
HAL Id: hal-00294004
https://hal.science/hal-00294004v1

Submitted on 8 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WYSIWIB: A Declarative Approach to Finding
Protocols and Bugs in Linux Code

Julia Lawall, Julien Brunel, René R. Hansen, Henrik Stuart, Gilles Muller

To cite this version:
Julia Lawall, Julien Brunel, René R. Hansen, Henrik Stuart, Gilles Muller. WYSIWIB: A Declarative
Approach to Finding Protocols and Bugs in Linux Code. 2008. �hal-00294004�

https://hal.science/hal-00294004v1
https://hal.archives-ouvertes.fr


WYSIWIB: A Declarative Approach to Finding Protocols and Bugs

in Linux Code

Julia L. Lawall,1 Julien Brunel,1 René Rydhof Hansen,2 Henrik Stuart,1 Gilles Muller3

1DIKU, University of Copenhagen, Copenhagen, Denmark
2Aalborg University, Aalborg, Denmark

3Ecole des Mines de Nantes, Nantes, France

{julia,brunel,hstuart}@diku.dk, rrh@cs.aau.dk, Gilles.Muller@emn.fr

Research report 08/1/INFO, Ecole des Mines de Nantes

July 4, 2008

Abstract

Although a number of approaches to finding bugs in systems code have been proposed, bugs still remain to be found. Current

approaches have emphasized scalability more than usability, and as a result it is difficult to relate the results to particular

patterns found in the source code and to control the tools to be able to find specific kinds of bugs.

In this paper, we propose a declarative approach based on a control-flow based program search engine. Our approach is

WYSIWIB (What You See Is Where It Bugs), since the programmer is able to express specifications for protocol and bug

finding using a syntax that is close to that of ordinary C code. Search specifications, called semantic matches, can be easily

tailored so as to either eliminate false positives or catch more potential bugs. We introduce our approach by describing three

case studies which have allowed us to find 395 bugs.



1. Introduction

In recent years, a multitude of approaches have been pro-

posed to scanning systems code for API protocols and bugs

in their usage [3, 4, 6, 8]. A goal of these approaches has

been to be highly scalable, and by using techniques such as

model checking, statistics, and data mining, it has been pos-

sible to apply these approaches to software of millions of

lines of code such as the Linux kernel. Some of these tools

have furthermore been successfully commercialized [2]. A

weakness of these efforts, however, is in the lack of user

interaction with the protocol-finding and bug-finding strate-

gies. Protocols are detected using complex heuristics that the

user has little control over [3, 6]. Automata-based languages

have been proposed for describing code patterns that consti-

tute bugs [3], but these specifications are difficult to relate

to the code structure. Both of these features make it difficult

for the user to understand why something is considered to

be part of a protocol or bug, or is overlooked, and thus to

identify the inevitable false positives and false negatives.

Based on an extensive study of Linux code, we have

observed that many of the API protocols used by Linux

code follow a common pattern, related to the purpose of the

protocol, such as error handling or managing the allocation

of memory. It is thus our belief that taking such patterns into

account in the protocol finding and bug finding processes

can ease the process of checking the results and make it

possible to consider protocols that occur very rarely, and

thus are often overlooked by statistics-based approaches.

Existing tools, however, either provide no mechanism for the

user to influence the protocol-finding or bug-finding process,

or only provide mechanisms that are disassociated from the

code structure, making it difficult to interpret the results at

bug-checking time.

In this paper, we propose a “WYSIWIB” (What You See

Is Where It Bugs) approach to protocol and bug finding in

Linux code, based on the following steps: 1) describe a class

of protocols generically, and apply this description to the

Linux source code to collect a set of protocols, 2) instantiate

a collection of descriptions of various possible bug patterns

for the detected protocols, and 3) apply these descriptions to

the Linux source code to collect possible protocol violations.

This approach directly exploits the user’s knowledge of the

source code and guides the validation of the reported bugs

based on information explicit in the specification. Our ap-

proach is furthermore complementary to statistics-based ap-

proaches, in that it considers how to describe what to search

for, while statistics-based approaches consider how to select

from the things that are found.

Concretely, we have implemented our approach as col-

lection of tools based on the Coccinelle transformation en-

gine [7]. A key feature of Coccinelle is that specifications

are written using a language that is very close to C code,

thus easing specification development.

The contributions of this work are:

• We propose a framework for finding protocols in Linux

code, iteratively refining them, and using them to find

bugs. This framework chiefly builds on the Coccinelle

system, but provides some new complementary tools.

• We present three case studies illustrating the use of our

approach for finding protocols and bugs. Two of these in-

volve general-purpose classes of protocols. One of them

was inspired by a bug fix that was submitted to Linux,

illustrating the adaptability of our approach.

• Our case studies find over 3500 potential protocols, with

estimated false positive rates ranging from 2% to 55%.

Based on these protocols, we have used our framework

to find 395 bugs that we have validated.

The rest of this paper is organized as follows. Section 2

reviews the aspects of Coccinelle that are necessary to under-

stand the rest of the paper. Section 3 describes our protocol-

finding and bug-finding framework. Sections 4 through 6

each present a case study, illustrating the processing of var-

ious kinds of common protocols. Section 7 surveys some of

the current limitations of our approach. Finally, Section 8

describes related work and Section 9 concludes.

2. Coccinelle

Coccinelle is a tool for performing control-flow based pro-

gram searches and transformations in C code [7]. It provides

a language, SmPL, for specifying searches and transforma-

tions and an engine for performing them. In this paper, we

write SmPL code for defining semantic matches, which are

used for code searching. We present SmPL in terms of a sim-

ple semantic match inspired by the case study reported in

Section 5.

The semantic match shown in Figure 1 detects cases

where a value allocated using the Linux netlink memory

allocation function nlmsg new is deallocated using the

generic deallocation function kfree skb. Such a deallo-

cation is undesirable, because the netlink library defines its

own deallocation function nlmsg free. The semantic match

consists of two rules, the first named bad kfree and written

in SmPL, and the second with no name written using the

SmPL interface to Python. Each rule begins with the dec-

laration of a collection of metavariables, and then follows

with either a C-code based pattern for specifying a match

in the case of a SmPL rule, or ordinary Python code in the

case of a Python rule. The notation is based on the Linux

patch syntax, in that the code patterns have the structure of

ordinary C code. In the rest of this section, we describe each

of these rules in more detail, and give a brief tour of some of

the other features of SmPL.

The rule bad kfree defines three metavariables: x and E,

which represent arbitrary expressions, and p, which rep-

resents an arbitrary position in the source program. Once

bound, a metavariable must have the same value within the

current control-flow path, and thus, for example, the occur-

EMN 08/1/INFO 1



1 @bad kfree exists@
2 expression x,E;
3 position p;
4 @@
5
6 x = nlmsg_new(...)
7 ... when != x = E

8 kfree_skb@p(x);
9

10 @ script:python @
11 x << bad kfree.x;
12 p << bad kfree.p;
13 @@
14 print "line: %s x: %s" % (p[0].line,x)

Figure 1: A semantic match searching for certain uses of kfree -

skb

rences of x on lines 6, 7, and 8 must all match the same

expression. The code pattern in the body of the rule consists

of essentially C code mixed with some operators to raise the

level of abstraction, so that a single semantic match can ap-

ply to many code sites. This semantic match uses the oper-

ator “...” to represent a sequence of terms. In line 8 this

represents a sequence of expressions in the argument list

of nlmsg new and in line 9 this represents an arbitrary se-

quence of statements reachable from code matching the call

to nlmsg new along any control-flow path. By default such

a sequence of statements is quantified over all paths, by the

annotation exists next to the rule name indicates that for

this rule there need exist only one. Many of the remaining

features of SmPL are devoted to expressing constraints on

these sequences, using the operation when. This rule uses

when (line 7) to indicate that there should be no reassign-

ment of x before reaching the call to kfree skb.

Python rules do not perform any matching against the

source program, but may inherit metavariables from other

rules, using the notation rule.metaname, and do some pro-

cessing of their values. We only use Python for printing out

information about the found protocols and bugs. In this ex-

ample, the Python rule inherits the expression metavariable

x holding the allocated value and the position metavariable

holding the position of the call to kfree skb. It prints the

line on which the call to kfree skb occurs and the text

associated with the expression x. The Python interface is a

new feature as compared to earlier work on Coccinelle and

has been essential to managing the results of our semantic

matches. We often use Python to print out information in the

form expected by an emacs mode that we have developed,

based on the emacs org mode, to quickly find and validate

reported bug sites.

In the more general case, a semantic match can consist

of any number of rules, each of which can inherit metavari-

ables from any previous ones. A rule only applies when

the pattern matches completely. A rule is applied once for

each possible set of values of the inherited metavariables.

Besides “...”, SmPL provides nests, <...pattern ...>,

and disjunctions, (pattern1| . . . |pattern
n
). A nest matches

a sequence, like “...”, but additionally can match zero or

more occurrences of pattern within the matched sequence.

A disjunction matches any of the patterns pattern1 through

pattern
n

. The remaining SmPL operators describe further

constraints on the sequences matched by “...” or a nest. By

default such a sequence is the shortest path between code

matching the patterns before and after the sequence oper-

ator. The annotation when any removes this shortest path

restriction, allowing any number of instances of such code

to occur within the path as well. Finally, by default, the uni-

versal quantification over paths does not require the com-

plete pattern to appear on control-flow paths that end in error

handling code (identified, in accordance with typical Linux

programming style, as any code that has the form of a con-

ditional ending in a return). The operator when strict re-

quires full universal quantification without this relaxation.

Convention Coccinelle includes “...” as an operator in

the language, but this notation is also convenient for showing

where code is omitted in examples. We will by convention

reserve “...” for the Coccinelle operator and use [...]

to represent omitted code. Furthermore, we frequently use

[...] in Python rules, rather than showing the Python code.

In such rules, the significant part is the list of inherited

metavariables, which indicates what will be printed out.

3. The bug-finding process

There are many sources of information for finding bugs.

One can study the bug reports of others, notice a suspicious

coding pattern while doing some other work on the code,

or learn from sources such as code comments, newsgroups,

or research papers about coding protocols that programmers

may sometimes overlook. The problem then is to turn this

awareness of the potential for bugs into actual bug detection.

Typically, bug finding depends highly on chance, as the

person who is aware of the protocol must be looking at

the specific code containing the bug and have the protocol

in mind at that time. The goal of this work is to enable a

programmer who becomes aware of a potential pattern of

bugs in protocol usage to easily search for instances of this

pattern throughout the code base, and to explore variants of

the pattern as they become apparent.

To motivate our choice of methodology, we begin with a

story drawn from our experience in finding and fixing bugs

in Linux code. In December 2007, a patch,1 shown in Fig-

ure 2, was submitted to Linux. This patch was based on the

observation that the function netif rx could free its argu-

ment, and that thus it was not safe to refer to its argument af-

ter calling the function. The developer had found and fixed

the problem in one file. We saw this patch and wondered

whether there could be other calls to the same function with

the same property. A semantic match for detecting such calls

1 d30f53aeb31d453a5230f526bea592af07944564 in the git repository

http://git.kernel.org/git/?p=linux/kernel/git/torvalds/

linux-2.6.git;a=summary. All subsequent git codes refer to this

repository.

2 EMN 08/1/INFO



is shown in Figure 3a. It is similar in structure to the seman-

tic match of Figure 1, except for the use of a disjunction on

lines 8-12. This disjunction causes the position metavariable

p used on line 11 only to record the positions of references

to skb that do not match the first pattern, i.e., are not on the

left hand side of an assignment.

--- a/drivers/net/smc911x.c
+++ b/drivers/net/smc911x.c
@@ -1299,9 +1299,9 @@ smc911x_rx_dma_irq(int dma, void *data)

PRINT_PKT(skb->data, skb->len);
dev->last_rx = jiffies;
skb->protocol = eth_type_trans(skb, dev);

- netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;

+ netif_rx(skb);

spin_lock_irqsave(&lp->lock, flags);
pkts = (SMC_GET_RX_FIFO_INF() & RX_FIFO_INF_RXSUSED_) >> 16;

Figure 2: A standard patch addressing one instance of the netif -

rx problem

1 @r exists@
2 expression skb,e,e1;
3 position p;
4 @@
5
6 netif_rx(skb);
7 ... when != skb = e

8 (
9 skb = e1

10 |
11 skb@p

12 )
13 @ script:python @
14 skb << r.skb;
15 p << r.p;
16 @@
17 [...]

(a)

1 @r exists@
2 expression skb,e,e1;
3 position p;
4 @@
5
6 (
7 netif_rx(skb);
8 |
9 netif_rx_ni(skb);

10 )
11 ... when != skb = e

12 (
13 skb = e1

14 |
15 skb@p

16 )
17
18 @ script:python @
19 skb << r.skb;
20 p << r.p;
21 @@
22 [...]

(b)

Figure 3: The original (a) and extended (b) semantic matches for

finding netif rx problems

This semantic match found some potential bugs. In the

process of validating them, however, we found that the func-

tion netif rx ni also had the same property. We thus aug-

mented the semantic match as shown in Figure 3b to allow

it to match calls to either function. The resulting semantic

match found 5 occurrences of this pattern, all of which have

been acknowledged as bugs by the Linux developers. So far,

our corrections for 4 of these bugs have been accepted into

the Linux kernel.2

This episode clearly highlights how a flexible searching

tool such as Coccinelle can find bug patterns more efficiently

2 Git codes 299f590f26da9764f20e905879f0090552ff2e86,

505a41d43c24345f3fa77ddab152d1f82dd8264d, and

9b3efc0133a807070dbd21254102995b65969965.

and completely than a human programmer. But still, it does

not go far enough. Rather than accidentally finding another

function that follows the same protocol as one that caused

a bug, we would like to be able to find all of the functions

that follow that protocol, and then create a bug finding rule

for each of them. Indeed, it can be useful to iterate this pro-

cess, instantiating a collection of semantic match templates

according to a set of protocols, where each semantic match

template either expresses a bug finding rule or collects more

information. We explore this approach with respect to the

netif rx example in Section 6.

Figure 4 illustrates the use of a framework that we have

developed for using Coccinelle in an iterated protocol find-

ing and bug finding process. This framework involves four

tools: Search, Instantiate, MultiSearch, and Make-

BugReport. Search, MultiSearch, and MakeBugReport

use Coccinelle in various ways, while Instantiate is a

separate tool. We describe these tools below:

MakeBugReport MultiSearch

Instantiate

....
Instantiate

....

Collected
Info

Bug
Report

BugSM1' BugSM1'' BugSM1''' ProtSM1' ProtSM1'' ProtSM1'''

Instantiate Instantiate

Collected
Info

Search

ProtSM Linux

Linux

 

Linux

 

BugSMTemp3BugSMTemp2

BugSMTemp1 ProtSMTemp1

Figure 4: Protocol and bug-finding process

Search The protocol and bug finding process begins when

the programmer has an idea of a certain kind of function

or collection of functions whose usage protocol may be

error prone. He expresses this idea as a semantic match

that expresses various properties of the kind of code he is

interested in and uses Python to print relevant information

about the matched terms. Figure 5 illustrates such a semantic

match, which detects any pair of functions f and g. The

Python code prints information about these functions in the

format expected by the Instantiate tool. The first field of

this output is a tag that characterizes this match. A semantic

match may use multiple such tags to separate various kinds

of matched code into categories, as done in the case study

in Section 4. The remainder of the output is a sequence of

key-value pairs. By convention, we write the key in capital

letters. The value is typically some part of the matched code,

often the name of a matched function that was found to have

EMN 08/1/INFO 3



some property with respect to the protocol. For the semantic

match in Figure 5, the output might contain:

protocol: START: atomic_dec_and_test, FINISH: spin_unlock_bh
protocol: START: list_add_tail, FINISH: spin_unlock_bh
protocol: START: read_lock_bh, FINISH: read_unlock_bh
[...]

1 @ r @
2 identifier f,g;
3 @@
4
5 f(...)
6 ...
7 g(...)
8
9 @ script:python@

10 f << r.f;
11 g << r.g;
12 @@
13 print "protocol: START: %s, FINISH: %s" % (f,g)

Figure 5: A protocol-finding semantic match, suitable for starting

the protocol finding and bug finding process

After having developed the protocol-finding semantic

match, the programmer gives it to the Search tool, which

uses Coccinelle to apply it to each file of the Linux kernel.

The results are collected in a single output file. The pro-

grammer may inspect this result to assess the accuracy of

the protocol-finding semantic match. If it contains entries

that the programmer knows do not correspond to valid pro-

tocols or it is missing some protocols that the programmer

is otherwise aware of, then he can refine the semantic match

to eliminate these false positives and false negatives.

Instantiate Having obtained information about a collec-

tion of protocols from the initial protocol-finding semantic

match, the programmer then considers what kinds of bugs

are relevant or what other information might be needed to

find bugs. For each kind of bug or other needed information,

he writes a semantic match template, which is parameter-

ized by the various keys used in reporting the result of the

previous step. He then applies the tool Instantiate to the

semantic match template, the result of the initial protocol-

finding semantic match, and a tag. The result is a collection

of semantic matches, one for each element of the result of

the previous step that is associated with the given tag.

A semantic match template that is used to search for more

information should print output in the form illustrated in

Figure 5. A semantic match template that is used to search

for bugs should print output in the form recognized by our

emacs interface, so that the bugs can be easily validated. An

example of a semantic match template that searches for more

information is shown in Figure 6. It finds functions h that are

called at least once, as indicated by the + on the nest brack-

ets, after a call to the previously identified function FINISH

and before the previously identified function START. This se-

mantic match template would be instantiated with respect to

each of the pairs of functions identified by Search.

1 @ r @
2 identifier h;
3 @@
4
5 FINISH(...)
6 <+... h(...) ...+>
7 START(...)
8
9 @ script:python@

10 h << r.h;
12 @@
13 print "protocol: FN1: START FN2: FINISH EXTRA: %s" % h

Figure 6: A protocol-finding semantic match, suitable for starting

the protocol finding and bug finding process

MultiSearch and MakeBugReport MultiSearch is used

to search for further information based on a collection of in-

stantiated semantic match templates, while MakeBugReport

is used to search for bugs. MultiSearch takes as input a

collection of semantic matches produced by Instantiate,

uses Coccinelle to apply each of them to the Linux ker-

nel, and collects the results in a form suitable for passing

to Instantiate again. MakeBugReport does essentially

the same, but collects the result into a bug report for further

processing with emacs. In either case, examining the results

may cause the programmer to refine the corresponding se-

mantic match template or make him aware of new kinds of

bugs that are relevant to the protocol, for which new seman-

tic match templates can be developed.

The next three sections illustrate the use of this process

on three case studies, each illustrating a different strategy for

finding protocols and bugs. The first case study tries to find

protocols by studying function definitions, while the second

considers function call sites. The former can be more accu-

rate, because it can analyze the function’s precise behavior,

but it is not always possible, e.g., in software that depends

on libraries for which the source code is not available. The

third case study is based on the netif rx example, and il-

lustrates how our approach makes it possible to easily search

for specific kinds of bugs as the programmer becomes aware

of them. All of the code snippets used to illustrate these case

studies have been selected using semantic matches. The bugs

we have identified have not yet been validated by the Linux

developers. However, our assessment of the number of bugs

is based on careful study of the code building on previous

experience obtained for patches we have submitted and had

accepted, as listed at the Coccinelle web site.3 All of our

experiments are based on a snapshot of Linux dated March

11, 20074 and were run on an HP ProLiant server with two

3GHz quad-core Xeon processors and 16GB memory.

3 http://www.emn.fr/x-info/coccinelle/
4 Git code baadac8b10c5ac15ce3d26b68fa266c8889b163f.

4 EMN 08/1/INFO



4. Case Study 1: Detecting Inconsistent

Error Checks

The C programming language does not provide any built-in

exception handling mechanism, and thus applications must

define their own protocols for detecting and handling excep-

tional conditions. In Linux, pointer-typed functions typically

return either NULL, a value constructed with ERR PTR,5 or

both to indicate failure. Code using such functions must then

correspondingly follow one of three protocols before deref-

erencing the result: 1) testing the value for NULL, 2) testing

the value for ERR PTR using the function IS ERR, or 3) per-

forming both tests. Choosing the wrong protocol amounts

to performing either inappropriate tests or insufficient tests

and can lead to invalid pointer dereferences that can crash

the Linux kernel. In this section, we consider how to clas-

sify functions in terms of the kinds of error values they may

return and how to detect various kinds of bugs in their use.

ar
ch

bl
oc

k
cr

yp
to

dr
iv

er
s fs

in
cl

ud
e

in
it

ip
c

ke
rn

el lib m
m ne

t
sa

m
pl

es
sc

ri
pt

s
se

cu
ri

ty
so

un
d

us
r

vi
rt

0

500

1000

1500

2000

# 
of

 f
un

ct
io

ns

functions returning NULL
functions returning ERR_PTR

Figure 7: The use of NULL and ERR PTR in the Linux kernel by

directory

4.1 Protocol detection

We detect instances of the above protocols by examining

function definitions to infer the usage protocols that they im-

ply. Our goal is to write a protocol finding semantic match

that identifies functions in the following categories: Cate-

gory 1) Functions that indicate an error by returning NULL;

Category 2) Functions that indicate an error by returning a

value created using ERR PTR; Category 3) Functions that in-

dicate an error by returning either NULL or ERR PTR.

To give an overview of the strategies used by our proto-

col finding semantic match, we consider the Linux functions

simple alloc urb and clk get shown in Figure 8. Rele-

vant code is highlighted in italics. As illustrated by lines 7,

16, and 23, a function may explicitly return NULL, ERR PTR,

or a pointer created using &, or it may store such values in

some variable and then return the value of that variable. Of-

ten, however, the return value is derived from a more com-

plex expression, typically a function call, about which we

have no direct information. Nevertheless, it may be possi-

ble to infer some information about such an expression from

5 For conciseness, we subsequently refer to “a value constructed with

ERR PTR” as just “ERR PTR”.

the ways in which its value is used. For example, in line 9,

the conditional test implies that the variable urb is NULL at

the point of the return, and in line 14, the dereference of

urb means that its value can subsequently be assumed to be

a valid pointer. These observations allow us to conclude that

the function simple alloc urb in Figure 8a is a category 1

function. Similar observations allow us to identify category

2 and 3 functions. For the function clk get, however, we

do not have enough information to classify the function, due

to the function call in line 22. In this case, we consider the

function to be unknown.

1 static struct urb *simple_alloc_urb (
2 struct usb_device *udev,
3 int pipe, unsigned long bytes)
4 {
5 struct urb *urb;
6
7 if (bytes < 0) return NULL; // explicit null

8 urb = usb_alloc_urb (0, GFP_KERNEL);
9 if (!urb) return urb; // null inferred from test

10 ...
11 if (!urb->transfer_buffer) {
12 usb_free_urb (urb);
13 urb = NULL;

14 } else memset (urb->transfer buffer, 0, bytes);
15 // null or valid pointer inferred from assignment or dereference

16 return urb;

17 }
18
19 struct clk *clk_get(struct device *dev, const char *id)
20 {
21 if (clk_functions.clk_get)
22 return clk functions.clk get(dev, id);

23 return ERR PTR(-ENOSYS);

24 }

(b)

Figure 8: Functions illustrating various ways of returning er-

ror codes. These functions are defined in drivers/usb/misc/

usbtest.c and arch/powerpc/kernel/clock.c, respectively

We now consider how to write a semantic match that

expresses these intuitions. This semantic match is used in

the role of “ProtSM” in Figure 4. The semantic match is in

four phases, as shown in Figures 9 to 12.

Phase 1: making information explicit As illustrated on

line 9 of Figure 8, it is possible to determine whether var-

ious variables are NULL or ERR PTR from the conditional

tests that appear in the function. To avoid having to sub-

sequently consider many special cases, this initial phase

makes such information explicit, by introducing correspond-

ing assignments under such conditional tests. For example,

line 9 of simple alloc urb becomes if (!urb) { urb

= NULL; return urb; }.

Figure 9 shows the transformation rule for NULL tests.

There is a similar rule for IS ERR tests. These rules make

use of the transformation features of Coccinelle, where lines

that are annotated with - are removed and lines that are

annotated with + are added. These rules furthermore make

use of a feature of Coccinelle known as an isomorphism

[7], i.e., a collection of terms having different forms but

essentially the same meaning. Here we take advantage of

EMN 08/1/INFO 5



built-in isomorphisms that convert E == NULL to NULL ==

E and !E, interchange the arguments of && and ||, and

interchange the conditional branches. Nevertheless, SmPL

cannot express arbitrary repetitions of operators, and so the

pattern does not match cases where the NULL or IS ERR

test is deeply nested within the test expression. Still, we

have been able to classify almost 3000 functions into the

categories 1, 2, and 3 despite this limitation.

1 @t1 using "likely.iso" disable add_parens @
2 expression *E;
3 identifier def0.f;
4 statement S1, S2;
5 @@
6
7 f(...) {
8 <...
9 (

10 if ((E == NULL | E == NULL&&...))
11 + {
12 + E = NULL;
13 S1

14 + }
15 else S2

16 |
17 if ((E != NULL | E != NULL||...)) S1

18 + else E = NULL;
19 )
20 ...>
21 }

Figure 9: Making NULL values explicit

Phase 2: detecting returns of NULL and ERR PTR The

second phase detects functions that somewhere return NULL,

ERR PTR, or both. The rule for the NULL case, shown in

Figure 10, checks that a function contains either an explicit

return of NULL (line 9) or an assignment of some expression

to NULL followed by a return of that expression (lines 11-14).

It does not handle arbitrary levels of aliasing, but this rarely

occurs intraprocedurally in Linux code.

1 @returns null exists@
2 identifier def0.f,fld;
3 expression E, E1;
4 @@
5
6 f(...) {
7 ... when any
8 (
9 return NULL;

10 |
11 E = NULL;
12 ... when != ( E = E1 | E->fld )
13 return E;
14 )
15 }

Figure 10: Detecting returns of NULL and ERR PTR

Phase 3: detecting unknown return values This phase de-

tects cases where the return value is derived from an expres-

sion that is not NULL, ERR PTR or an explicit pointer, and that

is never dereferenced. We have no information about such

expressions, and so such a function must be in the category

unknown. The rules implementing this phase are shown in

Figure 11. The first rule uses the position metavariable p to

mark the locations of all of the assignments where the as-

signed value is either NULL, ERR PTR or an explicit pointer

(line 9). The second rule detects returns where the argument

has been assigned, but not by one of the assignments de-

tected in the first rule, or has not been assigned at all, as

would be the case of an explicit function call. In either case,

a when clause checks that the returned value is not derefer-

enced, and is thus not known to be a valid pointer.

1 @a depends on !returns null || !returns errptr @
2 position p;
3 identifier def0.f;
4 expression E,E1;
5 @@
6
7 f(...) {
8 <...
9 ( E@p = ERR_PTR(...) | E@p = NULL | E@p = &E1 )

10 ...>
11 }
12
13 @b depends on !returns null || !returns errptr exists@
14 identifier def0.f, fld;
15 expression E,E1,E2;
16 position p, p1, p2 != a.p;
17 @@
18
19 f@p(...) {
20 (
21 ... when any
22 E@p2 = E1

23 ... when != ( E = E2 | E->fld )
24 return@p1 E;
25 |
26 ... when != ( E = E2 | E->fld )
27 return@p1 E;
28 )
29 }

Figure 11: Detecting unknown return values

Phase 4: classifying the functions At this point, we have

collected enough information to classify the functions. The

rule cat1, shown in Figure 12 considers a function to be in

category 1 if every path through the function ends with ei-

ther a return of NULL, a return of a pointer created with &

or a return that was not classified as unknown by phase 3.

A second rule, notcat1, which is not shown, ensures that

there is not another definition of the function that returns an

unknown value, as may occur if #ifdef is used to provide

multiple definitions of the function within a single file. Fi-

nally, a Python rule prints out the name of any function that

satisfies cat1 and does not satisfy notcat1, indicating that

the function is in category 1. A similar Python rule, which is

not shown, indicates that the function is unknown if it satis-

fies notcat1.

Similar rules identify functions in category 2. Category

3 functions are those that were found to somewhere return

NULL and to somewhere return ERR PTR in phase 2. Other

pointer-typed functions are considered unknown.

Experimental results Figure 13 shows the result of apply-

ing Search to the above semantic match, in terms of the

number of pointer-typed functions that are classified as into

6 EMN 08/1/INFO



1 @cat1 depends on returns null && !returns errptr@
2 position p, p2 != b.p1;
3 identifier def0.f;
4 expression E;
5 @@
6
7 f@p(...) {
8 ... when strict
9 ( return NULL; | return &E; | return@p2 E; )

10 }
11
12 @ script:python depends on cat1 && !notcat1@
13 f << def0.f;
14 @@
15 print "category1: FN:%s" % f

Figure 12: Classifying the functions

each category. Due to time constraints, we have not been

able to verify all of these results. Instead, we have randomly

selected 50 functions from each category and studied its

definition to determine the validity of the classification. As

shown in Figure 13, we find very few false positives. All of

the false positives derive from the inadequate interpretation

of conditionals. In the case of categories 1 and 2, the false

positives are typically in cases where the return value can

actually be unknown. All of the category 3 false positives

are actually in category 2, since the values involved in the

conditional tests imply that a return value of NULL is impos-

sible.

classified validated false positives

category 1 2394 50 1

category 2 480 50 2

category 3 100 50 4

unknown 6940 N/A N/A

Figure 13: Results of classifying pointer-typed functions

Approaches that are based on data mining or statistics

infer protocols from frequently occurring patterns of usage

[3, 6]. Figure 14 shows that many of the functions that we

have classified are directly called only a few times. Some

functions are indicated as being called 0 times because they

are only used as the value of a function pointer.

0 1 2 3 4 5 6 7 8 9 10-19 20-29 30-247

# of calls (n)

0
200
400
600
800

1000

# 
of

 f
un

ct
io

ns
 w

it
h

n 
ca

lls

Figure 14: Call frequency for the categorized functions within the

Linux kernel source code

4.2 Bug detection

As noted at the beginning of the section, performing inappro-

priate tests and performing insufficient tests are both unde-

sirable. We thus write bug-finding semantic match templates

for each of these cases, and instantiate them with respect to

the functions identified in the protocol-finding phase.

Inappropriate tests Figure 15 shows a semantic match

template for detecting inappropriate tests for each possible

function, FN, in category 1. The rule match detects the case

where an expression x is assigned the result of calling a FN

(line 6) and then tested using IS ERR (line 8). This check,

however, is not sufficient, because there may be some other

value of this expression that can reach the test, via another

execution path, and it might be legitimate to test this other

value for IS ERR. The second rule detects an initialization

of x that is at a different position from any one matched

in the first rule (line 15), as required by the constraint on

the position metavariable p1 (line 12). Finally, the Python

code, which prints the result, is triggered only if the first

rule matches and the second one does not (line 19). Another

pair of rules, which is not shown, considers the case where

the call appears explicitly in the argument of the IS ERR

test. The semantic match template for category 2 functions

is similar, but checks for various kinds of NULL tests rather

than an IS ERR test.

1 @match exists@
2 expression x, E;
3 position p1,p2;
4 @@
5
6 x@p1 = FN(...)
7 ... when != x = E

8 IS_ERR(x@p2)
9

10 @other match exists@
11 expression match.x, E1, E2;
12 position p1!=match.p1,match.p2;
13 @@
14
15 x@p1 = E1

16 ... when != x = E2

17 IS_ERR(x@p2)
18
19 @ script:python depends on !other match@
20 p1 << match.p1;
21 p2 << match.p2;
22 @@
23 [...]

Figure 15: Template for detecting inappropriate tests

Figure 16 shows the result of applying MakeBugReport

to this semantic match template, in terms of the number of

potential bug sites found and the number of false positives.

We consider a potential bug site to be a single function call

for which there is at least one inappropriate test. 28 potential

bug sites are reported in all. There is only one false positive,

which is due to a limitation in Coccinelle’s treatment of

variable declarations that initialize more than one variable.

reported sites bugs false positives

category 1 2 2 0

category 2 26 25 1

Figure 16: Inappropriate tests bugs

EMN 08/1/INFO 7



Figure 17 shows an example of a bug found with the

semantic match template for category 2 functions. This

code comes from the function aaci probe in the file

sound/arm/aaci.c. When the call to aaci init card (line

1) returns ERR PTR, control jumps to the out label (line 4).

There the result of the call is tested again, this time for being

non-NULL (line 8). This test succeeds, because an ERR PTR

value is always different from NULL. The subsequent deref-

erence to access the card field (line 9), will then crash the

kernel, because aaci is an invalid pointer.

1 aaci = aaci_init_card(dev);
2 if (IS_ERR(aaci))
3 ret = PTR_ERR(aaci);
4 goto out;
5
6 [...]
7 out:
8 if (aaci)
9 snd_card_free(aaci->card);

Figure 17: An inappropriate test found with the template for cate-

gory 2 functions

Insufficient tests Figures 18 to 20 show extracts of a se-

mantic match template for detecting calls to category 1 func-

tions where there is no NULL test before dereferencing the

result. The rules for categories 2 and 3 are similar. The se-

mantic match proceeds in three phases.

The first phase, as in the protocol-finding semantic match,

reorganizes the code to simplify the subsequent analysis.

Here, the reorganization transforms tests by breaking apart

conjunctions and disjunctions, as shown for conjunctions in

conditionals in Figure 18.

1 @and depends on def0 using "../likely.iso" disable and_comm @
2 position xtesta.p;
3 expression E1, E2;
4 statement S1, S2;
5 @@
6
7 - if@p (E1 && E2) S1

8 + if (E1) { if (E2) S1 }

Figure 18: Phase 1: Reorganization of conditional tests

The second phase detects cases where a dereference is

known to be safe. This can be because the dereference is

guarded by a test of the expression for NULL (e.g., by a

conditional or loop test), or because there is a conditional

that tests the expression for NULL and then either updates the

expression to some other value or aborts in some way (e.g., a

return or panic, but also a break or continue). Position

variables are used to remember the terms that are matched in

these cases. Figure 19 shows a simplified version of the rule

protected that collects in the metavariable p the positions

of dereferences protected by an enclosing NULL test (the

full rule also considers while and for loops and conditional

expressions). The rules updated and aborts, which are not

shown, match the remaining conditions.

1 @protected using "../likely.iso" @
2 expression def0.x;
3 identifier fld;
4 position p;
5 statement S;
6 @@
7
8 if ((x != NULL | x != NULL &&...)) {<... x@p->fld ...>} else S

Figure 19: Phase 2: Detecting dereferences protected by an enclos-

ing conditional

Finally, the third phase, shown in Figure 20, detects and

prints the potential bug sites. Starting from an assignment of

some expression x to the result of a call to the category 1

function FN (line 12), the rule finds any subsequent derefer-

ence of the returned value that is not preceded by a reassign-

ment of x and that is not at a position identified by protected.

The search furthermore stops at a call to BUG ON that tests for

NULL, as this aborts the kernel, and at the conditionals identi-

fied by the unprotected and aborts rules. Finally, the Python

code prints a bug report for each pair of a call to the category

1 function and an identified dereference.

1 @unprotected using "../likely.iso" exists@
2 expression def0.x;
3 identifier fld, fld1;
4 position p != protected.p;
5 position call.p1;
6 position any updated.px;
7 position any aborts.ab;
8 statement S,S1;
9 expression E;

10 @@
11
12 x@p1 = FN(...)
13 ... when != ( x = E | x->fld1 )
14 (
15 BUG_ON((x == NULL | x == NULL||...));
16 |
17 if@ab (...) S1 else S

18 |
19 if@px (...) S1 else S

20 |
21 x@p->fld

22 )
23
24 @ script:python @
25 p << unprotected.p; // position of ref
26 p1 << call.p1; // position of call
27 fld << unprotected.fld;
28 @@
29 [...]

Figure 20: Phase 3: Detecting unprotected dereferences

Figure 21 shows the result of applying MakeBugReport

to this semantic match template, in terms of the number of

potential bug sites found and the number of false positives.

We consider a potential bug site to be a single function call

for which there are one or more dereferences of the result

without a previous required check. 535 potential bugs are

reported in all, of which over 90% are for category 1 func-

tions. For category 1, we have verified 250 potential bug

sites, due to time limitations. For the other categories, we

have verified all reported bugs. In all there are 42 false posi-

tives, with again most being for category 1. The reasons for

8 EMN 08/1/INFO



the false positives vary. The most common are that a deref-

erence occurred at the destination of a goto, causing the se-

mantic match not to detect that it was protected by a prior

NULL test, and that the NULL test was present, but embedded

in the definition of some other called function. The former

issue could be addressed by enhancing the semantic match

to check whether code at the destination of a goto is only

reachable from code where the test has been performed. Ad-

dressing the latter issue in general would require an interpro-

cedural analysis.

reported validated bugs false

sites sites positives

category 1 496 250 215 35

category 2 20 20 16 4

category 3 19 19 16 3

Figure 21: Insufficient tests bugs

Figure 22 shows an example of a typical bug found with

the semantic match template for category 1 functions. This

code calls the function alloc ctrl packet (line 1), which

defined in the same file, calls the generic memory allocation

function kzalloc and returns NULL if the memory allocation

fails. In this case, the dereference in line 5 will crash the

kernel.

1 ver_packet = alloc_ctrl_packet(
2 sizeof(struct ipw_setup_get_version_query_packet),
3 ADDR_SETUP_PROT, TL_PROTOCOLID_SETUP,
4 TL_SETUP_SIGNO_GET_VERSION_QRY);
5 ver_packet->header.length =
6 sizeof(struct tl_setup_get_version_qry);

Figure 22: An insufficient tests bug in the function

ipw send setup packet in the file drivers/char/pcmcia/ipwireless/

hardware.c

5. Case Study 2: Detecting Allocation and

Deallocation Functions

Linux code contains many functions that allocate and deallo-

cate resources. Often these are wrappers around generic allo-

cation functions, such as kmalloc, that additionally perform

service-specific initializations. Such functions may also be

used to manage reference counts. The goal of this case study

is to detect functions that allocate and deallocate resources,

and bugs in their usage.

5.1 Protocol detection

We consider allocation and deallocation of resources that are

represented as pointer values. Allocation and deallocation of

such resources are carried out by function calls. The chal-

lenge is to distinguish allocation and deallocation functions

from functions that manipulate the data in other ways, such

as accessing its fields or storing it more permanently, e.g., in

a global variable. In this case study, we try to characterize a

pair of allocation and deallocation functions based on how

they are used.

Our strategy is based on the following observations.

When a function calls an allocation function, it typically

tests the returned resource for validity and then saves or

deallocates this result. In particular, when an error occurs

in such a function, the function typically deallocates the re-

source before returning. Indeed, deallocation must be done

if the resource is only stored in a local variable. This pat-

tern is illustrated by the code fragment shown in Figure 23.

Line 10 uses the function alloc tty driver to allocate a

tty driver resource, and the result is stored in the local

variable drv. The result is checked for validity in the next

line. The result remains in a local variable until the condi-

tional on line 14, which checks for an error condition. If an

error has occurred, the conditional frees the resource drv on

line 15 using the function put tty driver and returns an

error value, -1.

1 static int capinc_tty_init(void)
2 {
3 struct tty driver *drv;

4
5 if (capi_ttyminors > CAPINC_MAX_PORTS)
6 capi_ttyminors = CAPINC_MAX_PORTS;
7 if (capi_ttyminors <= 0)
8 capi_ttyminors = CAPINC_NR_PORTS;
9

10 drv = alloc tty driver(capi ttyminors);

11 if (!drv)

12 return -ENOMEM;

13 ... // initializations of various fields of dev
14 if (tty register driver(drv)) {
15 put tty driver(drv);

16 printk(KERN_ERR "Couldn’t register capi_nc driver\n");
17 return -1;

18 }
19 capinc_tty_driver = drv;
20 return 0;
21 }

Figure 23: Extract of drivers/isdn/capi/capi.c. Code relevant to the

allocation-deallocation pattern is shown in italics.

A semantic match based on these observations is shown

in Figure 24. In this semantic match, the metavariable E

represents the local variable that contains the allocated value,

the metavariable f represents the allocation function, and

the metavariable g represents the deallocation function. The

metavariable f is specified not to be one of the basic memory

allocation functions, kmalloc, kzalloc, kcalloc (line 2),

because it is well-known that memory allocated with these

functions should be deallocated using kfree. Lines 9-13 of

the semantic match establish the pattern of an allocation.

These lines check for a local variable declaration (line 9),

then any subsequent assignment of that variable to the result

of a call to a function f (line 11), and finally a test whether the

initialized value of the local variable is NULL (line 13), which

is assumed to be a validity test on the result. Lines 18-25 of

the semantic match search for the pattern of a deallocation

under an error condition. This has the form of a conditional

(line 18) containing a call to a function g (line 22) that

takes the local variable as some argument, followed by a

return (line 24), with no intervening use of the local variable

EMN 08/1/INFO 9



(line 23). The pattern furthermore specifies that within the

conditional and before the call to the deallocation function,

the local variable cannot be updated (line 19) stored in the

value of some other expression (line 20), or passed to another

function (line 21). The latter condition serves to avoid the

case where this other function stores the value in some more

permanent way, such as adding it to a global queue. Finally,

the same conditions are placed on the code between the

allocation code and the deallocation code. Any other code,

however, can appear, including other conditionals (line 17).

1 @alloc exists@
2 identifier E,f != { kmalloc,kcalloc,kzalloc },g,h1,h2;
3 expression E1,E2;
4 int ret!=0;
5 type T;
6 statement S;
7 @@
8
9 T *E;

10 ... when any
11 E = f(...);
12 ... when != E

13 if (E == NULL) S

14 ... when != ( E = E1; | E1 = E; | h1(...,E,...) )
15 when any
16 if (...) {
17 ... when != ( E = E2; | E2 = E; | h2(...,E,...) )
18 g(...,E,...);
19 ... when != E

20 return ret;
21 }
23
24 @ script:python @
25 f << alloc.f; // identifier
26 g << alloc.g; // identifier
27 @@
28 [...]

Figure 24: A simplified semantic match for detecting allocation-

deallocation protocols

This semantic match finds 376 pairs of allocation and

deallocation functions, but it overlooks a number of others

that do not match the specified code patterns in some way.

For example, an allocation can be described, as specified by

this semantic match, in three separate statements (declara-

tion, allocation, and validation) but some of these steps can

also be merged, i.e., the allocation can be part of the dec-

laration, or it can appear in the test expression of the con-

ditional performing the validation. Furthermore, the test ex-

pression of this conditional can be more complicated, using

the boolean operators && and ||. We can also allow for a

subsequent test using IS ERR, which has the form of a func-

tion call but is known not to save its argument. Finally, in

the deallocation part, the function g may return a value, and

the entire function may return a non-integer value, such as

NULL, or no result at all.

Our complete semantic match addressing the above is-

sues is about 20 lines longer than the one shown. It finds 602

pairs of allocation and deallocation functions, including all

of the ones found by the simplified version. We have stud-

ied 50 randomly selected pairs of identified allocation and

deallocation functions and found that 37 represent valid pro-

tocols and 13 are false positives. The most common reason

for a false positive is that the function identified as an allo-

cation function performs an access rather than an allocation,

and so the last function that uses the accessed data within

an error path is inappropriately identified as a deallocation

function.

Even the generalized semantic match is not able to de-

tect all allocation/deallocation protocols, because some such

functions may never be used in the context required by the

semantic match. For example, an allocation function may al-

ways be used in a context where its result is immediately

stored in a structure field or it may never be used in a func-

tion that needs to handle an error. The NULL test on the re-

sult of the allocation function might always be omitted, or it

might be expressed in a more convoluted way that is not de-

tected by the semantic match. All of these constraints were

built into the semantic match to try to reduce the number of

false positives while still finding many protocols. Neverthe-

less, the programmer could experiment with relaxing them.

This semantic match has focused on allocation functions

that return pointer-typed values where failure of the alloca-

tion is represented as NULL. It could easily be adapted to

the case where the allocation function returns ERR PTR to

indicate failure, or where the allocated information is repre-

sented as an integer rather than a pointer.

5.2 Bug detection

The bugs we search for have the form of a call to an alloca-

tion function with no subsequent call to a deallocation func-

tion. As in the protocol-finding semantic match, we focus on

values stored in local variables and error-handling code, to

reduce the number of false positives.

Searching for missing deallocations A simplified version

of the bug-finding semantic match template is shown in Fig-

ure 25. It follows the protocol-finding semantic match quite

closely, except that the calls to the deallocation function are

replaced by constraints that no call to the deallocation func-

tion appears. Finally, as compared to the protocol-detecting

semantic match, we also remove the constraint that the value

is not passed to another function, as our goal now is to find

as many bugs as possible.

The semantic match template from which this simplified

version has been constructed finds some bugs, as shown in

the first line of Figure 26, but it also finds about as many

false positives. In some cases, the value is passed to an

intermediate functions that either saves or deallocates it. In

particular, many Linux services define a cleanup function

that deallocates a number of resources that the service may

have allocated. In other cases, the deallocation is under a

conditional that is more complex that the NULL test checked

for in the rule in Figure 24.

To address this issue, we can exploit the ease of modify-

ing SmPL code to create more constrained semantic match

templates that match fewer bugs, but also fewer false posi-

10 EMN 08/1/INFO



1 @bug exists@
2 type T;
3 identifier E;
4 expression E1,E2;
5 statement S,S1,S2;
6 int ret != 0;
7 position a,p;
8 @@
9

10 T *E;
11 ... when any
12 E = ALLOC@a(...);
13 ... when != E

14 if (E == NULL) S

15 ... when any
16 when != ( E = E1 | E1 = E | FREE(...,E,...) )
17 when != if (E != NULL) { ... FREE(...,E,...) ... }
18 (
19 if (E == NULL) S1 else S2

20 |
21 if (...) {
22 ... when != ( E = E2 | E2 = E | FREE(...,E,...) )
23 when != if (E != NULL) { ... FREE(...,E,...) ... }
24 return@p ret;
25 }
26 )
27
28 @ script:python @
29 a << bug.a;
30 p << bug.p;
31 @@
32 [...]

Figure 25: A simplified template for detecting missing dealloca-

tions

reported validated bugs false

sites sites positives

Full detection 470 180 81 99

Subsequent deallocation

required
158 100 50 50

Allocated data not

passed to an

intervening function
189 61 36 25

Both restrictions 76 43 27 15

Figure 26: Missing deallocation bugs

tives. One can then concentrate on a smaller, simpler bug re-

port in which the matched code has more commonality thus

making the bugs easier to verify. After having thoroughly

studied these simpler bug reports, one can return to the orig-

inal bug report and consider the remaining cases, having

gained more experience about the structure of the affected

code. We have considered three variants on the semantic

match of Figure 24: one where we require that there is a

deallocation of the same value after the conditional in which

a bug seems to occur, one in which we reintroduce the con-

straint that the value is not passed to any function between

the allcation and the conditional in which the bug seems to

occur, and one that combines the two. Other variants are pos-

sible.

Figure 26 also shows the result of projecting the infor-

mation about bugs and false obtained for the full semantic

match template onto the bug reports generated by the more

restricted versions. The first constraint has no significant im-

pact on the ratio of bugs to false positives, but imposing the

second constraint or combining the two substantially reduces

the number of false positives, while still making it possible

to find some bugs.

A special case Finally, we have created an extremely con-

strained semantic match template, which was motivated by

our study of the original reported bugs. In some cases, a

specific allocation function and deallocation function are de-

fined for a particular type of value. The allocation function

may, for example, allocate memory using kmalloc and ini-

tialize some fields, but in some cases the deallocation does

nothing specific at all, and simply calls a generic dealloca-

tion function such as kfree. Because the effect is the same,

code may use the generic function rather than the specific

one. This, however, represents a breaking of the abstraction

boundary, and can lead to problems later, if is becomes nec-

essary to augment the deallocation function. We have thus

written a semantic match to find deallocation functions that

simply call some other function with the same argument, and

then a semantic match to correct the bug by replacing calls

to these functions by calls to the specific variant that corre-

sponds to the allocation function that is used. In this case,

we use the tool MultiSearch to iterate the protocol-finding

process. The semantic match template identifying the rele-

vant deallocation functions is shown in Figure 27. The se-

mantic match template finding the bugs is a generalization

of the semantic match used to present Coccinelle in Section

2. This semantic match template can furthermore potentially

find bugs that the previously presented ones do not, because

it does not restrict the search for the deallocation function to

error conditions.

1 @r@
2 identifier f,x;
3 type T;
4 @@
5 FREE(T x) { f(x); }
6
9 @ script:python @

10 f << r.f;
11 @@
12 print "oneline: AL:ALLOC FR:FREE FN:%s" % f

Figure 27: A template for detecting a deallocation function that

simply calls another deallocation function

The semantic match template detecting deallocation func-

tions that simply call some other function on the same

argument detected 18 such deallocation functions, asso-

ciated with in all 24 allocation functions. Bugs are re-

ported in the use of three of the deallocation functions,

framebuffer release, nlmsg free, and vfree, for a to-

tal of 27 bug reports, all but two of which are in the use of

nlmsg free. The bug in the use of vfree is a false posi-

tive, as it is part of a conditional that tests whether vfree

or kfree should be used. Checking these bugs took only a

few minutes. These results clearly show the benefits of being

able to create semantic matches that check for very specific

EMN 08/1/INFO 11



conditions, as there is the potential for a high rate of found

bugs and validation of these bugs can be very easy.

6. Case Study 3: Bug detection inspired by

the netif example

The third case study is motivated by the example presented

in Section 3. The essential feature of the bug that was origi-

nally found was that the function netif rx could free its ar-

gument, and that thus it was not safe to refer to its argument

after calling the function. Because use after free is a gen-

eral problem, we write a semantic match to find functions

that possibly or definitely free some argument, and then a

semantic match template to find calls to such function that

are followed by a dereference of that argument.

The number of bugs and false positives found are sum-

marized in Figure 28. Most of the false positives are where

the identified function FN decrements a reference count and

possibly frees its argument. At some calls to such a function

FN, the referece count is known to be greater than 1, and thus

the decrement cannot cause the value to be freed.

reported validated bugs false

sites sites positives

guaranteed free 10 10 5 5

possible free 22 22 9 13

Figure 28: Reference after call to a freeing function

7. Current Limitations

Coccinelle was originally designed for performing program

transformations. Although our approach has found a large

number of bugs in Linux code, our case studies have also re-

vealed some limitations of Coccinelle for protocol and bug

finding. These limitations include the lack of an interproce-

dural analysis, the lack of a dataflow analysis, the inability to

interpret arbitrarily complex conditional texts, and the need

to make some kinds of inferred infermation explicit in the

code. As a result, semantic matches can be complex. Fur-

thermore, they tend to become more complex as they are

refined, to eliminate false negatives and false positives.

Some of these limitations may be essential for transfor-

mation, where the user would like to retain very tight con-

trol over the conditions under which the transformation takes

place. For protocol and bug finding, however, it may be use-

ful to consider whether a weaker coupling between the code

fragments in the semantic match and the elements of the

matched code could make the approach easier to use while

maintaining or reducing the rate of false positives.

8. Related Work

Engler et al. [3] initiated the idea of using a checker that is

neither sound nor complete to provide the scalability needed

to find bugs in systems code. Enlger et al. also proposed [4]

to search for protocols in the form of pairs of functions that

occur together frequently. The former is based on checking

rules expressed as automata, that have a structure quite dif-

ferent from C code. The latter tends to find a very large num-

ber of candidate protocols, on which statistics are used to se-

lect the most likely. There is no opportunity for the user to

interject his understanding of the code structure. Later work

uses automata to characterize the behaviors of typical classes

of protocols, and then the user can participate in assigning

specific functions to roles in such an automaton [5]. But the

specifications remain distant from the source code.

Li and Zhou use data mining to collect sets of terms that

often occur together, and thus identify a number of complex

protocols in Linux and other open source systems [6]. Ra-

manathan et al. show that including path sensitivity in this

process significantly improves precision [8]. Coccinelle se-

mantic matches also take into account control-flow paths.

While the protocols we have detected in the case studies

in this paper involve essentially only two operations, more

complex protocols could be detected by writing more com-

plex semantic matches. In contrast to a data mining based

approach, in our approach the programmer must be aware of

the basic structure of the protocol, but we can exploit this

property to ease the protocol and bug validation process.

Weimer and Necula [10] propose an approach similar to

that of Engler et al. [4], but they focus on protocols and

bugs that occur in error paths, which gives them both a much

smaller set of potential protocols and a much smaller set of

false positives. In our second case study, we have also found

it useful to exploit the kinds of code that occur in error paths.

Our use of error paths is also tailored via the SmPL code to

the class of protocol being considered, rather than following

a fixed strategy as in Weimer and Necula’s work.

The Static Driver Verifier (SDV) [1], developed at Mi-

crosoft, uses model checking to prove that certain bugs do

not occur in systems code. Specifications amount to au-

tomata describing invalid behaviors. These automata are ex-

pressed in a C-like notation, but do not follow the structure

of the code to be processed. Because SDV gives a guaran-

tee of correctness, rather than just finding potential bugs, it

is more expensive than the aforementioned approaches. It is

thus better suited to being applied to individual drivers rather

than to an entire operating system.

In previous work [9], we have used Coccinelle to re-

express the bug-finding automata presented in the work of

Engler et al. [3]. That paper did not consider protocol find-

ing. Furthermore, it only considered a few very generic func-

tions, such as kmalloc and kfree, for which there appear

to be few remaining usage errors in Linux today.

9. Conclusion and Future Work

In this paper, we have presented a framework for searching

for protocols and bugs in Linux code. A principal goal of this

framework is to allow users to quickly and easily interject

their understanding of the code structure into the protocol

12 EMN 08/1/INFO



and bug finding process. Our framework is based on the use

of the Coccinelle transformation tool that provides a speci-

fication language that is close to C code. We have comple-

mented Coccinelle with a collection of tools for managing a

series of searches that allow a uniform approach to protocol

and bug finding, based on strategies encoded by the user.

Coccinelle is unique among the tools used for protocol

and bug finding that we know of in that it supports program

transformation. This makes it possible to specify not only

how to find bugs but also how to fix them. For some of our

examples, such as replacing the use of a generic deallocation

function by a specific one, the change is very systematic and

creating a semantic patch is straightforward. More work is

necessary, however, to identify larger classes of bugs that

can be fixed automatically.

Availability The source code for the semantic matches

used in our experiments is available at the following URL:

http://www.diku.dk/~julia/bugs

References

[1] BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V.,

LICHTENBERG, J., MCGARVEY, C., ONDRUSEK, B.,

RAJAMANI, S. K., AND USTUNER, A. Thorough static

analysis of device drivers. In EuroSys 2006 (Apr. 2006),

pp. 73–85.

[2] Coverity. http://www.coverity.com/, 2008.

[3] ENGLER, D. R., CHELF, B., CHOU, A., AND HALLEM, S.

Checking system rules using system-specific, programmer-

written compiler extensions. In SOSP (Oct. 2000), pp. 1–16.

[4] ENGLER, D. R., CHEN, D. Y., CHOU, A., AND CHELF, B.

Bugs as deviant behavior: A general approach to inferring

errors in systems code. In SOSP (Oct. 2001), pp. 57–72.

[5] KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND

ENGLER, D. From uncertainty to belief: Inferring the

specification within. In OSDI (Nov. 2006), pp. 161–176.

[6] LI, Z., AND ZHOU, Y. PR-Miner: automatically extracting

implicit programming rules and detecting violations in large

software code. In ESEC/FSE (2005), pp. 306–315.

[7] PADIOLEAU, Y., LAWALL, J., HANSEN, R. R., AND

MULLER, G. Documenting and automating collateral

evolutions in Linux device drivers. In Eurosys 2008 (Mar.

2008), pp. 247–260.

[8] RAMANATHAN, M. K., GRAMA, A., AND JAGANNATHAN,

S. Path-sensitive inference of function precedence protocols.

In ICSE (2007), pp. 240–250.

[9] STUART, H., HANSEN, R. R., LAWALL, J., ANDERSEN,

J., PADIOLEAU, Y., AND MULLER, G. Towards easing the

diagnosis of bugs in OS code. In PLOS (Oct. 2007).

[10] WEIMER, W., AND NECULA, G. C. Mining temporal

specifications for error detection. In TACAS (Apr. 2005),

pp. 461–476.

EMN 08/1/INFO 13


