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Abstract In this work, we propose to extend the Arlequin
framework to couple particle and continuum models. Three
different coupling strategies are investigated based on theL2

norm,H1 seminorm, andH1 norm. The mathematical prop-
erties of the method are studied for a one-dimensional model
of harmonic springs, with varying coefficients, coupled with
a linear elastic bar, whose modulus is determined by simple
homogenization. It is shown that the method is well-posed
for theH1 seminorm andH1 norm coupling terms, for both
the continuous and discrete formulations. In the case ofL2

coupling, it cannot be shown that the Babuška-Brezzi condi-
tion holds for the continuous formulation. Numerical exam-
ples are presented for the model problem that illustrate the
approximation properties of the different coupling terms and
the effect of mesh size.

1 Introduction

Multiscale modeling at the nanoscale has been the focus
of many investigations and discussion in recent years (see
e.g. survey articles [13; 11]). With the development of faster
supercomputers, scientists can now contemplate simulating
complex systems spanning a large range of scales that were
previously considered intractable. Nevertheless, fully resol-
ved atomistic and molecular simulations still remain out of
reach with current computer resources for engineering sys-
tems of practical interest. There is obviously a need for algo-
rithms that can couple different models, such as continuum
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and molecular models, for the simulation of multiscale prob-
lems.

We propose here to extend the Arlequin framework of
Ben Dhia [3; 4; 5; 6; 7] to problems that involve both an
atomistic model and a continuum model. The Arlequin frame-
work introduces an overlapping region in which the two mod-
els are coupled using Lagrange multipliers. Several related
methodologies have been previously proposed (see for ex-
ample [14; 9; 17]). In particular, the bridging domain method
of Belytschko and Xiao presents many similar features to
the Arlequin method and was numerically investigated in [2;
18].

In this paper, we examine in detail the mathematical prop-
erties of such a method when applied to a one-dimensional
model of harmonic springs, with varying stiffness coeffi-
cients, coupled with a linear elastic bar. Our objective is to
investigate three different coupling strategies based on the
L2 norm, theH1 seminorm, and theH1 norm. We show
that theH1 seminorm andH1 norm coupling yield well-
posed problems for the continuous and discrete formula-
tions. However, we are not able to show that the Babuška-
Brezzi condition holds in the case of theL2 norm coupling:
only simply matching the displacements is not enough for
the development of a robust coupling method. We also pro-
vide a priori error estimates for the discrete problem and
illustrate our theoretical results with several simple numer-
ical examples. Reference [12], brought to the attention of
the authors upon finishing the writing of the present paper,
presents a similar study for the coupling of two continuum
models. In that paper, several numerical examples are shown
for L2 andH1 coupling terms as well as different weighting
functions in the coupling terms. Many of the numerical re-
sults are analogous to those shown here, but no mathemati-
cal results are given. One major difference between the two
papers is that we are interested here in coupling highly het-
erogeneous particle models with homogeneous continuum
models. Our ultimate objective in the investigation of such
coupling algorithms is to extend ideas of goal-oriented error
estimation and adaptation (see e.g. [16; 15]) to control the
size and position of the overlapping region so as to deliver
highly accurate simulations.



2

��
��
��
��

��
��
��
��

k1 kki n

l1 li ln

x x x x x x10 i−1 i n−1 n
x

f

Fig. 1 System ofn+1 particles connected withn harmonic springs.

The paper is organized as follows: following this brief in-
troduction, we introduce the particle model, the continuum
model, and briefly describe the Arlequin algorithm. In Sec-
tion 3, we prove that the Arlequin problem is well-posed as
established by Theorem 1. We show in Section 4 that the
discrete formulation of the Arlequin method leads to a well-
posed problem as well. Section 5 describes a few numerical
experiments followed by conclusions in Section 6.

2 Model Problems

In this section, we introduce the coupled model problem to
be studied. First, the discrete model is introduced with ac-
companying notation, then, the continuum approximation,
and finally, the coupled Arlequin model. Mathematical rigor
is postponed until Section 3.

2.1 Particle Model

We are interested here in a system ofn+1 particles that are
connected byn harmonic springs of various strengthki > 0
and equilibrium lengthl i , i = 1, . . . ,n. The initial position
of the particles are denoted byxi and the system undergoes
displacementswi when subjected to forcef applied atxn
(see Figure 1). The potential energy of such a system is given
by

Ed(w) =
1
2

n

∑
i=1

ki (wi −wi−1)
2− f wn (1)

The particles are assumed to be ordered so thatxi−1 < xi
and the particle on the left end of the chain to be fixed, i.e.
w0 = 0. We then introduceRn+1

0 = {z∈ R
n+1 : z0 = 0}.

Equilibrium states of such a system, denotedw∈ R
n+1
0 ,

can be obtained by minimizing the potential energy:

Ed(w) = min
z∈R

n+1
0

Ed(z) (2)

Thus,w are stationary points ofEd(z) and satisfy

lim
θ→0

1
θ

(Ed(w+θz)−Ed(w)) = 0 ∀z∈ R
n+1
0

In other words, the displacementsw ∈ R
n+1
0 at equilibrium

are given by

n

∑
i=1

ki (wi −wi−1)(zi −zi−1) = f zn ∀z∈ R
n+1
0 (3)
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Fig. 2 Elastic bar of lengthL with modulusE and loaded under trac-
tion T.

Problem (3) is equivalent to:

w0 = 0

(k1 +k2)w1−k2w2 = 0

−kiwi−1 +(ki +ki+1)wi −ki+1wi+1 = 0 1< i < n

−knwn−1 +knwn = f

(4)

and the system of equations can be represented more com-
pactly in matrix form as

Aw= f (5)

where f T = (0, . . . ,0, f ) and

A =























1 0 0 0 0 . . . 0
0 k1+k2 −k2 0 0 . . . 0
0 −k2 k2 +k3 −k3 0 . . . 0

...
. . .

0 . . . . . . 0 −kn−1 kn−1 +kn −kn
0 . . . . . . 0 0 −kn kn























(6)

The matrixA is symmetric positive definite and induces the
norm‖z‖ =

√
zTAzonR

n+1.

2.2 Continuum Model

One possible approximation of the particle model is a lin-
ear elastic continuum. Here, the system of springs can be
replaced by an elastic bar on domainΩ , with lengthL, mod-
ulusE, and subjected to tractionT = f/A, A being the cross-
sectional area of the bar. The displacement in the bar is de-
noted byu; see Figure 2. The total energy of this system is
given by

Ec =
∫

Ω

A
2

σ(x)ε(x) dx−AT(L)u(L) (7)

Here the material is supposed to obey Hooke’s lawσ = Eε
and, usingε = u′, we have

Ec =

∫

Ω

AE
2

(

u′
)2

dx−AT(L)u(L) (8)

To obtain the elastic modulus, we simply consider a rep-
resentative cell of springs (see Figure 3) so that, in a system
consisting of a periodic array of two springs with stiffness
k1, k2 and equilibrium lengthl1, l2, we get

AE =
k1k2

k1 +k2
(l1 + l2) (9)
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Fig. 3 Homogenization of spring model on a representative cell.
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Fig. 4 Arlequin model that replaces the particle model with a com-
bined particle and spring model.

The modulus of elasticityE is derived here by equating the
energy in the representative cell with the energy one would
obtain if a linear elasticity model were used. For simplicity,
we will implicitly take A equal to unity.

As with the spring model, the equilibrium state for the
continuum model is found by minimizing the energy (8).
This minimization yields the following problem:

Find u∈V = {v∈ H1(Ω ) : v(0) = 0} such that:
∫

Ω
Eu′v′dx= T(L)v(L) ∀v∈V

(10)

2.3 Coupling Scheme

We recall that our objective is to couple the particle model
with the continuum model onΩ . The continuum model is
selected in regionΩc = (0,xb) while the particle model is
chosen in domainΩd = (xa,L) such thatΩ = Ωc

⋃

Ωd and
Ωo = Ωc

⋂

Ωd = (xa,xb), |Ωo| 6= 0. We will refer toΩo as
the overlap region. We denote by|Ωc|, |Ωd|, and|Ωo|, the
length of domainsΩc, Ωd, andΩo, respectively. The particle
model has been reduced fromn+1 tom+1 particles that are
connected bym harmonic springs , supposedly withm≪ n.
See Figure 4.

The main idea of the Arlequin method is to modify the
energies as follows:

Êc =

∫

Ωc

αc(x)
E
2

(

u′
)2

dx

Êd =
1
2

m

∑
i=1

αiki (wi −wi−1)
2− f wm

(11)
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Fig. 5 Plot of different functions used forαc andαd.

where we have introduced the weighting coefficientsαi and
αc, such that:

αc(x)+αd(x) = 1 ∀x∈ Ω

αc(x) =

{

1 ∀x∈ Ωc\Ωo

0 ∀x∈ Ωd \Ωo

αi = αd

(

1
2

(xi +xi−1)

)

, i = 1, . . . ,m

(12)

In the overlap regionΩo, the coefficientαc (and thusαd) can
be chosen in different ways. Some intuitive and apparently
attractive candidates are (see Figure 5):

αc(x) =
1
2

∀x∈ Ωo

αc(x) = 1− (x−xa)

xb−xa
∀x∈ Ωo

αc(x) =
−(x−xb)

2(2x−3xa+xb)

(xa−xb)3 ∀x∈ Ωo

(13)

wherexa andxb denote the left and right end point ofΩo.
In the overlap region, the main idea is to constrain the

displacementsu and w to be “equal” in some appropriate
measure. In order to do so, the first step is to convert the
discrete displacementsw into a displacement fieldΠw that
can be compared tou on Ωo. The natural way to do this is
to takeΠ as the linear interpolation operator. Other interpo-
lation schemes are possible, but we only consider the linear
interpolant in the present work.

Thus, the “energy” generated by the mismatch ofu and
Πw on Ωo is

‖u−Πw‖2 =
∫

Ωo

β1 (u−Πw)2 +β2 (u−Πw)′2 dx (14)

where(β1,β2) are non-negative weight parameters. These
can also be chosen so as to scale the two terms in the in-
tegral. For example,(β1,β2) = (1,0) refers to theL2 norm,
(β1,β2) = (0,1) to theH1 seminorm, and(β1,β2) = (1,1)
to theH1 norm onΩo.

The coupled problem consists of findingu and w, in
appropriate spacesVc andVd, respectively (defined below),
that minimizes the total energy and satisfies the constraint
‖u−Πw‖ = 0, i.e.

Ê(u,w) = Êd(w)+ Êc(u) = min
v∈Vc,z∈Vd
‖v−Πz‖=0

(

Êd(z)+ Êc(v)
)

(15)
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Introducing the coupling term

b(λ ,(u,w)) =
∫

Ωo

β1λ (u−Πw)+β2λ ′ (u−Πw)′ dx (16)

the minimization problem (15) can be recast into the follow-
ing saddle point problem:

min
v∈Vc,z∈Vd

max
µ∈M

(

Êd(z)+ Êc(v)+b(µ ,(v,z))
)

(17)

whereM is an appropriate space for the Lagrange multipli-
ers. We now pose this problem precisely and analyze the
details of its mathematical properties.

3 Mathematical Analysis of the Coupled Formulation

LetVc =
{

v∈ H1(Ωc) : v(0) = 0
}

andVd =
{

z∈ R
m+1
}

be
the vector spaces of test functions for the continuum and dis-
crete models, respectively, and letΠ be the linear interpolant
Π : Vd → H1(Ωo). In what follows, we will not distinguish a
functionv∈Vc from its restriction to the spaceH1(Ωo). We
also define the vector space for the Lagrange multipliers as:

M =















L2(Ωo), if β2 = 0

H1(Ωo)/R, if β1 = 0

H1(Ωo), otherwise

(18)

with associated norm:

‖µ‖M =

√

∫

Ωo

β1µ2 +β2µ ′2dx

Let the average ofzon Ωo be denoted as:

z̄=
no

∑
i=1

l i
|Ωo|

zi +zi−1

2

whereno is the number of springs onΩo. The restrictive
assumption that is made here is that the overlap region ex-
actly coincides with a given set of complete springs. In other
words, the domainΩo is not allowed to only cover part of a
spring.We also introduce the seminorm| · |Vd onVd as:

|z|Vd =

√

m

∑
i=1

ki(zi −zi−1)2

The norms onVc andVd are then chosen as:

‖v‖Vc =

√

∫

Ωc

E|v′|2dx

‖z‖Vd =
√

|z|2Vd
+δ z̄2

(19)

whereδ is a dimensionally consistent weighting constant
that we define below.

We now introduce the product spaceX = Vc×Vd with
pairs of X denoted for example asU = (u,w), V = (v,z),
and with norm:

‖V‖X =
√

‖v‖2
Vc

+‖z‖2
Vd

(20)

and define the kernel space ofb(·, ·) as the subspace ofX
such that:

X0 = {V ∈ X : b(µ ,V) = 0 ∀µ ∈ M} (21)

We wish to solve the following saddle point problem:

FindU ∈ X, λ ∈ M such that:

L(U,λ) = inf
V∈X

sup
µ∈M

L (V,µ) (22)

where the Lagrangian reads:

L (V,µ) =
1
2

a(V,V)+b(µ ,V)− l(V)

a(U,V) =

∫

Ωc

αcEu′v′dx

+
m

∑
i=1

αiki (wi −wi−1)(zi −zi−1)

b(µ ,V) =

∫

Ωo

β1µ(v−Πz)+β2µ ′(v−Πz)′dx

l(V) = f zm

(23)

The saddle point problem (22) can be recast as:

FindU ∈ X, λ ∈ M such that:

a(U,V)+b(λ ,V) = l(V) ∀V ∈ X

b(µ ,U) = 0 ∀µ ∈ M

(24)

Problem (24) is well posed forβ1 ≥ 0 and β2 > 0. This
result immediately follows from results in Ben Dhia and
Rateau [4; 5]. Nevertheless, we choose to present here a
detailed proof with the main objective of explicitly deriv-
ing the constants associated with the problem in order to
study the influence of parameters such as the geometrical
and material properties, the coupling parametersβ1 andβ2,
or length of the overlap domain on the coupled solutions.
Proofs of continuity of the formsa(·, ·), b(·, ·), andl(·) are
relatively straightforward and provided for completenessin
Appendix B. We show below thata(·, ·) is coercive and that
the coupling termb(·, ·) satisfies the Babuška-Brezzi condi-
tion [1; 8]. Technical lemmas are presented in Appendix A.
We conclude the section by a theorem for the well-posedness
of Problem (24), summarize the continuity and inf-sup con-
stants, and identify from this analysis “optimal” constants
β1, β2, andδ .

Lemma 1 (Coercivity ofa) Let αc and αd be constant or
linear functions defined by(13)1 and(13)2. Then, with above
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notation and definitions, there exists a constantγa > 0 such
that:

inf
U∈X0

sup
V∈X0

|a(U,V)) |
‖U‖X‖V‖X

> γa

sup
U∈X0

a(U,V) > 0 ∀V ∈ X0,V 6= 0

with

γa =







γ1 if β1 = 0

γ1min

(

1
2
,

E|Ωo|
δ |Ωc|2

)

if β1 > 0

and

γ1 =
1
2

min
i

(

E
ki l i

,
ki l i
E

)

Proof It suffices to show thata(·, ·) is coercive onX0. Let
V = (v,z) ∈ X0. We first show that

a(V,V) ≥ γ1
(

‖v‖2
Vc

+ |z|2Vd

)

whereγ1 is a constant that depends onαc andαd being con-
stant or linear.

By definition of the bilinear form, and the fact thatαc = 1
on Ωc\Ωo andαd = 1 onΩd \Ωo, we have

a(V,V) =
∫

Ωc

αcE(v′)2 dx+
m

∑
i=1

αiki(zi −zi−1)
2

=

∫

Ωc\Ωo

E(v′)2 dx+
m

∑
i=no+1

ki(zi −zi−1)
2

+

∫

Ωo

αcE(v′)2 dx+
no

∑
i=1

αiki(zi −zi−1)
2

We then divide the overlap terms in half:

∫

Ωo

αcE(v′)2 dx+
no

∑
i=1

αiki(zi −zi−1)
2 =

1
2

(

∫

Ωo

αcE(v′)2 dx+
no

∑
i=1

αiki(zi −zi−1)
2

)

+
1
2

(

∫

Ωo

αcE(v′)2 dx+
no

∑
i=1

αiki(zi −zi−1)
2

)

Next, we examine the continuum term and the discrete term
and show how they should be recombined. We use the fact
thatX0 consists of functionsv and vectorszsuch thatv= Πz
on Ωo (and thereforev′ = (Πz)′), and

(Πz)′ =
zi −zi−1

l i
, ∀x∈ (xi−1,xi)

Then,

1
2

∫

Ωo

αcE(v′)2 dx=
1
2

no

∑
i=1

∫ xi

xi−1

αcE

(

zi −zi−1

l i

)2

dx

=
1
2

no

∑
i=1

E

(

zi −zi−1

l i

)2∫ xi

xi−1

αc dx

≥ 1
2

min
i

(

E
ki l i

) no

∑
i=1

(1−αi)ki(zi −zi−1)
2

Repeating the same procedure in opposite order on the dis-
crete term, we have

1
2

no

∑
i=1

αiki(zi −zi−1)
2 ≥ 1

2
min

i

(

ki l i
E

)

∫

Ωo

(1−αc)E(v′)2 dx

Substituting the previous two expressions into the original
expression and using the fact thatαc +αd = 1 gives

a(V,V) ≥
∫

Ωc\Ωo

E(v′)2 dx+
m

∑
i=no+1

ki(zi −zi−1)
2

+
1
2

min

(

1,min
i

(

E
ki l i

)) no

∑
i=1

ki(zi −zi−1)
2

+
1
2

min

(

1,min
i

(

ki l i
E

))

∫

Ωo

E(v′)2 dx

≥ γ1
(

‖v‖2
Vc

+ |z|2Vd

)

and

γ1 =
1
2

min
i

(

E
ki l i

,
ki l i
E

)

Now, if β1 = 0, the result is immediate withγa = γ1. If
β1 is nonzero, we observe that the term|z|Vd vanishes for all
constant vectorsz in Vd. Applying Poincaré inequality (cf.
Lemma A-1), we get

a(V,V) ≥ γ1

(

1
2
‖v‖2

Vc
+

1
2
‖v‖2

Vc
+ |z|2Vd

)

≥ γ1

(

1
2
‖v‖2

Vc
+

E
|Ωc|2

‖v‖2
L2(Ωc)

+ |z|2Vd

)

Then using Lemma A-2, the fact thatX0 consists of those
functionsv and vectorsz such thatv = Πz, which implies
Πz= z, we observe that

‖v‖2
L2(Ωc)

≥ ‖v‖2
L2(Ωo) ≥ v̄2|Ωo| = z2|Ωo|

Thus, it follows that:

a(V,V) ≥ γ1

(

1
2
‖v‖2

Vc
+ |z|2Vd

+
E|Ωo|
δ |Ωc|2

δz2
)

≥ γa‖V‖2
X

where

γa = γ1min

(

1
2
,

E|Ωo|
δ |Ωc|2

)

which completes the proof. ⊓⊔
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Remark 1Above proof also holds for the caseαc = αd =
1/2, however it can be shown that the constantγ1 simply
reduces in that case toγ1 = 1/2.

Remark 2Although we used the strong conditionv = Πz
in second part of the proof, the weaker conditionv = Πz
could have been used. This becomes important in the proof
of discrete coercivity, which is addressed later in the paper.

Remark 3We have not proven the case whereαc,αd are cu-
bic functions (13)3. We believe that this case yields coerciv-
ity and could be proven with more sophisticated techniques.

Lemma 2 (Inf-sup condition for b) Let β2 > 0. Then, with
the above notation and definitions, there exists a constant
γb > 0 such that:

inf
µ∈M

sup
V∈X

|b(µ ,V) |
‖µ‖M1‖V‖X

> γb (25)

with

γb =



















√

β2

E
β1 = 0

√

β2

E
min

(√

β1|Ωo|E
2δβ2

,

√

E
E+δ |Ωo|

)

β1 > 0

Proof This proof follows the proof given in [4; 5]. It is suf-
ficient to show that

sup
V∈X

|b(µ ,V) |
‖V‖X

> γb‖µ‖M ∀µ ∈ M

Sinceµ ∈ M, µ(xa) is well defined and denoted byµa. Let
µ̂ = µ −µa. We introduce the extension operatorS(µ) : µ ∈
M → v̂ ∈ Vc such that ˆv = µ̂ on Ωo, andv̂ = 0 on Ωc \Ωo.
Furthermore, let ˆzbe the constant vector ˆz= µa. Thus, taking
V̂ = (v̂, ẑ) we get

sup
V∈X

|b(µ ,V) |
‖V‖X

≥ |b
(

µ ,V̂
)

|
‖V̂‖X

=
‖µ‖2

M

‖V̂‖X

It suffices to show that‖µ‖M/‖V̂‖X is greater than a positive
constant independent ofµ . Using the definition of‖ · ‖X, we
have

‖V̂‖2
X =

∫

Ωo

E(µ ′)2 dx+δ µ2
a = E|µ |2H1(Ωo)

+δ µ2
a

Thus, ifβ1 = 0, we can fixµa = 0, and

‖V̂‖2
X = E

∫

Ωo

µ ′2dx=
E
β2

‖µ‖2
M

The inf-sup constant is then equal toγb =
√

β2/E.

If β1 > 0, we can boundµa in terms of‖µ‖L2(Ωo)
and

|µ |2
H1(Ωo)

. Using the Poincaré inequality (sinceµ̂ = 0 atx =

xa), we get
∫

Ωo

µ2
adx=

∫

Ωo

(µ − µ̂)2dx≤ 2
∫

Ωo

µ2 + µ̂2dx

≤ 2‖µ‖2
L2(Ωo) + |Ωo|2|µ̂|2H1(Ωo)

= 2‖µ‖2
L2(Ωo) + |Ωo|2|µ |2H1(Ωo)

Since
∫

Ωo

µ2
adx= |Ωo|µ2

a

we arrive at the inequality:

µ2
a ≤ 2

|Ωo|
‖µ‖2

L2(Ωo) + |Ωo||µ |2H1(Ωo)

Thus, substituting the bound forµa, we conclude that

‖V̂‖2
X ≤ 2δ

|Ωo|
‖µ‖2

L2(Ωo)
+(E+δ |Ωo|) |µ |2H1(Ωo)

≤ max

(

2δ
β1|Ωo|

,
E+δ |Ωo|

β2

)

‖µ‖2
M

and, therefore,

γb =



















√

β2

E
β1 = 0

√

β2

E
min

(
√

β1|Ωo|E
2δβ2

,

√

E
E +δ |Ωo|

)

β1 > 0

and the proof is complete. ⊓⊔

Remark 4We are not able to show the case for whichβ2 =
0. Indeed,M would be the spaceL2(Ωo) and the extension
operatorS(λ) is not defined in this case. This stems from the
fact that the spaceL2(Ωo) is not contained inH1(Ωo).

From the continuity and coercivity ofa(·, ·), from the
continuity of l(·), and from the continuity and inf-sup con-
dition of b(·, ·) (see Lemmas B-1, B-2, B-3, and Lemmas 1
and 2), we have the following theorem.

Theorem 1 Let β1 ≥ 0 and β2 > 0 and let αc and αd be
constant or linear. Then, problem (24) is well-posed, in the
sense that it admits a unique solution and that the solution
depends continuously on the data.

Finally, we summarize the constants obtained from con-
tinuity, coercivity, and B-B condition in Tables 1–3. In an
effort to obtain optimality with respect to the constants, we
choose specific values forβ1,β2, and δ . In particular, we
want β1,β2, andδ to be dimensionally consistent in their
respective terms while also optimizing the continuity con-
stants (i.e. not depending on the size of the domains). Ta-
ble 4 summarizes the choice for the parametersβ1,β2, and
δ and Table 5 shows the resulting constants.
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Table 1 Constants from continuity conditions.

Ma 1

Mb

√
2max





√

β1|Ωc|2 +2β2

2E
,

√

β1|Ωo|
δ

,

√

β1|Ωo|2 +2β2

2mini ki l i





Ml 2| f |max

(

1√
δ

,
1√

mini ki

)

Table 2 Constants from coercivity and B-B conditions for the case
β1 = 0.

γa
1
2

min
i

(

E
ki l i

,
ki l i
E

)

γb

√

β2

E

Table 3 Constants from coercivity and B-B conditions for the case
β1 > 0.

γa
1
2

min
i

(

E
ki l i

,
ki l i
E

)

min

(

1
2
,

E|Ωo|
δ |Ωc|2

)

γb

√

β2

E
min

(
√

β1|Ωo|E
2δ β2

,

√

E
E+δ |Ωo|

)

Table 4 Choice for the parametersβ1,β2, andδ

β1
2E
|Ωc|2

β2 E

δ
E|Ωo|
|Ωc|2

Remark 5Note that the constantsMb andγd in Table 5 are
bounded above and below, respectively, by observing that
|Ωo| ≤ |Ωc|. Then:

Mb ≤
√

2max

(

1,

√

E
mini ki l i

)

γb ≥
1
2

(26)

However, the constantMl increases as|Ωo| decreases.

4 Discrete Formulation of the Coupled Model

Let Vh
c and Mh be finite element subspaces of the vector

spacesVc and M, respectively, and letXh be the product
spaceXh = Vh

c ×Vd. More precisely, the subspaceVh
c con-

sists of piecewise linear continuous functions defined by the
set of nodesxi = ih, i = 0, . . . ,Ne, whereNe denotes the
number of elements in the mesh. For the subspaceMh, we

Table 5 Rescaled constants for continuity, coercivity, and B-B stabil-
ity for the caseβ1 > 0.

Ma 1

Mb

√
2max

(

1,

√

E
2mini ki l i

(

1+
|Ωo|2
|Ωc|2

)

)

Ml 2| f |max

(

|Ωc|
√

E|Ωo|
,

1√
mini ki

)

γa
1
4

min
i

(

E
ki l i

,
ki l i
E

)

γb

√

|Ωc|2
|Ωc|2 + |Ωo|2

c) Nodes on

Ωo

Ωc

Ωd

Ωo coincide with those of Ωc

a) General case

Ωd

domain
Overlap

Ωo

Ωc

Ωd

d) Elements on

Ωo

Ωc

Ωd

b) Nodes on Ωo are aligned with particles

are larger than those of ΩcΩo

Ωo

cΩ

Fig. 6 Finite element discretization ofΩc andΩo (❙ = nodes onΩc, ✕
= nodes onΩd, ● = particles onΩd).

are faced with several choices since the elements associated
with Vh

c andMh do not have to match (case (a) in Figure 6).
However, for the sake of simplicity here, we will only con-
sider three special cases forMh (see Figure 6, cases (b), (c),
and (d)):

1. “Particle coupling”: Each node of the mesh associated
with Mh coincides with the position of one particle on
Ωo and vice-versa (case (b) in Figure 6).
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2. “Continuum coupling”: The elements of the mesh as-
sociated withMh are exactly identical with those ofVh

c
on Ωo (case (c) in Figure 6).

3. “RVE coupling”: The element sizeh for the contin-
uum solution are chosen arbitrarily from the equilibrium
length l of the particles, but the elements forMh are
equal to the size, denotedε, of the representative vol-
ume element (RVE) (case (d) in Figure 6). The contin-
uum coupling can then be viewed as a subcase of this
case.

Finally, we writeUh = (uh,wh) andVh = (vh,z) and in-
troduce the spaceXh

0 as:

Xh
0 =

{

Vh ∈ Xh : b(µh,Vh) = 0 ∀µh ∈ Mh
}

(27)

Then, problem (24) is approximated as follows:

FindUh ∈ Xh, λh ∈ Mh such that:

a(Uh,Vh)+b(λh,Vh) = l(Vh) ∀Vh ∈ Xh

b(µh,Uh) = 0 ∀µh ∈ Mh

(28)

Remark 6Although Vd is a finite-dimensional space and,
consequently does not need to be discretized using finite el-
ements, we will use the notationwh to denote the solution
of the particle model in (28) to emphasize thatwh indirectly
depends on the choice ofVh

c andMh.

4.1 Existence and Uniqueness of Solutions

In this section, we prove that the discretized Problem (28) is
well-posed. We shall review the lemmas of the previous sec-
tion in order to highlight the differences between the “con-
tinuous” and “discrete” problems. We omit consideration of
continuity of a(·, ·), b(·, ·), and l(·) as they follow trivially
(sinceXh ⊂ X andMh ⊂ M).

One difficulty in analyzing the discretized saddle point
problems is due to the fact that the kernel spaceXh

0 is not a
subset ofX0.

Lemma 3 (Coercivity ofa) Let αc = αd = 1/2. Then, with
the above notation and definition, there exists a constant
γh

a > 0 such that:

inf
Uh∈Xh

0

sup
Vh∈Xh

0

a(Uh,Vh)

‖Uh‖X‖Vh‖X
≥ γh

a

with γh
a = γa.

Proof The proof is actually similar to the one shown in Lem-
ma 1. We just provide here a sketch of it.

We observe that functionsVh = (vh,z) in Xh
0 satisfy

b(µh,Vh) = 0, ∀µh ∈ Mh

i.e.
∫

Ωo

β1vhµh +β2v′hµ ′
hdx

=

∫

Ωo

β1(Πz)µh +β2(Πz)′µ ′
hdx, ∀µh ∈ Mh

In other words, given a functionz∈Vd, vh is simply viewed
as the projection ofΠz on Vh

c if Mh = Vh
c . Takeµh = 1 on

Ωo; then, ifβ1 6= 0,
∫

Ωo

vhdx=
∫

Ωo

(Πz)dx, ∀µh ∈ Mh

The averages ofvh and Πz on Ωo are equal but the func-
tions are not necessarily identical unlike the continuous case.
However, if every particle onΩo coincides with a node of
Mh (case (b) in Figure 6), thenvh = Πz. If not, only the
equality of averages, as above, is necessary to show coer-
civity if β1 6= 0 (see Remark 2). In the case whereβ1 = 0,
coercivity of the bilinear form is immediate. ⊓⊔

Remark 7We do not show here coercivity ofa(·, ·) in the
case whereαc and αd are linear. The proof is of course
straightforward when using the particle coupling and essen-
tially follows the proof of Lemma 1 sincevh = Πz. However,
in the general case, the proof becomes very technical as the
elements of the spaceXh

0 are not simple.

Lemma 4 (Inf-Sup condition for b) With above notation
and definitions, there exists a constantγh

b > 0:

inf
µh∈Mh

sup
Vh∈Xh

b(µh,Vh)

‖µh‖M‖Vh‖X
≥ γh

b

Proof Let µh ∈ Mh. Similarly to the continuous case, we
need to show that

sup
Vh∈Xh

|b(µh,Vh) |
‖Vh‖X

≥ γh
b‖µh‖M

with γh
b > 0 independent ofµh. We consider the two cases:

1. Continuum/RVE coupling: In this case, givenµh ∈Mh,
we can always find a function ˆvh ∈ Vh

c such that ˆvh =
µh−µa onΩo andv̂h = 0 onΩc\Ωo, whereµa = µh(xa).
Furthermore, we can select ˆz = µa so thatV̂h = (v̂h, ẑ).
Thus,

sup
Vh∈Xh

|b(µh,Vh) |
‖Vh‖X

≥ |b
(

µh,V̂h
)

|
‖V̂h‖X

The proof then follows the one in Lemma 2 and we con-
clude here thatγh

b = γb.
2. Particle coupling: In this case, we can always find a

vectorẑ∈Vd such thatΠ ẑ= µh on Ωo. OnΩd\Ωo, ẑ is
chosen as a constant vector so thatV̂h = (0,Π ẑ). Then:

sup
Vh∈Xh

|b(µh,Vh) |
‖Vh‖X

≥ |b
(

µh,V̂h
)

|
‖V̂h‖X

=
‖µh‖2

M

‖ẑ‖Vd
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We just need to show that‖µh‖M/‖ẑ‖Vd is greater than a
positive constant. Since ˆz is constant onΩd\Ωo, we have
(using Lemma A-2):

‖ẑ‖2
Vd

=
no

∑
i=1

ki(ẑi − ẑi−1)
2 +δ

(

no

∑
i=1

l i
|Ωo|

(

ẑi + ẑi−1

2

)

)2

≤ max
i

ki l i |µh|2H1(Ωo) +δ µ̄2
h

If β1 = 0, we can fixµ̄h = 0 so that:

‖ẑ‖2
Vd

≤ max
i

ki l i |µh|2H1(Ωo)
=

maxi ki l i
β2

‖µh‖2
M

andγh
b =

√

β2/maxi ki l i .
If β1 is non-zero, then using Lemma A-2, we get

‖ẑ‖2
Vd

≤ max
i

ki l i |µh|2H1(Ωo) +
δ

|Ωo|
‖µh‖2

L2(Ωo)

≤ max

(

δ
β1|Ωo|

,
maxi ki l i

β2

)

×

(β1‖µh‖2
L2(Ωo) +β2|µh|2H1(Ωo))

= max

(

δ
β1|Ωo|

,
maxi ki l i

β2

)

‖µh‖2
M

which completes the proof with:

γh
b = min





√

β1|Ωo|
δ

,

√

β2

maxi ki l i





⊓⊔

Remark 8We note that in the discrete case, the bilinear form
b(·, ·) does satisfy the inf-sup condition ifβ2 = 0. Indeed,
we can in this case bound the term|µh|H1(Ωo)

by ‖µh‖L2(Ωo)

using an inverse inequality. However, the inf-sup constant
would be dependent on the mesh sizeh, and would go to
zero ash tends to zero.

Remark 9We also note here that, as pointed out by Ben
Dhia and Rateau [7], the discretization of the Lagrange mul-
tiplier space cannot be finer than the discretization of the
continuum modeland the particle spacing. This can be seen
from the proof since we would not be able to find avh or Πz
that is an extension ofµh since it is possiblevh 6= µh in Ωo.

Finally, the following theorem follows from the continu-
ity on Xh and coercivity onXh

0 of a(·, ·), from the continuity
of l(·) on Xh, and from the continuity and inf-sup condition
of b(·, ·) on Mh×Xh (see Lemmas B-1, B-2, B-3, and Lem-
mas 3 and 4):

Theorem 2 Problem (28) withβ1 ≥ 0 andβ2 > 0 and with
αc, αd constant or linear is well-posed, in the sense that the
solution to (28) exists, is unique, and depends continuously
on the data. Moreover, all constants are independent of h.

4.2 a priori Error Estimates

For completeness, we state the followinga priori error esti-
mate. The proof follows exactly that of the traditional mixed
finite element error estimate (see e.g. [10]).

Theorem 3 Let (u,w,λ) ∈ Vc×Vd ×M be the solutions to
(24) and let (uh,wh,λh) ∈ Vh

c ×Vd × Mh be the solutions
to (28). Then,

‖(u−uh,w−wh)‖X ≤C1 inf
vh∈Vh

c

‖u−vh‖Vc

+C2 inf
µh∈Mh

‖λ −µh‖M

‖λ −λh‖M ≤C3 inf
vh∈Vh

c

‖u−vh‖Vc +C4 inf
µh∈Mh

‖λ −µh‖M

where

C1 =

(

1+
Ma

γh
a

)

(

1+
Mb

γh
b

)

,C2 =
Mb

γh
a

C3 =
Ma

γh
b

(

1+
Ma

γh
a

)

(

1+
Mb

γh
b

)

,C4 =

(

1+
Mb

γh
b

+
MaMb

γh
aγh

b

)

5 Numerical Examples

In all the following experiments, we consider the domain
Ω = (0,3). Moreover, the forcefm applied atxm is chosen
in such a way that the displacement at the right end of the
domain, when using the continuum model everywhere inΩ ,
is equal to unity. In what follows, we restrict ourselves to
the cases where the equilibrium lengths of the springs are all
equal.

5.1 Uniform springs coefficients withαc, αd constant

In the first set of experiments, we consider uniform springs
such thatk = ki = 1, i = 1, . . . ,m. In this simple case, the
solutions of the spring model and of the equivalent contin-
uum model in all ofΩ are linear. The continuum model is
used in the subdomainΩc = (0,2) while the particle model
is used inΩd = (1,3) and the weight coefficientsαc andαd
are chosen to be 1/2 in the overlap region. There arem= 8
springs inΩd, i.e. 9 particles. The equilibrium length of each
spring is then given byl = l i = 0.25. We discretize the con-
tinuum region withNe = 4 elements. Because the springs
are uniform, the representative cell used to derive the cor-
responding Young’s modulusE is constituted of only one
spring. Then

E = kl = 1×0.25= 0.25 (29)

We first consider the case where the two models are cou-
pled via a particle coupling, that is, the finite element space
Mh for the Lagrange multipliers is dictated by the parti-
cles. As expected, this coupling ensures that the solutions
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Fig. 7 Uniform spring coefficients with particle coupling andαc, αd

constant. The three graphs correspond toL2 norm,H1 seminorm, and
H1 norm coupling cases.

of the Arlequin problem (28) are linear and that the contin-
uum part exactly coincides with the particle solution over
the overlap region in the three cases corresponding to theL2

norm,H1 seminorm, andH1 norm couplings (see Figure 7).
In these and subsequent plots, the initials LM refers to La-
grange multiplier. The solution atx = 3 is equal to unity in
the three cases.

We repeat above experiment using this time a continuum
coupling, i.e. the elements inMh are the same as inVh

c on
the overlap region. The coupling is therefore “weaker” than
in the preceding experiment. The computed displacement at
x= 3 is nowzm = 1 for theH1 seminorm coupling, butzm =
1.01042 in the other two cases (see Figure 8).
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Fig. 8 Uniform spring coefficients with continuum coupling andαc,
αd constant.

5.2 Non-uniform stiffness coefficients withαc, αd constant

In more general settings, we are interested in problems in
which the spring coefficients are not necessarily uniform but
possibly randomly distributed. As a simple test case, we con-
sider here a periodic distribution of springs with two spring
stiffness constantsk1 = 100 andk2 = 1. We have formeven:

k2 j−1 = k1 j = 1, . . . ,m/2

k2 j = k2 j = 1, . . . ,m/2
(30)

As before, we consider the following geometry and discreti-
zation data:Ωc = (0,2), Ωd = (1,3) m = 8, andNe = 4.
The equilibrium length of the springs is once again equal to
l = l i = 0.25. It follows that the Young’s modulus is given
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Fig. 9 Periodic distribution of spring coefficients with particlecou-
pling andαc, αd constant. The three graphs correspond toL2 norm,
H1 seminorm, andH1 norm coupling cases.

by, using a representative cell (or Representative Volume El-
ement, RVE) made of two consecutive springs:

E =
k1k2

k1 +k2
2l =

100
101

0.5 = 0.49505 (31)

Figure 9 shows the Arlequin solutions in the case of particle
coupling. It is not surprising that we findzm = 0.691822 in
the three cases of coupling since such a coupling is neces-
sarily too constraining.

In this problem, it is clear that the elements inMh should
not be smaller than the representative cell used to derive
the continuum model. For the continuum coupling, we see
that the size of the elements inMh is equal to the size of
one representative cell, i.e.h = 2l = 0.5. Figure 10 shows
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Fig. 10 Periodic distribution of spring coefficients with continuum
coupling andαc, αd constant.

the results when using continuum coupling. We observe that
zm = 1 for theH1 seminorm coupling, butzm = 1.08727 and
zm = 1.08710 for theL2 andH1 norm coupling, respectively.
We note here that in theH1 seminorm case, the constant
modes ofVd are fixed by settingz0 to be equal to the dis-
placementuh atxa.

Remark 10We observe in Figure 10 a slight change in the
slope of the continuum displacementu. This variation can
be interpreted by writing the equilibrium equation at the in-
terfacial pointxa. We have:

E
du
dx

∣

∣

∣

∣

x−a
= αcE

du
dx

∣

∣

∣

∣

x+
a

+αdk1l1
w1−w0

l1
(32)

Becauseαd = 1/2 here, and thus does not vanish atxa, noth-
ing guarantees that the two derivatives should be the same on



12

the left and right sides ofxa. This issue is therefore inherent
to the choiceαc and αd constant and should be improved
by the use of linear or cubic weight coefficients (see next
subsection). Note that this was also observed in [12].

5.3 Influence of the weight coefficientα

In this subsection, we study the effect of using linear and
cubic weight coefficients. We consider here the same case
as the one studied in the previous subsection with contin-
uum coupling. We show in Figures 11 and 12 the results
with α linear and cubic, respectively. We now observe that
the change in slope in the continuum displacementu is no
longer visible for theL2 andH1 norm couplings. However,
a variation is the slope has appeared for theH1 seminorm
coupling. We do not have an explanation for this behavior at
this time.

The linear and cubic cases apparently provide similar re-
sults to the naked eye. Actually, there exists a slight differ-
ence. Indeed, the displacements of the particle atxm with
theL2 andH1 norm couplings arezm = 1.04084 for the lin-
ear case andzm = 1.03707 for the cubic case. These values
are nevertheless greatly improved over the constant case for
which approximatelyzm = 1.087.

5.4 Representative volume element

Our objective in this subsection is to show that the mesh size
h for the continuum solution can be chosen arbitrarily from
the equilibrium lengthl of the particles, but that it is im-
portant to select the size of the elements for the Lagrange
multiplier at least equal to the size, denotedε, of the rep-
resentative cell or volume element. Note that the continuum
coupling case then becomes a subcase of this configuration.
We show in Figure 13 the results withα linear whenh= l/2
and the meshsize for the Lagrange multiplier is equal toε,
which in this problem is simply 2l . The results are exactly
identical to the results obtained in Figure 11 for theL2 and
H1 norm couplings. However, the behavior of the continuum
solution in the overlap region when using theH1 seminorm
coupling has the tendency to follow that of the particle solu-
tion. This is attributed to the fact that this type of coupling
does not constrain enough the two displacement fields. In
our opinion, theH1 seminorm coupling should not be re-
tained as a useful candidate for this type of simulations.

5.5 Influence of mesh size

In this section, we study the effect of the mesh size on the
Arlequin solution. The equilibrium length of the springs is
the same as in Section 5.2 and we vary the size of the el-
ements inVh

c from h = 1 to h = 1/32. The stiffness of the
springs is the same as in Section 5.2 and we consider here
the continuum coupling.
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Fig. 11 Same as Figure 10 but withα linear.

We collect in Table 6 the displacements atx = 3 for the
different mesh sizesh and coupling types based on theL2

norm,H1 seminorm, andH1 norm. Here the weight coeffi-
cientsαc andαd are chosen linear. For theL2 andH1 norms,
the displacement atx = 3 are constant for every value of
h until h = 1/4 and then the value remains constant again.
This shows that the solution is exact for everyh≤ 1/4 (i.e.
the spacing of the particles), while forh > 1/4, the “aver-
age” solution is linear and is resolved exactly with linear
elements. For theH1 seminorm, the results improve ash
decreases. Here, the solution is not exact due the constant
chosen (i.e. the solution match a point) so, as the mesh is
refined, the constraint becomes enforced more exactly, until
h≤ 1/4 where the solution becomes exact.

We show in Figures 11 and 14 the Arlequin solution and
Lagrange multiplier, respectively, forh= 1/2. The same re-
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Fig. 12 Same as Figure 10 but withα cubic.

Table 6 Displacementszm atx= 3 for various mesh sizes and coupling
types. The equilibrium length of each spring isl = 0.0625.

h L2 norm H1 seminorm H1 norm

1 1.04084 0.994358 1.04084
1/2 1.04084 0.964384 1.04084
1/4 – 1/32 0.930203 0.930203 0.930203

sults for the caseh = 1/8 are shown in Figures 15 and 16
and then forh = 1/32 in Figures 17 and 18. Note that the
Lagrange multipliers are constant for theL2 andH1 norms
cases, and smooth for theH1 seminorm coupling whenh =
1/2. For theL2 norm, we observe that the Lagrange mul-
tiplier µh displays larger and larger variations as the mesh
is refined. This result is commensurate with our theoretical
results in the sense that the discrete inf-sup constant goes
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Fig. 13 Same as Figure 11 but withh = l/2 and element size for the
Lagrange multiplier (LM) equal to 2l = ε .

to zero linearly withh if β2 is set to zero. Note also how
the linearα is reflected in the character of the Lagrange
multiplier solution - at the interface of the overlap and dis-
crete domains, the Lagrange multiplier solution is zero when
h≤ 1/4.

5.6 Reconstruction of solutions

In the overlap region, the Arlequin method produces two so-
lutions, one corresponding to the continuum model and the
other to the particle model. Neither of these two solutions
represents the solution of the problem at hand. It seems nat-
ural here to reconstruct a displacement field by combining
the two solutions on the overlap region. This can be done
in two ways. In the first one, we reconstruct a displacement
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Fig. 14 Lagrange multiplier solution in the casel = 1/4 andh = 1/2
using the continuum coupling andα linear.

field as follows:

û(x) = αcuh(x)+αdΠz(x), ∀x∈ Ωo (33)

In the second one, a displacement vector is reconstructed as:

ẑi = αcuh(xi)+αdzi , ∀i = 1, . . . ,no (34)

We show in Figure 19 the Arlequin solution and reconstruc-
ted solution in the case where a continuum coupling andH1

norm coupling, along with constant weight coefficientsαc
andαd, are used. HereNe = 2, and there are eight springs
distributed over each element. We observe that the recon-
structed solution is discontinuous at both end points of the
overlap domain and that the displacements display a rela-
tively erratic behavior inΩo. We show the same results in
Figures 20 with linear weight coefficients and the respective
solutions look much better.
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Fig. 15 Arlequin solution in the casel = 1/4 andh = 1/8 using the
continuum coupling andα linear.

6 Conclusions

We have presented in this paper a technique to couple a par-
ticle model with a continuum model. The proposed approach
is essentially an extension of the Arlequin framework which
had been previously developed to couple partial differential
equation systems of different scales. We have given a de-
tailed mathematical analysis of the coupled one-dimensional
problem and shown that the problem is well-posed when
constant weight coefficients and linear coefficients are cho-
sen in the overlap domain. However, it is not possible to
show that the inf-sup condition is satisfied when using a cou-
pling constraint based on theL2 norm. This tells us that it
is insufficient to enforce a constraint on the displacements
only; this fact is actually observed experimentally as the La-
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Fig. 16 Lagrange multiplier solution in the casel = 1/4 andh = 1/8
using the continuum coupling andα linear.

grange multiplier converges in this case to a distribution.
We have also presented one-dimensional numerical exam-
ples with the objective of showing that the proposed ap-
proach was well suited to solve problems in which the spring
constants in the particle model could be non-uniformly dis-
tributed. In particular, we considered a periodic system of
two springs for which it is straightforward to derive an equiv-
alent continuum model. We showed that the method pro-
duced satisfactory results as long as the mesh size used to
discretize the Lagrange multiplier space was at least larger
than (a multiple of) the size of the representative cell defined
to compute the Young’s modulus for the continuum model.

The present study of the Arlequin method for the cou-
pling of particle and continuum models is by no means com-
plete. This is a very preliminary work and numerous issues
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Fig. 17 Arlequin solution in the casel = 1/4 andh = 1/32 using the
continuum coupling andα linear.

related to the method need to be addressed. For example, one
question is whether we can define a coupling constraint that
is explicitly dependent on the size of the representative cell
(RVE) so that the formulation becomes fully independent of
the mesh size. It would also be interesting to see how this
method behaves in the case of nonlinear problems, for ex-
ample, by considering potentials of the Lennard-Jones type.
Finally, a major and important study will be to investigate
the use of the method for problems in dimensions two and
three and for time-dependent problems. We shall strive to
address these issues and propose answers to these questions
in forthcoming papers.
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using the continuum coupling andα linear.
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A Technical Lemmas

We first recall without proof the classical Poincaré inequality in one
dimension:

Lemma A-1 (Poincaré Inequality)Let v∈ H1(Ωc). Then

‖v‖2
L2(Ωc)

≤ |Ωc|2
2

|v|2H1(Ωc)
≤ |Ωc|2

2E
‖v‖2

Vc
(35)

Lemma A-2 Let v∈ H1(Ωo) and letv̄ be the average of v onΩo, i.e.

v̄ =
1

|Ωo|

∫

Ωo

vdx
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Fig. 19 Arlequin solution and reconstructed solution using a contin-
uum coupling for the Lagrange multiplier and theH1 norm coupling
with α constant.
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Then

|Ωo| v̄2 ≤ ‖v‖2
L2(Ωo)

≤ |Ωo| v̄2 +
|Ωo|2

2
|v|2H1(Ωo)

Proof Let v∈ H1(Ωo). We note that
∫

Ωo

(v− v̄)2dx=

∫

Ωo

v2−2vv̄+ v̄2dx

= ‖v‖2
L2(Ωo)

−2v̄
∫

Ωo

vdx+ v̄2|Ωo|

= ‖v‖2
L2(Ωo) − v̄2|Ωo|

The first inequality follows by observing that the integral on the left
hand side is necessarily non-negative.

Let Ωo be represented as the interval(xa,xb). Sincev is continuous
on Ωo, we know that there exists ¯x, xa ≤ x̄≤ xb such thatv(x̄) = v̄. We
posev = v̄+y. Then

‖v‖2
L2(Ωo)

=
∫

Ωo

(v̄+y)2dx

=
∫

Ωo

v̄2dx+2v̄
∫

Ωo

ydx+
∫

Ωo

y2dx

= v̄2|Ωo|+
∫

Ωo

y2dx

as the average ofy, by definition, is simply zero. Moreover, sincey
vanishes at ¯x in Ωo, we can use the Poincaré inequality to find the
bound:
∫

Ωo

y2dx≤ |Ωo|2
2

|v|2H1(Ωo)

which completes the proof. ⊓⊔
Lemma A-3 Let z∈ R

no+1 and letz̄ be the average of z onΩo. Then

z2
n0

≤ 2z̄2 +2
n0

∑
i=1

(zi −zi−1)
2

Proof Let z̄i , i = 1, . . . ,no be defined as:

z̄i =
l i

|Ωo|
zi +zi−1

2

Thus,

z̄i −
l i

|Ωo|
zi −zi−1

2
=

l i
|Ωo|

zi−1 =
l i

|Ωo|

(

zn0 −
n0

∑
k=i

(zk−zk−1)

)

that is:

l i
|Ωo|

zn0 = z̄i −
l i

|Ωo|

(

zi −zi−1

2
−

n0

∑
k=i

(zk−zn0)

)

Summing over all terms ini = 1, . . . ,n0, and noting that∑ z̄i = z̄ and
∑i l i = |Ωo|, we get:

zn0 = z̄−
n0

∑
i=1

l i
|Ωo|

(

zi −zi−1

2
−

n0

∑
k=i

(zk−zk−1)

)

= z̄+
n0

∑
i=1

[

1
|Ωo|

((

i−1

∑
k=1

lk

)

+
l i
2

)]

(zi −zi−1)

Therefore

|zn0| ≤ |z̄|+
n0

∑
i=1

[

1
|Ωo|

((

i−1

∑
k=1

lk

)

+
l i
2

)]

|zi −zi−1|

≤ |z̄|+
n0

∑
i=1

|zi −zi−1|

which yields the desired result, using the fact that(a+b)2 ≤ 2(a2+b2)
a, b∈ R. ⊓⊔

B Proof of Lemmas for the Continuous Problem

B.1 Continuity ofa

Lemma B-1 Let a(·, ·) be the bilinear form defined in(23). Then, for
all U = (u,w), V = (v,z)∈ X, there exists a constant Ma > 0 such that:

|a(U,V)| ≤ Ma‖U‖X‖(V)‖X

with Ma = 1.

Proof From Cauchy-Schwarz and Hölder inequalities, we get

|a(U,V)| ≤
∫

Ωc

αcE|u′||v′| dx+
m

∑
i=1

αiki |wi −wi−1||zi −zi−1|

≤C1‖u‖Vc‖v‖Vc +C2|w|Vd |z|Vd

whereC1 = maxx(αc) = 1 andC2 = maxi (αi) = 1. ¿From the defini-
tion of the norm inVd, we then have:

|a(U,V)| ≤ ‖u‖Vc‖v‖Vc +‖w‖Vd‖z‖Vd ≤ ‖U‖X‖V‖X

andMa = 1. ⊓⊔

B.2 Continuity ofb

Lemma B-2 Let b(·, ·) be as defined in(23). Then, for allµ ∈ M, V =
(v,z) ∈ X, there exists a constant Mb > 0 such that:

|b(µ ,V)| ≤ Mb‖µ‖M‖V‖X

with

Mb = 2max





√

β1|Ωc|2 +2β2

2E
,

√

β1

δ
|Ωo|,

√

β1|Ωo|2 +2β2

2mini ki l i





Proof By making use of Poincaré inequality (35) and the fact that(a+
b)2 ≤ 2(a2 +b2), ∀a, b∈ R, we get:

|b(µ ,V)| ≤ ‖µ‖M‖v−Πz‖M

≤ ‖µ‖M (‖v‖M +‖Πz‖M)

≤
√

2‖µ‖M

√

‖v‖2
M +‖Πz‖2

M

Now,

‖v‖2
M = β1‖v‖2

L2(Ωo) +β2|v|2H1(Ωo)

≤ β1‖v‖2
L2(Ωc)

+β2|v|2H1(Ωc)

≤ β1|Ωc|2 +2β2

2E
‖v‖2

Vc

In the same way, using Lemma A-2 and the fact thatΠz is a piecewise
linear continuous function, we have

‖Πz‖2
M = β1‖Πz‖2

L2(Ωo) +β2|Πz|2H1(Ωo)

≤ β1|Ωo| z2 +

(

β1
|Ωo|2

2
+β2

)

|Πz|2H1(Ωo)

≤ β1

δ
|Ωo| δz2 +

(

β1|Ωo|2 +2β2

2mini ki l i

)

|z|2Vd

≤ max

(

β1

δ
|Ωo|,

β1|Ωo|2 +2β2

2mini ki l i

)

‖z‖2
Vd
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We combine above results and find

|b(µ ,V)| ≤ Mb‖µ‖M‖V‖X

with:

Mb = 2max





√

β1|Ωc|2 +2β2

2E
,

√

β1

δ
|Ωo|,

√

β1|Ωo|2 +2β2

2mini ki l i





⊓⊔

B.3 Continuity ofl

Lemma B-3 Let l(·) be as defined in(23). Then, for all V∈ X, there
exists a constant Ml > 0 such that:

|l (V)| ≤ Ml‖V‖X

with

Ml = 2| f |max

(

1√
δ

,
1√

mini ki

)

Proof From definition ofl(·), we have, withV = (v,z):

|l(V)| ≤ | f zm| ≤ | f ||zm| ≤ | f |
∣

∣

∣

∣

∣

zno +
m

∑
i=no+1

(zi −zi−1)

∣

∣

∣

∣

∣

≤ | f |
√

2z2
no

+2
m

∑
i=no+1

(zi −zi−1)2

Using Lemma A-3 yields:

|l(V)| ≤ | f |
√

4z̄2 +4
no

∑
i=1

(zi −zi−1)2 +2
m

∑
i=no+1

(zi −zi−1)2

≤ | f |
√

4
δ

δ z̄2 +
4

mini ki

m

∑
i=1

ki(zi −zi−1)2

≤ 2| f |
√

max

(

1
δ

,
1

mini ki

)

(|z|2Vd
+ z̄2)

It follows that

|l (V)| ≤ Ml‖z‖Vd ≤ Ml‖(v,z)‖X = Ml‖V‖X

with

Ml = 2| f |max

(

1√
δ

,
1√

mini ki

)

⊓⊔
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Finis 332:649–654

7. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible
engineering design tool. Int J Numer Meth Engng 62(11):1442–
1462

8. Brezzi F (1974) On the existence, uniqueness and approxima-
tion of saddle-point problems arising from Lagrange multipliers.
RAIRO Anal Numér pp 129–151

9. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Con-
current coupling of length scales: Methodology and application.
Phys Rev B 60(4):2391–2403

10. Ern A, Guermond JL (2004) Theory and Practice of Finite Ele-
ments. Springer-Verlag, New York

11. Fish J (2006) Bridging the scales in nano engineering andscience.
Journal of Nanoparticle Research 8(6):577–594

12. Guidault P, Belytschko T (2007) On theL2 and theH1 couplings
for an overlapping domain decomposition method using Lagrange
multipliers. Int J Numer Meth Engng 70(3):322–350

13. Liu WK, Karpov EG, Zhang S, Park HS (2004) An introduction
to computational nanomechanics and materials. Comput Methods
Appl Mech Engng 193:1529–1578

14. Miller RE, Tadmor EB (2002) The quasicontinuum method:
Overview, applications, and current directions. Journal of
Computer-Aided Design 9:203–239

15. Oden JT, Prudhomme S, Romkes A, Bauman P (2006) Multi-scale
modeling of physical phenomena: Adaptive control of models.
SIAM Journal for Scientific Computing 28(6):2359–2389

16. Prudhomme S, Bauman PT, Oden JT (2006) Error control for
molecular statics problems. International Journal for Multiscale
Computational Engineering 4(5-6):647–662

17. Wagner GJ, Liu WK (2003) Coupling of atomistic and contin-
uum simulations using a bridging scale decomposition. Journal of
Computational Physics 190:249–274

18. Xiao SP, Belytschko T (2004) A bridging domain method forcou-
pling continua with molecular dynamics. Computer Methods in
Applied Mechanics and Engineering 193:1645–1669


