance),
then the macro-step is incorrect. Again, a static check of the same
property is a general model-checking problem.

5. Semantics
In this section, we formalize the components, the architectures and
the controllers. Formalizing the protocols and the compatibility
notions of section 4, or the way controllers can be generated from
protocols, is outside the scope of this paper. The semantics does
not express any error detection mechanism. The micro-steps and

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 6 2007/4/20

the macro-steps are supposed to terminate in bounded time; we
assume that the controller is compatible with the protocols of the
components. As a consequence, it never reads in an empty FIFO,
nor write in a full one. We express the fact that a component
does not always need all its inputs, nor produce all its outputs, by
consideringpartial valuationsof the inputs and outputs. See below.

5.1 Individual Components and Architectures

An individual component has aninterface: the sets of input and
output data signals, the sets of input and output control signals.
The signals take their values in some domain that can contain
Boolean values, numerical values, etc. A component has an internal
“state”, belonging to a finite setΣ. The most general definition of
the behavior of a component is a set of relations corresponding to
its possible activations through its control inputs. For each control
input, the component behavior (which may be non-deterministic)
is given as a relation that relates values for some of the data inputs,
the current state, values for some of the control and data outputs,
and a new state. Let us noteD the union of all data types. The
partial valuations of the interface signals are represented by partial
functions toD. We notedom(f) the domain of such a partial
function.

Definition 1 : Components
A component is a tuple:C = (Σ, Σinit , IC, OC, ID, OD,B)

whereΣ is the set of internal states,Σinit ⊆ Σ is the set of initial
states, (one initial value is chosen when the component is instanti-
ated) andIC, OC, ID, OD are the sets of names for the control
inputs, control outputs, data inputs, data outputs, respectively.B is
the behavior of the component, it is a total functionB : IC −→ R
whereR ∈ R is a relation:R ⊆ (Σ × (ID −→ D) × (OD −→
D)× (OC −→ D)× Σ). �

Definition 2 : Architectures
Let us consider a set of components:
{Ci = (Σi, Σ

init
i , IDi, ODi, ICi, OCi,Bi)}I . An architecture

for combining them is a tuple(IDg, ODg, ICg, OCg, L) where
the first two fields describe the data ports of the assemblage, the
two successive fields describe the control ports of the assemblage,
and L is the set of directed links between the data ports of the
components, or between the data ports of the assemblage and the
internal ones:L ⊆ (

S
I ODi)× (

S
I IDi) ∪ IDg × (

S
I IDi) ∪

(
S

I ODi)×ODg. The input and output control ports are implicitly
linked to the controller. �

5.2 Controllers

Let us consider a set of components{Ci =

(Σi, Σ
init
i , ICi, OCi, IDi, ODi,Bi)}I , and an architecture

A = (ICg, OCg, IDg, ODg, L), defining a new componentC.
The controller has some internal memory in the setΣC that can

be used across the various activations ofC (on the examples of
section 3, this corresponds to a control point in the program, and to
the controller variables which are not attached to the links). It also
has some internal memory associated with the wiresΣL : L −→
M that is reinitialized for each new activation.M is the union of
the FIFO types.

The controller associates with each global control input icg∈
ICg a program that activates the subcomponents through their
control inputs, stores their data outputs intoΣL, and gives them
data inputs taken inΣL. These programs may be non-deterministic,
and they have a final state. The controller may store the control
outputs in its stateΣC , and all its actions depend onΣC .

Definition 3 : controller
A controller for an architecture A =
(ICg, OCg, IDg, ODg, L) and a set of components

{Ci = (Σi, Σ
init
i , ICi, OCi, IDi, ODi, Bi)}I is a tuple

(ΣC , Σinit
C ⊆ ΣC , Σfinal

c ⊆ ΣC , ICg −→ Progs, S). A
program in Progs is a tuple(Tput, Tget, Tact, F) where
Tput ⊆ ΣC × L × ΣC (resp.Tget ⊆ ΣC × L × ΣC) is the set
of all possible “put” actions (resp. “get” actions) of the controller,
from a state, on a link̀ ∈ L; Tact ⊆ ΣC ×

S
I ICi × ΣC is

the set of all component activations the controller may execute,
from a state.F ⊆ Σfinal

c × (OCg −→ D) associates final states
of the controller with partial valuations for the control outputs.
S ⊆ ΣC × (

S
I OCi −→ D) × ΣC defines how the controller

stores partial valuations of control outputs of the components into
its state. �

5.3 Combining Components

Combining components means considering a finite sequence of
subcomponents activations and memory storage on the internal
links (micro-steps), as amacro-stepcorresponding to a global acti-
vation. In order to describe how this is done, we will first describe
the micro-steps and how they can be combined into sequences.
Then we will define which of these micro-step sequences are the
macro-steps of the new component.

In all the section below, we consider a controller(ΣC , Σinit
C ⊆

ΣC , Σfinal
c ⊆ ΣC , ICg −→ Progs) for an architectureA =

(ICg, OCg, IDg, ODg, L) and a set of components{Ci =

(Σi, Σ
init
i , ICi, OCi, IDi, ODi,Bi)}I .

We also consider a particular control inputicg ∈ ICg, and its
associated program(Tput, Tget, Tact, F).

5.3.1 State of an assemblage

The state of an assemblage of components is made of: the state
of the controller (an element ofΣC), the states of the components
(ΣI =

Q
I Σi), the states of the links (ΣL : L −→ M , whereM

is the union of all FIFO types associated with the links), the states
of the data ports (ΣP : (

S
I IDi ∪

S
I ODi ∪

S
I OCi ∪ IDg ∪

ODg ∪ OCg −→ D). For sake of simplicity, we assume a unique
naming of all ports.

Notice that we need a state of the data ports to express the
fact that a component makes some of its outputs available (resp.
consumes some of its data inputs), but does not copy them onto
the links (resp. from the links). Theput and get operations of
the FIFOs associated with the links do the job (see section 2.3).
The methodput will be represented in the semantics by a function
put : M × D −→ M where the assigned value is explicit and
put(m, v) is the new value ofm after the actionm.put(v). The
methodget will be represented by a function get: M −→ D.

We will denote such a global state by a tuple(σC , σI , σP , σL).

5.3.2 Micro-steps

For a givenicg, the micro-steps that corresponds to what the con-
troller does with the components and the links are described by the
following three rules.

The rule [put] expresses that, if from its stateσC , the controller
may put a value on a link̀between portsP1 andP2, then the global
state evolves with a change inσC andσL only: the link` receives a
new value computed byput with the value of its producer portP1.

(σC , ` = (P1, P2), σ′
C) ∈ Tput

(σC , σI , σP , σL) −→
(σ′

C , σI , σP , σL[put(σL(l), σP (P1)) / `])

[put]

The rule [get] expresses that, if from its stateσC , the controller
may get the value of link̀ between portsP1 andP2, then the global
state evolves with a change inσC andσP only: the consumer port
P2 of link ` receives the value taken from the link.

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 7 2007/4/20

(σC , ` = (P1, P2), σ′
C) ∈ Tget

(σC , σI , σP , σL) −→ (σ′
C , σI , σP [get(σL(`))/P2], σL)

[get]

The rule [act] expresses that, if from its stateσC , the controller
may activate the componentγ through its control inputicγ , then the
first three fields of the global state evolve. The state of the controller
is modified because it stores the control outputs of the component
that is activated; the state of the component that is activated is
modified; the state of the ports is modified, because some of the
output ports of the activated components take new values.

(σC , icγ , σ′
C) ∈ Tact

∃od, oc, id, σ′
γ .(σγ , id, od, oc, σ′

γ) ∈ B(icγ)
andid = σP (dom(id))

(σC , σI , σP , σL) −→ (σ′′
C , σ′

I , σ′
P , σL)

[act]

dom(id) is the set of inputs whose value is required by the com-
ponentγ, to take the transition(σγ , id, od, oc, σ′

γ). σP (dom(id))
is the valuation of these inputs, taken in the global state of ports
σP . If the values of these inputs inid are exactly those avail-
able in σP , then the transition can be taken.σ′′

C is the modifi-
cation of σ′

C by storing the values ofoc: (σ′
c, oc, σ

′′
C) ∈ S. If

σI = (σ1, σ2, ...σγ , ..., σn) thenσ′
I = (σ1, σ2, ...σ

′
γ , ..., σn). The

outputs ports are modified:σ′
P = σP [od/dom(od)][oc/dom(oc)],

wheredom(oc) and dom(od) are the sets of control outputs and
data outputs produced by the component during its transition.

5.3.3 Macro-steps

The global component is of the form
(Σg, Σinit

g , ICg, OCg, IDg, ODg,Bg). Σg = ΣC × ΣI ,
because the state of the links and the state of the ports are not
persistent across global activations.Σinit

g = Σinit
C ×

Q
I Σinit

I .
The behaviorBg(icg) of the composed component for the par-

ticular control inputicg we’ve been considering so far is a relation
R ⊆ Σg× (IDg −→ D)× (ODg −→ D)× (OCg −→ D)×Σg.

The rule [mac] shows that the tuples of this relationR are
deduced from the sequences of micro-steps that end in a final state
of the controller. A macro-step only “remembers” the initial state
and the final state of this sequence, the valuations of the data inputs
and outputs are deduced from the state of the global ports, and the
valuation of the control outputs is given by the values associated
with the final state of the sequence.

The states of the ports and links are not persistent across the
activations of the composed component. It means that each macro-
step starts with the initial value of the links∀l ∈ L.σ0

L(l) = m
wherem is the new value ofm afterm.init (see section 2.3). For
the ports, the initial state is irrelevant because, if the controller is
compatible with the components’ protocols, then a port is never
read before being written to:∀p.σ0

P (p) =??.

(σ0
C , σ0

I , σ0
P , σ0

L) −→ (σ1
C , σ1

I , σ1
P , σ1

L) −→ ...
−→ (σn

C , σn
I , σn

P , σn
L)

andσn
C ∈ Σfinal

c and(σn
C , ocg) ∈ F

((σ0
C , σ0

I), σ0
P (IDg), σ0

P (ODg), ocg, (σn
C , σn

I))
∈ B(icg)

[mac]

6. Related Work and Main Choices for 42
A lot of approaches have been proposed for heterogeneous mod-
eling frameworks based on the notion of model of computation
and communication. For instance, [31] claims that various MoCCs
are needed for the various modeling and design phases; the way
MoCCs interact is not formalized. [18] is very close to the motiva-
tions of 42, offering a kind of programming language in which the
MoCCs can be described and executed; it is quite recent and not

entirely formalized yet; for the moment it seems less adequate than
42 for describing fine grain temporal behaviors.

Other proposals, like the reactive modules [5], do not introduce
MoCCs as a solution to the problem of modeling heterogeneity,
but address almost the same questions, and are entirely formalized.
However, reactive modules are alanguagein which a number of
choices are built-in, while 42 is a general modeling framework in
which new MoCCs can be described.

As far as the formalization of the various MoCCs and their
interactions is concerned, the most relevant work is the family
of TAG semantics, denotational or operational as in [7]. In some
sense, 42 is an intermediate point of view, between the way MoCCs
are programmed but not fully formalized in Ptolemy, and the way
they are formalized but far from programming purposes in the TAG
semantics.

A lot of other works can be considered as related work, and it
would be very difficult to be exhaustive. As a complement to the
above references, we discuss the main choices that have been made
for the design of 42, and we compare them to the choices made in
other component frameworks.

Continuous vs discrete models42 is limited to the discrete case.
When we need to include the physical environment in a model,
we can consider components that are non-deterministic discretized
versions of some continuous models, but we do not study how to
mix continuous and discrete MoCCs. Ptolemy addresses this prob-
lem. Other proposals, like VHDL-AMS (IEEE norm 1076-1999)
concern the modeling of mixed digital-analog systems, but they do
not address the component aspects. Similarly, Matlab/Simulink de-
signs can mix continuous and discrete parts, but the notion of a
component is not dealt with specifically.

Strict Hierarchy A basic component, or a composed component
built as an assemblage of other components, are perfectly undis-
tinguishable in any 42 context. This is true also for Ptolemy, Frac-
tal [10], and to some extent SystemC-TLM [14] (used for the de-
scription of systems-on-a-chip at the so-called transactional level),
but not for other component models like BIP [6], in which there
is no dedicated notion of encapsulation that could hide the details
of an assemblage and allow to consider it as a basic component.
We consider this strict hierarchy property to be a key property of
component-based frameworks, because it allows to forget as much
as possible about the details of the components, as soon as possible.

Oriented connections vs non-oriented ones42 adopts a dataflow
style architecture description language, with oriented connections.
In Ptolemy, or the modeling tool Spice [1] for electronic circuits,
this is not necessarily the case, allowing the modeling of elec-
tric behaviors. Even for modeling computer behaviors, some mod-
els choose symmetric synchronization primitives like rendez-vous,
thus relying on non-oriented connections (see for instance the “Ar-
chitectural Interaction Diagrams”, or AIDs [28]). In 42, we con-
centrate on computer systems, and we claim that rendez-vous-like
mechanisms are not adequate for modeling reactive systems in
which the notion of inputs and outputs is a central one. Hence we
choose oriented wires.

What should a modeling framework encompass?We think that a
modeling framework for heterogeneous embedded systems should
be usable to describe pure synchrony, because this is what exists
in synchronous hardware components. It is a quite strong require-
ment, because it means that the definition of the MoCCs should
allow to describe the fix-point computation which is the basis of
any synchronous formalism (the stabilization phase illustrated in
section 3.1). A lot of component-based frameworks based on a set
of availableconnections(blocking, non-blocking, ...) between com-
ponents do not have this expressive power. See next point.

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 8 2007/4/20

Do connections express some behavior?In 42, the connections,
or wires, only express that some information may flow from one
component to another. There is no synchronization or memory
attached to the connections,a priori. The controller may decide
to manage some temporary memory corresponding to the wires
in order to describe complex communication patterns, but this
does not mean that the wire behaves as memory for the connected
components, since the lifetime of this memory is limited to the
macro-step. Moreover, the choice of the memory attached to the
wires is part of a particular MoCC, this is not built in the 42 general
modeling framework. [18] adopts the same point of view.

Some component frameworks rely on communication patterns
expressed directly by the connections, for instance point-to-point
connections with a finite (small) set of synchronization effects
made available, like: blocking write on one side, non-blocking
read on the other side; this is quite restrictive. The need for more
complex communications patterns usually leads to the following
solution: if a communication pattern has a complex behavior, it
is a component, not a connection. This is the case for SystemC-
TLM [14], where buses, or even networks-on-a-chip, are consid-
ered as components. In this case, the remaining connections be-
tween components (including the communication components) are
only links between ports, as in 42.

Architecture Description Languages and MoCCsIn 42, the ar-
chitecture description language has a dataflow style. Since the con-
nections have no meaning until the MoCC is defined as a controller,
this only means that we express data dependencies explicitly in the
ADL, and control aspects in the MoCC. As we mentioned in sec-
tion 1.3, Ptolemy is more liberal; Rialto [9] follows Ptolemy on this
point. For 42, we chose only one style of architecture description
language, because we want a simple formal semantics.

Atomicity 42 is built in such a way that the operation that en-
capsulates subcomponentsCi to build a new componentC also
defines what atomicity is, forC: starting from a notion of atomic-
ity as viewed by theCis (their various activations), the controller
defines the activations ofC by considering a sequence of actions
as atomic. The activations ofC can be viewed asmacro-steps, cor-
responding to a sequence ofmicro-steps. In other words, forgetting
details about the internals of a component also means consider-
ing its activations are atomic. It is compulsory to be able to reason
locally on a component, without caring about potential interrupts
from the context in which it will be used.

Time and Temporal granularity It may seem at first sight that
42 does not allow to deal with time. In fact, it adopts the principle
of synchronous languages calledmulti-form timefirst introduced
by G. Berry for Esterel [8]: physical time is nothing special but a
sequence of events (seconds, milliseconds, ...), and any sequence of
events (counting meters, or beacons on a track) can be considered
as a time scale for the reactive system that perceives these events.
Using timed automata [4] to deal with time in 42 would limit
drastically the manipulation of time-related notions. For instance,
in TAID (a timed extension of the AIDs already mentioned above),
it is impossible to model distributed systems, because the way time
is modeled implies a notion of global clock.

The multi-form time principles also allows to consider several
related time scales (seconds and milliseconds, ...).

Specifying components, and the notion of a contractProtocols
are used to specify components with a behavioral description [27].
Component protocols are usually expressed with some finite-state-
machine formalism. For instance, in [13], each transition is labeled
by a message suffixed by a symbol defining whether the message
is passed or received. Other approaches (see, for instance [32]) ex-
press multiple protocols for one component, each protocol being

related to a specific component interface. Protocols described as
behaviors are usually exploited to determine some properties over
a set of components such as compatibility, composability and sub-
stitutability [13].

42 has very expressivecontrol contracts, i.e., protocols that talk
only about the control inputs/outputs and theavailability of data,
not about thevaluesof the data exchanged. In Signal, the powerful
notion of constraint can mix control (clocks) and data values in
the same expression. It is also the case in Lustre, with a reduced
expressive power. The choice we made for 42 is to distinguish
between control and data (it is also the principle of the LAAS
architecture for intelligent robots [3]), because the control between
subcomponents, and the moments when data is available, have a lot
to do with the MoCC described, while the values of data have not.

Expressive Power of the Controller 42 is a very liberal frame-
work, since the MoCCs can be programmed. However, the expres-
sive power of the controller is limited by several points. The fact
that the memory associated to the wires is not persistent over global
activations means that any memory needed by the components to
synchronize with each other has to be described explicitly, as an
additional component, it cannot be “hidden” in the controller.

Conversely, the inter-macro-step memory in the controller
is needed because the way the controller activates the sub-
components is not necessarily memoryless. For instance, a fair
scheduler for asynchronous processes will remember the last
choice. Moreover, the controller sometimes needs some inter-
macro-step memory in order to make sure that the components’
protocols are met: for instance, if a component emits a control out-
puto meaning: next time I’ll be activated, I’ll need my inputi.

An interesting question (orthogonal to the previous remarks) is
whether we need parallelism in the controller. Since the controller
is there to express the semantics of parallelism and communication
between the components, it seems that this would just move the
problem to another level. In fact, formodelingpurposes, we con-
jecture that a non-deterministic controller that produces interleav-
ings of the components’ activities is enough. Forimplementation
purposes, it might not be the case.

7. Conclusion and Further Work
We have defined the general framework 42 for component-based
modeling of heterogeneous systems, and shown its use for syn-
chronous or asynchronous systems. For the moment 42 is tested
under the Java implementation of Fractal [10]. The components are
implemented in Java, respecting both the Fractal and 42 forms. We
require that each of the components implement interfaces specific
to the MoCC where it evolves, so that we can use generic con-
trollers, implemented in Java. When the controller can be generated
from the components’ protocols and the architecture, we can hide
the controller for the user.

We will study an implementation in Lustre to benefit from the
associated execution, testing and verification tools. For instance, a
description of both the protocols, and the controller, in a formally
defined language, could help in proving that the assemblage of
components is correct. Further work will be devoted to semantical
issues, to the definition of concrete languages for the controller, and
to the extension of 42 with non-functional aspects.

Concerningsemantical issues, we will compare our quite oper-
ational semantics with the family of TAG semantics, along the lines
of [7]. The idea is to relate the operational view of MoCCs imple-
mented by controllers, with the fully declarative view of MoCCs as
expressed in the TAG semantics. We will also study how to charac-
terize the expressive power of the controller and how to formalize
the notions of compatibility of section 4.

In order to use 42 as a high-level modeling framework, we need
to defineconcrete languagesfor the controller. For the examples we

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 9 2007/4/20

have used an imperative style with calls to arandom function when
needed, but we could think of a language based on constraints, to
avoid explicit calls torandom. Reusing the language Lutin [29]
that has been defined for the generation of test scenarios or the
simulation of non-deterministic systems, could be an idea. This
is related to the idea of generating the controller automatically
from the protocols and possibly additional constraints (like the
master/slave constraints of section 3.2).

Finally, in order to extend 42 with the modeling ofnon-
functionalaspects, we will study how to integrate into 42 the ideas
that we used for the modeling of energy consumption in sensor
networks [30, 24]: each component has a non-functional model (an
automaton with consumptions attached to the states) and the paral-
lel composition of two such models defines precisely what are the
consumptions attached to the combined states. In 42, the compo-
nents could have a functional and a non-functional parts, and the
controller could also have a functional part (as described in this pa-
per) and a non-functional part describing how the non-functional
models of the components are composed, depending on the MoCC.

References
[1] The spice page.

bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

[2] Douglas Adams.The Hitchhiker’s Guide to the Galaxy. 1979.

[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An
architecture for autonomy. International Journal of Robotics
Research, Special Issue on Integrated Architectures for Robot Control
and Programming, 17(4), 1998.

[4] R. Alur and D. Dill. A theory of timed automata.Theoretical
Computer Science, 126:183–235, 1994.

[5] Rajeev Alur and Thomas A. Henzinger. Reactive modules.Formal
Methods in System Design, 15(1):7–48, 1999.

[6] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling
heterogeneous real-time components in BIP. InSEFM, pages 3–
12. IEEE Computer Society, 2006.

[7] A. Benveniste, B. Caillaud, L. P. Carloni, and A. L. Sangiovanni-
Vincentelli. Tag machines. In Wayne Wolf, editor,EMSOFT 2005,
September 18-22, 2005, Jersey City, NJ, USA, 5th ACM International
Conference On Embedded Software, Proceedings, pages 255–263.
ACM, 2005.

[8] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation.Science Of Computer
Programming, 19(2):87–152, 1992.

[9] D. Björklund and J. Lilius. A language for multiple models of
computation. InProceedings of the Tenth International Symposium
on Hardware/Software Codesign (CODES-02), pages 25–30, New
York, May 6–8 2002. ACM Press.

[10] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The FRACTAL component model and its support in java.Softw,
Pract. Exper, 36(11-12):1257–1284, 2006.

[11] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogenous systems.Int.
Journal in Computer Simulation, 4(2):0, 1994.

[12] P. Caspi, C. Mazuet, and N. Reynaud Paligot. About the design of
distributed control systems: The quasi-synchronous approach. In
Udo Voges, editor,Computer Safety, Reliability and Security, 20th
International Conference, SAFECOMP 2001, Budapest, Hungary,
September 26-28, 2001, Proceedings, volume 2187 ofLNCS, pages
215–226. Springer, 2001.

[13] ”L. de Alfaro and T. A. Henzinger”. ”interface automata”.
In ”ESEC/FSE-9: Proceedings of the 8th European software
engineering conference”, pages 109–120, New York, NY, USA,
2001. ACM Press.

[14] F. Ghenassia.Transaction Level Modeling With SystemC: TLM

Concepts And Applications for Embedded Systems. Springer-Verlag,
2005.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language lustre.Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[16] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers
and the verification of reactive systems. In M. Nivat, C. Rattray,
T. Rus, and G. Scollo, editors,Third Int. Conf. on Algebraic
Methodology and Software Technology, AMAST’93, Twente, June
1993. Workshops in Computing, Springer Verlag.

[17] N. Halbwachs and L. Mandel. Simulation and verification of
asynchronous systems by means of a synchronous model. InSixth
International Conference on Application of Concurrency to System
Design, ACSD 2006, Turku, Finland, June 2006.

[18] C. Hardebolle, F. Boulanger, D. Marcadet, and G. Vidal-Naquet.
A generic execution framework for models of computation. In
International Workshop Series on Model-based Methodologies for
Pervasive and Embedded Software (MOMPES), 2007.

[19] C. Hewitt. A universal, modular actor formalism for artificial
intelligence. InProc.International Joint Conference on Artificial
Intelligence, 1973.

[20] Gerard J. Holzmann.Design and validation of computer protocols.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[21] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Program-
ming real time applications with signal.Proceedings of the IEEE,
79(9):1321–1336, September 1991.

[22] F. Maraninchi and L. Morel. Logical-time contracts for the develop-
ment of reactive embedded software. In30th Euromicro Conference,
Component-Based Software Engineering Track (ECBSE), Rennes,
France, September 2004.

[23] F. Maraninchi and Y. Ŕemond. Mode-automata: a new domain-
specific construct for the development of safe critical systems.Science
of Computer Programming, 46(3):219–254, 2003.

[24] F. Maraninchi, L. Samper, K. Baradon, and A. Vasseur. Lustre
as a system modeling language: Lussensor, a case-study with
sensor networks. InSLA++P’07, ETAPS’07 Satellite Workshop
on Model-driven High-level Programming of Embedded Systems,
Braga, Portugal, March 2007. ENTCS.

[25] B. Meyer.Eiffel: An Introduction. Interactive Software Eng., 1988.

[26] R. Milner. A calculus of communication systems. InLNCS 92.
Springer Verlag, 1980.

[27] S. Plasil, F.; Visnovsky. Behavior protocols for software components.
Software Engineering, IEEE Transactions on, 28:1056– 1076, 2002.

[28] A. Ray and R. Cleaveland. Architectural interaction diagrams: AIDs
for system modeling. InProceedings of the 25th International
Conference on Software Engineering (ICSE-03), pages 396–407,
Piscataway, NJ, May 3–10 2003. IEEE Computer Society.

[29] P. Raymond, Y. Roux, and E. Jahier. Specifying and executing
reactive scenarios with lutin. InSLA++P’07, ETAPS’07 Satellite
Workshop on Model-driven High-level Programming of Embedded
Systems, Braga, Portugal, March 2007. ENTCS.

[30] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel. Glonemo:
Global and accurate formal models for the analysis of ad-hoc sensor
networks. InInterSense: First International Conference on Integrated
Internet Ad hoc and Sensor Networks, Nice, France, May 2006. IEEE.

[31] I. Sander and A. Jantsch. System modeling and transformational
design refinement in forsyde.IEEE Trans. on CAD of Integrated
Circuits and Systems, 23(1):17–32, 2004.

[32] ”A. Vallecillo, V. T. Vasconcelos, and A. Ravara”. Typing the
behavior of software components using session types.Fundam.
Inf., 73(4):583–598, 2006.

[33] Jan van den Bos. PROCOL: A protocol-constrained concurrent
object-oriented language.Information Processing Letters, 32(5):221–
227, 1989.

42:Programmable Models of Computation for a Component-Based Approach to Heterogeneous Embedded Systems 10 2007/4/20

