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Introduction

We consider in this paper the model problem

-∇ • (S∇p) = f in Ω, (1.1a) p = 0 on ∂Ω, (1.1b) 
where Ω ⊂ R d , d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set), S is a symmetric, bounded, and uniformly positive definite tensor, and f ∈ L 2 (Ω). The classical primal weak formulation consists in finding p ∈ H 1 0 (Ω) such that (S∇p, ∇ϕ) = (f, ϕ) ∀ϕ ∈ H 1 0 (Ω) (

(see Section 2.1 below for the details on the notation). The problem (1.1a)-(1.1b) can be equivalently written as the first-order system

u = -S∇p in Ω, (1.3a) ∇ • u = f in Ω, (1.3b 
)

p = 0 on ∂Ω, (1.3c) 
which leads to the weak mixed formulation, consisting in finding u ∈ H(div, Ω) and p ∈ L 2 (Ω) such that

(S -1 u, v) -(p, ∇ • v) = 0 ∀ v ∈ H(div, Ω), (1.4a) (∇ • u, φ) = (f, φ) ∀φ ∈ L 2 (Ω). (1.4b)
Note that this formulation is equivalent to (1.2) in the sense that p = p and u = -S∇p, which is straightforward to show, cf. Quarteroni and Valli [START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF]Section 7.1]. In particular, this equivalence is sufficient to conclude the well-posedness of (1.4a)-(1.4b), it is not necessary to resort to the saddle-point mixed theory, presented, e.g., in Brezzi and Fortin [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. We are interested in mixed finite element approximations to (1.4a)-(1.4b), which consist in finding u h ∈ V h and p h ∈ Φ h such that

(S -1 u h , v h ) -(p h , ∇ • v h ) = 0 ∀ v h ∈ V h , (1.5a) 
(∇ • u h , φ h ) = (f, φ h ) ∀φ h ∈ Φ h . ( 1 

.5b)

Here Φ h ⊂ L 2 (Ω) and V h ⊂ H(div, Ω) are some of the usual finite-dimensional spaces defined on a mesh T h of simplices or rectangular parallelepipeds, see Section 4.1 below and Brezzi and Fortin [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] or Roberts and Thomas [START_REF] Roberts | Mixed and hybrid methods[END_REF]. The main purposes of this paper are the following: i) present a unified framework for both a priori and a posteriori error analysis of mixed finite element methods; ii) base this framework entirely on the primal weak formulation (1.2) (and its abovecited direct equivalence with (1.4a)-(1.4b)) on the continuous level and on postprocessing and the discrete Friedrichs inequality on the discrete level; in particular, the notion of the inf-sup and the discrete inf-sup condition is completely avoided; iii) arrive at optimal a priori estimates (under minimal necessary assumptions); iv) present new (and optimal) a posteriori error estimates; v) obtain these results with as simple as possible proofs; vi) present some new (to the best of the author's knowledge) properties of the mixed finite element methods. A priori error estimates for mixed finite element methods are usually obtained by means of the saddle-point theory of Brezzi [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[END_REF] and Babuška [START_REF] Babuška | Error-bounds for finite element method[END_REF]. Traditionally, the natural norms of the spaces H(div, Ω) and L 2 (Ω) are used, but mesh-dependent norms can be employed instead, cf. Babuška et al. [START_REF] Babuška | Analysis of mixed methods using mesh dependent norms[END_REF]. Postprocessing of p h into ph is then usually used for the double purpose of giving an improved approximation to p and facilitating the implementation of mixed methods, cf. Arnold and Brezzi [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF], Bramble and Xu [START_REF] Bramble | A local post-processing technique for improving the accuracy in mixed finite-element approximations[END_REF], Stenberg [START_REF] Stenberg | Postprocessing schemes for some mixed finite elements[END_REF], Chen [START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF], and Arbogast and Chen [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF]. In combination with mesh-dependent norms, it has also previously been used in order to obtain error estimates in, e.g., Lovadina and Stenberg [START_REF] Lovadina | Energy norm a posteriori error estimates for mixed finite element methods[END_REF], see also the references therein. Some other results are presented by Marini and Pietra [START_REF] Marini | An abstract theory for mixed approximations of second order elliptic problems[END_REF] and in [START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF] and [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF]. Nice links between the mixed finite element and nonconforming finite element methods are then in particular given in [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF][START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF][START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF], Marini [START_REF] Marini | An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method[END_REF], Chen [START_REF] Chen | Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems[END_REF], or [START_REF] Eymard | A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems[END_REF][START_REF] Vohralík | Mixed and nonconforming finite element methods on a system of polygons[END_REF]. Recently, Cockburn and Gopalakrishnan [START_REF] Cockburn | A characterization of hybridized mixed methods for second order elliptic problems[END_REF][START_REF] Cockburn | Error analysis of variable degree mixed methods for elliptic problems via hybridization[END_REF] showed that analysis of mixed methods can entirely be based on the hybridization (cf. Section 4.3 below) and lifting operators and demonstrated interesting relations between the different mixed methods. Let us also mention that very tight links between mixed finite element and finite volume methods exists, see Younès et al. [START_REF] Younès | From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions[END_REF] and [START_REF] Vohralík | Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes[END_REF] and the references therein.

A posteriori error estimates for mixed finite element methods were started in the works of Alonso [START_REF] Alonso | Error estimators for a mixed method[END_REF], Braess and Verfürth [START_REF] Braess | A posteriori error estimators for the Raviart-Thomas element[END_REF], Carstensen [START_REF] Carstensen | A posteriori error estimate for the mixed finite element method[END_REF], Hoppe and Wohlmuth [START_REF] Hoppe | Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems[END_REF], Achchab et al. [START_REF] Achchab | Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes[END_REF], Wohlmuth and Hoppe [START_REF] Wohlmuth | A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements[END_REF], Carstensen and Bartels [START_REF] Carstensen | Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM[END_REF], Kirby [START_REF] Kirby | Residual a posteriori error estimates for the mixed finite element method[END_REF], El Alaoui and Ern [START_REF] El Alaoui | Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods[END_REF], Wheeler and Yotov [START_REF] Wheeler | A posteriori error estimates for the mortar mixed finite element method[END_REF], and Lovadina and Stenberg [START_REF] Lovadina | Energy norm a posteriori error estimates for mixed finite element methods[END_REF]. For some discussion of these results, we refer to [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]. Recently, new works appeared. Repin and Smolianski [START_REF] Repin | Functional-type a posteriori error estimates for mixed finite element methods[END_REF] are able to give a guaranteed upper bound, which may however not be sufficiently precise for inhomogeneous S and general domains and boundary conditions. Moreover, no local efficiency is shown. Nicaise and Creusé [START_REF] Nicaise | Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form[END_REF] improve the results of [START_REF] Carstensen | A posteriori error estimate for the mixed finite element method[END_REF] and extend them to the anisotropic case. Kim [START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF] presents estimates applicable to any locally conservative method, as is the case of the estimates presented here. Bounds up to an undetermined constant are given in a mesh-dependent norm, which contains a weighted jump term for the potential. The enrichment of the natural energy norm by these jump terms on the one hand facilitates the analysis, but on the other one, is questionable in particular for inhomogeneous and anisotropic tensors S and not necessary. The results of Repin et al. [START_REF] Repin | Two-sided a posteriori error estimates for mixed formulations of elliptic problems[END_REF] are only valid under the hypothesis that u h ∈ H(div, Ω) and p h ∈ H 1 0 (Ω), which is not the case of (1.5a)-(1.5b) (see also Section 6.4.2 below for further remarks on this point). Larson and Målqvist [START_REF] Larson | A posteriori error estimates for mixed finite element approximations of elliptic problems[END_REF] give energy norm error estimates for the flux. The upper bound again features an unknown constant and, moreover, no local efficiency is proved. Finally, optimal a posteriori error estimates in the lowest-order Raviart-Thomas-Nédélec case were first presented in [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF][START_REF] Vohralík | A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] and then also by Ainsworth [START_REF] Ainsworth | A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements[END_REF].

We first in Section 3 of this paper, after collecting some preliminaries in Section 2, give an abstract estimate on the energy norm of the difference between two arbitrary vector fields. This estimate will then be used in order to obtain both a priori and a posteriori estimates on the error in the approximation of u in a straightforward way. In section 4 we then recall and some basic facts about mixed finite element methods and in particular the postprocessing of [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] and, for the lowest-order Raviart-Thomas-Nédélec case, that of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]. This postprocessing is then the basis for optimal a priori and a posteriori error estimates on the error in the approximation of p.

We carry out the a priori error analysis in Section 5. We highlight here its main ideas for the case S = I (I denotes the identity matrix). Typically, one has V h •n| E h = P k (E h ) in mixed finite element methods, where E h is the set of sides (edges if d = 2 and faces if d = 3). Our main assumption is that there exists a space M h such that i) M h is continuous enough in the sense that it is contained in the space of functions such that the jumps of their traces are orthogonal to the polynomials from P k (E h ); ii) M h is large enough in the sense that it contains the space of piecewise polynomials of order (k + 1); iii) for all K ∈ T h and all ξ h ∈ M h (K), (∇ξ h , v h ) K = 0 for all v h ∈ V h (K) implies ∇ξ h = 0. Finally, we suppose that one can construct a postprocessed potential ph ∈ M h such that the L 2 (Ω)-orthogonal projection of -∇p h onto Π K∈T h V h (K) is u h . This is the situation of the postprocessing of [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF]. Recalling that moreover the L 2 (Ω)-orthogonal projection of ∇ • u h onto Φ h equals that of f by (1.5b), we note that this fully mimics the continuous setting where u ∈ H(div, Ω), p ∈ H 1 0 (Ω), and (1.3a)-(1.3b) holds true. Now proving the equivalence between the energy seminorms on M h (K) and the L 2 (K)-orthogonal projection of -∇M h (K) onto V h (K) for each element K enables us to relate the energy error in pph to the one in uu h , easily obtained itself from the above-mentioned abstract estimate for vector functions. L 2 (Ω) estimates then follow by the discrete Friedrichs inequality. We also show that using the postprocessing of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] in the lowest-order Raviart-Thomas-Nédélec case, much of the above can be avoided and one obtains the estimates for pph in an extremely simple way. Finally, by construction, p h is the L 2 (Ω)-orthogonal projection of ph onto Φ h , so that the estimates for the error in pp h are easily recovered. The analysis still relies on the appropriate vector interpolation operator of each mixed finite element method, satisfying the commuting diagram property, see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]Section III.3]. On the other hand, the inf-sup condition is completely avoided by the postprocessing and the discrete Friedrichs inequality.

In Section 6, we extend the a posteriori error estimates for the lowest-order Raviart-Thomas-Nédélec case of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] to other families of mixed finite elements, all orders, and grids consisting of rectangular parallelepipeds. Using the techniques that go back to the Prager-Synge equality [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF], we present here estimates which give a guaranteed upper bound (contain no undetermined constant), are locally efficient (represent a local lower bound for the actual error), and are easily computable. Moreover, numerical experiments show that they give effectivity indices (overestimation factors) very close to the optimal value of one. Finally, they are robust with respect to the weak solution regularity, and inhomogeneities in S under the "monotonicity" assumption (cf. Bernardi and Verfürth [START_REF] Bernardi | Adaptive finite element methods for elliptic equations with non-smooth coefficients[END_REF]Hypothesis 2.7]). A fully optimal estimate can be easily obtained in our setting for an approximation couple u h ∈ H(div, Ω) and s h ∈ H 1 0 (Ω), as we show in Section 6.4.2. Using the abstract framework for the error between two arbitrary vector fields of Section 3, we first give estimates for the energy error in the approximation of u. It consists of two parts. The first one is generally given by inf s∈H 1 0 (Ω) |||u h + S∇s||| * , expressing the measure of how close u h is to a gradient of a H 1 0 (Ω)-potential in the vector energy norm ||| • ||| * . In practice, the indicator of an element K is given by |||u h + S∇(I Os (p h ))||| * ,K , where I Os is the Oswald averaging operator. The second one is the residual term (sometimes considered separately and call "data oscillation term"), given by C

1/2 P h K c -1/2 S,K f -P Φ h (f ) K
, where h K is the diameter of K, c S,K is the smallest eigenvalue of S on K, C P = 1/π 2 is the constant from the Poincaré inequality, P Φ h is the L 2 (Ω)-orthogonal projection onto Φ h , and • is the L 2 norm. Such an estimator in particular improves on estimators of the type h K u h + S∇p h K , found in many of the above-cited works. Remark that the latter one in particular reduces to h K u h K in low order mixed finite element methods, i.e., the weighted L 2 (Ω)-norm of the approximate flux, which reflects no approximation. Next, using the framework introduced in [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] and [START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF], we give estimates for the energy error in the approximation of p.

The a posteriori error estimates developed in this paper are very general and apply directly to any locally conservative method, such as the finite volume one, cf. Eymard et al. [START_REF] Eymard | Finite volume methods[END_REF], Aavatsmark et al. [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods[END_REF], or Droniou and Eymard [START_REF] Droniou | A mixed finite volume scheme for anisotropic diffusion problems on any grid[END_REF], mimetic finite difference, cf. Brezzi et al. [START_REF] Brezzi | Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes[END_REF], covolume, cf. Chou et al. [START_REF] Chou | A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case[END_REF], and other. For related results, we refer to [START_REF] Vohralík | Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods[END_REF]. They are given for a general diffusion tensor, require no additional regularity of the weak solution, no saturation assumption, and no use of the Helmholtz decomposition. They allow for grids consisting of rectangular parallelepipeds, which can be very useful in practice, where such grids are extensively used. Combinations of simplices and rectangular parallelepipeds in one grid and extensions to nonmatching grids could also be considered along the lines of the analysis in [START_REF] Vohralík | Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods[END_REF] and [START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF]. Homogeneous Dirichlet boundary conditions are only considered for the simplicity of the exposition; for inhomogeneous Dirichlet/Neumann boundary conditions, we refer, e.g., to. [START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF][START_REF] Vohralík | Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods[END_REF].

Finally, in Section 7, we give some complements on mixed finite element methods. In particular, we show that under certain conditions, the weak solution p is the orthogonal projection of the postprocessed mixed finite element approximation ph onto the H 1 0 (Ω) space. This stands in parallel and simultaneously in converse to Galerkin finite element methods, where the approximate solution is the orthogonal projection of the weak solution onto the discrete space. We also show that mixed finite element approximations have close relations to some generalized weak solutions, independently of the smoothness of the tensor S.

Preliminaries

We set up in this section the notation for meshes and functional spaces used throughout the paper, define scalar-and vector-valued bilinear forms and energy (semi-)norms, and finally recall the Oswald interpolation operator.

Notation

We shall work in this paper with triangulations T h which for all h > 0 consist either of closed simplices or of closed rectangular parallelepipeds K such that Ω = K∈T h K. We suppose that T h are conforming (matching), i.e., such that if K, L ∈ T h , K = L, then K ∩ L is either an empty set or a common face, edge, or vertex of K and L. Let h K denote the diameter of K and let h := max K∈T h h K . We denote by E h the set of all sides of T h , by E int h the set of interior, by E ext h the set of exterior, and by E K the set of all the sides of an element K ∈ T h ; h σ then stands for the diameter of σ ∈ E h . We will also use the notation T K ( ẼK , respectively) for such L ∈ T h (σ ∈ E h ) which share at least a vertex with a K ∈ T h . Similarly, T V is the set of such K ∈ T h that contain a node V . Later on, we will sometimes need the assumption that T h are shape-regular in the sense that there exists a constant κ T > 0 such that min K∈T h κ K ≥ κ T for all h > 0, where κ K := |K|/h d K . Next, for K ∈ T h , n will always denote its exterior normal vector; we shall also employ the notation n σ for a normal vector of a side σ ∈ E h , whose orientation is chosen arbitrarily but fixed for interior sides and coinciding with the exterior normal of Ω for exterior sides. For σ ∈ E int h shared by K, L ∈ T h such that n σ points from K to L and a function ϕ ∈ H 1 (T h ) (see below for the notation), we shall define the jump operator

[[•]] by [[ϕ]] := (ϕ| K )| σ -(ϕ| L )| σ .
We put [[ϕ]] σ := ϕ| σ for any σ ∈ E ext h . For a given domain S ⊂ R d , we shall hereafter employ the standard functional notations L 2 (S), H q (S), H 1 0 (S), cf. [START_REF] Adams | Sobolev spaces[END_REF]. In particular, we note by (•, •) S the L 2 (S) inner product, by • S the associated norm (we omit the index S when S = Ω), and by |S| the Lebesgue measure of S. Let next H(div, S) = {v ∈ L 2 (S); ∇ • v ∈ L 2 (S)} and let •, • ∂S stand for the (d -1)-dimensional L 2 (∂S)-inner product on ∂S or the appropriate duality pairing on ∂S. We will also need the space H(div, S) = {v ∈ L q (S); ∇ • v ∈ L 2 (S)}, q ≥ 2, cf. [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]Section III.3.3]. For a given partition T h of Ω, let H 1 (T h ) := {ϕ ∈ L 2 (Ω); ϕ| K ∈ H 1 (K) ∀K ∈ T h } be the broken Sobolev space. Also, we let W 0 (T h ) and W h (T h ) be the spaces of functions with jumps of traces across the sides orthogonal to, respectively, constants and polynomials of

V h • n| σ for each σ ∈ E h , W 0 (T h ) := {ϕ ∈ H 1 (T h ); [[ϕ]], 1 σ = 0 ∀σ ∈ E h }, (2.1a) 
W h (T h ) := {ϕ ∈ H 1 (T h ); [[ϕ]], ψ h σ = 0 ∀ψ h ∈ V h • n| σ ∀σ ∈ E h }. (2.1b)
Clearly, W 0 (T h ), W h (T h ) ⊂ H 1 0 (Ω) but there is "less and less nonconformity" in W h (T h ) with increasing order of the method. Finally, the weak gradient on H 1 (Ω) and the piecewise weak gradient on H 1 (T h ) are both denoted by the ∇ sign and similarly for the weak divergence ∇•. To simplify the notation, we systematically use the convention 0/0 = 0 throughout the text.

Finally, we denote by c S,Ω , C S,Ω the best constants such that c S,

Ω v • v ≤ Sv • v ≤ C S,Ω v • v, c S,Ω > 0, C S,Ω > 0,
for all v ∈ R d and a.e. in Ω. Similar notations c S,K , C S,K , and c S,T K for K ∈ T h will also be employed.

Bilinear forms and energy (semi-)norms

Let the symmetric bilinear form B acting on scalars be defined by

B(p, ϕ) := (S∇p, ∇ϕ), p, ϕ ∈ H 1 (T h ), (2.2) 
whereas its vector counterpart A acting on vectors by

A(u, v) := (u, S -1 v), u, v ∈ L 2 (Ω). (2.3)
Note that the primal weak formulation (1.2) can be rewritten equivalently using the above forms B and A as: find p ∈ H 1 0 (Ω) such that

B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H 1 0 (Ω) (2.4) or A(S∇p, S∇ϕ) = (f, ϕ) ∀ϕ ∈ H 1 0 (Ω), (2.5) 
as

B(p, ϕ) = A(S∇p, S∇ϕ) ∀p, ϕ ∈ H 1 (T h ), (2.6) 
which will turn out to be useful later. Let us also define the energy seminorm on the space H 1 (T h )

|||ϕ||| 2 := B(ϕ, ϕ) = S 1 2 ∇ϕ 2 , ϕ ∈ H 1 (T h ), (2.7) 
which becomes a norm on W 0 (T h ) thanks to the discrete Friedrichs inequality

ϕ Ω ≤ C 1 2 DF ∇ϕ ∀ϕ ∈ W 0 (T h ), ∀h > 0, (2.8) 
where C DF only depends on κ T and inf b∈R d {thick b (Ω)}, cf. [START_REF] Vohralík | On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H 1[END_REF]Theorem 5.4]. Similarly, let the energy norm for vectors be given by

|||v||| 2 * := A(v, v) = S -1 2 v 2 , v ∈ L 2 (Ω).
(2.9)

Note in particular that by (2.6),

|||ϕ||| = |||S∇ϕ||| * ∀ϕ ∈ H 1 (T h ). (2.10)
By the Cauchy-Schwarz inequality, one also immediately has

B(p, ϕ) ≤ |||p||| |||ϕ||| ∀p, ϕ ∈ H 1 (T h ), (2.11a) 
A(u, v) ≤ |||u||| * |||v||| * ∀u, v ∈ L 2 (Ω). (2.11b)
We will also use the "div-energy" norm for vectors, defined as

|||v||| 2 * ,div := |||v||| 2 * + ∇ • v 2 , v ∈ H(div, Ω).
(2.12)

Let us finally recall that, for K ∈ T h , the Poincaré inequality states that

ϕ -π 0 (ϕ) 2 K ≤ C P h 2 K ∇ϕ 2 K ∀ϕ ∈ H 1 (K), (2.13) 
where π l denotes the L 2 (Ω)-orthogonal projection onto piecewise polynomials of degree l. Thanks to the convexity of simplices and rectangular parallelepipeds, C P = 1/π 2 , cf. [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF][START_REF] Bebendorf | A note on the Poincaré inequality for convex domains[END_REF].

Oswald interpolation operator

We shall work later with piecewise polynomial approximations ph to p, nonconforming in the sense that ph ∈ H 1 0 (Ω) but satisfying ph ∈ W h (T h ) (p h ∈ H 1 (T h ) in general). It will also turn out that we will need their conforming (continuous, contained in H 1 0 (Ω)) interpolant. We will use for this purpose the Oswald one, previously considered, e.g., in [START_REF] Achdou | A priori and a posteriori analysis of finite volume of Darcy's equations[END_REF][START_REF] Karakashian | A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems[END_REF][START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF] and analyzed in detail in [START_REF] Karakashian | A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems[END_REF][START_REF] Burman | Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations[END_REF].

If T h consist of simplices, let R n (T h ) := P n (T h ) denote the space of piecewise polynomials of total degree at most n on each simplex (without any continuity requirement on the sides). Similarly, if T h consist of rectangular parallelepipeds, let R n (T h ) := Q n (T h ) denote the space of piecewise polynomials of degree at most n in each variable. The Oswald interpolation operator

I Os : R n (T h ) → R n (T h ) ∩ H 1 0 (Ω) is defined as follows: given a function ϕ h ∈ R n (T h
), the value of I Os (ϕ h ) is prescribed at the Gauss-Lobatto nodes on rectangular parallelepipeds and Lagrangian nodes on simplices of R n (T h ) ∩ H 1 0 (Ω) by the average of the values of ϕ h at this node,

I Os (ϕ h )(V ) = 1 |T V | K∈T V ϕ h | K (V ).
Note that the interpolant is in particular equal to ϕ h | K (V ) at a node V lying in the interior of some K ∈ T h , while at boundary nodes, the value of I Os (ϕ h ) is set to zero. The following results have been proved in [22, Lemmas 3.2 and 5.3 and Remark 3.2] and [38, Theorem 2.2]: Lemma 2.1 (Oswald interpolation operator). Let T h be shape-regular, let ϕ h ∈ R n (T h ), and let I Os (ϕ h ) be constructed as described above. Then

∇(ϕ h -I Os (ϕ h )) 2 K ≤ C σ∈ ẼK h -1 σ [[ϕ h ]] 2 σ ,
where the constant C depends only on the space dimension d, on the maximal polynomial degree n, and on the shape regularity parameter κ T .

Abstract framework

We develop in the first part of this section an abstract estimate on the energy norm of the difference between two arbitrary vector fields which will enable us to easily carry out both the a priori and a posteriori error analysis of mixed finite element methods in a unified way. In the second part of this section, we give a slightly improved version of the estimate, suitable for a posteriori error estimation.

A general abstract estimate

Following the approach introduced in [59, Lemma 7.1], we have the following abstract result:

Theorem 3.1 (General abstract estimate). Let v, w, t ∈ L 2 (Ω) be arbitrary. Then |||v -w||| * ≤ |||w -t||| * + A v -w, v -t |||v -t||| * .
Proof. Let us first suppose that |||v -w||| * ≤ |||v -t||| * . We then have

|||v -t||| 2 * = A(v -t, v -t) = A(v -w, v -t) + A(w -t, v -t) ≤ |||v -t||| * A v -w, v -t |||v -t||| * + |||w -t||| * |||v -t||| * ,
using the bilinearity of A(•, •) and (2.11b). In view of the assumption, this finishes the proof in the first case.

If |||v -t||| * ≤ |||v -w||| * holds, then |||v -w||| 2 * = A(v -w, v -w) = A(v -w, v -t) + A(v -w, t -w) ≤ |||v -t||| * A v -w, v -t |||v -t||| * + |||v -w||| * |||w -t||| * ≤ |||v -w||| * A v -w, v -t |||v -t||| * + |||v -w||| * |||w -t||| * ,
whence again the assertion follows. Thus the proof is complete.

Remark 3.2 (General abstract estimate). Using the triangle inequality, the bilinearity of A(•, •), and (2.11b), we immediately have

|||v -w||| * ≤ |||w -t||| * + |||v -t||| * = |||w -t||| * + A v -t, v -t |||v -t||| * ≤ |||w -t||| * + A v -w, v -t |||v -t||| * + A w -t, v -t |||v -t||| * ≤ 2|||w -t||| * + A v -w, v -t |||v -t||| * .
The estimate of Theorem 3.1 is superior to this simple bound by removing the factor 2 at the term |||w -t||| * . In comparison to Theorem 3.3 below, the advantage of Theorem 3.1 is that any triple of functions from L 2 (Ω) can be chosen. Moreover, it turns out that it is extensible to the convection-diffusion-reaction framework, where it in addition shows advantageous that t ∈ L 2 (Ω) in the second argument of A(•, •) can be chosen, cf. [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF].

A Pythagorean estimate

Following the approach introduced in Kim [39, Lemma 4.4], we have the following estimate:

Theorem 3.3 (Pythagorean abstract estimate). Let v be such that v = -S∇ϑ for some ϑ ∈ H 1 0 (Ω) and let w ∈ L 2 (Ω) be arbitrary. Let next ψ ∈ H 1 0 (Ω) be the solution of the problem B(ψ, ϕ) = A(-w, S∇ϕ) ∀ϕ ∈ H 1 0 (Ω). (3.1) Then |||v -w||| 2 * = |||w + S∇ψ||| 2 * + A v -w, v + S∇ψ |||v + S∇ψ||| * 2 .
(3.2)

Moreover, |||w + S∇ψ||| * = inf s∈H 1 0 (Ω) |||w + S∇s||| * . (3.3)
Proof. Let us first note that there exists a unique solution to the problem (3.1) by the Riesz representation theorem, as A(w, -S∇(•)) is a continuous linear form. Note as well that (3.1) can be equivalently written, using (2.6), as

A(S∇ψ + w, S∇ϕ) = 0 ∀ϕ ∈ H 1 0 (Ω). (3.4)
Using this characterization for ϕ = ψϑ, we thus have

|||v -w||| 2 * = A(v -w, v -w) = A(v -w, v + S∇ψ) + A(v -w, -S∇ψ -w) = A(v + S∇ψ, v + S∇ψ) -2A(S∇ψ + w, v + S∇ψ) + A(w + S∇ψ, w + S∇ψ) = |||v + S∇ψ||| 2 * + |||w + S∇ψ||| 2 * ,
employing also the definition and the symmetry of A(•, •). The proof is finished by noticing that

|||v + S∇ψ||| * = A v -w, v + S∇ψ |||v + S∇ψ||| * and that |||w + S∇ψ||| 2 * = A(w + S∇s, w + S∇ψ) ≤ |||w + S∇s||| * |||w + S∇ψ||| * for an arbitrary s ∈ H 1 0 (Ω), whence (3.3) follows.
This Pythagorean estimate, as we will see later, gives a slightly more precise upper bound in a posteriori error estimates.

The mixed finite element method

We recall here some known basic facts about the mixed finite element method, namely the existence and uniqueness of discrete solutions, hybridization, and, most importantly, the postprocessing of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] and [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] in the lowest-order Raviart-Thomas-Nédélec case and that of [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] in general. First, however, we start by giving the examples of the most common mixed finite element spaces.

Examples of local mixed finite element spaces

Table 1 lists the most common mixed finite element spaces V h (K) × Φ h (K) on an element K ∈ T h . The notation RTN stands for the Raviart-Thomas [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF] space on triangles and rectangles and the Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] space on tetrahedra and rectangular parallelepipeds if d = 3 and BDM for the Brezzi-Douglas-Marini [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] space on triangles and rectangles and the Brezzi-Douglas-Durán-Fortin [START_REF] Brezzi | Mixed finite elements for second order elliptic problems in three variables[END_REF] space on tetrahedra and rectangular parallelepipeds if d = 3. In the notation, "s" stands for simplices, "r" for rectangular parallelepipeds, P * 2,k := r∇ × (x k+1 y) + s∇ × (xy k+1 ), r, s ∈ R, and

P * 3,k := k i=0 {r i ∇ × (0, 0, xy i+1 z k-i ) t + s i ∇ × (x k-i yz i+1 , 0, 0) t + t i ∇ × (0, x i+1 y k-i z, 0) t }, r i , s i ∈ R,
with ∇× the curl operator. We have here denoted by k the biggest polynomial space contained in V h (K) and by l that in Φ h (K). Then

V h := Π K∈T h V h (K) ∩ H(div, Ω) and Φ h := Π K∈T h Φ h (K). Note in particular that whereas V h (K) are local unconstrained spaces, the fact that V h ⊂ H(div, Ω) imposes the normal trace continuity of all v h ∈ V h , i.e., v h | K •n σ K,L = v h | L •n σ K,L for all σ K,L ∈ E int
h shared by elements K and L. For a general reference to mixed finite element methods, we refer to Brezzi and Fortin [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] or Roberts and Thomas [START_REF] Roberts | Mixed and hybrid methods[END_REF].

In the rest of the paper, we shall sometimes considered apart the following particular case:

Assumption (A) (Lowest-order Raviart-Thomas-Nédélec case)
The spaces V h and Φ h are formed by RTN s 0 (K) or RTN r 0 (K) from Table 1 and the tensor S is piecewise constant on simplices and piecewise constant and diagonal on rectangular parallelepipeds. 

Space d element V h (K) Φ h (K) V h (K) • n| σ k l RTN s k (K) 2, 3 simplex P d k + P k x P k P k ≥ 0 = k RTN r k (K) 2, 3 rect. par. Q d k + Q k x Q k P k (d = 2), Q k (d = 3) ≥ 0 = k BDM s k (K) 2, 3 simplex P d k P k-1 P k ≥ 1 = k -1 BDM r k (K) 2, 3 rect. par. P d k ⊕ P * d,k P k-1 P k ≥ 1 = k -1

Existence and uniqueness of the discrete solutions

For the sake of completeness and also to stress its simplicity, we recall here the proof of existence and uniqueness of the discrete mixed finite element solution. Proof. Problem (1.5a)-(1.5b) is a square linear finite-dimensional system. It thus suffices to prove that f = 0 implies u h = 0 and p h = 0. Put φ h = p h in (1.5b) and v h = u h in (1.5a) and sum the equations. This gives (S -1 u h , u h ) = 0, whence

u h = 0 follows. Consequently, (p h , ∇ • v h ) = 0 for all v h ∈ V h , whence p h = 0 follows by the assumption ∇ • V h = Φ h .

Hybridization

The hybridization technique allows to relax the normal trace continuity constraint V h ⊂ H(div, Ω) while imposing it instead with the aid of Lagrange multipliers. The unconstrained flux space is given by Ṽh := Π K∈T h V h (K), where V h (K) are the local spaces on each element, and the Lagrange multipliers space Λ h is the space of (discontinuous) piecewise polynomials on

E int h such that for all σ ∈ E int h , µ h | σ ∈ V h • n| σ .
With these notations, the hybridized version of (1.5a)-(1.5b) consists in finding u h ∈ Ṽh , p h ∈ Φ h , and

λ h ∈ Λ h such that (S -1 u h , v h ) -(p h , ∇ • v h ) + K∈T h v h • n, λ h ∂K\∂Ω = 0 ∀ v h ∈ Ṽh , (4.1a) 
(∇ • u h , φ h ) = (f, φ h ) ∀φ h ∈ Φ h , (4.1b 
)

K∈T h u h • n, µ h ∂K\∂Ω = 0 ∀µ h ∈ Λ h . (4.1c)
It is well known and easy to show that p h , u h from (1.5a)-(1.5b) and (4.1a)-(4.1c) coincide; λ h then provides an additional approximation to p. Let us also recall that λ h can be postprocessed locally from

(1.5a)-(1.5b); on each σ ∈ E int h , σ ∈ E K for some K ∈ T h , it is given by v h • n, λ h σ = -(S -1 u h , v h ) K + (p h , ∇ • v h ) K ∀v h ∈ V h (K) such that (v h • n)| γ = 0 ∀γ ∈ E K , γ = σ,
so that it is not necessary to implement (4.1a)-(4.1c) in order to obtain it.

Postprocessing

Seemingly, there is no direct analogy of the link u = -S∇p at the discrete level in the mixed finite element method. It is sometimes even said that the distinctive feature of the mixed finite element method is that the discrete flux u h has "more regularity" than the discrete potential p h , in a sense that it is a polynomial of a higher degree. We shall see in this section that this is only an impression and that the link u h ≈ -S∇p h can easily be recovered by postprocessing. Different postprocessing techniques for mixed finite elements have been introduced in the past. Let us cite the works of Arnold and Brezzi [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF], Bramble and Xu [START_REF] Bramble | A local post-processing technique for improving the accuracy in mixed finite-element approximations[END_REF], Stenberg [START_REF] Stenberg | Postprocessing schemes for some mixed finite elements[END_REF], Chen [START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF], Arbogast and Chen [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF], and, for the lowest-order Raviart-Thomas-Nédélec case, the author [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]. It will turn out that for our purposes, the postprocessing of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] and [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] under Assumption (A) and that of [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] in general will be optimal. We now recall it here. 

-S K ∇p h | K = u h | K ∀K ∈ T h , (4.2a) 
π 0 (p h | K ) = p h | K ∀K ∈ T h . (4.2b)
Note that ph is in general not a full second-order polynomial and that it is only built on each K ∈ T h from the given degrees of freedom, so that its construction cost is negligible.

In general, ph is nonconforming in the sense that ph ∈ H 1 0 (Ω) but it is shown in [59, Lemma 6.1] that ph ∈ W 0 (T h ) on simplicial meshes; for meshes of rectangular parallelepipeds, see [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF]. Hence, at least the mean values of ph on the sides of T h are continuous (and equal to zero on ∂Ω). Moreover, these means of traces coincide with the Lagrange multiplies λ h of the hybridized version (4.1a)-(4.1c) of (1.5a)-(1.5b), see [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]Lemma 6.4] and [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF].

Postprocessing in the general case

It turns out that in the general case, there does not exist ph such that (4.2a) is true. Then the postprocessing by Arbogast and Chen [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] proposes a weak form of this relation. This postprocessing is a generalization of the postprocessing proposed originally by Arnold and Brezzi [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF] and Chen [START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF] and it is defined as follows. Let P Φ h be the L 2 (Ω)-orthogonal projection onto Φ h , P Ṽh the L 2 (Ω)orthogonal projection onto Ṽh with respect to the scalar product (S -1 •, •), and P Λ h the L 2 (E int h )orthogonal projection onto Λ h , i.e.,

P Φ h : L 2 (Ω) → Φ h for φ ∈ L 2 (Ω), (φ -P Φ h (φ), φ h ) = 0 ∀φ h ∈ Φ h , (4.3a) 
P Ṽh : L 2 (Ω) → Ṽh for v ∈ L 2 (Ω), (S -1 (v -P Ṽh (v)), v h ) = 0 ∀v h ∈ Ṽh , (4.3b) 
P Λ h : L 2 (E int h ) → Λ h for µ ∈ L 2 (E int h ), (µ -P Λ h (µ), µ h ) E int h = 0 ∀µ h ∈ Λ h . (4.3c)
The postprocessed potential ph ∈ M h is then defined by

P Φ h (p h ) = p h , (4.4a) 
P Λ h (p h ) = λ h . (4.4b)
Note that employing (4.4a)-(4.4b) in (4.1a) and using

∇ • V h (K) = Φ h (K) and V h (K) • n| ∂K\∂Ω = Λ h (K) gives, for all K ∈ T h , (S -1 u h , v h ) K -(p h , ∇ • v h ) K + v h • n, ph ∂K\∂Ω = 0 ∀ v h ∈ V h (K).
Employing the Green theorem for the two last terms of the above expression then leads to

(S -1 (u h + S∇p h ), v h ) K = 0 ∀ v h ∈ V h (K) ∀K ∈ T h ,
which is nothing but

P Ṽh (-S∇p h ) = u h . (4.5) 
The finite-dimensional spaces M h for the individual families and types of elements are detailed in [START_REF] Arbogast | On the implementation of mixed methods as nonconforming methods for second-order elliptic problems[END_REF] (cf. also [START_REF] Chen | Analysis of mixed methods using conforming and nonconforming finite element methods[END_REF]); principally, they consist of piecewise polynomial spaces augmented with bubble functions. They are usually nonconforming in the sense that M h ⊂ H 1 0 (Ω). We also remark that whereas for a given space M h , ph ∈ M h satisfying (4.4a)-(4.4b) is prescribed uniquely, the space M h itself for a given method is not defined in a unique way; there in particular exist several different spaces for the lowest-order Raviart-Thomas elements on triangles.

For the analysis of this paper, along with (4.4a)-(4.4b), we will only need the three following characterizing properties of the spaces M h :

M h ⊂ W h (T h ), (4.6a) 
P k+1 (T h ) ⊂ M h , (4.6b) 
(∇ξ h , v h ) K = 0 ∀v h ∈ V h (K) ⇒ ∇ξ h = 0 ∀ξ h ∈ M h (K), ∀K ∈ T h . (4.6c)
The first property simply ensures that there is "enough continuity" in M h , the second one guarantees that M h is "large enough", and the last one ensures the "compatibility" of ∇M h with V h . Note that (4.6c) in particular implies dim(M h (K)) ≤ dim(V h (K)) + 1 (and consequently dim(M h ) ≤ dim( Ṽh ) + 1).

A priori error analysis

We show in this section that with the abstract result of Theorem 3.1, it is immediate to get the a priori error estimates for the flux in the form |||uu h ||| * ≤ |||u -I V h (u)||| * , where I V h is the vector interpolation operator of each mixed finite element method (satisfying the commuting diagram property), see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]Section III.3]. Consequently, we easily recover the known a priori error estimates for the flux. We next focus on the postprocessing of Section 4.4.1 under Assumption (A). We show that in this case, thanks to (4.2a), the a priori error estimates for the potential are again completely straightforward. In general, the postprocessing of Section 4.4.2 has to be used and the properties of (4.5) and (4.6c) have to be exploited but still quite easily, all known a priori error estimates for the approximate potential p h are reproduced. We in particular recover them from the estimates for ph , which themselves are derived first and seem to be new. Moreover, all the estimates are optimal and given under minimal necessary assumptions, improving thus some of the previously known results.

Throughout this section, we shall suppose that T h is shape-regular with a constant κ T . We always give a detailed form of the estimates up to the form with the error between the exact solution and its interpolate. Obtaining the final error estimates is then a question of application of interpolation estimates, presented, e.g., in [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF][START_REF] Roberts | Mixed and hybrid methods[END_REF]. For the sake of completeness, we include these final results, supposing the full necessary regularity.

Estimates for the flux

A straightforward application of Theorem 3.1 gives the following result: Theorem 5.1 (Abstract a priori estimate for the flux). Let u given by (1.4a)-(1.4b) belong to the space H(div, S) and let u h be given by (1.5a)-(1.5b). Let next I V h be the mixed interpolation operator, see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]Section III.3]. Then

|||u -u h ||| * ≤ |||u -I V h (u)||| * .
(5.1)

Proof. Put v = u h , w = u, and t = I V h (u) in Theorem 3.1. This gives

|||u h -u||| * ≤ |||u -I V h (u)||| * + A u h -u, u h -I V h (u) |||u h -I V h (u)||| * .
Notice that the properties of the interpolation operator

I V h imply A(u h -u, u h -I V h (u)) = 0. (5.2)
Indeed, it follows by subtracting (1.4a) from (1.5a) and using (2.3) that Using the interpolation estimates, see, e.g., [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF][START_REF] Quarteroni | Numerical approximation of partial differential equations[END_REF][START_REF] Roberts | Mixed and hybrid methods[END_REF] we infer from the previous results and (1.5b) the following corollary: Remark 5.3 (Discrete inf-sup condition/discrete Friedrichs inequality in flux estimates). Note that by the above estimate, no link other than ∇ • V h = Φ h between the spaces Φ h and V h is needed for the convergence and a priori error estimates for the flux. In particular, no discrete inf-sup condition, or, equivalently, as we shall see later, no discrete Friedrichs inequality needs to hold at this stage.

A(u h -u, v h ) = (p h -p, ∇ • v h ) for all v h ∈ V h . It suffices to put v h = u h -I V h (u) and to notice that ∇ • (u h -I V h (u)) =

Estimates for the postprocessed potential in the lowest-order Raviart-Thomas-Nédélec case

As the proof of the following theorem shows, a priori error estimates for the postprocessed potential ph under Assumption (A) are straightforward. Lemma 5.5 (Equivalence between the energy seminorms on M h (K) and P Ṽh (-S∇M h (K))).

There holds

|||P Ṽh (-S∇ξ h )||| * ,K ≤ |||ξ h ||| K ≤ C eq |||P Ṽh (-S∇ξ h )||| * ,K ∀K ∈ T h , ∀ξ h ∈ M h (K) (5.3)
and thus, in particular,

|||u h ||| * ≤ |||p h ||| ≤ C eq |||u h ||| * .
More generally,

∇ξ h K ≤ C K sup v h ∈V h (K) (∇ξ h , v h ) K v h K ∀K ∈ T h , ∀ξ h ∈ M h (K).
(5.4)

Proof. We have

|||P Ṽh (-S∇ξ h )||| * ,K ≤ ||| -S∇ξ h ||| * ,K = |||ξ h ||| K
by the fact that P Ṽh is the L 2 (K)-orthogonal projection onto V h (K) with respect to the scalar product (S -1 •, •) K , whose norm is ||| • ||| * ,K , and by (2.10). Supposing for the moment the validity of (5.4), we now prove that also the other inequality in the first assertion of the lemma holds true. Let K ∈ T h and ξ h ∈ M h (K) be given. First note that by (5.4), the definition (4.3b) of P Ṽh , the Cauchy-Schwarz inequality, the assumption on S, and (2.9),

∇ξ h K ≤ C K sup v h ∈V h (K) (S -1 S∇ξ h , v h ) K v h K = C K sup v h ∈V h (K) (S -1 P Ṽh (S∇ξ h ), v h ) K v h K ≤ C K S -1 P Ṽh (S∇ξ h ) K ≤ C K c 1/2 S,K |||P Ṽh (S∇ξ h )||| * ,K .
Hence

|||ξ h ||| K ≤ C 1/2 S,K ∇ξ h K ≤ C K C 1/2 S,K c 1/2 S,K |||P Ṽh (S∇ξ h )||| * ,K
by (2.7), the assumption on S, and the previous estimate, which gives the right inequality in (5.3) with C eq := max

K∈T h C K C 1/2 S,K /c 1/2
S,K . Finally, the validity of (5.4) on a reference element K with a constant only dependent on the maximal polynomial degree of M h ( K) follows from (4.6c). Thus (5.4), with C K only dependent on the maximal polynomial degree of M h (K) and on κ K follows by the Piola transformation and scaling arguments. Proof. Let s h ∈ M h be arbitrary. Using (5.3), (4.5), adding and subtracting u and P Ṽh (u), using that u = -S∇p, and finally employing the triangle inequality, the fact that P Ṽh is the L 2 (Ω)orthogonal projection onto Ṽh with respect to the scalar product (S -1 •, •), and (2.10), we have

|||p h -s h ||| ≤ C eq |||P Ṽh (S∇(p h -s h ))||| * = C eq ||| -u h -P Ṽh (S∇s h )||| * = C eq ||| -u h + u -u + P Ṽh (u) + P Ṽh (S∇(p -s h ))||| * ≤ C eq (|||u -u h ||| * + |||u -P Ṽh (u)||| * + |||p -s h |||).
Thus the first line of (5. 

Estimates for the original potential

In this short section, we easily recover the estimates for the original potential p h from the previous results.

Theorem The final estimate then follows by Theorem 5.6 and the approximation properties of P Φ h .

Superconvergence estimates for the original potential

For the sake of completeness, we show in this section the superconvergence estimates for the original potential p h , following essentially [START_REF] Douglas | Mixed finite element methods for second order elliptic problems[END_REF], [20, Section V.3], and [START_REF] Cockburn | Error analysis of variable degree mixed methods for elliptic problems via hybridization[END_REF]. Note that we reduce the assumptions necessary in [START_REF] Cockburn | Error analysis of variable degree mixed methods for elliptic problems via hybridization[END_REF].

Assumption (B) (Elliptic regularity)

For each g h ∈ Φ h , the weak solution of the problem

r = -S∇q in Ω, (5.7a) ∇ • r = g h in Ω, (5.7b) 
q = 0 on ∂Ω (5.7c) 

satisfies q 2 + |r| 1 ≤ C ER g h . ( 5 
P Φ h (p) -p h ≤ Ch(|||u -I V h (u)||| * + ∇ • (u -I V h (u)) ) ≤ Ch k+2 ,
and if k ≥ 1 and (u -I V h u, 1) K = 0 for each K ∈ T h ,

P Φ h (p) -p h ≤ Ch(|||u -I V h (u)||| * ) ≤ Ch k+2 .
Proof. We use the characterization

P Φ h (p) -p h = sup g h ∈Φ h (P Φ h (p) -p h , g h ) g h .
We next develop, using the definition (4.3a) of the P Φ h orthogonal projection, the fact that ∇ • I V h (r) = g h , and subtracting (1.5a) from (1.4a)

(P Φ h (p) -p h , g h ) =(p -p h , g h ) = (p -p h , ∇ • I V h (r)) = (S -1 (u -u h ), I V h (r)) =(S -1 (u -I V h (u)), I V h (r)) + (S -1 (I V h (u) -u h ), I V h (r)) =(S -1 (u -I V h (u)), I V h (r) -r) + (S -1 (u -I V h (u)), r) + (S -1 (I V h (u) -u h ), I V h (r) -r) + (S -1 (I V h (u) -u h ), r).
We now first note that for the last term, we have

(S -1 (I V h (u) -u h ), r) = -(I V h (u) -u h , ∇q) = (∇ • (I V h (u) -u h ), q) = 0,
employing (5.7a), the Green theorem, and the fact that ∇ • (I V h (u)u h ) = 0. Next, the first term can be estimated by, employing (5.8), (S -1 (u -

I V h (u)), I V h (r) -r) ≤|||u -I V h (u)||| * |||I V h (r) -r||| * ≤ Ch|||u -I V h (u)||| * |r| 1 ≤CC ER h|||u -I V h (u)||| * g h .
The third term can be estimated similarly, using in addition the triangle inequality and (5.1). Finally, there are two ways to estimate the second term. Firstly,

(S -1 (u -I V h (u)), r) = -(u -I V h (u), ∇q) = (∇ • (u -I V h (u)), q) =(∇ • (u -I V h (u)), q -π 0 (q)) ≤C 1 2 P h ∇ • (u -I V h (u)) |q| 1 ≤ C 1 2 P C ER h ∇ • (u -I V h (u)) g h employing (5.7a
), the Green theorem, the fact that (∇ • (u -I V h (u)), 1) K = 0 for all K ∈ T h , the Poincaré inequality (2.13), and (5.8). Alternatively, if k ≥ 1 and (u -

I V h u, 1) K = 0 for each K ∈ T h , then (S -1 (u -I V h (u)), r) =(I V h (u) -u, ∇q) = (I V h (u) -u, ∇q -π 0 (∇q)) ≤C 1 2 P h I V h (u) -u |q| 2 ≤ C 1 2 P C ER C 1 2 S,Ω h|||u -I V h (u)||| * g h ,
employing also the Poincaré inequality (2.13), the assumption on S, and the definition of the energy norm (2.9). Combining the above estimates proves the assertions of the theorem.

Superconvergence estimates for the postprocessed potential

Using the results of the previous section, we establish here in a straightforward way superconvergence estimates for the postprocessed potential ph . 

If in particular Assumption (B) holds and if either

l = k or k ≥ 1 and (u -I V h u, 1) K = 0 for each K ∈ T h , then p -ph ≤ Ch k+2 .
Proof. We have, using the triangle inequality, the fact that P Φ h is the L 2 (Ω)-orthogonal projection onto Φ h , (4.4a), and the Poincaré inequality (2.13),

p -ph = p -ph -P Φ h (p -ph ) + P Φ h (p -ph ) ≤ p -ph -π 0 (p -ph ) + P Φ h (p) -p h ≤C 1 2 P h|p -ph | 1 + P Φ h (p) -p h ≤ C 1/2 P h c 1/2 S,Ω |||p -ph ||| + P Φ h (p) -p h .

A posteriori error analysis

We show in this section that with the abstract result of Theorem 3.1 (or with the slight improvement of Theorem 3.3), it is also immediate to get an optimal framework for a posteriori error estimates for the flux in mixed finite element methods. For the potential, a similar framework developed in [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF][START_REF] Kim | A posteriori error analysis for locally conservative mixed methods[END_REF][START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF]] is adopted. We finally give fully computable versions of all the estimates, prove their local efficiency, discuss their robustness, and present some extensions.

Estimates for the flux

We state and prove here our a posteriori error estimates for the flux, first in an abstract and then in a fully computable form.

Abstract estimates

An application of Theorem 3.1 gives the following result, which we state as generally as possible; in practice, u h is given by (1.5a)-(1.5b).

Theorem 6.1 (Abstract a posteriori estimate for the flux and its efficiency). Let u be given by (1.4a)-(1.4b) and let u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Then

|||u -u h ||| * ≤ inf s∈H 1 0 (Ω) |||u h + S∇s||| * + η R ≤ |||u -u h ||| * + η R , (6.1)
where

η R := K∈T h C P h 2 K c S,K f -P Φ h (f ) 2 K 1 2
.

Proof. The right inequality in (6.1) is straightforward by putting s = p and noticing that u = -S∇p by the equivalence of (1.2) and (1.4a)-(1.4b). For the left one, put v = u, w = u h , and t = -S∇s, with s ∈ H 1 0 (Ω) arbitrary, in Theorem 3.1. This gives

|||u -u h ||| * ≤ |||u h + S∇s||| * + A u -u h , u + S∇s |||u + S∇s||| * .
Next put ϕ := (ps)/|||p -s||| ∈ H 1 0 (Ω) and rewrite the second term of the above expression as |A(uu h , -S∇ϕ)|, employing u = -S∇p and (2.10). Next, by the equivalent definition of the weak solution (2.5),

A(u, -S∇ϕ) = (f, ϕ),

whereas A(u h , -S∇ϕ) = -(u h , ∇ϕ) = (P Φ h (f ), ϕ) by (2.
3), the Green theorem, and the assumption on u h . Hence

A(u -u h , -S∇ϕ) = (f -P Φ h (f ), ϕ).
This last expression can easily be estimated by

(f -P Φ h (f ), ϕ) = K∈T h (f -P Φ h (f ), ϕ) K = K∈T h (f -P Φ h (f ), ϕ -π 0 (ϕ)) K ≤ K∈T h f -P Φ h (f ) K ϕ -π 0 (ϕ) K ≤ K∈T h f -P Φ h (f ) K C 1 2 P h K ∇ϕ K ≤ K∈T h f -P Φ h (f ) K C 1/2 P c 1/2 S,K h K |||ϕ||| K ≤ η R |||ϕ|||,
employing the fact that zero-order polynomial are always in Φ h , which implies (f - with the correct weighting given by the Poincaré constant C P and the material constant c S,K .

P Φ h (f ), ϕ) K = (f -P Φ h (f ), ϕ -π 0 (ϕ)) K ,
Remark 6.4 (Efficiency of the abstract estimate of Theorem 6.1). When the term η R is supercon-(see Remark 6.3), the estimate of Theorem 6.1 is optimal, i.e., it also represents a lower bound for the error, up to η R . We will in Theorem 6.7 below see that (local) efficiency also holds for η R in any case. Another possibility to work with the term η R is to derive estimates in the ||| • ||| * ,div -norm, as we do it below.

Employing Theorem 3.3 instead of Theorem 3.1, we can easily get the following slightly improved version of Theorem 6.1: Corollary 6.5 (Improved abstract a posteriori estimate for the flux and its efficiency). Let u be given by (1.4a)-(1.4b) and let u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Then

|||u -u h ||| 2 * ≤ inf s∈H 1 0 (Ω) |||u h + S∇s||| 2 * + η 2 R ≤ |||u -u h ||| 2 * + η 2 R .
This version is particularly suitable to derive in a straightforward way an estimate in the ||| • ||| * ,div -norm: Theorem 6.6 (Abstract ||| • ||| * ,div -norm a posteriori estimate for the flux and its efficiency). Let u be given by (1.4a)-(1.4b) and let

u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Then -u h ||| 2 * ,div ≤ inf s∈H 1 0 (Ω) |||u h + S∇s||| 2 * + f -P Φ h (f 2 + η 2 R ≤ |||u -u h ||| 2 * ,div + η 2 R .
Note that now the term η R , by its definition, converges by one order faster than f -P Φ h (f ) . Hence, in contrast to Theorem 6.1 (see also Remark 6.4), the ||| • ||| * ,div -norm setting gives an optimal global abstract efficiency, up to the now always (also in the Brezzi-Douglas-Marini-like cases) superconvergent term η R . On the other hand, however, the term f -P Φ h (f ) is generally of order O(h l+1 ), which may dominate the error in the Brezzi-Douglas-Marini-like cases, where |||uu h ||| * is of order O(h l+2 ). As this term is entirely data-dependent, we believe that, although Theorem 6.6 gives an optimal abstract estimate and efficiency, ||| • ||| * ,div -norm estimate is not suitable for a posteriori error estimation, as previously noted in, e.g., [START_REF] Lovadina | Energy norm a posteriori error estimates for mixed finite element methods[END_REF]Remark 3.4].

Fully computable estimates

Employing Corollary 6.5 and Theorem 6.6, we see that in order to give a fully computable a posteriori error estimate, we only need to specify a function s ∈ H 1 0 (Ω). This choice is of course particularly important for the precision of the estimate and it is also crucial in order to prove a local efficiency. Clearly, -S∇s has to be as close as possible to u h . In view of this fact, we are led to first consider ph given by (4.2a)-(4.2b) in the lowest-order Raviart-Thomas-Nédélec case and by (4.4a)-(4.4b) otherwise, for u h the mixed finite element solution given by (1.5a)-(1.5b). Recall that u h directly equals -S∇p h under Assumption (A) and that u h is very close to -S∇p h in general by (4.5). The last step is then to "smooth" ph into a conforming function and for exactly this reason, we have in Section 2.3 introduced the Oswald interpolation operator. Hence (a general version of) our fully computable a posteriori error estimate is as follows: Theorem 6.7 (Fully computable a posteriori estimates for the flux). Let u be given by (1.4a)-(1.4b) and let u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) and ph ∈ H 1 (T h ) be arbitrary. Let the potential estimator be given by

η P,K := |||u h + S∇(I Os (p h ))||| * ,K , (6.2) 
the residual estimator by

η R,K := C 1/2 P h K c 1/2 S,K f -P Φ h (f ) K , (6.3) 
and the divergence estimator by

η D,K := f -P Φ h (f ) K . (6.4) Then |||u -u h ||| 2 * ≤ K∈T h η 2 P,K + η 2 R,K , |||u -u h ||| 2 * ,div ≤ K∈T h η 2 P,K + η 2 R,K + η 2 D,K .
Remark 6.8 (Constants in Theorem 6.7). Remark that there are no undetermined constants in the estimates of Theorem 6.7. Moreover, the leading estimators η P,K and η D,K are completely constant-free and the only constants figure in the residual estimator η R,K , which is likely to be superconvergent, see Remark 6.3.

Estimates for the potential

We state and prove here our a posteriori error estimates for the potential, first in an abstract and then in a fully computable form.

Abstract estimates

Building on the approaches of [59, Lemma 7.1] and [39, Lemma 4.4], the following has been shown in [START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF]Theorem 4.1]: Theorem 6.9 (Abstract a posteriori estimate for the potential and its efficiency). Let p be the weak potential given by (1.2) and let ph ∈ H 1 (T h ) be arbitrary. Then

|||p -ph ||| 2 ≤ inf s∈H 1 0 (Ω) |||p h -s||| 2 + inf t∈H(div,Ω) sup ϕ∈H 1 0 (Ω), |||ϕ|||=1 ((f -∇ • t, ϕ) -(S∇p h + t, ∇ϕ)) 2 (6.5) ≤ 2|||p -ph ||| 2 .
Remark 6.10 (Nature of the estimate of Theorem 6.9). Theorem 6.9 shows that the error in a scalar field ph ∈ H 1 (T h ) is measured by how close ph is to the space H 1 0 (Ω), how close the approximate diffusive flux -S∇p h is to the space H(div, Ω), and how small the residual f -∇ • t can be.

Fully computable estimates in the energy norm

Analogously to the proof of Theorem 6.1 (cf. [START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF]Section 4] where the proof is given in full details in the discontinuous Galerkin setting), we have the following result. We again state it generally; in practice, it will be used for the postprocessed approximation ph of Section 4.4 and the mixed finite element approximate flux u h given by (1.5a)-(1.5b). Recall in this respect that the postprocessed potential ph belongs to W 0 (T h ) and that |||•||| is a norm on W 0 (T h ) thanks to the discrete Friedrichs inequality (2.8), whence the justification of the "energy norm" (and not just seminorm) in the title of this section. Theorem 6.11 (Fully computable energy a posteriori estimate for the potential). Let p be given by (1.2) and let ph ∈ H 1 (T h ) and u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Let the nonconformity estimator be given by

η NC,K := |||p h -I Os (p h )||| K , (6.6) 
the diffusive flux estimator by

η DF,K := |||u h + S∇p h ||| * ,K , (6.7) 
and the residual estimator by (6.3). Then

|||p -ph ||| 2 ≤ K∈T h η 2 NC,K + (η DF,K + η R,K ) 2 .
Remark 6.12 (Constants in Theorem 6.11). We note that similar observation to that of Remark 6.8 holds here true as well.

Fully computable estimates in the L 2 (Ω)-norm

The energy norm estimate of the previous section is aimed to be used for the postprocessed approximation ph of Section 4.4. Using this result, we now derive L 2 (Ω)-norm estimates, first for ph and then for the original approximate potential p h . As it will however appear, these estimates are somewhat "less nice" than those of the previous section, as they in particular feature several, albeit known, constants in the leading terms. In our opinion, L 2 (Ω)-norm is not optimal for a posteriori error estimates in mixed finite elements and we believe that trying to directly and only derive estimates for p h in the L 2 (Ω)-norm was the bottleneck of a lot of previous works on a posteriori error estimates in mixed finite element methods. We first give an L 2 (Ω)-norm estimate for ph , again in the most general setting possible: Corollary 6.13 (A posteriori estimate for ph in the L 2 (Ω)-norm). Let p be given by (1.2) and let ph ∈ W 0 (T h ) and u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Then

p -ph 2 ≤ C DF c S,Ω K∈T h η 2 NC,K + (η DF,K + η R,K ) 2 ,
where η NC,K , η DF,K , and η R,K are given respectively by (6.6), (6.7), and (6.3).

Proof. Immediate from Theorem 6.11, using the fact that (p-ph ) ∈ W 0 (T h ), the discrete Friedrichs inequality (2.8), and (2.7).

We conclude this section by an L 2 (Ω)-norm estimate for p h , following trivially from Corollary 6.13 by the triangle inequality; in practice, again p h and u h are given by (1.5a)-(1.5b) and ph by (4.2a)-(4.2b) or (4.4a)-(4.4b): Corollary 6.14 (A posteriori estimate for p h in the L 2 (Ω)-norm). Let p be given by (1.2) and let

p h ∈ Φ h , ph ∈ W 0 (T h ), and u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) be arbitrary. Then p -p h ≤ C DF c S,Ω K∈T h η 2 NC,K + (η DF,K + η R,K ) 2 1 2 + ph -p h ,
where η NC,K , η DF,K , and η R,K are given respectively by (6.6), (6.7), and (6.3).

Local efficiency

To conclude this section, we prove here local efficiency of the a posteriori error estimators of Theorems 6.7 and 6.11.

Theorem 6.15 (Local efficiency of estimators of Theorems 6.7 and 6.11). Let f be piecewise polynomial of order m and let u, p be given by (1.4a)-(1.4b). Let next T h be shape-regular and let u h and p h be given by (1.5a)-(1.5b) and ph by (4.2a)-(4.2b) or (4.4a)-(4.4b). Let finally the a posteriori error estimators η P,K , η R,K , η NC,K , and η DF,K be given respectively by (6.2), (6.3), (6.6), and (6.7). Then

η P,K ≤ η DF,K + η NC,K , η DF,K ≤ |||u -u h ||| * ,K + |||p -ph ||| K , η NC,K ≤ C C S,K c S,T K |||p -ph ||| T K , η R,K ≤ C C S,K c S,K |||u -u h ||| * ,K ,
where the constant C depends only on the space dimension d, the maximal polynomial degree n of ph , and the shape regularity parameter κ T and C depends only on d, the polynomial degree m of f , and κ T .

Proof. We have for η DF,K

η DF,K ≤ |||u h + S∇p||| * ,K + |||S∇p -S∇p h ||| * ,K = |||u -u h ||| * ,K + |||p -ph ||| K
by the triangle inequality and (2.10). The estimate for η P,K is obtained analogously. Next, the inequality

h -1 2 σ [[p h ]] σ ≤ C L;σ∈E L ∇(p h -ϕ) L
was established in [START_REF] Achdou | A priori and a posteriori analysis of finite volume of Darcy's equations[END_REF]Theorem 10] for ph ∈ W 0 (T h ), simplicial meshes, σ ∈ E int h , and an arbitrary ϕ ∈ H 1 (Ω). It generalizes easily to rectangular parallelepipeds and to the case σ ∈ E ext h and ϕ ∈ H 1 0 (Ω); here C depends only on d and κ T . Thus we have for the nonconformity estimator

η 2 NC,K = |||p h -I Os (p h )||| 2 K ≤ CC S,K σ∈ ẼK h -1 σ [[p h ]] 2 σ ≤ CC S,K L∈T K ∇(p -ph ) 2 L ≤ C C S,K c S,T K L∈T K |||p -ph ||| 2 L ,
using Lemma 2.1 and the above estimate, with C depending only on d, n, and κ T . Finally,

f -P Φ h (f ) K = f -∇ • u h K ≤ CC 1/2 S,K h -1 K |||u -u h ||| * ,K
with C depending only on d, κ T , and m follows standardly by using the element bubble function, the equivalence of norms on finite-dimensional spaces, the definition (1.2) of the weak solution, the Green theorem, the Cauchy-Schwarz inequality, the definition (2.9) of the energy norm, and the inverse inequality, cf. [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] or [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]Lemma 7.6]. Hence the estimate for η R,K follows.

Remark 6.16 (Maximal polynomial degree n of ph ). that by the postprocessing of Section 4.4, ph ∈ M h , usually a nonconforming polynomial space enriched with bubbles. The "maximal polynomial degree n of ph ", with the notation of Section 2.3, will then simply correspond to the highest polynomial/bubble degree used.

Extensions

We present here two extensions of the previous results. First of all, following Bernardi and Verfürth [START_REF] Bernardi | Adaptive finite element methods for elliptic equations with non-smooth coefficients[END_REF] and Ainsworth [START_REF] Ainsworth | Robust a posteriori error estimation for nonconforming finite element approximation[END_REF] and using the Oswald interpolation operator with diffusion tensordependent weights as in [START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF], one can obtain estimates robust with respect to inhomogeneities under the "monotonicity" assumption. Secondly, improving on the situation studied in [START_REF] Ern | Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods[END_REF] in the discontinuous Galerkin setting, we show that for mixed finite elements, our estimates are robust with respect to all inhomogeneities, anisotropies, polynomial degree, and mesh regularity for the error in |||uu h ||| * and |||ps h |||, where s h ∈ H 0 (Ω) is arbitrary. The same holds true for the triple error in u, s h , and ph .

Estimates robust with respect to inhomogeneities under the "monotonicity" assumption

With the notation of Section 2.3, let

I Os,S (ϕ h )(V ) = 1 K∈T V C 1/2 S,K K∈T V C 1 2 S,K ϕ h | K (V ).
Then all the estimates of Sections 6.1 and 6.2 hold true with I Os replaced by I Os,S . Clearly, the difference between I Os and I Os,S is the use of the diffusion tensor-dependent weights in the latter. We first make the following assumption (cf. [14, Hypothesis 2.7]):

Assumption (C) (Monotonicity of the distribution of C S,K )
For any two elements L, M ∈ T h which share at least one point, there exists a connected path passing from L to M through element sides such that the function C S,K is monotone along this path.

We then have the following result: Theorem 6.17 (Local efficiency robust with respect to inhomogeneities under Assumption (C)). Let all the assumptions of Theorem 6.15 hold, with I Os replaced by I Os,S Let next Assumption (C) hold. Then

η P,K ≤ η DF,K + η NC,K , η DF,K ≤ |||u -u h ||| * ,K + |||p -ph ||| K , η NC,K ≤ C max K∈T K C S,K c S,K |||p -ph ||| T K , η R,K ≤ C C S,K c S,K |||u -u h ||| * ,K ,
where the constant C depends only on the space dimension d, the maximal polynomial degree n of ph , and the shape regularity parameter κ T and C depends only on d, the polynomial degree m of f , and κ T .

Unfortunately, for the above robustness result, the "monotonicity" assumption is crucial. This excludes the most interesting cases where the weak solution is singular. For conforming discretizations, estimates robust in all cases are presented in [START_REF] Vohralík | Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients[END_REF]. The generalization to the nonconforming case seems not to be straightforward and represents an ongoing work. 6.4.2 Estimates robust with respect to inhomogeneities, anisotropies, polynomial degree, and mesh regularity for flux-and potential-conforming approximations Combining Theorems 6.7 and 6.11 for the upper bound and the triangle inequality and the estimate for η R,K from Theorem 6.15 for the local efficiency, we can state the following result: Theorem 6.18 (Optimal a posteriori error estimate for flux-and potential-conforming approximations). Let u, p be given by (1.4a)-(1.4b) and u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ), ph ∈ H 1 (T h ), and s h ∈ H 1 0 (Ω) be arbitrary. Let next the a posteriori error estimators η P,K , η R,K , η NC,K , and η DF,K be given respectively by (6.2), (6.3), (6.6), and (6.7), with I Os (p h ) replaced by s h . Then

|||u -u h ||| 2 * + |||p -s h ||| 2 ≤ K∈T h η 2 P,K + η 2 R,K + (η P,K + η R,K ) 2 , |||u -u h ||| 2 * + |||p -ph ||| 2 + |||p -s h ||| 2 ≤ K∈T h η 2 P,K + η 2 R,K + (η P,K + η R,K ) 2 + η 2 NC,K + (η DF,K + η R,K ) 2 . Moreover, η P,K ≤ |||u -u h ||| * ,K + |||p -s h ||| K , η DF,K ≤ |||u -u h ||| * ,K + |||p -ph ||| K , η NC,K ≤ |||p -ph ||| K + |||p -s h ||| K .
Finally, the residual estimators η R,K represent a higher-order term in the Raviart-Thomas-Nédéc case whenever f ∈ H l+1 (T h ), see Remark 6.3. In any case, when f is piecewise polynomial of order m and T h shape-regular, then

η R,K ≤ C C S,K c S,K |||u -u h ||| * ,K ,
where C depends only on d, the polynomial degree m of f , and κ T .

Remark 6.19 (Theorem 6.18). Theorem 6.18 shows that the a posteriori error estimates presented in this paper also give an upper bound for the error including |||ps h ||| (|||p -I Os (p h )||| in the mixed finite element setting). In this case, possibly up to the residual term, they become robust with respect to all the diffusion tensor S, the space dimension d, the maximal polynomial degree of u h , s h , and ph , and the mesh shape regularity. Moreover, a maximal overestimation factor (effectivity index) is guaranteed. Note also that in order to solve the possible issue of the residual term, the estimates can be given for |||uu h ||| * ,div as in Theorem 6.7.

Remark 6.20 (Optimal efficiency). It is to the estimates of Theorem 6.18 that the results of Repin et al. [START_REF] Repin | Two-sided a posteriori error estimates for mixed formulations of elliptic problems[END_REF] should be compared. Basically, giving optimal a posteriori error estimates for approximations which are both flux-and potential-conforming is trivial.

Complements on mixed finite element methods

We give here some complements on mixed finite element methods that are to our knowledge not presented in any of the standard textbooks or other references mentioned in the introduction. We start by showing that under the assumption that the source function f belongs to the space Φ h , some orthogonal projection relations are valid in the mixed finite element method, parallel and complementary to the conforming finite element method. We next show that mixed finite element approximate solutions are directly equal to or very close to some generalized weak solutions.

Orthogonal projection properties

We first give the following characterization, valid for any mixed finite element scheme. 

:= R k (T h ) ∩ H 1 0 (Ω) is characterized by B(p h , ϕ h ) = (f, ϕ h ) ∀ϕ h ∈ X h and satisfies |||p -p h ||| = inf s h ∈X h |||p -s h |||, B(p -p h , ϕ h ) = 0 ∀ϕ h ∈ X h .
This means that it is the H 1 0 (Ω)-orthogonal projection of the exact potential p onto X h with respect to the scalar product B(•, •) the associated scalar energy norm (2.7)). We denote this projection by P X h . Theorem 7.1 says that in the mixed finite element method, under the condition that f ∈ Φ h , the exact flux u = -S∇p is the L 2 (Ω)-orthogonal projection of the approximate flux u h onto S∇H 1 0 (Ω) with respect to the scalar product A(•, •) the associated vector energy norm (2.9)). the parallel but also the exchange of the roles between the exact and approximate solutions: in the conforming finite element method, the approximate solution is the orthogonal projection of the exact one, whereas in the mixed finite element case, the exact solution is the orthogonal projection of the approximate one.

The following characterization is only valid in the lowest-order Raviart-Thomas-Nédélec cases: Remark 7.4 (Scalar orthogonal projection property). Under assumptions of Theorem 7.3, the exact potential p is the W 0 (T h )-orthogonal projection of the approximate postprocessed potential ph onto H 1 0 (Ω) with respect to the scalar product B(•, •) the associated scalar energy norm (2.7)). We denote this projection by P H 1 0 . Here, the parallel to the conforming finite element method is even stronger, compare it with Remark 7.2. The situation is graphically illustrated in Figure 1. 

Generalized weak solutions and mixed finite elements

We develop here the ideas of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]Section 5.4] on the relation between mixed finite element approximate solutions and certain weak solutions. For some results comparing the mixed and (generalized) finite element approximate solutions, we refer to Babuška and Osborn [START_REF] Babuška | Generalized finite element methods: their performance and their relation to mixed methods[END_REF] and Falk and Osborn [START_REF] Falk | Remarks on mixed finite element methods for problems with rough coefficients[END_REF]. By a generalized weak solution, we understand a function p ∈ W h (T h ) such that (S∇p, ∇ϕ) = (f, ϕ) ∀ϕ ∈ W h (T h ). (7.3) Note that (2.7), (2.11a), and the discrete Friedrichs inequality (2.8) ensure the existence and uniqueness of the solution of (7.3). This generalized weak solution is dependent on the given mesh T h and also on the normal components of the space V h by the definition (2.1b) of the space W h (T h ). Note also that H 1 0 (Ω) ⊂ W h (T h ), whence the term "generalized".

Theorem 7.5 (A posteriori estimates for the generalized weak solutions). Let p be given by (7. where the diffusive flux estimator η DF,K is given by (6.7) and the residual estimator η R,K by (6.3).

Proof. By replacing H 1 0 (Ω) by W h (T h ) in Theorem 3.3, putting v = ũ, w = u h , and using (3. Estimating this term exactly as in the proof of Theorem 6.1 and putting s = ph , the estimate for ũu h follows. Similarly as in the vector case, instead of (6.5), one in the present setting gets

|||p -ph ||| 2 ≤ inf s∈W h (T h ) |||p h -s||| 2 + sup ϕ∈W h (T h ), |||ϕ|||=1 B(p -ph , ϕ) 2 .
Whereas the first term disappears by putting s = ph , we have for the second one, adding and subtracting (u h , ∇ϕ), B(pph , ϕ) = (f, ϕ) -(S∇p h + u h , ∇ϕ) + (u h , ∇ϕ).

The estimate for pph now follows by (7.4) and the Cauchy-Schwarz inequality.

Remark 7.6 (A posteriori estimates for the generalized weak solutions). Note that the essential difference of the estimates of Theorem 7.5 and of those of Theorems 6.7 and 6.11 are that the nonconformity estimator η NC,K given by (6.6) and the potential estimator η P,K given by (6.2), the two estimators penalizing the nonconformity in ph through the introduction of the Oswald interpolate I Os (p h ), are not present, since the generalized solution p itself is in the space W h (T h ) as ph . Note also that under Assumption (A), the diffusive flux estimators η DF,K vanish, whereas for f ∈ Φ h , the residual estimators η R,K vanish. Thus in the lowest-order Raviart-Thomas-Nédéc case and for elementwise constant f , p = ph (and ũ = u h ). We refer to [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]Sections 5.4 and 5.6] for a more detailed discussion of this special case.

The proof of the following theorem is straightforward, using the same techniques as those in the proof of Theorem 6.15. Moreover, the residual estimators η R,K represent a higher-order term in the Raviart-Thomas-Nédéc case whenever f ∈ H l+1 (T h ), see Remark 6.3. In any case, when f is piecewise polynomial of order m and T h shape-regular, then

η R,K ≤ C C S,K c S,K |||ũ -u h ||| * ,K ,
where C depends only on d, the polynomial degree m of f , and κ T .

Remark 7.8 (Local efficiency of estimators of Theorem 7.5). Note that, possibly up to the residual term, the a posteriori error estimate of Theorem 7.5 is according to Theorem 7.7 robust with respect to all the diffusion tensor S, the space dimension d, the maximal polynomial degree n of ph , and the mesh shape regularity.

Corollary 4 . 1 (

 41 Existence and uniqueness of the discrete mixed finite element solution). Let ∇ • V h = Φ h . Then there exists a unique solution to the problem (1.5a)-(1.5b).

4. 4 . 1

 41 Postprocessing in the lowest-order Raviart-Thomas-Nédélec case Under Assumption (A), the following postprocessing has been proposed in [59, Section 4.1] on simplicial meshes and in [8, Sections 6 and 9] (cf. also [61, Section 3.2]) on meshes consisting of rectangular parallelepipeds: construct ph ∈ P 2 (T h ) such that

  0, which follows from (1.5b) and from the commuting diagram property [20, Proposition III.3.7], to see (5.2). Hence the result follows.

Corollary 5 . 2 (

 52 A priori estimates for the flux). Let u be given by (1.4a)-(1.4b) and u h by (1.5a)-(1.5b). Then |||uu h ||| * ≤ Ch k+1 , |||uu h ||| * ,div ≤ Ch l+1 .

Theorem 5 . 6 (

 56 A priori estimates for the postprocessed potential ph in the general case). Let u, p be given by (1.4a)-(1.4b), u h , p h by (1.5a)-(1.5b), and ph by (4.4a)-(4.4b). Then|||pph ||| ≤ C inf s h ∈M h |||ps h ||| + |||uu h ||| * + |||u -P Ṽh (u)||| * ≤ Ch k+1 ,(5.5)pph 1 ≤ C|||pph |||.(5.6)

Theorem 5 . 9 (

 59 Superconvergence estimates for the postprocessed potential ph ). Let u, p be given by (1.4a)-(1.4b), u h , p h by (1.5a)-(1.5b), and ph by (4.2a)-(4.2b) or (4.4a)-(4.4b). Then pph ≤ Ch|||pph ||| + P Φ h (p)p h .

Theorem 7 . 3 (

 73 Scalar orthogonal projection property). Let Assumption (A) hold, let f ∈ Φ h , and let p be given by (1.4a)-(1.4b), u h , p h by (1.5a)-(1.5b), and ph by (4.2a)-(4.2b). Then|||pph ||| = inf s∈H 1 0 (Ω) |||p h -s|||,or, equivalently, B(pph , ϕ) = 0 ∀ϕ ∈ H 1 0 (Ω). Proof. Immediate from (7.1) and (7.2) using (1.3a), (4.2a), and (2.10).

Figure 1 :

 1 Figure 1: Graphical visualization of the relations between the postprocessed lowest-order mixed finite solution ph , weak solution p, and conforming finite element solution p h when f ∈ Φ h .

  3), ũ by ũ := -S∇p, u h , p h by (1.5a)-(1.5b), and ph by (4.2a)-(4.2b) or (4.4a)-(4.4b). Then|||ũu h ||| 2 ≤ K∈T h (η 2 DF,K + η 2 R,K ), |||pph ||| 2 ≤ K∈T h (η DF,K + η R,K ) 2 .

2 .

 2 3), one comes to the equivalent of (3.2)-(3.3) in the form|||ũu h ||| 2 * = inf s∈W h (T h ) |||u h + S∇s||| 2 * + A ũu h , ũ + S∇ψ |||ũ + S∇ψ||| *We next put ϕ := (pψ)/|||p -ψ||| ∈ W h (T h ) and rewrite the second term of the above expression as A(ũu h , -S∇ϕ), employing ũ = -S∇p and (2.10). Next, by (2.3) and the definition of the generalized weak solution (7.3), A(ũ, -S∇ϕ) = (f, ϕ), whereasA(u h , -S∇ϕ) = -(u h , ∇ϕ) = K∈T h {(∇ • u h , ϕ) Ku h • n, ϕ ∂K } = (P Φ h (f ), ϕ) (7.4) by (2.3), the Green theorem, the fact that u h ∈ V h and ϕ ∈ W h (T h ), and (1.5b). Note the importance of the definition (2.1b) of of the space W h (T h ), by which the termK∈T h u h •n, ϕ ∂K = σ∈E h u h • n, [[ϕ]] σ disappears. Hence A(ũu h , -S∇ϕ) = (f -P Φ h (f ), ϕ).

Theorem 7 . 7 (

 77 Local efficiency of estimators of Theorem 7.5). Let the assumptions of Theorem 7.5 be verified. Then η DF,K ≤ |||ũu h ||| * ,K + |||pph ||| K .

Table 1 :

 1 Examples of local mixed finite element spaces

  Estimates for the postprocessed potential in the general case In the general case, one no more has (4.2a), whence |||pph ||| = |||uu h ||| * and |||p h ||| = |||u h ||| * no more holds true. As however the following lemma shows, there is still a strong particular connection between |||p h ||| and |||u h ||| * .

	Theorem 5.4 (A priori estimates for the postprocessed potential ph in the lowest-order Raviart-
	Thomas-Nédélec case). Let Assumption (A) hold, let u, p be given by (1.4a)-(1.4b), u h , p h
	by (1.5a)-(1.5b), and ph by (4.2a)-(4.2b). Then
	|||p -ph ||| = |||u -u h |||

* ≤ Ch, pph 1 ≤ C|||pph |||.

Proof. For the first estimate, it is sufficient to note that (2.10) in combination with (4.2a) gives |||pph ||| = |||uu h ||| * and use the result of Corollary 5.2. The second estimate is then directly implied by the fact that ph ∈ W 0 (T h ) and the discrete Friedrichs inequality (2.8).

5.3

  5) follows by the triangle inequality |||pph ||| ≤ |||ps h ||| + |||p hs h |||, (4.6b), Corollary 5.2, and the approximation properties of P Ṽh . Estimate (5.6) then again follows immediately by the discrete Friedrichs inequality (2.8).

  .8) Theorem 5.8 (Superconvergence estimates for the original potential p h ). Let u, p be given by (1.4a)-(1.4b) and u h , p h by (1.5a)-(1.5b). Let next Assumption (B) hold. Then if l = k,

  The term η R is sometimes referred to as the "data oscillation term", because it only depends on the variation of the source function f , and considered separately from the actual a posteriori error estimate. If f ∈ H l+1 (T h ), this term is clearly of order O(h l+2 ). Thus it is superconvergent for those mixed finite elements methods where |||uu h ||| * is of order O(h l+1 ), namely the Raviart-Thomas-Nédélec ones. This is, however, not always the case, namely for the Brezzi-Douglas-Marini family, where |||uu h ||| * is of order O(h l+2 ). In this second case in particular, it is thus important not to separate η R from the estimate and use h K f -P Φ h (f ) K

the Cauchy-Schwarz inequality, the Poincaré inequality (2.13), (2.7), and once again the Cauchy-Schwarz inequality. The assertion of the theorem follows by the fact that |||ϕ||| = 1. Remark 6.2 (Nature of the estimate of Theorem 6.1). Theorem 6.1 shows that the error in a vector field u h ∈ H(div, Ω) such that ∇ • u h = P Φ h (f ) is measured by how close u h is to a gradient of a H 1 0 (Ω)-potential, up to the term η R .

Remark 6.3 (Residual term).

  Theorem 7.1 (Vector orthogonal projection property). Let f ∈ Φ h , let p be given by (1.4a)-(1.4b), and let u h ∈ H(div, Ω) such that ∇ • u h = f be arbitrary. Then|||S∇p + u h ||| * = infProof. Property (7.1) follows immediately from (6.1) under the assumption f ∈ Φ h . To see (7.2) is then standard; alternatively, putting w = u h in (3.1) and using f ∈ Φ h impliesA(-u h , S∇ϕ) = (-u h , ∇ϕ) = (f, ϕ)by the Green theorem and (1.5b). Hence ψ = p and (7.2) coincides with(3.4).

	s∈H 1 0 (Ω)	|||u h + S∇s||| * ,	(7.1)
	or, equivalently,		
	A(S∇p + u h , S∇ϕ) = 0	∀ϕ ∈ H 1 0 (Ω).	(7.2)

Remark 7.2 (Vector orthogonal projection property). In the conforming finite element method for (1.1a)-(1.1b), the approximate solution p h ∈ X h with X h
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