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ABSTRACT

Near-surface soil moisture retrieved from Soil Moisture and Ocean Salinity (SMOS)-type data is down-
scaled and assimilated into a distributed soil–vegetation–atmosphere transfer (SVAT) model with the
ensemble Kalman filter. Because satellite-based meteorological data (notably rainfall) are not currently
available at finescale, coarse-scale data are used as forcing in both the disaggregation and the assimilation.
Synthetic coarse-scale observations are generated from the Monsoon ‘90 data by aggregating the Push
Broom Microwave Radiometer (PBMR) pixels covering the eight meteorological and flux (METFLUX)
stations and by averaging the meteorological measurements. The performance of the disaggregation/
assimilation coupling scheme is then assessed in terms of surface soil moisture and latent heat flux predic-
tions over the 19-day period of METFLUX measurements. It is found that the disaggregation improves the
assimilation results, and vice versa, the assimilation of the disaggregated microwave soil moisture improves
the spatial distribution of surface soil moisture at the observation time. These results are obtainable
regardless of the spatial scale at which solar radiation, air temperature, wind speed, and air humidity are
available within the microwave pixel and for an assimilation frequency varying from 1/1 day to 1/5 days.

1. Introduction

Rainfall and soil moisture are key variables of the
terrestrial hydrosphere. Whereas rainfall provides the
amount of available water at the surface, soil moisture
controls the partitioning of rainfall into runoff and in-
filtration and the incident energy into sensible and la-
tent heat flux. The knowledge of both complementary
variables is hence critical for achieving efficient and
sustainable water management and for improvements
in climate change prediction.

Both variables are characterized by strong variabili-
ties in space and time (Rodriguez-Iturbe et al. 1995;
Famiglietti et al. 1999). Because of these variabilities
and because many surface processes are nonlinearly re-
lated to rainfall and soil moisture, the representation of
hydrological processes at the model scale needs to ac-
count for the surface heterogeneity at finescale. Follow-
ing the terminology of Giorgi and Avissar (1997), the
use of coarse-resolution data may have a “dynamical”

impact on runoff predictions (Entekhabi and Eagleson
1989; Goodrich et al. 1994; Faures et al. 1995; Ghan et
al. 1997; Goodrich et al. 1997; Yu et al. 1999) as well as
an “aggregation impact” on surface fluxes (Famiglietti
and Wood 1995; Wood 1997; Kustas and Norman 2000;
Crow and Wood 2002). In this context, the spatial scale
at which most hydrological processes (runoff, infiltra-
tion, evapotranspiration, etc.) should be captured for
improving the understanding and subsequently the rep-
resentation of surface processes in regional models has
been recognized to range from 1 to 10 km (Entekhabi
and Eagleson 1989; Famiglietti and Wood 1995; Wood
1997; Crow and Wood 2002).

Because satellite-based rainfall estimates at im-
proved spatial and temporal resolutions are increas-
ingly required for various environmental studies, new
methods have been developed to combine multisatellite
data (e.g., Huffman et al. 2001; Joyce et al. 2004). For
example, the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks
algorithm (Hsu et al. 1997, 1999) is a merging method
combining the low-frequency (1–2 per day) but rela-
tively accurate Tropical Rainfall Measuring Mission
(TRMM) radar data with the high-frequency (48 per
day) thermal infrared data provided by geosynchronous
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satellites. Although the temporal resolution of the rain-
fall products obtained with merging methods is very
attractive, the spatial resolution is still too coarse for a
direct use of such data into distributed hydrological
models. In fact, the rainfall data derived from the
cloud-top temperature obtained in the thermal infrared
are generally aggregated to reduce errors. This limits
the spatial resolution of the current satellite-based rain-
fall products to about 0.25° (30 km) (Sorooshian et al.
2000).

Assimilation strategies of the surface soil moisture
estimated from microwave data have been found to be
an operational tool for controlling land surface–atmo-
sphere interactions during interstorm periods (e.g.,
Crow and Wood 2003; Reichle and Koster 2005). In
particular, the analysis of Crow (2003) has successfully
tested the ability of the assimilation of surface bright-
ness temperature observations to correct land surface
model predictions for the impact of low-frequency rain-
fall measurements. However, these studies circum-
vented horizontal-scale issues either by using a climatic-
scale grid size (�50 km) or higher-resolution airborne
soil moisture imagery. The main limitation of the mon-
odimensional assimilation of passive microwave soil
moisture for hydrological applications is the poor reso-
lution obtained with the current and near-future micro-
wave-based satellite data (10 to 40 km) (Jackson et al.
1999).

To bridge the gap between the resolution of the sur-
face soil moisture derived from passive microwave data
(about 40 km) and the input scale required for hydro-
logical applications (about 1 km), a variety of methods
have been developed to improve the resolution of pas-
sive microwave data. They use either statistical corre-
lations between surface soil moisture (or brightness
temperature) and finescale auxiliary data as in Bindlish
and Barros (2002), Kim and Barros (2002), and Chau-
han et al. (2003) or distributed physically based models
in conjunction with finescale auxiliary data as in Pel-
lenq et al. (2003) and Merlin et al. (2005). The coupling
of such methods with an assimilation scheme of the
surface soil moisture is expected to provide significant
improvements in the representation of vertical and
horizontal hydrological processes.

The disaggregation method of Merlin et al. (2005)
uses thermal and optical data remotely sensed at a typi-
cal resolution of 1 km to estimate the subpixel variabil-
ity of microwave soil moisture. A relationship between
soil skin temperature and surface soil moisture is de-
veloped at finescale to estimate a distribution as a func-
tion of two parameters defined at the microwave scale.
Both parameters are then sequentially inverted from
multi-independent (at least two independent) micro-

wave observations. The requirement of multi-indepen-
dent/multiangular observations is notably met by the
Soil Moisture and Ocean Salinity (SMOS) (Kerr et al.
2001) mission, which is based on a radiometer at L band
with significant angular viewing configurations.

In this paper, SMOS-type data are disaggregated
with the method of Merlin et al. (2005) and assimilated
into a distributed (with a typical resolution of 1 km)
soil–vegetation–atmosphere transfer (SVAT) model
with the ensemble Kalman filter (Evensen 1994). As
the current spatial resolution of global-scale precipita-
tion data is about the same as for passive microwave
data, rainfall is assumed to be available at the micro-
wave resolution (40 km). The objective is to assess the
use of a disaggregation/assimilation coupling scheme of
microwave data to compensate errors in terms of sur-
face soil moisture and latent heat flux associated with
the use of coarse-scale rainfall data only.

The analysis is based on a synthetic dataset generated
from the Monsoon ‘90 data (Kustas and Goodrich
1994). The strategy adopted to test the downscaling/
assimilation procedure is to

• calibrate a SVAT and a brightness temperature
model against the Monsoon ‘90 observations;

• create synthetic soil skin temperature and SMOS ob-
servations based on calibrated model runs;

• perturb synthetic observations;
• downscale synthetic SMOS observations;
• assimilate downscaled synthetic observations;
• compare to the Monsoon ‘90 observations.

Note that the 5-cm soil moisture observations are
used both to generate synthetic observations and to
validate the assimilation/downscaling procedure. This
approach thus parallels a traditional synthetic experi-
ment in all regards except that it substitutes observed
soil moisture for model-generated (model-dependent)
soil moisture.

The Monsoon ‘90 data, the models, and the methods
are successively presented in sections 2, 3, and 4. In
section 5, the models are calibrated against the Mon-
soon ‘90 data and a synthetic dataset is generated. In
section 6, the disaggregation/assimilation coupling
scheme is applied to the synthetic dataset and assimi-
lation results are compared to ground soil moisture
measurements.

2. The Monsoon ‘90 data

The Monsoon ‘90 experiment was conducted during
the summer of 1990 over the U.S. Department of Ag-
riculture Agricultural Research Service (USDA-ARS)
Walnut Gulch Experimental Watershed (WGEW) in
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southeastern Arizona (Kustas et al. 1991; Kustas and
Goodrich 1994). The purpose of the experiment was to
observe the moisture fluxes in a semiarid climate during
a dry-down and the role of remote sensing in determin-
ing these fluxes. A network of eight meteorological sur-
face energy flux (METFLUX) stations covering the
main study area (about 150 km2) were situated in grass-
dominated and shrub-dominated ecosystems and in the
transition zones containing both vegetation types. The
data collected at each METFLUX site from Julian day
(JD) 204 to JD 222 consist of 20-min estimates of 0–5-
cm soil moisture, meteorological conditions at screen
height composed of air temperature, relative humidity,
wind speed and solar radiation, surface fluxes com-
posed of net radiation, soil heat flux measured at �5
cm, sensible heat flux, and latent heat flux.

As part of the Monsoon ‘90 campaign, the National
Aeronautics and Space Administration (NASA) Push
Broom Microwave Radiometer (PBMR) was flown on
six flights of the C-130 aircraft during a 10-day period in
July and August of 1990 (Schmugge et al. 1994). The
objective was to map the surface brightness tempera-
ture at a wavelength of 21 cm (L band) and to infer
surface soil moisture from these data. The four beams
of PBMR point at �8° and �24° incidence angle with a
3-dB beamwidth of about 30% of the altitude. For
Monsoon ‘90 the PBMR flights were at an altitude of
600 m, which yielded an instantaneous field of view
(FOV) of 180 m. Available PBMR data of the Mon-
soon ‘90 experiment are nadir brightness temperatures.
To create the images of the brightness temperature at
nadir, the outer beams were corrected for incidence
angle effects by multiplying them by the ratio of the
average of the inner beam to the outer beam on each
side (Schmugge et al. 1994).

3. Models

A SVAT and an empirical brightness temperature
model are presented in this section.

a. ICARE

The Interactive Canopy Radiation Exchange (ICARE)
SVAT model (Gentine et al. 2006) is dedicated to simu-
late the heat, mass, and momentum exchange within
the continuum soil–vegetation–atmosphere over conti-
nental surfaces. The climate forcing is composed of the
incoming shortwave radiation Rs (W m�2), air tempera-
ture Ta (°C), wind speed ua (m s�1), relative humidity
of air qa (%), and precipitation P (mm). The surface
state is a vector composed of the surface soil moisture
W (%), the deep soil moisture W2 (%), the soil surface
temperature T (K), and the deep soil temperature T2 (K).

The evolution of soil temperature follows the force-
restore model proposed by Deardorff (1978):

�
�T

�t
� c1

G

�scs��s��1�2 � c2

T � T2

�

�T2

�t
�

G

�scs�365�s��1�2

, �1�

where G is the conduction in the soil, �s is the soil
density, cs is the soil specific heat, �s is the soil thermal
conductivity, and c1, c2 are two parameters computed
for each period of 1-day 	.

The evolution of the soil moisture content is de-
scribed following the force–restore formulation using
two soil layers as proposed in Interactions between
Soil, Biosphere, and Atmosphere (ISBA; Noilhan and
Planton 1989):

�
�W

�t
� C1

P � LEs

�wd1
� C2

W � Weq

�
while 0 
 W � Wfc

�W2

�t
�

P � LEs � LEc

�wd2

while 0 
 W2 � Wfc

, �2�

where LEs is the soil evaporation, LEc is the vegetation
transpiration, Weq is an equivalent moisture for the re-
store effect on the surface moisture due to the root
zone moisture, Wfc is the moisture at field capacity, C1,
C2 are two parameters, d1 is the depth of the surface
layer, d2 is the mean depth of the deep layer, and �w is
the water density. Parameters C1, C2 and Wfc are esti-
mated using the pedotransfer functions of Noilhan and
Mahfouf (1996) and sand and clay fractions.

ICARE uses the common dual-source formulation

by Shuttleworth and Wallace (1985) and its network of
resistances. The aerodynamic resistances for heat and
water vapor are computed as in Choudhury and Mon-
teith (1988). The bulk stomatal resistance is expressed
as the product of a minimum stomatal resistance and
four stress functions (Jarvis 1976). The soil resistance to
evaporation rss is expressed as in Camillo and Gurney
(1986):

rss � exp�A � BW�Wfc�, �3�

where A and B are two calibration parameters.
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b. An empirical brightness temperature model

An empirical brightness temperature (EBT) model is
used to simulate the L-band brightness temperatures
remotely sensed by the PBMR instrument during the
Monsoon ‘90 experiment. Over the 10-day period of
PBMR observations, Schmugge et al. (1994) found no
correlation of the variation of the slopes of the relation
between PBMR brightness temperature/ground-based
soil moisture with any soil or vegetation parameters
(e.g., sand, clay, percentage rock or biomass). In fact,
the physically based tau-omega formalism (Mo et al.
1982; Brunfeldt and Ulaby 1984; Ulaby et al. 1986)
could not be used to model the L-band surface emis-
sion. However, the results of Schmugge et al. (1994) on
a site-by-site basis indicated excellent correlation of
PBMR brightness temperatures with ground-based soil
moisture. In this study, the results of Schmugge et al.
(1994) are therefore used to build an empirical relation-
ship between PBMR data and ground soil moisture
measurements.

The formulation of the angular brightness tempera-
ture TB� simulated by the EBT model at the incidence
angle � is given by

TB� � a�W2 � b�W � c�, �4�

where W is the 0–5-cm soil water content and a�,
b�, and c� are three angular parameters. The EBT
model simulates the PBMR observation at 8° (TB⊥)
and 24° (TB∠) given the six parameters X � (a⊥, b⊥, c⊥,
a∠, b∠, c∠).

Note that the quadratic fit of Eq. (4) based on the
PBMR data of Monsoon ‘90 is not state of the art. The
development of physically based radiative transfer
models will actually be a critical step in the application
to SMOS or other passive microwave data.

4. Methods

The disaggregation method and the ensemble Kal-
man filter are presented in this section.

a. Disaggregation method

The disaggregation method is fully described in Mer-
lin et al. (2005). Basically, soil skin temperature obser-
vations are combined with the modeling of land sur-
face–atmosphere interactions to estimate a spatial dis-
tribution of surface soil moisture within the microwave
pixel. The distribution is then calibrated at the scale of
the microwave pixel with a SMOS-type multiangular
observation.

1) ESTIMATE A DISTRIBUTION

The spatial variability of surface soil moisture within
the microwave pixel is explained by the soil skin tem-

perature retrieved from fine-resolution optical/thermal
data. Because soil skin temperature depends on surface
variables other than surface soil moisture (e.g., soil tex-
ture, solar radiation, etc.), a SVAT model is used to
remove the influence of finescale surface parameters
and meteorological data on soil skin temperature. In
this study, ICARE predictions are used to estimate the
impact (noted T SVAT) of the variability of surface pa-
rameters (vector Y) and meteorological data (vector Z)
on soil skin temperature:

�TSVAT � ICARE�W, Y,Z� � ICARE�W, �Y�, �Z��,

�5�

where ICARE predictions are the soil skin tempera-
tures solved by the energy budget, �Y� is the vector of
the surface parameters averaged at the microwave
scale, and �Z� is the vector of the meteorological vari-
ables averaged at the microwave scale. A variable
called “projected soil temperature” and denoted T is
then computed as

T � T � �TSVAT, �6�

where T is the measured soil skin temperature. The
projected soil temperature is the variable to be used by
the disaggregation method to estimate the spatial vari-
ability of surface soil moisture within the microwave
pixel. In practice, the disaggregated soil moisture Wdisag

is expressed at first order as function of the projected
soil temperature:

Wdisag � WSMOS � f1�T � �T��, �7�

where �T � is the average of the finescale projected soil
temperature, WSMOS is the microwave-scale soil mois-
ture, and f1 is a first-order coefficient fixing the range
covered by downscaled values.

2) CALIBRATE THE DISTRIBUTION

Both parameters WSMOS and f1 of Eq. (7) are in-
verted from a SMOS-type observation. In practice, a
cost function F is first built to evaluate the distance
between simulated and measured microwave observa-
tions:

F �WSMOS, f1� � ��EBT�Wdisag, X�� � TBSMOS �2, �8�

where �EBT(Wdisag, X)� is the average within the
SMOS pixel of the finescale simulated observation and
TBSMOS is the measured observation. The cost function
F is then minimized sequentially to invert the micro-
wave-scale soil moisture Winv

SMOS:

WSMOS
inv � MinWSMOS

F �WSMOS, 0� �9�
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and the first-order coefficient f inv
1 :

f 1
inv � Minf1

F �WSMOS
inv , f1�. �10�

At this point, all the downscaled values of (7) are de-
termined.

b. Ensemble Kalman filter

The Ensemble Kalman (EnK) filter (Evensen 1994)
is used to assimilate the downscaled soil moisture into
ICARE. The EnK filter has the advantage of being
relatively simple to implement and computationally ef-
ficient compared to other filters like the extended Kal-
man filter (Evensen 1992). It is based on the generation
of an ensemble of model predictions to estimate the
covariance information required by the standard Kal-
man filter for the updating of model predictions with
observations. Covariance information is calculated by
propagating in time the ensemble of state vectors and
by averaging at the time of measurement the predic-
tions made by model replicates within the ensemble. In
the study, the state vector is noted S � (W, W2, T, T2)
and is always defined at finescale.

As finescale soil skin temperature T is used as input
to the disaggregation method, it is also assimilated into
the SVAT model at the same time as the downscaled
soil moisture Wdisag. Both variables Wdisag and T are
correlated because Wdisag is retrieved from the spatial
distribution of T. But T does provide some independent
information on the surface state S because Wdisag is
obtained with a combination of two independent ob-
servations, which are T and TBSMOS. In particular, the
assimilation of T (in addition to Wdisag) can compensate
some errors in Wdisag associated with uncertainties in
SMOS observation. The observation vector to be as-
similated at finescale is noted O � (Wdisag, T).

An ensemble of N initial state vectors Si�1...N
t0

is com-
puted from a normal distribution with a mean equal to
the guess and covariance equal to the estimated uncer-
tainties on the variables. These N points are propagated
in time until an observation is available. At the time of
measurement, the vector of observations O is used to
generate a set of N observation vectors Om,i�1...N

t � t0
from

a normal distribution of variance equal to the estimated
observation uncertainty. For each point of the en-
semble, the state variables are then readjusted, accord-
ing to the uncertainties of observed data and of simu-
lated variables. If the model is linear and all errors are
additive, independent, and Gaussian, the optimal up-
dating of ICARE predictions Ss,i by the measurement
Om,i is given by

Stk
a,i � Stk

s,i � Kk�Otk
m,i � Otk

s,i�, �11�

where Sa,i is the analyzed state vector after readjust-
ment and Os,i the simulated observation. The expres-
sion of the Kalman gain Kk that minimizes the analyzed
error covariance is given by

Kk � {CSsOs�COs � CO��1}tk
, �12�

where CSsOs � �(Ss,i � Ss)(Os,i � Os)T� is the cross-
covariance matrix linking the predicted observations
with the predicted state variables, COs � �(Os,i � Os)
(Os,i � Os)T�, the error covariance matrix of the mea-
surement forecasts, and CO � �(Om,i � O) (Om,i � O)T�,
the error covariance matrix of the measured observa-
tions.

5. Synthetic data

Synthetic SMOS pixels, which are subject to disag-
gregation, are generated by aggregating the PBMR pix-
els covering the eight METFLUX sites. The EBT
model and ICARE are calibrated against the Mon-
soon ‘90 data, and calibrated model runs are used to
generate synthetic coarse-scale biangular microwave
observations and synthetic finescale soil skin tempera-
ture observations over the 19-day period JD 204–222.
Synthetic coarse-scale meteorological observations
are generated by averaging the measurements at the
eight METFLUX sites. Such a synthetic dataset is fi-
nally perturbed to account for the uncertainty in obser-
vations.

a. Synthetic coarse-scale SMOS observations

The EBT model is calibrated against the Monsoon
’90 observations at the eight METFLUX sites. Ground
soil moisture measurements are inserted into the EBT
model and simulated brightness temperatures are com-
pared to PBMR data. Parameters a⊥, b⊥, and c⊥ are
evaluated by minimizing the root-mean-square (RMS)
difference between the EBT generated and measured
nadir brightness temperature at each METFLUX site.
The results of Schmugge et al. (1994) are used to cali-
brate parameters a⊥, b⊥, and c⊥. Schmugge et al. (1994)
estimated the angular effects of PBMR data by com-
puting the ratio of the average of the inner beam to the
average of the outer beam on each side of the instru-
ment, and on each day of PBMR observations. In this
study, a PBMR oblique brightness temperature is first
simulated by dividing the Monsoon ‘90 nadir brightness
temperature by the same ratios as in Schmugge et al.
(1994). Parameters a∠, b∠, and c∠ are then evaluated by
minimizing the root-mean-square difference between
the EBT-generated and PBMR-simulated oblique
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brightness temperatures. Calibration parameters are
listed in Table 1.

The nadir brightness temperature simulated by the
calibrated EBT model versus the Monsoon ‘90 nadir
brightness temperature is plotted in Fig. 1. The root-
mean-square error on the simulated nadir brightness
temperature is found to be 4 K. Figure 1 also illustrates
the angular dependency of the simulated brightness
temperature to surface soil moisture: for wetter days
the ratio of the average of the inner beam to the outer
beam is about 1.03 and for dry days the ratio is about
1.01.

A synthetic SMOS observation TBSMOS � (�TB⊥�,
�TB∠�) is generated every day at 12 A.M by simulating
the microwave emission at the eight METFLUX sites
with the calibrated EBT model and by averaging the
eight nadir and the eight oblique simulated brightness
temperatures.

b. Synthetic finescale soil skin temperature
observations

ICARE is calibrated against latent heat flux obser-
vations. All the surface parameters are fixed to the ho-
mogeneous values used in Houser et al. (1998) for the
WGEW. Parameters A and B are estimated at the eight
METFLUX sites by fixing the water status (W and W2)
and by minimizing the root-mean-square difference be-
tween the simulated and measured latent heat flux.
Given that root-zone soil moisture is available at two
METFLUX sites only (Kendall and Lucky Hills), a
mean value of 15% is taken for the simulation. Cali-
bration parameters are listed in Table 1 and results are
presented in Table 2. Figure 2 illustrates the simulated
latent heat flux for the time period JD 204–222 (only
positive fluxes are considered). Note that the issue here
is not to validate the model but rather to make sure that
ICARE is realistic.

The calibrated energy budget model of ICARE is
used to generate the synthetic finescale soil skin tem-
perature at 12 A.M. by inserting the observations of
5-cm soil moisture and meteorological forcings.

c. Synthetic coarse-scale meteorological
observations

1) RAINFALL

The current spatial resolution of global-scale precipi-
tation data is still too coarse to be used at the input
scale required for hydrological applications. To account
for this limitation, coarse-scale precipitation data are
generated by averaging the measurements at the eight
METFLUX stations.

2) OTHER METEOROLOGICAL VARIABLES

Different cases are considered for the other meteo-
rological variables. In the dataset METEO1, all the at-
mospheric forcing variables composed of solar radia-
tion, air temperature, wind speed, and air humidity are
assumed to be available at finescale (model scale). In
the dataset METEO2, solar radiation is assumed to be
available at finescale and the other variables (air tem-
perature, wind speed, and air humidity) at coarse scale
(microwave resolution). In the dataset METEO3, all

TABLE 2. Results of the calibration of ICARE over the eight
METFLUX sites.

RMS error (W m�2) on

Site
Net

radiation
Ground
heat flux

Sensible
heat flux

Latent
heat flux

1 31 30 30 40
2 28 31 29 38
3 29 30 34 45
4 33 40 36 48
5 39 40 36 50
6 31 35 32 37
7 37 38 29 41
8 47 42 35 42

TABLE 1. Calibration parameters of ICARE and the EBT
model at the eight METFLUX sites.

Site A B a⊥ b⊥ c⊥ a∠ b∠ c∠

1 8 8 0.14 �10.14 330.38 0.21 �11.75 333.40
2 7 4 �0.024 �2.65 298.41 �0.020 �2.93 296.14
3 8 7 0.062 �5.79 305.72 0.080 �6.46 304.99
4 8 6 0.14 �7.46 332.50 0.16 �8.17 333.55
5 8 7 �0.25 1.40 298.19 �0.25 0.91 299.97
6 8 7 0.0075 �6.67 326.60 0.031 �7.57 328.00
7 7 4 �0.26 0.97 276.30 �0.24 0.41 273.26
8 7 6 0.017 �3.55 292.77 0.027 �3.96 290.19

FIG. 1. Angular brightness temperature simulated by the EBT
model vs the Monsoon ‘90 nadir brightness temperature.
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the meteorological variables are available at coarse scale
only. Coarse-scale meteorological variables are gener-
ated by averaging the finescale meteorological data.

d. Perturb synthetic observations

A spatially uncorrelated Gaussian noise of 4 K is
added to the generated finescale brightness tempera-
ture (4 K is the standard deviation found between simu-
lated and measured nadir brightness temperatures). A
spatially uncorrelated Gaussian noise of 1 K is added to
the generated finescale soil skin temperature. A noise
equal to the standard deviation observed within the
SMOS pixel is added to the aggregated rainfall (nega-
tive values are set to zero). A noise of 1 K and 10% of
the measured value is systematically added to respec-
tively finescale ground-based air temperature and fine-
scale ground-based solar radiation, wind speed, and air
humidity. A noise equal to the standard deviation ob-
served within the SMOS pixel is added to the meteo-
rological variables generated at the microwave scale.

6. Application

The disaggregation method is applied to the synthetic
dataset, and downscaled synthetic observations are as-
similated into ICARE with the ensemble Kalman filter.
The objective is to assess the ability of the disaggrega-
tion/assimilation coupling scheme to correct errors as-
sociated with the use of meteorological data (including

rainfall) estimated at coarse scale only. The impact of
the assimilation frequency is also investigated.

a. Disaggregation

The disaggregation method is applied to the time se-
ries of synthetic SMOS pixels. Each day of the 19-day
period, the algorithm is run 50 times on the randomly
noised dataset generated at 12 A.M. and composed of
synthetic coarse-scale SMOS observation, synthetic fine-
scale soil skin temperature observations, and the me-
teorological forcings at either fine- or coarse scale de-
pending on the dataset used (METEO1, -2, and -3). The
50 separate replicates are used to compute the mean
and standard deviation of the downscaled surface soil
moisture within the ensemble.

The downscaled surface soil moisture is compared to
ground measurements in Fig. 3 (first line). The subgrid
variability of surface soil moisture is generally well rep-
resented in the case of METEO1. In particular, param-
eters Winv

SMOS and f inv
1 appear to be retrieved with a

satisfying accuracy from synthetic SMOS observations.
If the datasets METEO1 and -2 are compared, it is

apparent that the heterogeneity of air temperature,
wind speed, and air humidity has not a significant im-
pact. However, the much noisier results with the
dataset METEO3 indicate that solar radiation is the
atmospheric variable whose finescale variability affects
the most the downscaled soil moisture.

FIG. 2. Latent heat flux simulated by ICARE vs ground-based measurements at the eight METFLUX sites.
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In Table 3, the mean error on the downscaled soil
moisture is compared to the average of solar radiation
and its standard deviation within the SMOS pixel. In
general, the error obtained with the datasets METEO1
and -2 is negatively correlated to the microwave-scale
solar radiation. Note that the variability of solar radia-
tion was mainly due to the presence of clouds, condi-
tions for which the soil skin temperature is not available
in an operational scenario, and the disaggregation
method is not applicable. In fact, even if the application
of the method for cloudy conditions (e.g., on JD 214) is
an exercise in style, the sensitivity of the method to
solar radiation can be tested.

Based on datasets METEO1 and -2, a saturation of
the downscaled soil moisture is observed in Fig. 3 for
low soil moisture values (
4%) as well as for relatively
high values (�25%). This is due to the exponential
formulation of the soil resistance rss in (3). By control-
ling the soil evaporation, the soil resistance parameter-

izes the correlation between soil skin temperature and
surface soil moisture. The nonlinearities of the soil re-
sistance thus impact the soil skin temperature, which in
turn makes the downscaled soil moisture saturate.

b. Assimilation of downscaled observations

The downscaled surface soil moisture Wdisag and syn-
thetic finescale soil skin temperature T are both assimi-
lated into ICARE with the EnK filter. The 50 separate
replicates used in the disaggregation are now used to
update the state vector every day at 12 A.M. Before the
assimilation, the dependence in T and Wdisag errors is
removed by replacing each individual state vector by
the mean vector of the 50-member ensemble and by
adding a Gaussian noise equal to the standard deviation
computed within the ensemble.

The state vector of the replicate i within the en-
semble is initialized with Wi

t0
and Wi

2t0
uniformly dis-

tributed between 5% and 20% and Ti
t0

and Ti
2t0

distrib-

FIG. 3. Mean (circles) and std dev (error bars) of the surface soil moisture simulated by the disaggregation method, ICARE in open
loop, and the disaggregation–assimilation coupling scheme. Statistical results were computed within an ensemble of 50 replicates.
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uted by a Gaussian function with a standard deviation
of 10 K and a mean of 300 K. Between two assimila-
tions, the atmospheric data used as forcing at the eight
METFLUX sites are estimated at either fine- or micro-
wave scale, depending on the dataset used (METEO1,
-2, or -3).

Figures 4 and 5 illustrate the EnK’s sequential as-
similation of the synthetic finescale observation (Wdisag,
T) with the dataset METEO1 (all the atmospheric vari-
ables except rainfall are provided at finescale) at the
eight METFLUX sites. Surface soil moisture predic-
tions compare better to ground measurements with the
disaggregation/assimilation coupling scheme than with
the “open loop,” where ICARE is run from the initial
guess without assimilation. Note that the open-loop
surface soil moisture estimates appear to have a smaller
dynamic range than the observations. This dynamic
range error is mainly due to the fact that ICARE was
not calibrated against surface soil moisture observa-
tions but against latent heat flux observations.

The comparison of disaggregation and assimilation
results in Fig. 3 indicates that the assimilation generally
improves the downscaled soil moisture. The coupled
scheme therefore combines the spatial (but static) in-
formation provided by the disaggregation method with
the temporal (but monodimensional) information pro-
vided by the assimilation scheme in an optimal way.

c. Impact of coarse-scale meteorological data

Figure 3 illustrates the impact of coarse-scale meteo-
rological data by comparing the disaggregation and as-
similation results obtained with datasets METEO1, -2,
and -3. With datasets METEO2 and -3, the projection
approach is not able to remove the meteorological in-
fluences on soil skin temperature T, which involves ad-
ditional errors on the downscaled soil moisture Wdisag.
However, the assimilation results (with datasets ME-
TEO2 and -3) are relatively similar to those obtained
with METEO1. It is suggested that the random errors
on Wdisag due to the meteorological influences on T are
significantly reduced with the sequential assimilation
process.

The comparison in Fig. 3 of the disaggregation and
assimilation results obtained with the dataset METEO1
indicates that the assimilation makes the downscaled
soil moisture saturate above 18%. The nonrepresenta-
tion of some local rainfall events (notably on JD 213 at
METFLUX site 4) causes an underestimation of the
highest surface soil moisture values.

d. Comparison with other assimilation schemes

To assess the utility of the disaggregation, the disag-
gregation/assimilation coupling scheme is compared to
two other assimilation schemes: the assimilation of the
synthetic finescale soil skin temperature T only and the
assimilation at finescale of the synthetic observation
(Winv

SMOS, T). The dataset METEO1 is used in this ap-
plication. Note that the assimilation of “T only” as-
sumes an infinite uncertainty in microwave observa-
tions and that the microwave-scale soil moisture Winv

SMOS

is retrieved with Eq. (9).
Figure 6 illustrates the temporal variation of the er-

ror on the surface soil moisture simulated by the open
loop, the assimilation of T only, the assimilation of
(Winv

SMOS, T), and the assimilation of (Wdisag, T). The
microwave-scale error and the finescale error are re-
spectively evaluated as the average and the standard
deviation of the finescale biases within the SMOS pixel.
The finescale biases are computed as the average be-
tween 10 A.M. and 5 P.M. of the difference between the
predicted and measured surface soil moisture.

The comparison of the assimilation of “T only” (Fig.
6b) with the open loop (Fig. 6a) indicates that the as-
similation of soil skin temperature is able to reduce the
error on surface soil moisture at both fine- and micro-
wave scales. In Fig. 6c, it is apparent that the assimila-
tion of the microwave-scale soil moisture (in addition to
soil skin temperature) significantly improves the predic-
tions at the microwave scale but degrades the estima-
tions at finescale. The comparison of the assimilation of

TABLE 3. RMS error on the downscaled surface soil moisture.
Disaggregation results obtained with datasets METEO1, -2, and
-3 are compared with the average of solar radiation and its std dev
within the SMOS pixel.

RMS error on the
downscaled values (%)

Solar radiation
(W m�2)

JD METEO1 METEO2 METEO3 Average (std dev)

204 0.7 1.9 4.7 747 (89)
205 0.8 2.6 6.2 698 (105)
206 0.4 2.2 4.4 958 (95)
207 0.6 1.5 3.2 995 (12)
208 0.5 1.0 2.2 984 (11)
209 1.1 1.3 1.4 985 (10)
210 1.1 1.2 1.4 977 (9)
211 1.5 1.7 4.1 678 (79)
212 1.6 1.8 4.7 929 (102)
213 1.2 1.1 0.8 1042 (29)
214 2.2 6.3 8.5 760 (166)
215 0.4 2.3 7.0 906 (114)
216 0.9 2.1 3.4 794 (79)
217 0.5 1.5 3.0 929 (141)
218 2.1 2.2 4.0 216 (17)
219 1.0 1.6 6.9 743 (105)
220 1.2 1.2 2.6 810 (204)
221 1.7 1.3 1.9 922 (60)
222 1.4 1.1 1.6 957 (43)
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(Wdisag, T) with the assimilation of (Winv
SMOS, T) indi-

cates that the disaggregation improves the estimation of
surface soil moisture at finescale (the width of error
bars is reduced in Fig. 6d) but not at the microwave
scale. Finally, the comparison of the assimilation of
(Wdisag, T) with the assimilation of “T only” shows that
the changes in the updates are mainly driven by surface
soil moisture observations. The long-term memory of
surface soil moisture (compared to soil skin tempera-
ture) is actually accounted for in the Kalman gain.

Because the disaggregation of microwave data is ex-
pected to improve surface fluxes, the performance of
the disaggregation/assimilation coupling scheme is also
evaluated in terms of latent heat flux predictions. Fig-
ure 7 illustrates the temporal variation of the error on
the latent heat flux simulated by the open loop, the
assimilation of T only, the assimilation of (Winv

SMOS, T),

and the assimilation of (Wdisag, T). It is found that the
disaggregation generally improves latent heat flux pre-
dictions at finescale, and also at the microwave scale
except in two periods. During JD 213–216, the assimi-
lation of (Wdisag, T) is less efficient at the microwave
scale than the assimilation of (Winv

SMOS, T) because the
(unresolved) spatial variability of rainfall is relatively
high and the frequency of rainfall events is higher than
the assimilation frequency. In the period JD 221–222,
the errors on latent heat flux are mainly due to the
overestimation of the downscaled soil moisture at
METFLUX site 7.

e. Impact of the assimilation frequency

The assimilation frequency is decreased from 1/1 day
to 1/5 days to assess its impact on the assimilation re-
sults. The disaggregation/assimilation coupling scheme

FIG. 4. Temporal variations for sites 1 to 4 of the measured 0–5-cm soil moisture (thick dotted line), the downscaled surface soil
moisture (the mean and standard deviation within the ensemble are represented), the surface soil moisture simulated by ICARE with
the assimilation of (Wdisag, T ) (continuous line represents the mean within the ensemble), and the surface soil moisture simulated by
ICARE in open loop (dotted line represents the mean within the ensemble).
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can hence be tested with an assimilation frequency con-
sistent with future microwave-based missions. Note
that the frequency of SMOS will be of about 2–3 days
depending on the latitude of the pixel.

The assimilation schemes of (Wdisag, T ) and of
(Winv

SMOS, T) are run with the dataset METEO1 for three
different assimilation frequencies: 1/1 day, 1/3 days, and
1/5 days. The results are compared by evaluating the
average and the standard deviation within the SMOS
pixel of the mean error between JD 204 and JD 222 on
the finescale surface soil moisture. Because the 19-day
period is not long enough to assess the performance of
the assimilation strategies with an assimilation fre-
quency ranging from 1/5 days to 1/3 days, three differ-
ent cases are considered for the assimilation frequency
1/3 days and five different cases are considered for the
assimilation frequency 1/5 days by incrementing the

first date of assimilation of 1 day. For example, three
results are computed with the assimilation frequency
1/3 days corresponding respectively to the three pos-
sible first assimilation dates: JD 204, JD 205, or JD 206.

Table 4 illustrates the effect of a decreasing assimi-
lation frequency on the performance of the approach in
terms of surface soil moisture predictions. Even if the
efficiency of the assimilation naturally depends on the
timing of assimilation dates with rainfall events, the
coupled disaggregation/assimilation behaves generally
better than the assimilation of the microwave-scale sur-
face soil moisture regardless of the assimilation fre-
quency and the first date of assimilation.

7. Conclusions

Near-surface soil moisture retrieved from synthetic
SMOS data is downscaled with the method of Merlin et

FIG. 5. Temporal variations for sites 5 to 8 of the measured 0–5-cm soil moisture (thick dotted line), the downscaled surface soil
moisture (the mean and standard deviation within the ensemble are represented), the surface soil moisture simulated by ICARE with
the assimilation of (Wdisag, T ) (continuous line represents the mean within the ensemble), and the surface soil moisture simulated by
ICARE in open loop (dotted line represents the mean within the ensemble).
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al. (2005) and assimilated into a distributed land surface
model with the ensemble Kalman filter. Because satel-
lite-based meteorological data (notably rainfall) are not
currently available at finescale, coarse-scale data are
used as forcing in both the disaggregation and the as-
similation. The objective is to assess the use of a disag-
gregation/assimilation coupling scheme to compensate
errors in terms of surface soil moisture and latent heat
flux associated with the use of meteorological data at
coarse scale only. The strategy adopted to test the ap-
proach is to calibrate a land surface and a brightness
temperature model against the Monsoon ‘90 data, cre-
ate synthetic data from calibrated model runs, apply the

disaggregation/assimilation, and compare to real obser-
vations.

The application of the disaggregation method to
coarse-scale and/or finescale meteorological data indi-
cates that solar radiation is the most important variable
to be estimated at finescale. In particular, the spatial
variability of air temperature, wind speed, and air hu-
midity has a minor impact on downscaled values.
Downscaled synthetic observations are then assimilated
into the distributed land surface model. It is found that
the disaggregation improves the assimilation results in
terms of surface soil moisture predictions, and vice
versa, the assimilation of the downscaled soil moisture

FIG. 6. Error on the surface soil moisture simulated by ICARE in (a) open loop, (b) the assimilation of T, (c) the assimilation of
(Winv

SMOS, T), and (d) the assimilation of (Wdisag, T ). The microwave-scale error (circles) and the finescale error (error bars) are
respectively evaluated as the average and the standard deviation of the finescale biases within the SMOS pixel. The finescale biases are
computed as the average between 10 A.M. and 5 P.M. of the difference between the predicted and measured surface soil moisture.
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improves the spatial distribution of surface soil mois-
ture at the observation time. Latent heat flux predic-
tions are subsequently improved, at both fine- and mi-
crowave scales. The use of coarse-scale rainfall data in
the assimilation has the effect of underestimating the
highest values of surface soil moisture. Because of the
nonrepresentation of some local rainfall events, the as-
similated–disaggregated soil moisture saturates to a
threshold estimated with these data and model param-
eters to about 18%. Finally, the disaggregation–assimi-
lation coupling scheme is tested with a decreasing as-
similation frequency from 1/1 day to 1/5 days. It is
found that the assimilation of the disaggregated soil

moisture still behaves significantly better than both the
open-loop system (no assimilation) and the assimilation
of the microwave-scale soil moisture.

These encouraging results show that the disaggrega-
tion of passive microwave soil moisture is able to im-
prove the representation of the surface processes oc-
curring at both fine- and microwave scales, even when
coarse-scale meteorological data including rainfall are
used. However, the 19-day period used in the paper is
very short and longer periods should be used in the
future to assess the robustness of the approach. More-
over, the error sources were perfectly known in this
study. The application to real data will require accurate

FIG. 7. Error on the latent heat flux simulated by ICARE in (a) open loop, (b) the assimilation of T, (c) the assimilation of (Winv
SMOS,

T), and (d) the assimilation of (Wdisag, T ). The microwave-scale error (circles) and the finescale error (error bars) are respectively
evaluated as the average and the standard deviation of the finescale biases within the SMOS pixel. The finescale biases are computed
as the average between 10 A.M. and 5 P.M. of the difference between the predicted latent heat flux and the latent heat flux of reference
simulated by ICARE with the direct insertion of ground measurements.
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characterization of the uncertainty in input data, nota-
bly the rainfall data. One should also note that this
study took place in a very arid region where the cou-
pling between surface temperature and surface soil
moisture is relatively strong. The physical basis of the
downscaling approach would be weakened in areas
where surface evaporation is energy limited.

Optical data are not available for cloudy days but
microwave data still provide information on surface soil
moisture. If the disaggregation method used in the pa-
per is not strictly applicable for cloudy conditions, the
finescale surface soil moisture simulated by a distrib-
uted land surface model could still be constrained by
adjusting the mean level of the predicted distribution to
the microwave-scale soil moisture.

In the case of multivariable data assimilation, further
studies have to focus on the impact of the relative un-
certainties in the observation variables (e.g., surface
soil moisture and surface temperature). Assimilation
results may be sensitive to the relative weight attributed
to those variables, especially when they are observed at
different spatial resolutions.
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