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SPATIAL HOMOGENIZATION IN A STOCHASTIC NETWORK

WITH MOBILITY

FLORIAN SIMATOS AND DANIELLE TIBI1

Abstract. A stochastic model for a mobile network is studied. Users enter
the network, and then perform independent Markovian routes between nodes,
where they receive service according to the Processor-Sharing policy. Once
their service requirement is satisfied, they leave the system. The stability re-
gion is identified via a fluid limit approach, and strongly relies on a “spatial
homogenization” property: At the fluid level, customers are instantaneously
distributed across the network according to the stationary distribution of their
Markovian dynamics and stay distributed as such as long as the network is
not empty. In the unstable regime, spatial homogenization almost surely holds
asymptotically as time goes to infinity (on the normal scale), telling how the
system fills up. One of the technical achievements of the paper is the construc-
tion of a family of martingales associated to the multidimensional process of
interest, which makes it possible to get crucial estimates for certain exit times.

1. Introduction

Recent wireless technologies have triggered interest in a new class of stochastic
networks, called mobile networks in the technical literature [2, 10]. In contrast with
Jackson networks where users move upon completion of service at some node, in
these mobile networks, transitions of customers within the network occur indepen-
dently of the service received. Moreover, at any given time, each node capacity is
divided between the users present, whose service rate thus depends on the capacity
and on the state of occupancy of the node. Once his initial service requirement
has been fulfilled, a customer definitively leaves the network. In [2], complex ca-
pacity sharing policies are considered, but in the simplest setting, which will be of
interest to us, nodes implement the Processor-Sharing discipline by dividing their
capacity equally between all the users present. Previous works [2, 10] have mainly
focused on determining the stability region of such networks, and it has been com-
monly observed that the users’ mobility represents an opportunity for the network
to increase this region. Indeed, because of their mobility, users offer a diversity of
channel conditions to the base stations (in charge of allocating the resources of the
nodes), thus allowing them to select the users in the most favorable state. Such a
scheduling strategy is sometimes referred to as an opportunistic scheduling strategy,
see [1] and the references therein for more details.

In the present paper, we investigate from a mathematical standpoint a basic
Markovian model for a mobile network, derived from [2]. In this simple setting,

Date: July 8, 2008.
Key words and phrases. Fluid limits, multiple time scales, transient behavior, stability.
1On leave at INRIA Paris-Rocquencourt.

1



2 F. SIMATOS AND D. TIBI

customers arrive in the network according to a Poisson process with intensity λ,
and move independently within the network, according to some Markovian dy-
namics with a common rate matrix Q. Service requirements are exponentially
distributed with mean 1, and customers are served at each node they visit accord-
ing to the Processor-Sharing discipline, until their demand has been satisfied. The
total capacity of the network, defined as the sum of all the individual capacities of
the nodes, is denoted by µ. It corresponds to the instantaneous output rate of the
network when no node is empty, i.e., when there is at least one customer at each
node.

It is of particular interest to note that, even if Q is reversible, because of the
arrival and departure processes, the system is not reversible. This contrasts with
earlier works in which particle systems with similar dynamics have been investi-
gated under reversibility assumptions. In [5], the authors look at a closed system
(i.e., with parameters λ = µ = 0) where transition rates are chosen such as to yield
a reversible dynamics. In this case, the stationary distribution of the system has
a product form, and the authors are interested in showing that the convergence to
equilibrium is exponentially fast. Their approach essentially relies on logarithmic
Sobolev type inequalities.

In our case however, a different set of questions is addressed, involving different
tools. Since the system under consideration is open, it may be unstable, so that
the first issue is to determine the stability region. We prove, as was conjectured
in [2], that the intuitive, simple condition λ < µ is indeed the stability condition
(the critical case λ = µ is not considered). In contrast with Jackson networks for
which the stability condition is local, in the sense that each node has to satisfy
some constraint, here only the global quantities λ and µ matter. This shows that
mobility allows to make the most of the potential service capacity of the network,
corroborating the results previously mentioned. Note that λ < µ being a necessary
condition is obvious, since µ is the maximal output rate. But surprisingly, proving
that it is sufficient requires very technical tools, among which the use of fluid limits
and martingale techniques. In particular, the long and tedious Appendix A is
solely devoted to the construction of a martingale which provides key estimates for
showing that λ < µ corresponds to a stable system.

This martingale is a multidimensional (therefore complicated) generalization of
the martingale built in [9] for the M/M/∞ queue, and this is not completely sur-
prising, since as will be seen, the model inherits salient properties of the M/M/∞
queue. Besides, the construction of a martingale associated to a multidimensional
process represents one of the technical achievements of this paper: such examples
are indeed pretty scarce in the literature. Similarly as in [9], the approach relies
on building a family of space-time harmonic functions indexed by some parameter
c ∈ Rn, and then on integrating over c in such a way as to preserve the harmonic
property.

Through studying both the stability region and the unstable regime, a detailed
description of the behavior of the system is given, resulting in two versions (sta-
ble and unstable) of the following rough property: When many users are present
in the network, they get approximately distributed among the nodes according to
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the unique invariant distribution π associated to Q, the latter being assumed ir-
reducible. It must be emphasized that yet, contrary to [2], customers’ movements
are not assumed stationary.

As a first argument for this spatial homogenization, the law of large numbers
suggests that, when the total number of users initially present in the network is
large, the proportions of users at the different nodes should be close to π after some
time, related to the convergence to π of the Markov process associated to Q. The
more delicate question, that next arises, of how long these proportions stay close
to π constitutes the main challenging issue of the paper, that requires martingale
techniques for estimating the deviation time from π.

The short term reach of π is understandable from an analogy with the M/M/∞
queue: indeed, independence of the customers’ trajectories yields that, similarly
to the M/M/∞ queue, the output rate from any node due to inner transitions is
directly proportional, through Q, to the number of customers at this node. When
the network is overloaded, the relative occupancies of the nodes should then, after
a while, be close to the internal traffic balance ratios, given by π.

A more explicit analogy with another classical queueing model is provided by
the following simple but crucial observation: As long as no node is empty, the total
number of customers simply evolves as an M/M/1 queue with input rate λ and
output rate µ. And this is in particular the case when the distribution of customers
is close to π. This interplay between, on one hand the proportions of customers
at the different nodes, and on the other hand their total number, will underly the
analysis all along the paper.

While the short term behavior, which results in the spreading of customers ac-
cording to π, is dominated by the M/M/∞ dynamics, the long term behavior is
essentially driven by the M/M/1 dynamics of the total number of customers. This
naturally suggests that two different scalings have to be considered: one, corre-
sponding to the M/M/∞ dynamics, where only space is scaled, and not time; and
a second one, where both space and time are scaled, corresponding to the fluid
scaling of the M/M/1 queue. Note that the natural scaling for the M/M/∞ queue
is the so-called Kelly scaling, in which space and input rate are scaled. Here, since
the input rate at each node due to inner transitions is a linear function of the
numbers of customers at the different nodes, there is no need to scale the external
input rate λ. Inner movements dominate the dynamics and the space scaled pro-
cess converges, analogously to the M/M/∞ queue under Kelly’s scaling, to some
deterministic trajectory, with limit point at infinity here given by π.

The coexistence of these two different scalings makes the use of fluid limits both
original and challenging. Fluid limits are a standard tool in the analysis of compli-
cated stochastic networks. Rybko and Stolyar [12] is one of the first papers using
this technique together with Dai [7]. Dupuis and Williams [8] presented similar
ideas in the context of diffusions. In a series of papers Bramson [3, 4] describes the
precise evolution of fluid limits for various queueing networks. See also the books
by Chen and Yao [6] and Robert [11]. In the context of networks, fluid limits have
been used mainly for Markov processes which behave locally as random walks. For
this reason, results related to fluid limits are sometimes presented as functional
laws of large numbers. Because of the mixture of two different dynamics, given by
the M/M/1 and M/M/∞ models, our framework is somewhat different. A second
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important difference with the existing literature concerns tightness results which
are usually easy to obtain, mainly because transition rates are generally bounded:
this not the case here.

The long term analysis is twofold. Deriving fluid limits requires a control on
the process over time periods of the same order as the initial number of customers
(since the fluid scaling parameter is the same for time and space). In the stable case
this is obtained by showing that the deviation time from π is essentially larger than
the time for the underlying M/M/1 queue to empty. The unstable case exhibits
a more striking behavior: the deviation time from π is not only large compared
to the initial number of customers, but is even infinite with high probability. This
amounts to a control of the whole trajectory: the distribution of users among nodes
stays trapped in any neighborhood of π with high probability as the initial state
is large. This result is related to a strong convergence result stating that, for any
fixed (non scaled) initial state, the system almost surely diverges along the direction
of π. Note that a similar phenomenon has been exhibited in [1], in the context of
branching Markov chains, i.e., Galton-Watson branching processes where individ-
uals located at some countable set of sites move at their birth time.

These various remarks and outline of results lead to the following organization
for the paper. Section 2 gives a precise description of the stochastic model and in-
troduces the notations that will hold throughout the paper. We have already men-
tioned the construction of a martingale which gives important estimates through
optional stopping techniques: Section 3 introduces this martingale, and provides
the main estimate that will be used. Due to its technicality, the construction of the
martingale is postponed to Appendix A.

Section 4 establishes a decomposition of the process as, mainly, the difference
between two processes of the same type but with no departures. For such a process
(with null service capacity), a representation involving labelled particles is given.
Both representations will help derive the almost sure convergence result of Section 6.

The three last sections are devoted to analyzing the behavior of the system.
Section 5 deals with the short term behavior, thus studying the only space renor-
malized process. Section 6 studies the supercritical case λ > µ, establishing among
other results the almost sure convergence of the proportions to the equilibrium dis-
tribution π as t → ∞. Finally, Section 7 proves the stability of the system in the
subcritical case λ < µ.

2. Framework and notations

This section gives a precise description of the model under consideration and
introduces the main notations. The network is described by a Markov process
X = (X(t), t ≥ 0) characterized by its infinitesimal generator, given by (1) below.

Section 6 will make use, in the particular case of null service capacity, of a more
explicit representation of X involving a sequence of Markov jump processes that
represent the trajectories of the successive customers entering the network. The
general description of the system through its Markovian dynamics provided in the
present section is however sufficient for most results of the paper, especially for
building a family of martingales and for determining the stability condition.
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The network consists of n nodes between which customers perform independent
(continuous time) Markovian routes during their service. In this setting, transitions
of customers from one node to another are driven by some rate matrix Q = (qij , 1 ≤
i, j ≤ n) and are thus not triggered by service completion.

New customers arrive at node i = 1, . . . , n according to a Poisson process with
intensity λi ≥ 0, and then move independently according to the Markovian dynam-
ics defined by Q. The arrival processes at the different nodes are independent, so
that the global arrival process is Poisson with intensity λ =

∑n
1 λi. The case λ = 0

corresponds to a system with only initial customers, and no new arrivals.
Upon arrival, or at time t = 0 for those initially present, customers generate

a service requirement which is exponentially distributed with mean 1. All service
requirements, arrival processes and Markovian routes are assumed to be mutually
independent.

Node i, 1 ≤ i ≤ n, has service capacity µi ≥ 0, which is divided at any time
between the customers present, according to the Processor-Sharing discipline: If
N is the number of customers present at node i, then each of these N customers
is served at rate µi/N . The service rate of a given customer thus evolves in time,
depending on his current position and on its occupancy level. Once a customer has
received a service that meets his initial requirement, he leaves the network.

The total service capacity of the network is defined as µ =
∑n

1 µi. Notice that,
due to the exponential nature of the services, the mechanism of departure from one
node by completion of service does not distinghish the present Processor-Sharing
discipline from the FIFO discipline: the instantaneous output rate from the system
at node i is µi provided that node i is not vacant. The total output rate is then µ
when no node is empty.

The process of interest is X = (X(t), t ≥ 0) defined by

X(t) = (X1(t), . . . , Xn(t)), t ≥ 0,

where Xi(t), for i = 1, . . . , n, is the number of customers present at node i at
time t. The Markovian nature of the movements together with the exponential
assumption for the service distribution imply that X is a Markov process in Nn

with infinitesimal generator Ω given, for any function f : Nn → R and any x =
(x1, . . . , xn) ∈ Nn, by

(1) Ω(f)(x) =

n∑

i=1

λi

(
f(x+ ei) − f(x)

)
+

n∑

i=1

1{xi>0}µi

(
f(x− ei) − f(x)

)

+
∑

1≤i6=j≤n

qijxi

(
f(x+ ej − ei) − f(x)

)
,

where ei ∈ Nn has all coordinates equal to 0, except for the ith one, equal to 1.
The introduction has highlighted that this system is a mixture of two classical

models in queueing theory, the M/M/1 and the M/M/∞ queues. This is readable
in the expression of the generator given in (1), where the two first sums are remi-
niscent of the M/M/1 queue, and the last one of the M/M/∞ queue.

The rate matrix Q is assumed to be irreducible, admitting π = (πi, 1 ≤ i ≤ n)
as its unique stationary distribution, characterized by the relation

πQ = 0.
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For technical reasons related to the construction of the martingale introduced in
Section 3 (see Appendix A), we require the additional assumption that Q is diago-
nalizable. This assumption is satisfied if Q is reversible with respect to π, but it is
in general a much less restrictive constraint.

For any t ≥ 0, the random vector X(t) will often be described in terms of the
total number of customers L(t) and the proportions of customers at the different
nodes χ(t) = (χi(t), 1 ≤ i ≤ n). More formally, define

L(t) =
n∑

j=1

Xj(t) = |X(t)| and χi(t) =
Xi(t)

L(t)
, 1 ≤ i ≤ n, t ≥ 0,

with the convention that χ(t) = e1 when L(t) = 0. Here, and more generally for
any x = (x1, . . . , xn) ∈ Rn, |x| denotes the ℓ1 norm in Rn: |x| =

∑n
1 |xi|.

The vector χ(t) can be identified with a probability measure on {1, . . . , n}:
namely, the empirical distribution of the positions of the L(t) customers present in
the network at time t. Denote by

P =

{
ρ ∈ [0,+∞[n:

n∑

i=1

ρi = 1

}

the state space of χ(t). The interior set of P is P̊ = {ρ ∈]0,+∞[n:
∑n

1 ρi = 1}.
As emphasized earlier, the deviation of χ(t) from π will be of particular interest

in the forthcoming analysis. It will be measured, depending on circumstances, by
the ℓ∞ distance ‖χ(t) − π‖:

‖x‖ = max
1≤i≤n

|xi|, x = (x1, . . . , xn) ∈ Rn,

or by the relative entropy H(χ(t), π), where H(·, π) is defined on the set P of
probability measures on {1, . . . , n}, by

H(ρ, π) =

n∑

i=1

ρi log
ρi

πi
∈ [0,+∞[, ρ ∈ P .

For t ≥ 0, the quantity H(χ(t), π) will also be more simply denoted H(t). The pro-
cess (H(t), t ≥ 0) will spontaneously appear in the expression of the key martingale
Jα introduced in the next section.

The different deviation times of χ(t) from π, or conversely, the time needed for
χ(t) to reach a given neighborhood of π, will be of particular interest. For ε > 0,
Tε (resp. T ε) denotes the first time when the ℓ∞ distance between χ(t) and π is
smaller (resp. larger) than ε:

Tε = inf{t ≥ 0 : ‖χ(t) − π‖ ≤ ε} and T ε = inf{t ≥ 0 : ‖χ(t) − π‖ > ε}.
Most results will be written down in terms of these two stopping times, but it will
be sometimes more convenient to work with the deviation time T ε

H from π in terms
of the relative entropy:

T ε
H = inf{t ≥ 0 : H(t) > ε}.

All results on deviation times of χ(t) from π defined in terms of the ℓ∞ distance
‖χ(t)−π‖ can be translated into analogous estimates in terms of the relative entropy
H(t) thanks to the following classical result:
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Lemma 2.1. There exist two π-depending positive constants C1 and C2 such that,
for all ρ ∈ P:

C1‖ρ− π‖2 ≤ H(ρ, π) ≤ C2‖ρ− π‖2.

In particular, for any ε > 0, TC1ε2

H ≤ T ε ≤ TC2ε2

H .

Another stopping time will play a central role: namely the first time, denoted
by T0, when the system has an empty node. Formally,

T0 = inf{t ≥ 0 : ∃i ∈ {1, . . . , n}, Xi(t) = 0}.
Indeed, the martingale property for the family of integrals presented in Section 3
will hold only up to time T0, i.e., as long as the output rate at each node i is exactly
equal to µi. In the same way, it will be easily shown that, for t < T0, L(t) behaves
exactly like the M/M/1 queue with input rate λ and output rate µ.

A last useful remark concerning these stopping times is that, when T0 is finite,
‖χ(T0) − π‖ ≥ minπi (> 0). Together with Lemma 2.1, this immediately gives the
following result:

Lemma 2.2. There exists ε0 > 0 such that T ε ∨ T ε
H ≤ T0 holds for any ε ≤ ε0.

3. Martingale

The results of this section are twofold: Theorem 3.1 gives the (almost) explicit
expression of a local martingale Jα(· ∧ T0), indexed by some positive parameter α,
and Proposition 3.2 derives the main estimate on deviation times T ε

H of χ(t) from
π, that will be used in Sections 6 and 7. Concerning the construction of Jα, the
present section only aims at giving the main lines. The (numerous) technical details
are postponed to Appendix A.

The approach for constructing the martingale Jα is similar to the approach used
in [9] for the M/M/∞ queue. The idea is to first exhibit a family of space-time
harmonic functions (hv(t, x), v ∈ Rn) for the generator Ω given by (1), and then to
integrate hv(t, x)f(v) with respect to v for some suitable function f , on some well
chosen time dependent domain. The last step is then to make a change of vari-
ables so that the new harmonic function is splitted into two factors, respectively
depending on time and space. The resulting local martingale is then adapted for
an optional stopping use, leading to hitting times estimations.

Some notations are required at this point. Denote by (Pt, t ∈ R) the Q-generated
Markov semi-group of linear operators in Rn: Pt = etQ, extended to all real indices
t into a group. For v ∈ Rn and t ∈ R, define

φ(v, t) = (φi(v, t), 1 ≤ i ≤ n) = P−tv.

Theorem 3.1 below requires the technical assumption that Q is diagonalizable. Let
θ be the trace of −Q, so that θ > 0, and let S ⊂ Rn−1 be the projection on the
n− 1 first coordinates of P̊ ⊂ Rn, i.e.,

S =

{
u = (u1, . . . , un−1) ∈ Rn−1 : ∀i = 1, . . . , n− 1, ui > 0 and

n−1∑

i=1

ui < 1

}
.
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For any u ∈ S, denote by ũ ∈ P̊ the nth dimensional vector which completes u into

a probability distribution, i.e., ũi = ui for any 1 ≤ i ≤ n−1 and ũn = 1−∑n−1
1 ui.

The following proposition describes a family of space-time harmonic functions.

Proposition 3.1. Let v ∈ Rn be fixed and let ϕ(v, ·) be any primitive of

n∑

i=1

(
µi

φi(v, ·)
1 + φi(v, ·)

− λiφi(v, ·)
)

on any open subset V of {t ≥ 0 : 1 + φi(v, t) 6= 0 for i = 1, . . . , n}. The function

hv(t, x) = eϕ(v,t)
n∏

i=1

(1 + φi(v, t))
xi , t ∈ V, x ∈ Nn,

is space-time harmonic with respect to Ω in the domain V ×N∗n.

Proof. It must be shown that ∂hv(t, x)/∂t+Ω
(
hv(t, ·)

)
(x) = 0 on the above domain.

For x ∈ N∗n and t ∈ V , hv(t, x) 6= 0, and one easily computes:

1

hv(t, x)

∂hv

∂t
(t, x) =

∂ϕ

∂t
(v, t) +

n∑

i=1

xi
∂φi(v, t)/∂t

1 + φi(v, t)

and
1

hv(t, x)
Ω
(
hv(t, ·)

)
(x) =

n∑

i=1

λiφi(v, t) −
n∑

i=1

µi
φi(v, t)

1 + φi(v, t)

+
∑

1≤i6=j≤n

xiqij
φj(v, t) − φi(v, t)

1 + φi(v, t)
.

The last term in the right-hand side is equal to
n∑

i=1

xi

1 + φi(v, t)
(Qφ(v, t))i.

By definition φ satisfies ∂φ(v, t)/∂t = −Qφ(v, t) and the result follows.
�

Remark 3.1. The product form of these space-time harmonic functions is quite
similar to that of the harmonic functions introduced in [9] for the M/M/∞ queue.

In addition, it is easily checked that, choosing v = (u − 1, . . . , u − 1) for some
u 6= 0, so that v is some eigenvector of Pt, t ∈ R, associated to eigenvalue 1,
yields hv(t,X(t)) = uL(t)e[λ(1−u)+µ(1−1/u)]t, which is the martingale associated to
an M/M/1 queue L with arrival rate λ and service rate µ (see for example [11]).

Starting from hv(t, x), two steps lead to Jα: (i) integration of hv(t, x) over v
against some function f(v) on a suitable time-dependent domain D(t); (ii) change
of variables. These two steps are detailed and justified in Appendix A, yielding the
following family of local martingales:

Theorem 3.1. There exist two positive, continuous, bounded functions F and G on
P̊ such that for any α > 0, u 7→ F (ũ)α−1 is integrable on S and (Jα(t ∧ T0), t ≥ 0)
is a nonnegative local martingale, where Jα(t) is defined for α > 0 and t ≥ 0 by:

Jα(t) = e−αθt

∫

S

n∏

i=1

(
ũi

πi

)Xi(t)

G(ũ)F (ũ)α−1du,
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or equivalently:

Jα(t) = e−αθt

∫

S
eL(t)(H(t)−H(χ(t),ũ))G(ũ)F (ũ)α−1du.(2)

Moreover, F satisfies

sup
0<α≤1

(
αn

∫

S
F (ũ)α−1du

)
< +∞.(3)

The advantage of Jα(t) (as compared to hv(t,X(t))), is that the dependence
in time is there splitted into two factors: e−αθt is a direct function of time, and
the integral is a function of the state of the system at time t, X(t) or equivalently
(L(t), χ(t)).

The next proposition gives the fundamental estimate obtained through optional
stopping and used several times throughout the paper.

Proposition 3.2. For any δ such that 0 < δ < ε0, where ε0 is given by Lemma 2.2,
there exists some constant Cδ such thatEx

(
e−αθT ε

H ;L(T ε
H) ≥ ℓ

)
≤ Cδ α

−ne|x|H(x/|x|,π)−(ε−δ)ℓ

holds for any initial state x ∈ Nn and any ε ∈]δ, ε0[, ℓ > 0 and α ∈]0, 1].

Proposition 3.2 is derived from the two following lemmas by choosing T = T ε
H

(so that, by Lemma 2.2, T ∧ T0 = T when ε < ε0). Note that only Lemma 3.1 uses
the fact that Jα is a local martingale, whereas Lemma 3.2 stems directly from the
expression of Jα provided by (2).

Lemma 3.1. There exists some constant C3 > 0 such that, for any α ∈]0, 1], any
initial state x ∈ Nn and any stopping time T , the following inequality holds:Ex [Jα(T ∧ T0)] ≤ C3α

−ne|x|H(x/|x|,π).

Proof. Fix α ∈]0, 1] and x ∈ Nn. Since Jα(·∧T0) is a nonnegative local martingale,
it is a supermartingale, and so is (Jα(t∧T ∧T0), t ≥ 0) by Doob’s optional stopping
theorem. In particular, for any t ≥ 0:Ex

[
Jα(0)

]
≥ Ex

[
Jα(t ∧ T ∧ T0)

]
,

and Fatou’s lemma gives:Ex

[
Jα(0)

]
≥ lim inf

t→+∞
Ex

[
Jα(t∧T∧T0)

]
≥ Ex

[
lim inf
t→+∞

Jα(t∧T∧T0)
]

= Ex

[
Jα(T∧T0)

]
,

(where Jα(T ∧ T0) makes sense a.s. when T ∧ T0 = +∞ since any nonnegative
supermartingale almost surely converges to some variable at infinity).

From the definition of Jα given by (2), using e−y ≤ 1 for y ≥ 0, one getsEx [Jα(0)] ≤ sup
P̊

(G) e|x|H(x/|x|,π)

∫

S
F (ũ)α−1du ≤ C3e

|x|H(x/|x|,π)α−n

where C3 = supP̊(G) supα≤1

(
αn
∫
S F (ũ)α−1du

)
is finite by (3), which proves the

lemma.
�

Lemma 3.2. For any positive δ, there exists some positive constant Bδ such that
the following implication holds for any α ∈]0, 1], ℓ > 0, ε > δ and t ≥ 0:

L(t) ≥ ℓ and H(t) ≥ ε =⇒ Jα(t) ≥ Bδ · e−αθt+(ε−δ)ℓ.
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Proof. Fix ε > δ, α ∈]0, 1], ℓ > 0 and t ≥ 0. A lower bound on the integral part
of (2) is obtained when L(t) ≥ ℓ and H(t) ≥ ε. For v ∈ P , define the set Sδ(v) ⊂ S
by

Sδ(v) = {u ∈ S : H(v, ũ) ≤ δ} .
If H(t) ≥ ε and L(t) ≥ ℓ, then

∫

S
eL(t)(H(t)−H(χ(t),ũ))G(ũ)F (ũ)α−1du ≥ β eℓ(ε−δ)

∫

Sδ(χ(t))

G(ũ)du,

where β = min{(supP̊ F )−1, 1}. Indeed, α being smaller than 1, β is a lower bound
for F (ũ)α−1 on S. Consider now the function Φδ : P → R+ defined by

Φδ(v) =

∫

Sδ(v)

G(ũ)du.

SinceG is bounded, Φδ is easily shown to be continuous (using for example Lebesgue’s
theorem). Moreover, Φδ(v) > 0 for any v ∈ P (because G > 0 and the interior of
Sδ(v) is not empty), and since P is compact, infP Φδ > 0. Setting Bδ = β infP Φδ

achieves the proof.
�

4. Two key representations

The Markov process (X(t), t ≥ 0) with infinitesimal generator Ω defined by (1)
can be seen as a particle system involving three types of transitions: births (at rate
λi at site i), deaths (at rate µi1{xi≥1} at site i) and migrations of particles from
one site to another (at rate qijxi from site i to site j). The main purpose of this
section is to show that X can be decomposed into the difference of two pure birth
and migration processes, up to some reflection term (Theorem 4.1). A first, simpler
result (Proposition 4.1) tells that, as long as X does not hit the axis, the process
L of the total number of particles just behaves as a random walk (or equivalently
as an M/M/1 queue). Finally, a representation of process X involving labelled
particles is given in the case of null death rates.

Theorem 4.1, together with the latter representation, will be crucial for describ-
ing the unstable regime in Section 6, while Proposition 4.1 will be repeatedly used
in the study of both the super and subcritical regimes.

The idea for decomposing X is the following: when µ = 0, the system con-
sists of immortal particles generated at rate λ and performing independent Markov
trajectories. Introducing some death procedure, i.e., some positive µ, amounts to
eliminating, if possible, particles at site i at rate µi (1 ≤ i ≤ n). Up to some
correction due to the fact that no death can actually occur at an empty site, this is
equivalent to substracting some analogous process with birth rates µi (1 ≤ i ≤ n),
zero death rates and migration rate matrix Q.

This can be formalized by introducing an enlarged Markov process, involving
different types of particles. “Real” (mortal) particles are generated at each node
i, 1 ≤ i ≤ n, at rate λi, and then move according to the rate matrix Q. The
death process is represented through inhibiting particles, generated at each site i,
1 ≤ i ≤ n, at rate µi: Such a particle immediately aggregates with some real particle
present, if any, so as to convert it into a “ghost” particle, that goes on moving
forever according to Q. Otherwise (i.e., if no real particle is present), it yields some
“virtual” particle, that also stays moving forever in the system according to Q. The
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Markov process considered will keep track of the three different types of particles:
real ones (those described by process X), ghost ones and virtual ones.

Formally, define (X,Y, Z) as a Markov process in N3n with generator Γ char-
acterized by the following transitions and rates: for any (x, y, z) ∈ N3n and i, j ∈
{1, . . . , n} such that i 6= j,

(x, y, z) −→





(x+ ei, y, z) at rate λi

(x− ei, y + ei, z) µi1{xi≥1}
(x, y, z + ei) µi1{xi=0}
(x− ei + ej, y, z) qijxi

(x, y − ei + ej , z) qijyi

(x, y, z − ei + ej) qijzi

X holds for the real particle process, Y for the ghost particle process and Z for the
virtual particle process. The first transition is a birth of some real particle at i, the
second one is a transformation of some real particle into a ghost, the third one is a
birth of some virtual particle at i; the three last transitions are just movements of
particles of the three possible types.

It is clear from these transitions and rates that, indexing generator Ω by its
birth and death rate vectors: λ = (λi, 1 ≤ i ≤ n) and µ = (µi, 1 ≤ i ≤ n)
(λ, µ ∈ [0,+∞[n) and denoting by 0 the null vector in Rn:

(i) X is a Markov process in Nn with generator Ωλ,µ,

(ii) X + Y is also Markov in Nn, with generator Ωλ,0,
(iii) Y + Z is Markov in Nn with generator Ωµ,0,

(iv) |X | + |Y | − (|X(0)| + |Y (0)|) is some Poisson process with intensity λ,
(v) |Y | + |Z| − (|Y (0)| + |Z(0)|) is some Poisson process with intensity µ,
(vi) these two Poisson processes are independent.

Now from (i), any processX with generator Ω can be considered as the first com-
ponent of some Markov process with generator Γ and with initial state (X(0), 0, 0).

The two major results of this section are easily derived from this construction of
process X and from remarks (i) to (vi). The first result, which is intuitively clear,
constitutes one of the key ingredients for deriving the fluid limits in Sections 6
and 7.

Proposition 4.1. For all t ≤ T0, the following equality holds:

L(t) = L(0) + Nλ(t) −Nµ(t),

where Nλ and Nµ are independent Poisson processes with respective intensities λ
and µ. Moreover, L(t) ≥ L(0) + Nλ(t) −Nµ(t) holds for any t ≥ 0.

Proof. Using the above construction of process X , write

L(t) = |X(t)| = |X(t)| + |Y (t)| − (|Y (t)| + |Z(t)|) + |Z(t)|
= |X(0)| + Nλ(t) −Nµ(t) + |Z(t)| − |Z(0)|,

where Nλ and Nµ are obtained from (iv) and (v), and are independent by (vi).
Since |Z(0)| = 0 and, as can be seen on Γ, |Z| is nondecreasing and increases

only at times at which some Xi is zero, it follows that |Z(t)| = 0 for t ≤ T0, which
gives the first part of the proposition.

The inequality (for all t ≥ 0) results from the fact that |Z(t)| is nonnegative.
�
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In order to state the next result, it is convenient to index the process X both
by its initial state and by its birth and death parameters, writing Xx

λ,µ for the

process X with initial state x ∈ Nn, migration rate matrix Q and birth (resp.
death) parameters λ = (λi, 1 ≤ i ≤ n) (resp. µ = (µi, 1 ≤ i ≤ n)).

Theorem 4.1. For any x ∈ Nn and λ, µ ∈ [0,+∞[n, there exist versions of Xx
λ,µ

Xx
λ,0 and X

0
µ,0 such that

Xx
λ,µ = Xx

λ,0 −X
0
µ,0 + Z,

where Z is an Nn-valued process such that |Z| is nondecreasing and increases only
at times when some Xi(t), 1 ≤ i ≤ n, is zero.

Proof. In the same way as in the previous proof, write X = X + Y − (Y +Z) +Z,
where (X(0), Y (0), Z(0)) = (x, 0, 0) and (X,Y, Z) is Markov with generator Γ, so
that X is some version of Xx

λ,µ, and by (ii) and (iii), X +Y is some version of Xx
λ,0

and Y + Z some version of X
0
µ,0.

The theorem is proved since |Z| has the stated properties, as already mentionned
in the proof of the previous proposition.

�

Remark 4.1. The process Z in Theorem 4.1 appears as a reflection term: it
guarantees that X stays nonnegative, compensating by adding some virtual particle

for a jump of X
0
µ,0 that would get some Xi to the value −1.

However, contrary to usual multidimensional Skorokhod reflection terms, here,
due to the movements of particles (namely, virtual ones), components Zi’s are not
necessarily nondecreasing in time: only their sum is. For the same reason, Zi can
increase at times when Xi is not zero (due to arrival at i of some virtual particle
from another site).

We conclude this section with a representation of process Xx
λ,0 that will be used

in Section 6, in conjunction with Theorem 4.1, for analyzing the unstable regime.
Xx

λ,0 is here obtained as function of a Poisson process with intensity λ and a se-

quence of Markov processes with infinitesimal generatorQ. The latter represent the
trajectories of the successively generated particles, that are here labelled (contrary
to the previous representations involving undiscernable particles).

More precisely, Xx
λ,0 admits the following representation:

Xx
λ,0(t) =

(∑

k≥1

1{ξk(t−σk)=i, σk≤t}, 1 ≤ i ≤ n
)
, t ≥ 0, where(4)

– σk = 0 for 1 ≤ k ≤ |x|,
– Nλ = (σk, k ≥ |x| + 1) is a Poisson process with parameter λ,
– ξk, k ≥ 1, are Markov jump processes in {1, . . . , n} with generatorQ and initial

distribution
-
∑n

i=1(λi/λ) δi for k ≥ |x| + 1,
- the Dirac mass at i (1 ≤ i ≤ n) for xi arbitrarily chosen indices k with

1 ≤ k ≤ |x|,
– Nλ and the ξk, k ≥ 1, are mutually independent.
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Nλ can be interpreted as the global birth process: for k ≥ |x| + 1, particle k
is generated at time σk (while for k ≤ |x|, particle k is in the system from time
σk = 0). (ξk, 1 ≤ k ≤ |x|) hold for the trajectories of the initial particles and
(ξk, k ≥ |x| + 1) for those of the successive newborn particles. For any k ≥ 1 and
t ≥ σk, ξk(t−σk) is then the position of particle k at time t, so that the sum in the
right hand side of (4) counts the number of particles present at each site at time t.

Similarly as in the previous construction of X from process (X,Y, Z), a formal
proof of Equation (4) can be provided by constructing Xx

λ,0 as function of a more

complete process (that also contains Nλ and the ξk’s, k ≥ 1), characterized through
its infinitesimal generator and describing the list of current positions of particles
present in the system, ordered according to their birth rank. (4) is then obtained
via elementary Markov techniques.

5. The space renormalized process

The stability property of the system for λ < µ will be derived in Section 7 from a
fluid scaling analysis, that is, from the study of the space-time renormalized process

X
x
(t) =

Xx(|x| t)
|x| , t ≥ 0,

as |x| goes to infinity, where Xx is the Markov process X initiated at x. It will be
underlain by the M/M/1 behavior of the total occupancy process L (only valid as
long as no Xi is zero, hence the intricacies of the analysis).

The particular behavior of X
x

at t = 0+ will result from the short term behavior

of the only space renormalized process X̂, defined as the the family of processes

X̂x(t) =
Xx(t)

|x| , t ≥ 0, for x ∈ Nn \ {0}.

(The simpler notation X̂(t), where X̂(t) = X(t)/|X(0)|, will also be used in situa-
tions where |X(0)| is clearly non zero.)

As highlighted in the introduction, this scaling is natural and analogous to Kelly’s
scaling for the M/M/∞ queue. This analogy will appear in Proposition 5.1 below,

that states convergence of X̂x as |x| → +∞ to some dynamical system having

π as its unique limiting point. This result implies that for large |x|, X̂x reaches
any neighborhood of π in a quasi-deterministic finite time. And this will show
(Sections 6 and 7) that asymptotically, X

x
is instantaneously at π.

The results of this section are quite standard, essentially based on law of large

numbers principles. The simple underlying idea is that, as far as X̂x is only ob-
served over a finite time window, since the number |x| of initial particles goes to
infinity while the numbers of births and deaths within the given window remain the
order of 1 (time is not rescaled here), the initial particles asymptotically dominate
the system and mostly stay alive all along the time window, thus behaving as |x|
independent Markov processes with generator Q.

For the same reasons, the process X̂ is not different, in the limit |x| → +∞, from
the process χ = X/L of the spatial distribution of particles: The same convergence

results hold for both processes; once proved for X̂, they easily extend to χ.
Formalizing the above argument, the following coupling is intuitively clear. It

compares the general model to the “closed” one (with no births nor deaths, but
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only initial particles). Here again, generator Ω is indexed by its birth and death
parameters λ and µ.

Lemma 5.1. For any x ∈ Nn, there exists a coupling between the process Xx

with initial state x and generator Ωλ,µ, and the process Ux with initial state x and

generator Ω0,0 , such that, for t ≥ 0 and i = 1, . . . , n:

Ux
i (t) −Nµ(t) ≤ Xx

i (t) ≤ Ux
i (t) + Nλ(t),

where Nλ and Nµ are two Poisson processes with respective parameters λ and µ.
Xx moreover satisfies

|x| − Nµ(t) ≤ |Xx(t)| ≤ |x| + Nλ(t).

Proof. The case µ = 0 is a straightforward consequence of the representation (4)
of X from Section 4. Indeed if µ = 0, (4) gives for 1 ≤ i ≤ n,

Ux
i (t) ≤ Xx

i (t) =
∑

1≤k≤|x|
1{ξk(t)=i} +

∑

k≥|x|+1

1{ξk(t−σk)=i, σk≤t} ≤ Ux
i (t) + Nλ(t),

where Ux(t) is constructed as
∑|x|

k=1 1{ξk(t)=i} and Nλ = (σk, k ≥ |x| + 1).
One moreover gets |Ux(t)| ≤ |Xx(t)| ≤ |Ux(t)| + Nλ(t) by summing up over i

the previous first inequalities. The lemma is proved in this case since |Ux(t)| = |x|
for any t ≥ 0 .

The general case is then derived, using the first part of Section 4. Indeed, as
in Section 4, Xx can be considered as the first component of a random process
(Xx, Y, Z) in N3n such that Y (0) = Z(0) = 0, Xx + Y is some process with
generator Ωλ,0 and |Y | + |Z| is some Poisson process Nµ with intensity µ . The
first part of the proof then applies to Xx + Y and gives for t ≥ 0:

Ux(t) ≤ Xx(t) + Y (t) ≤ Ux(t) + Nλ(t)

componentwise, as well as |x| ≤ |Xx(t)| + |Y (t)| ≤ |x| + Nλ(t).
The lemma follows by noticing that

0 ≤ Yi(t) ≤ |Y (t)| ≤ |Y (t)| + |Z(t)| = Nµ(t), 1 ≤ i ≤ n.

�

The following result describes the asymptotic dynamics, as |x| → +∞, of the
empirical distribution of the particles: it evolves as the distribution, as function of
time, of a Markov process with generator Q.

As introduced in Section 3, (Pt, t ≥ 0) denotes the transition semi-group associ-
ated to Q.

Proposition 5.1. Consider the processes (X̂xN (t), t ≥ 0) associated to some se-

quence (xN , N ≥ 1) of initial states satisfying: lim
N→+∞

xN

N
= ρ for some ρ ∈ P.

For any T > 0, as N → +∞, (X̂xN (t), t ≥ 0) converges in distribution with
respect to the uniform norm topology on [0, T ], to the deterministic trajectory:

ρ(t) = ρPt.

In other words, for any positive δ:

lim
N→+∞

P( sup
0≤t≤T

‖X̂xN (t) − ρPt‖ > δ
)

= 0.
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The same convergence holds for the corresponding processes (χxN (t), t ≥ 0), N ≥ 1.

Proof. The proof is fairly standard, and (not surprisingly) similar to the proof
of convergence of the M/M/∞ queue under Kelly’s scaling (see [11]). It uses a
representation of Xx as the solution of a stochastic integral equation involving
different Poisson processes.

Let Nλi
and Nµi

, for i = 1, . . . , n, be Poisson processes with respective param-
eters λi and µi. And for (i, j) ∈ {1, . . . , n}2 such that i 6= j, let (N k

qij
, k ≥ 1)

be a sequence of Poisson processes with parameter qij . All these processes are as-
sumed independent. A version of XxN is then given by the solution of the system
of integral equations:

(5) Xi(t) = xN,i + Nλi
(t) −

∫ t

0

1{Xi(s−)≥1}dNµi
(s)

+
∑

j 6=i

∫ t

0

Xj(s
−)∑

k=1

dN k
qji

−
∑

j 6=i

∫ t

0

Xi(s
−)∑

k=1

dN k
qij
, 1 ≤ i ≤ n.

For i, j ∈ {1, . . . , n} with i 6= j and k ≥ 1, Nλi
can be interpreted as the birth

process at node i, Nµi
as the death process at node i (which points are taken into

account only when node i is not empty), and N k
qij

as the process of transfers from

node i to node j of the kth particle at node i (taken into account only when at
least k particles are present at node i).

Through space scaling, the terms involving Nλi
and Nµi

vanish in the limit.
Writing each process N k

qij
as the sum of its deterministic increasing process (qijt, t ≥

0) and of a martingale, Doob’s inequality allows one to show that the scaled mar-
tingale terms vanish in the uniform norm on [0, T ].

Next substract from the rescaled Equation (5) (i.e., (5) divided by |xN |) the
corresponding equation of the limiting trajectory:

ρi(t) = ρi +

∫ t

0

∑

j 6=i

(qjiρj(s) − qijρi(s)) ds, 1 ≤ i ≤ n.

(These equations are indeed equivalent to

ρ(t) = ρ+

∫ t

0

ρ(s)Qds,

or to the forward Kolmogorov equation ρ′(t) = ρ(t)Q associated to the initial
condition ρ(0) = ρ, that characterize the family of distributions: ρ(t) = ρPt, t ≥ 0.)

Gronwall’s lemma then applies to the quantity

sup
0≤t≤T

‖X̂xN (t) − ρ(t)‖,

proving the stated convergence in distribution of (X̂xN (t), t ≥ 0) to (ρ(t), t ≥ 0).
Using the last assertion of Lemma 5.1, it is not difficult to show that the same

convergence then holds for the process χxN .
�
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The following corollary concerns the hitting time of some neighborhood of π by

the space renormalized process X̂: namely, for any positive δ,

T̂δ = inf
{
t ≥ 0 :

∥∥∥X̂(t) − π
∥∥∥ ≤ δ

}
.

Recall that the analogous time with χ in place of X̂ is denoted by Tδ.

Corollary 5.1. For any positive δ, there exists some deterministic time tδ ≥ 0

such that, if (xN , N ≥ 1) satisfies lim
N→+∞

xN

N
= ρ for some ρ ∈ P, then

lim
N→+∞

PxN
(T̂δ > tδ) = 0.

The same result holds for the stopping time Tδ.

(The subscript xN refers to the initial state of process X).

Proof. Q being irreducible, the ergodic theorem for finite state space Markov pro-
cesses shows that, for any δ > 0, there exists some time tδ such that supρ∈P ‖ρPtδ

−
π‖ < δ/2. The corollary is then easily obtained by using the pointwise convergence

in distribution of X̂xN (tδ) to ρPtδ
implied by Proposition 5.1 and the inclusion:

{T̂δ > tδ} ⊂ {‖X̂(tδ) − π‖ > δ}.
The same arguments hold with χ in place of X̂ (since Proposition 5.1 states

convergence for both processes), yielding the same result for Tδ.
�

Remark 5.1. Note that Proposition 5.1 is not here essential in its whole trajectorial
sense. Pointwise convergence in distribution at time tδ is enough and could be
directly obtained from the ordinary law of large numbers, along the same lines as
Proposition 5.2 below. This would moreover yield the uniform result:

lim
|x|→+∞

Px(T̂δ > tδ) = 0.

The last proposition states a more accurate result required for analyzing the
subcritical case λ < µ.

Proposition 5.2. There exist two positive constants A and η such that, for any
sequence of positive numbers (δN , N ≥ 1) satisfying

lim
N→+∞

δN = 0 and lim
N→+∞

δN
√
N = +∞,

then

lim
N→+∞

[
max

x∈Nn:|x|=N
Px

(
T̂δN

> tN

)]
= 0, where tN = −1

η
log

δN
A
.

The same result holds for the stopping time TδN
.

Proof. First consider a closed system, i.e., assume λ = µ = 0. As in Lemma 5.1, let
Ux be the closed process with initial state x ∈ Nn, where |x| = N . In this case (4)
becomes:

Ux
i (t) =

N∑

k=1

1{ξk(t)=i}, 1 ≤ i ≤ n, t ≥ 0,

where ξk, 1 ≤ k ≤ N , are independent Markov processes with the same generator
Q and different initial conditions: for any i, 1 ≤ i ≤ n, ξk(0) = i for xi of the N
indices k = 1, . . . , N .



SPATIAL HOMOGENIZATION IN A STOCHASTIC NETWORK WITH MOBILITY 17

The exponentially fast convergence of any irreducible finite state space Markov
semi-group to its stationary distribution, tells existence of B > 0 and η > 0 such
that

max
1≤i,j≤n

|Pt(j, i) − πi| ≤ Be−ηt, t ≥ 0.

In particular max
1≤i,j≤n

|PsN
(j, i) − πi| ≤ δN/2 for sN = −1

η
log

δN
2B

.

The outline of the proof for the closed case is the following (the general case will
then be deduced from Lemma 5.1): At time sN , all trajectories ξk, 1 ≤ k ≤ N

are very close to π in distribution (by the order of δN ). Since Ûx(t) represents the
empirical distribution of the N particles at time t, the law of large numbers shows

that Ûx(sN ) is also close to π (by the same order) for large N . (Indeed δN tends to
0 not too fast, so that this law of large numbers argument, valid for some constant
δ, still holds with δN . Notice by the way that the argument for constant δ leads to
the result mentioned in Remark 5.1).

Precisely, for any N ≥ 1 and x ∈ Nn such that |x| = N :

‖Ex

(
Û(sN )

)
− π‖=

∥∥∥∥Ex

(
U(sN )

N

)
− π

∥∥∥∥ =

∥∥∥∥∥
1

N

N∑

k=1

(P(ξk(sN ) = ·) − π
)∥∥∥∥∥ <

δN
2
.

Thus, for any N ≥ 1, using Chebychev’s inequality for the last step:Px

(
‖Û(sN ) − π‖ > δN

)
≤ Px

(∥∥∥Û(sN ) − E(Û(sN )
)∥∥∥ >

δN
2

)

≤
n∑

i=1

Px

(∣∣∣ Ûi(sN ) − E(Ûi(sN )
)∣∣∣ >

δN
2

)
≤

n∑

i=1

Varx (Ui(sN ))

δ2NN
2/4

.

Independence of the processes (ξk, 1 ≤ k ≤ N) yieldsVarx (Ui(sN )) =

N∑

k=1

Var
(1{ξk(sN )=i}

)
≤ N

4

(bounding the variance of any Bernoulli random variable by 1/4). Finally

max
x∈Nn:|x|=N

Px

(
‖Û(sN ) − π‖ > δN

)
≤ n

δ2NN
.(6)

Now consider the process Xx associated to any family (λi, µi, 1 ≤ i ≤ n) of
parameters and any initial state x such that |x| = N . Still denote by Ux the
associated closed process with the same initial state x.

Define tN = −1

η
log

δN
4B

. The first part of Lemma 5.1 implies that, for anyN ≥ 1,

‖X̂x(tN ) − π‖ ≤ ‖Ûx(tN ) − π‖ +

∥∥∥∥
1

N

(
Nλ(tN ) + Nµ(tN )

)∥∥∥∥ ,

so thatPx(T̂δN
> tN ) ≤ P(‖Ûx(tN ) − π‖ > δN

2

)
+ P(‖Nλ(tN ) + Nµ(tN )‖ > NδN

2

)
.

By (6) the first term tends to zero uniformly in x as N goes to infinity, since
tN is associated to δN/2 in the same way as sN was to δN . The second one is
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also easily shown to converge to zero, using Chebychev’s inequality for the Poisson
variable Nλ(tN ) + Nµ(tN ), together with the relation δN

√
N ≫ 1 that implies

NδN ≫
√
N ≫ 1/δN ≫ tN .

The first part of the proposition is thus proved with A = 4B.
The result for time TδN

is obtained, once again, by using the second assertion of
Lemma 5.1.

�

6. The supercritical regime

This section deals with the supercritical regime λ > µ. As the next proposition
shows, the unstability of the system is straightforward in this case. Theorem 6.1
establishes an almost sure result describing the long term behavior, and Theorem 6.2
presents a surprising phenomenon.

Proposition 6.1. When λ > µ the process X is not ergodic.

Proof. Just remark, using Proposition 4.1, that if x ∈ Nn is the initial state:

L(t) ≥ |x| + Nλ(t) −Nµ(t).

Hence for any initial state, L(t) almost surely goes to +∞ as t tends to +∞.
�

The following theorem gives an almost sure description of the divergence of X(t)
for t large. Among other arguments, the proof makes use for the first time of the
estimate provided by Proposition 3.2, and uses the representation of X given by (4).

Theorem 6.1. Assume λ > µ. Then, for any initial state x ∈ Nn, the following
convergence holds almost surely:

lim
t→+∞

Xx(t)

t
= (λ− µ)π.

Remark 6.1. This theorem has a double meaning: it tells almost sure convergence
both of χ(t) to π and of L(t)/t to λ− µ as t→ +∞.

Proof. Assume the theorem is true when µ = 0. Then, using the notations of The-

orem 4.1, t−1(Xx
λ,0(t)−X

0
µ,0(t)) converges a.s. to (λ− µ)π and the componentwise

inequality Xx
λ,µ ≥ Xx

λ,0 −X
0
µ,0 derived from Theorem 4.1, implies that each Xx

i (t)

tends to infinity almost surely as t goes to infinity.
As a consequence, since |Z(t)| can increase only when someXi(t) is zero, limt→+∞ |Z(t)|

is finite with probability 1, thus limt→+∞ Z(t)/t = 0 almost surely, so that, almost
surely:

lim
t→+∞

Xx(t)

t
= lim

t→+∞

Xx
λ,0(t) −X

0
µ,0(t)

t
= (λ− µ)π,

which is the stated result.
The theorem must now be proved in the case where µ = 0. In this case with

no deaths, using representation (4), the process Xx splits into two (independent)
processes: Xx = Y x + X0, where Y x is associated to a “closed” system with |x|
particles moving independently, and X0 has no initial particles, birth rate λ and
death rates 0. Then t−1Y x(t) obviously tends to zero almost surely as t tends to
infinity, and all is left to show is that t−1X0(t) converges almost surely to λπ.
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So, dropping for simplicity the superscript 0, consider the process X with initial
state 0, birth rate λ and death rates 0. Since L(t)/t = Nλ(t)/t converges a.s. to
λ as t tends to infinity, the problem is equivalent to proving that χ(t) converges
almost surely to π, i.e., by Lemma 2.1 that:

∀ε > 0, P(∃T < +∞ : ∀t ≥ T,H(t) ≤ ε) = 1.

This will be done using Borel-Cantelli lemma and showing that:

∀ε > 0,

+∞∑

k=1

P(∃t ∈ [σk, σk+1[ : H(t) > ε) < +∞,

where σk denotes as in Equation (4) of Section 4 the kth jump time of the birth
process Nλ.

Writing, for any fixed ε:

(7) P (∃t ∈ [σk, σk+1[: H(t) > ε)

≤ P(H(σk) >
ε

2

)
+ P(H(σk) ≤ ε

2
and ∃t ∈]σk, σk+1[: H(t) > ε

)
,

we will show that both series associated to both right hand side terms converge for
ε sufficiently small (which is enough by monotonicity of the left hand side of (7)).

Let us begin with the second term. By definition of σk, χ(t) = X(t)/k for any
t ∈ [σk, σk+1[. Moreover, σk is a stopping time for the Markov process (X(t), t ≥ 0),
because it is the first time when L(t) = k. Hence the strong Markov property yieldsP0

(
H(σk) ≤ ε

2
and ∃t ∈]σk, σk+1[: H(t) > ε

)
≤ max

x∈Nn:|x|=k and
H(x/|x|,π)≤ε/2

Px (T ε
H < σ1) .

Clearly, the last event only depends on σ1 and on the movements of the |x| initial
particles, so that by independence of these variable and processes, one obtains, for
any x ∈ Nn: Px (T ε

H < σ1) = Ex

(
e−λT̃ ε

H

)
≤ Ex

(
e−(λ∧θ)T̃ ε

H

)
,

where T̃ ε
H is the first time the entropy associated to the initial particles is larger

than ε. Then, using Proposition 3.2 in the case of a closed system with δ = ε/4,
α = (λ/θ) ∧ 1 and ℓ = k gives:Px (T ε

H < σ1) ≤ Cε/4[(λ/θ) ∧ 1)]−ne−εk/4,

for any x ∈ Nn such that |x| = k and H(x/|x|, π) ≤ ε/2. The second term in (7) is
thus summable over k for ε small enough.

Now it must be shown that the first term P(H(σk) > ε/2) in the right hand side
of (7) is summable as well for ε small enough. Due to Lemma 2.1 it is enough to
show that, for small ε and any i ∈ {1, . . . , n},

+∞∑

k=1

P(∣∣∣∣Xi(σk)

k
− πi

∣∣∣∣ > ε

)
< +∞.(8)

The idea for proving (8) is close to the law of large numbers arguments of Sec-
tion 5, except that here spaced births result in the presence of recent particles (as
seen from σk) that are not yet close to stationarity in their movement. It then has
to be proved that old particles dominate the network at time σk for large k. Here,
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the law of large numbers is not accurate enough, and is replaced by Chernoff’s
inequality, that we recall in Lemma 6.1.

Lemma 6.1. (Chernoff’s inequality) Let Zh, 1 ≤ h ≤ k, be k independent random
variables such that |Zh| ≤ 1 and E(Zh) = 0 for 1 ≤ h ≤ k.

The following bound holds for any η ∈ [0, 2σ], where σ2 = Var
(∑k

h=1 Zh

)
:P(∣∣∣∣∣ k∑

h=1

Zh

∣∣∣∣∣ ≥ ησ

)
≤ 2 exp−η2/4 .

In the present case with no initial particles nor death process, X(σk) simply
writes:

Xi(σk) =

k∑

h=1

1{ξh(σk−σh)=i} , 1 ≤ i ≤ n,

Let us first assume that the Markov processes ξh, h ≥ 1, are stationary, i.e., λi/λ =
πi for all i ∈ {1, . . . , n}. Then

Xi(σk)

k
− πi =

1

k

k∑

h=1

Z
(i)
k,h with Z

(i)
k,h = 1{ξh(σk−σh)=i} − πi, 1 ≤ i ≤ n.

Since ξh, h ≥ 1, are stationary, for each fixed i ∈ {1, . . . , n} and k ≥ 1, the k

variables Z
(i)
k,h, 1 ≤ h ≤ k, are i.i.d. centered random variables, bounded by 1 in

modulus. Notice that independence of Z
(i)
k,1, . . . , Z

(i)
k,k results from independence of

the processes ξh, h ≥ 1, and Nλ, and is only true in the stationary case.
We can thus apply Chernoff’s inequality, which gives, for each fixed k and i:P(∣∣∣∣Xi(σk)

k
− πi

∣∣∣∣ > ε

)
= P(∣∣∣∣∣ k∑

h=1

Z
(i)
k,h

∣∣∣∣∣ > kε

)
≤ 2e

− ε2k
4vi ,

if ε ≤ 2vi, where vi = πi(1 − πi) is the common variance of the variables Z
(i)
k,h.

Property (8) is then proved (for small ε, hence for any ε by monotonicity) in the
case of stationary movements.

We now get back to the general case, where ξh, h ≥ 1, are independent copies of a
Markov process with generator Q and initial distribution

∑n
1 (λi/λ) δi. Associate to

each ξh a stationary process ξ′h with the same generator, such that ((ξh, ξ
′
h), h ≥ 1)

is a sequence of independent processes in {1, . . . , n}2, and, for h ≥ 1, ξh, ξ′h are
coupled in the classical following way: ξh and ξ′h are independent until the first time
Th when they meet, and after that stay equal for ever. Recall that the “coupling
times” Th, h ≥ 1, are integrable. Moreover assume the (ξk, ξ

′
k), k ≥ 1, independent

from Nλ.
Define the process (X ′(t), t ≥ 0) on Nn analogously to X , with the same Nλ,

but with ξ′h in place of ξh (h ≥ 1):

X ′
i(t) =

+∞∑

h=1

1{ξ′

h
(t−σh)=i, σh≤t}, 1 ≤ i ≤ n and t ≥ 0.
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Then, for each i ∈ {1, . . . , n}
∣∣∣∣
Xi(σk) −X ′

i(σk)

k

∣∣∣∣ =

∣∣∣∣∣
1

k

k∑

h=1

(1{ξh(σk−σh)=i} − 1{ξ′

h
(σk−σh)=i}

)∣∣∣∣∣ ≤
1

k

k∑

h=1

1{Th>σk−σh}.

The last sum is exactly the number of customers at the kth arrival time in an
M/G/∞ queue with no customer at time 0, arrival process Nλ, and services given
by the i.i.d. integrable variables Th, h ≥ 1.

It is well known (see [11], Section 7.2) that this M/G/∞ queue has stationary
distribution given by the Poisson distribution with parameter λE(T1), and that, in
its stationary regime, the queue as seen by any newcoming customer has this same
Poisson distribution as at any deterministic time. It follows that the stationary
queue at time σk, for any k ≥ 1, is distributed as 1 + Y , where Y is some Poisson
variable with parameter λE(T1). Since the stationary queue dominates the initially
empty one, at any time t ≥ 0 (by its residual number of initial customers), one gets,
for any i and any positive ε:

+∞∑

k=1

P(∣∣∣∣Xi(σk) −X ′
i(σk)

k

∣∣∣∣ > ε

)
≤ P(1 + Y > kǫ).

Since Y is integrable, the last sum is finite and (8) is then true for X since it is for
X ′, by the above proof for the stationary case.

�

Along the preceding proof, we used σ1, in the particular case µ = 0, as an
asymptotic lower bound (as the initial state grows to infinity) for the exit time of
χ(t) from some neighborhood of π. This is a very crude underestimation, as the
following result shows that this exit time is actually infinite with high probability.

Theorem 6.2. Assume λ > µ, and fix δ and ε such that 0 < δ < ε < ε0, where ε0 is
given by Lemma 2.2. Consider a sequence (xN , N ≥ 1) with limN→+∞ |xN |/N = 1
and H(xN/|xN |, π) ≤ δ. Then:

lim
N→+∞

PxN
(T ε

H = +∞) = 1.

Proof. By definition of T ε
H , PxN

(T ε
H < +∞) = PxN

(∃t ≥ 0 : H(t) ≥ ε), and so
we need to study the behavior of H(t) for all time t ≥ 0. The idea of the proof
is twofold: First, the estimate given by Proposition 3.2 is precise enough to show
that T ε

H is much larger than N , say T ε
H ≥ N2. After this time, the initial particles

are negligible, and Theorem 6.1 then gives a control on the rest of the trajectory
by reducing the problem to the case where the system starts empty. So we use the
following decomposition:PxN

(T ε
H < +∞) ≤ PxN

(
T ε

H ≤ N2
)

+ PxN

(
∃t ≥ N2 : H(t) ≥ ε

)
.

For the first term, Markov’s inequality givesPxN

(
T ε

H ≤ N2
)
≤ eExN

(
e−T ε

H/N2
)
.(9)

Let δ′ < ε− δ: by choice of ε and δ, and since H(xN/|xN |, π) ≤ δ, Proposition 3.2
shows that there exists a constant Cδ′ such that by choosing α = 1/(θN2), for any
N large enough and any ℓN ,ExN

(
e−T ε

H/N2

;L(T ε
H) ≥ ℓN

)
≤ Cδ′eδ|xN |+2n log N−(ε−δ′)ℓN .
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The choice of ℓN requires some care: as N grows, it must be both of order |xN | and
smaller than L(T ε

H) with high probability. Since |xN | ∼ N , write |xN | = N + uN

with uN = o(N), and choose ℓN = N − √
NvN with vN = |uN | ∨ 1. With this

choice, ℓN ∼ N and ℓN −|xN | → −∞. The first relation implies, since ε−δ′−δ > 0,

lim
N→+∞

eδ|xN |+2n log N−(ε−δ′)ℓN = 0.

Moreover, since T ε
H ≤ T0 because ε < ε0, Proposition 4.1 implies that L(T ε

H) =
L(0) + Nλ(T ε

H) −Nµ(T ε
H), hencePxN

(L(T ε
H) ≤ ℓN ) = PxN

(|xN | + Nλ(T ε
H) −Nµ(T ε

H) ≤ ℓN)

≤ P(inf
t≥0

(Nλ(t) −Nµ(t)) ≤ ℓN − |xN |
)

where the last bound vanishes because λ > µ, and so inft≥0 (Nλ(t) −Nµ(t)) is finite
with probability one, whereas ℓN−|xN | goes to −∞. It results that PxN

(
T ε

H ≤ N2
)

goes to 0 thanks to (9) and to the following inequality:ExN

(
e−T ε

H/N2
)
≤ ExN

(
e−T ε

H/N2

;L(T ε
H) ≥ ℓN

)
+ PxN

(L(T ε
H) ≤ ℓN) ,

and it has been shown that each term goes to 0.

All is left to prove now is that limN→+∞PxN

(
∃t ≥ N2 : H(t) ≥ ε

)
= 0, or,

by Lemma 5.1, that PxN

(
∃t ≥ N2 : ‖χ(t) − π‖ ≥ ε

)
vanishes. After time N2, the

initial particles are negligible since a number of new particles of the order of N2

have arrived. So the behavior of the system will be similar to that of a system
starting empty, to which we can apply Theorem 6.1 (since in this case the initial
state is fixed).

To formalize this argument, a coupling between the processes Xx and X0, for
any x ∈ Nn, is required:

Lemma 6.2. For any x, y ∈ Nn with x ≥ y componentwise, it is possible to couple
the two processes Xx and Xy in such a way that for any t ≥ 0, Lx(t) − Ly(t) ≤
|x| − |y| and the inequality Xx(t) ≥ Xy(t) holds componentwise.

The proof of this lemma is postponed at the end of the current proof. Let X0

be the process starting empty coupled with XxN , and let L0 = |X0|, LxN = |XxN |,
χ0 = X0/L0 and χxN = XxN/LxN be the corresponding quantities. The triangular
inequality gives

(10) P(∃t ≥ N2 : ‖χxN (t) − π‖ ≥ ε) ≤ P(∃t ≥ N2 : ‖χxN (t) − χ0(t)‖ ≥ ε/2)

+ P(∃t ≥ N2 : ‖χ0(t) − π‖ ≥ ε/2).

Theorem 6.1 states that χ0(t) converges to π almost surely, which shows that the
last term goes to 0. For the first term, write for each i = 1, . . . , n,

χxN

i (t) − χ0
i (t) =

XxN

i (t)

LxN (t)
− X0

i (t)

L0(t)
=

(
XxN

i (t) −X0
i (t)

)
L0(t) −X0

i (t)∆xN (t)

L0(t)
(
∆xN (t) + L0(t)

) ,

where ∆xN (t) = LxN (t) − L0(t). Lemma 6.2 implies that |XxN

i (t) − X0
i (t)| ≤

∆xN (t) ≤ |xN |, hence, since the function z 7→ z/(z+ a) is decreasing for any a ≥ 0,

|χxN

i (t) − χ0
i (t)| ≤

2∆xN (t)

∆xN (t) + L0(t)
≤ 2|xN |

|xN | + L0(t)
=

2

1 + L0(t)/|xN | .
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This yields in turn, using t ≥ N2 for the second inequality,P(∃t ≥ N2 : ‖χxN (t) − χ0(t)‖ ≥ ε/2) ≤ P(∃t ≥ N2 :
2

1 + L0(t)/|xN | ≥ ε/2

)

≤ P( inf
t≥N2

(
1 + L0(t)/t ·N2/|xN |

)
≤ 4/ε

)
,

Theorem 6.1 shows that L0(t)/t → λ − µ almost surely as t → +∞, and N2/|xN |
goes to infinity as N goes to infinity by choice of xN . Hence almost surely,

lim
N→+∞

inf
t≥N2

(
1 + L0(t)/t ·N2/|xN |

)
= +∞,

and the theorem is proved.
�

We now fill in the gap in this proof by proving Lemma 6.2.

Proof of Lemma 6.2. The coupling is given by representation (5) of Section 5 by
using the same Poisson processes for Xx and Xy. It is easy to check that the
inequalities Xx

i (t) ≥ Xy
i (t) true at t = 0 are preserved at each jump of any of the

Poisson processes involved, and that |Xx| − |Xy| is decreasing over time.
�

The previous results make it possible to establish the fluid regime of the system
by studying the rescaled process XN defined by

XN (t) =
X(Nt)

N
, t ≥ 0.(11)

In the following, LN denotes the rescaled number of particles, i.e., LN (t) = L(Nt)/N ,
and χN = XN/LN is the corresponding proportions. Note that any fluid limit is
discontinuous at 0+ (so that strictly speaking, X does not have any fluid limit), be-
cause Corollary 5.1 will show that the fluid limit is at π at time 0+, and Theorem 6.2
will imply that it stays forever proportional to π.

Corollary 6.1. Assume λ > µ, and let x : [0,+∞[7→ Rn be defined by

x(t) =
(
1 + (λ− µ)t

)
π.

Then, for any sequence (xN , N ≥ 1) with |xN | = N , any s, t such that 0 < s < t
and any ε > 0:

lim
N→+∞

PxN

(
sup

s≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)
= 0.

Proof. Since the size of the initial state goes to infinity, the remark following Corol-
lary 5.1 shows that for any δ > 0, the event {Tδ ≤ tδ} occurs with high probability.
Since Tδ is a stopping time, the strong Markov property makes it possible to use
XTδ

as a new initial point, which is as close to equilibrium as desired. Since more-
over the total number of customers did not significantly evolve in this time interval,
this initial point will satisfy the hypotheses of Theorem 6.2, which makes it possible
to conclude.

Denote ∆N (s, t) the distance of interest:

∆N (s, t) = sup
s≤u≤t

∥∥XN (u) − x(u)
∥∥ .(12)
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First, the following decomposition makes it possible to consider all further conver-
gences on the set {Tδ ≤ tδ}:PxN

(∆N (s, t) ≥ ε) ≤ PxN
(∆N (s, t) ≥ ε, Tδ ≤ tδ) + PxN

(Tδ > tδ),

and the last term goes to 0 by the remark following Corollary 5.1. The strong
Markov property used with the stopping time Tδ then shows thatPxN

(∆N (s, t) ≥ ε, Tδ ≤ tδ) ≤ ExN

[PX(Tδ) (∆N (0, t) ≥ ε)
]
.

Now, we isolate the event of interest {
∣∣L(Tδ) − |xN |

∣∣ ≤
√
N} by writing:ExN

[PX(Tδ) (∆N (0, t) ≥ ε) ;
∣∣L(Tδ) − |xN |

∣∣ ≤
√
N
]

≤ max
y∈Nn:

∣∣|y|−|xN |
∣∣≤√

N

and ‖y/|y|−π‖≤δ

Py (∆N (0, t) ≥ ε) ,

therefore, if we note yN the value that realizes this maximum (the set over which
the maximum is considered is finite),ExN

[PX(Tδ) (∆N (0, t) ≥ ε)
]
≤ PxN

(∣∣L(Tδ) − |xN |
∣∣ ≥

√
N
)

+PyN
(∆N (0, t) ≥ ε) .

The following inequality holds for any time u ≥ 0 and any initial state:

|L(u) − L(0)| ≤ Nλ(u) + Nµ(u)
def
= Nλ+µ(u),

and yieldsPxN

(∣∣L(Tδ) − |xN |
∣∣ ≥

√
N
)
≤ PxN

(
Nλ+µ(Tδ) ≥

√
N,Tδ ≤ tδ

)
+PxN

(Tδ > tδ)

≤ P(Nλ+µ(tδ) ≥
√
N
)

+ PxN
(Tδ > tδ) .

This last sum vanishes, so that all is left to prove is that as N → +∞,PyN
(∆N (0, t) ≥ ε) = PyN

(
sup

0≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)
→ 0.

Note that the initial state yN is now such that |yN |/N goes to 1 (because |xN | =

N and
∣∣|yN | − |xN |

∣∣ ≤
√
N), and H(yN/|yN |, π) is as small as needed to apply

Theorem 6.2, since ‖yN/|yN | − π‖ ≤ δ and δ > 0 is arbitrary small.
The triangular inequality and the definition of x give for any 0 ≤ u ≤ t
∥∥XN (u) − x(u)

∥∥ ≤
∥∥XN (u) − LN (u)π

∥∥+
∥∥[LN (u) − (1 + (λ− µ)u)

]
π
∥∥

≤ ‖χN (u) − π‖ sup
0≤u≤t

LN (u) + ‖π‖ sup
0≤u≤t

∣∣LN (u) − (1 + (λ − µ)u)
∣∣ ,

and so

(13) PyN
(∆N (0, t) ≥ ε) ≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/

(
2 sup

0≤u≤t
LN (u)

))

+ PyN

(
sup

0≤u≤t

∣∣LN (u) − (1 + (λ− µ)u)
∣∣ ≥ ε/(2‖π‖)

)
.

Under PyN
, a trivial upper bound for LN (u) for 0 ≤ u ≤ t is given by

LN (u) ≤ 1

N
(|yN | + Nλ(Nt))

def
= AN (t),
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therefore for any constant C > 0,PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/

(
2 sup

0≤u≤t
LN (u)

))

≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
+ P(AN (t) ≥ C).

For any t ≥ 0, AN (t) converges almost surely to 1 + λt as N goes to infinity,
therefore P(AN (t) ≥ C) goes to 0 for C = 2(1 + λt). The other term vanishes as
well. Indeed,PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
= PyN

(
T ε/(2C) ≤ Nt

)
,

and by Lemma 2.1, there exists some ε′ > 0 such that T ε/(2C) ≥ T ε′

H , hencePyN

(
T ε/(2C) ≤ Nt

)
≤ PyN

(
T ε′

H ≤ Nt
)
≤ PyN

(
T ε′

H < +∞
)
.

One can moreover assume ε′ < ε0 without loss of generality. Observe that so far,
δ is arbitrary: it can be chosen small enough, say δ ≤ δ0 so that using Lemma 2.1,
H(yN/|yN |, π) ≤ ε′/2, and yN thus satisfies the hypotheses of Theorem 6.2, which

shows that PyN
(T ε′

H < +∞), and hence the first term in the upper bound of (13),
vanishes in the limit N → +∞.

The second term of (13) is easier to deal with. We reduce the problem to the
event {T0 = +∞} by using the following upper bound:

(14) PyN

(
sup

0≤u≤t

∣∣L(u) − (1 + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖)

)
≤ PyN

(T0 < +∞)

+ PyN

(
sup

0≤u≤t

∣∣L(u) − (1 + (λ − µ)u)
∣∣ ≥ ε/(2‖π‖), T0 = +∞

)
.

The first term PyN
(T0 < +∞) in the right hand side of (14) goes to 0 since, by

Lemma 2.2, PyN
(T0 < +∞) ≤ PyN

(T ε′

H < +∞) which has just been proved to
vanish as N → +∞.

Because L(u) = L(0) + Nλ(u) −Nµ(u) for all u ≥ 0 on {T0 = +∞}, we get the
following upper bound for the second term:P( sup

0≤u≤t

∣∣∣∣
1

N
(|yN | + Nλ(Nu) −Nµ(Nu)) − (1 + (λ− µ)u)

∣∣∣∣ ≥ ε/(2‖π‖)
)
,

and this term goes to 0 thanks to Doob’s inequality. The proof is complete.
�

7. Stability of the subcritical regime

In this section we consider the subcritical regime λ < µ that is, the case when
the input rate is smaller than the maximal output rate. As in the previous section,
the key ingredients are the short and long term “homogenization” property and the
M/M/1-like behavior of the total number of customers. The next lemma will be
useful for establishing the fluid behavior of the system. It gives a control on the
stopping time T ε

H , or equivalently T ε: with high probability, T ε
H is larger than the

time needed for a stable M/M/1 queue to empty.
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Lemma 7.1. Assume λ < µ. Fix some a > 0 and let (xN , N ≥ 1) be any sequence
in Nn such that

lim
N→+∞

|xN |
N

= a and lim
N→+∞

H(xN/|xN |, π) = 0.

Then, for any t < a/(µ− λ) and any ε < ε0, where ε0 is given by Lemma 2.2,

lim
N→+∞

PxN
(T ε

H ≤ Nt) = 0.

Proof. Denote HN = H(xN/|xN |, π), and let (ℓN , N ≥ 1) be a sequence of integers
such that N ≫ ℓN ≫ NHN and ℓN ≫ logN (such a sequence clearly exists, e.g.,
ℓN = N

√
HN ∨ (logN)2). Proposition 3.2 with α = 1/N2 and δ = ε/2 givesExN

(
e−θT ε

H/N2

;L(T ε
H) ≥ ℓN

)
≤ Cε/2e

2n log N+|xN |HN−εℓN /2,(15)

where the last bound goes to 0 by choice of ℓN . Let now τN be defined by τN =
inf{t ≥ 0 : L(t) ≤ ℓN}. Since ℓN is an integer and L has jumps ±1, we have
L(τN ) = ℓN , and consequently, for any t > 0,

(16) ExN

(
e−θT ε

H/N2

;L(T ε
H) ≥ ℓN

)
≥ ExN

(
e−θT ε

H/N2

;T ε
H ≤ τN

)

≥ e−θt/NPxN
(T ε

H ≤ τN ∧Nt)
Inequalities (15) and (16) together imply that PxN

(T ε
H ≤ τN ∧Nt) goes to 0 as N

goes to infinity. SincePxN
(T ε

H ≤ Nt) ≤ PxN
(T ε

H ≤ τN ∧Nt) + PxN
(τN < Nt) ,

all is left to prove is that PxN
(τN < Nt) goes to 0 if t < a/(µ − λ). Using the

lower bound L(t) ≥ L(0) + Nλ(t) − Nµ(t) from Proposition 4.1 and the fact that
|xN | ≥ (µ− λ)Nt+ ℓN for N large enough if t < a/(µ− λ), we get for such a tPxN

(τN < Nt) ≤ PxN
(∃s ∈ [0, Nt] : L(0) + Nλ(s) −Nµ(s) ≤ ℓN )

≤ PxN

(
sup

0≤s≤Nt
(Nµ(s) −Nλ(s) − (µ− λ)s) ≥ |xN | − (µ− λ)Nt− ℓN

)

≤ PxN

(
sup

0≤s≤Nt
(Nµ(s) −Nλ(s) − (µ− λ)s)

2 ≥ (|xN | − (µ− λ)Nt− ℓN )2
)
.

Since (Nµ(s) − Nλ(s) − (µ − λ)s, s ≥ 0) is a martingale, Doob’s inequality yields
that the last term is in turn upper bounded byVarNλ(Nt) +VarNµ(Nt)

(|xN | − (µ− λ)Nt− ℓN )2
∼ (λ+ µ)Nt

(a− (µ− λ)t)2N2
→ 0.

�

The fluid behavior can now be established. Recall that the rescaled process XN

is defined by XN (t) = X(Nt)/N for any t ≥ 0. In what follows, for u ∈ R, u+

denotes max(u, 0).

Proposition 7.1. Let x : [0,+∞[7→ Rn be defined by

x(t) =
(
1 + (λ − µ)t

)+
π.

Then for all 0 < s < t and all ε > 0:

lim
N→+∞

[
max

x∈Nn:|x|=N
Px

(
sup

s≤u≤t

∥∥XN (u) − x(u)
∥∥ ≥ ε

)]
= 0.
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Proof. Lemma 7.1 makes it possible to study the system for t < 1/(µ − λ). An
additional coupling argument, involving larger initial states, is then required to
show that fluid limits stay at 0 after that time. For this technical reason, initial
states of size equivalent to aN for some a > 0 will be considered, and the following
more general result will be established: For a > 0, let xa : [0,+∞[7→ Rn be defined
by

xa(t) =
(
a+ (λ− µ)t

)+
π.

It will be proved that for any a > 0, any s, t with 0 < s < t and all ε > 0:

lim
N→+∞

[
max

x∈Nn:x=⌊aN⌋
Px

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)]
= 0,

where the notations of the previous section are used.
First assume t < ta = a/(µ−λ), and set ∆N (s, t) = sups≤u≤t

∥∥XN (u) − xa(u)
∥∥:

the first steps of the proof are similar to the underloaded regime, namely using the
strong Markov property to replace the arbitrary initial state by some initial state
with low entropy. More precisely, let δN and tN be as in Proposition 5.2: for any
x ∈ Nn with |x| = N , one hasPx (∆N (s, t) ≥ ε) ≤ Px (∆N (s, t) ≥ ε, TδN

≤ Ns) + Px(TδN
> Ns).

Since tN/N goes to 0, Proposition 5.2 gives that the last term Px(TδN
> Ns) goes

to 0 uniformly in x ∈ Nn with |x| = N . As for the first term, we writePx (∆N (s, t) ≥ ε, TδN
≤ Ns) ≤ Ex

[PX(TδN
) (∆N (0, t) ≥ ε)

]

≤ PyN
(∆N (0, t) ≥ ε) + Px

(∣∣L(TδN
) − L(0)

∣∣ ≥
√
N
)
,

where yN ∈ N∗ is such thatPyN
(∆N (0, t) ≥ ε) = max

y∈Nn:
∣∣|y|−⌊aN⌋

∣∣≤√
N

and ‖y/|y|−π‖≤δN

Py (∆N (0, t) ≥ ε) .

Because TδN
≤ tN with high probability, and because tN/

√
N → 0, one can show

similarly as in Section 6 that as N goes to infinity,

max
x∈Nn:|x|=N

Px

(∣∣L(TδN
) − L(0)

∣∣ ≥
√
N
)
→ 0.

Along the same lines as in the overloaded case, one gets, by introducing the term
LN (u)π that for any C > 0

(17) PyN
(∆N (0, t) ≥ ε) ≤ PyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)

+PyN

(
sup

0≤u≤t
LN (u) ≥ C

)
+PyN

(
sup

0≤u≤t

∣∣LN (u) − (a+ (λ− µ)u)
∣∣ ≥ ε/(2‖π‖)

)
.

Note that since t < ta, xa(u) = (a+ (λ− µ)u)π for 0 ≤ u ≤ t. For C large enough,PyN

(
sup0≤u≤t LN (u) ≥ C

)
goes to 0 as N goes to infinity. Moreover, Lemma 2.1

givesPyN

(
sup

0≤u≤t
‖χN (u) − π‖ ≥ ε/ (2C)

)
= PyN

(
T ε/(2C) ≤ Nt

)
≤ PyN

(
T ε′

H ≤ Nt
)
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for some ε′ > 0 that can be assumed to satisfy ε′ < ε0. Since the sequence (yN , N ≥
1) satisfies the hypotheses of Lemma 7.1 and since t < ta, this last upper bound
goes to 0. Moreover, sincePyN

(
sup

0≤u≤t

∣∣LN (u) − (a+ (λ− µ)u)
∣∣ ≥ ε/(2‖π‖)

)
≤ PyN

(T0 ≤ Nt)

+ PyN

(
sup

0≤u≤t

∣∣LN (u) − (a+ (λ− µ)u)
∣∣ ≥ ε/(2‖π‖), T0 > Nt

)
,

we conclude, using Lemma 7.1 together with Lemma 2.2 for the first term and
Doob’s inequality for the second one, thatPyN

(
sup

0≤u≤t

∣∣LN (u) − (a+ (λ− µ)u)
∣∣ ≥ ε/(2‖π‖)

)
→ 0.

The proof in the case 0 < s < t < ta is thus complete.
To conclude in the other cases, a monotonicity argument derived from Lemma 6.2

is used. Let 0 < s < t and t ≥ ta, and assume in a first step that t−s < ε/(2(µ−λ)).
In addition, let b > (µ − λ)t be fixed, and let tb = b/(µ− λ) be the corresponding
time. Note that t ≥ ta implies that b > a, so that for any x ∈ Nn with |x| = ⌊aN⌋,
there exists some y ∈ Nn such that y ≥ x componentwise and |y| = ⌊bN⌋. For
such x, y, Lemma 6.2 shows that Xx and Xy can be coupled in such a way that
|Xx(t)| ≤ |Xy(t)| for any t ≥ 0. Hence for any u ≥ s, using the inequality ‖v‖ ≤
|v| ≤ n‖v‖ for any v ∈ Rn, one gets

∥∥∥Xx

N (u) − xa(u)
∥∥∥ ≤

∣∣∣Xx

N (u)
∣∣∣+ |xa(s)| ≤

∣∣∣Xy

N (u)
∣∣∣+ |xa(s)|

≤ n
∥∥∥Xy

N (u) − xb(u)
∥∥∥+ |xb(s)| + |xa(s)|.

By definition

|xb(s)| + |xa(s)| = (µ− λ)(tb − s) + (µ− λ)(ta − s)+ ≤ 2(µ− λ)(tb − s).

This yields in turnPx

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)
≤ Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′

)

where ε′ =
(
ε− 2(µ− λ)(tb − s)

)
/n, and finally

max
x∈Nn:|x|=⌊aN⌋

Px

(
sup

s≤u≤t

∥∥XN (u) − xa(u)
∥∥ ≥ ε

)

≤ max
y∈Nn:|y|=⌊bN⌋

Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′

)
.

Since it has been assumed that t − s < ε/(2(µ − λ)), b > (µ − λ)t can be chosen
small enough so that ε′ > 0. Since t < tb, the first part of the proof implies that

lim
N→+∞

[
max

y∈Nn:|y|=⌊bN⌋
Py

(
sup

s≤u≤t

∥∥XN (u) − xb(u)
∥∥ ≥ ε′

)]
= 0.

This proves in particular that when 0 < s < t and t − s < ε/(2(µ − λ)), then
max|x|=⌊aN⌋Px (∆N (s, t) ≥ ε) → 0. It is now left to extend this result to any s, t
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such that s < t, which is a consequence of the following decomposition:

max
x∈Nn:|x|=⌊aN⌋

Px (∆N (s, t) ≥ ε) ≤
q∑

j=1

(
max

x∈Nn:|x|=⌊aN⌋
Px (∆N (sj−1, sj) ≥ ε)

)

where s0 = s < s1 < . . . < sq = t and sj − sj−1 < ε/(2(µ − λ)) for 1 ≤ j ≤ q.
Indeed, it has just been shown that each term of this finite sum goes to 0.

�

We finally can infer the stability of the process X by using Corollary 9.8 of [11]:

Proposition 7.2. When λ < µ, the Markov process X is ergodic.

Proof. According to Corollary 9.8 p. 259 of [11], it is enough to show that for some
deterministic time T > 0,

lim
N→+∞

max
x∈Nn:|x|=N

Ex(LN (T )) = 0.

Recall that LN (T ) = L(NT )/N , and let ε > 0 be fixed: then, for x ∈ Nn with
|x| = N :Ex

(
LN (T )

)
≤ ε+ Ex

(
LN (T );LN (T ) > ε

)
≤ ε+ (1 + λT )Px

(
LN (T ) > ε

)

+
1

N
Ex

(
Nλ(NT ) − λNT ;LN (T ) > ε

)
.

where the second inequality comes from LN (T ) ≤ LN (0) + Nλ(NT )/N . For any
T ≥ 0, using Cauchy-Schwartz inequality, an upper bound on the last term is given
by

1

N
Ex

(
Nλ(NT ) − λNT ;LN (T ) > ε

)
≤ 1

N
E (|Nλ(NT ) − λNT |) ≤

√
λT

N
,

so that finally

max
x∈Nn:|x|=N

Ex

(
LN (T )

)
≤ ε+ (1 + λT ) max

x∈Nn:|x|=N
Px

(
LN (T ) > ε

)
+

√
λT

N
,

and all is left to prove is that for some T > 0, max|x|=N Px

(
LN (T ) > ε

)
goes

to 0 as N grows to infinity: this is a direct consequence of Proposition 7.1 with
T = 1/(µ− λ) since x(T ) = 0. The proof is now complete.

�
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Appendix A. Martingale construction

This appendix is devoted to proving Theorem 3.1, which states the existence of
a fundamental family of local martingales. In Proposition A.1, we first establish
the harmonicity of a special function g, which has an integral form. Then a change
of variables leads to the local martingale introduced in Theorem 3.1.

A.1. An integral harmonic function. The starting point is the generator Ω of
the Markov process X given, for any x ∈ Nn and any function f : Rn 7→ R, by:

Ω(f)(x) =

n∑

i=1

λi

(
f(x+ ei) − f(x)

)
+

n∑

i=1

µi

(
f(x− ei) − f(x)

)1{xi>0}

+
∑

1≤i6=j≤n

qijxi

(
f(x+ ej − ei) − f(x)

)
.

In addition to the irreducibility of Q = (qij)1≤i,j≤n, we will require that Q is
diagonalizable in C, i.e., that there exists a set (ωj , 1 ≤ j ≤ n) of eigenvectors of
Q that generate Rn. The complex square matrix ω = (ωi,j)1≤i,j≤n where ωj =
(ωi,j)1≤i≤n is invertible.

We can assume without loss of generality that ωn = 1, denoting by 1 the vector inRn with all coordinates equal to 1, so that ωn is associated to the null eigenvalue;
more generally, for 1 ≤ j ≤ n, θj will denote the (possibly complex) eigenvalue
associated to ωj . The negative trace of Q is then given by −θ =

∑n
1 θi with θ > 0.

In the sequel H will denote the hyperplane of Rn defined by

H =

{
v ∈ Rn :

n∑

i=1

πivi = 0

}
.

For j = 1, . . . , n − 1, ωj ∈ H since Qωj = θjωj for θj 6= 0 implies (in a matricial
form, where π is a row and ωj a column): πωj = (θj)

−1πQωj which is 0 since
πQ = 0. These n− 1 eigenvectors then generate H.

We recall some notations and results of Section 3. (Pt, t ∈ R) denotes the Q-
generated Markov semi-group of linear operators in Rn: Pt = etQ, extended to
all real indices t into a group. Each Pt has eigenvalues eθjt and eigenvectors ωj,
j = 1, . . . , n. For any v ∈ Rn and t ≥ 0, we define

φ(v, t) = (φi(v, t), 1 ≤ i ≤ n) = P−tv.

If v ∈ Rn and ϕ(v, ·) is any primitive of
∑n

i=1 [µiφi(v, ·)/(1 + φi(v, ·)) − λiφi(v, ·)]
on some open subset V of {t ≥ 0 : ∀i = 1, . . . , n, 1+φi(v, t) 6= 0}, then the function
hv(t, x) defined by

hv(t, x) = eϕ(v,t)
n∏

i=1

(1 + φi(v, t))
xi(18)

is space-time harmonic with respect to Ω in the domain V × N∗n (see Proposi-
tion 3.1).

The suitable domain of integration for constructing our martingale will be:

D(t) = {v ∈ H : 1+ φ(v, t) > 0} , t ∈ R,
where, for any u ∈ Rn, u ≥ 0 (resp. u > 0) means that ui ≥ 0 (resp. ui > 0) for
every i = 1, . . . , n.
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For each t ∈ R, D(t) is an open subset of H. Moreover, it is clear from the
definition of D(t) and from the invariance of H under the group of operators (Ps, s ∈R) that, for any v ∈ Rn and any t ≥ 0,

v ∈ D(t) ⇐⇒ P−tv ∈ D(0).

So, for any t ∈ R, D(t) = Pt(D(0)). Then, since D(0) = {v ∈ Rn :
∑n

1 πivi =
0,1+v > 0} is clearly bounded, each D(t) = Pt(D(0)) for t ∈ R is bounded as well.

Define the subset A of H×R by:

A = {(v, t) : t ∈ R and v ∈ D(t)}.
The first step is to show that the following choice of ϕ makes sense:

ϕ(v, t) =

∫ t

−∞

n∑

i=1

(
µi

φi(v, s)

1 + φi(v, s)
− λiφi(v, s)

)
ds(19)

for (v, t) ∈ A. This is the object of the following two lemmas, which will also give
some regularity properties of ϕ in view of Proposition A.1.

Lemma A.1. If (v, t) ∈ Rn × R satisfies 1 + φ(v, t) ≥ 0 and v 6= −1, then1+ φ(v, s) > 0 for all s < t. As a consequence:

t > s =⇒ D(t) ⊂ D(s), s, t ∈ R.(20)

and

D(t0) =
⋃

t>t0

D(t), t0 ∈ R.(21)

Proof. Let first remark that the irreducibility of Q implies that, for any r > 0 and
(i, j) ∈ {1, . . . , n}, the probability Pr(i, j) that a Markov process with generator Q
initiated at i is in state j at time r is positive. Indeed, if i = i0, i1, . . . , ik = j is
a path from i to j such that qil−1,il

> 0 for l = 1, . . . , k, then there is a positive
probability that the process has exactly followed this path by time r.
This implies that Pru > 0 for any r > 0 and u ∈ Rn such that u ≥ 0 and u 6= 0.

Now let (v, t) satisfy the hypotheses in the lemma, then 1+ φ(v, t) 6= 0 since

0 6= 1+ v = Pt

(1+ P−tv
)

= Pt

(1+ φ(v, t)
)
,

and the previous property applied to u = 1+ φ(v, t) and r = t− s for s < t gives,1+ φ(v, s) = 1+ P−sv = Pt−s

(1+ P−tv
)

= Pt−s

(1+ φ(v, t)
)
> 0.

The implication t > s =⇒ D(t) ⊂ D(s) follows, noticing that −1 /∈ H.
To show (21) for t0 ∈ R, note that D(t0) contains the right hand side union

by (20), and that the reverse holds since, for v ∈ D(t0), the inequality 1+φ(v, t0) >
0 extends to some neighborhood of t0.

�

Lemma A.2. (i) For any i ∈ {1, . . . , n}, the two integrals
∫ 0

−∞
φi(v, s)ds and

∫ 0

−∞

φi(v, s)

1 + φi(v, s)
ds

are well defined for v ∈ D(0), continuous as functions of v on this domain and
respectively bounded and bounded above on D(0).
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The function ϕ0 can then be defined on D(0) by

ϕ0(v) =

∫ 0

−∞

n∑

i=1

(
µi

φi(v, s)

1 + φi(v, s)
− λiφi(v, s)

)
ds

and is continuous and bounded above on D(0).
(ii) The function ϕ given by (19) is well defined for (v, t) ∈ A and satisfies:

ϕ(v, t) = ϕ0(P−tv) (v, t) ∈ A.
ϕ is bounded above on A and continuous with respect to v ∈ D(t) for fixed t ∈ R.

Proof. (i) Notice that, for fixed v ∈ Rn, the map s 7→ φ(v, s) = e−sQv is continuous
on R (with values in Rn). Moreover, if v ∈ H, it has a fast decay as s tends to −∞
as a consequence of the exponential fast convergence of Pt(i, ·) to π (already used
in Section 5):

There exist some positive constants η and C1 such that, for any s ≤ 0

max
1≤i,j≤n

|P−s(i, j) − πj | ≤ C1 · eηs.(22)

This gives, for s ≤ 0 and v ∈ H,

‖φ(v, s)‖ ≤ C2 · eηs‖v‖,(23)

where C2 = nC1, which ensures the existence of the vectorial integral
∫ 0

−∞ φ(v, s)ds
for any v ∈ H. This integral is continuous with respect to v in H since, for v ∈ H,

∫ 0

−∞
P−svds =

∫ 0

−∞
(P−s − Π) vds =

(∫ 0

−∞
(P−s − Π) ds

)
v

where Π is the square matrix with all lines equal to π = (π1, . . . , πn) and the last
matricial integral has a coefficientwise meaning (and is well defined due to (22)).

This shows the integral
∫ 0

−∞ φ(v, s)ds as a linear function of v ∈ H, thus proving

its continuity with respect to v ∈ H. The boundedness of this function on D(0)
follows since D(0) has compact closure in H.

For the second integral, Lemma A.1 and the condition v ∈ D(0) first ensure that1+φ(v, s) > 0 for s ≤ 0. The existence of this integral then again follows from the
continuity of s 7→ φ(v, s) and from the exponential decay in (23).

Let us now begin by proving that it is bounded above on D(0), writing

∫ 0

−∞

φi(v, s)

1 + φi(v, s)
ds =

∫ −1

−∞

φi(v, s)

1 + φi(v, s)
ds+

∫ 0

−1

φi(v, s)

1 + φi(v, s)
ds,

and upperbounding each term.
It is easy for the second one, since 1 + φi(v, s) > 0 implies that φi(v, s)/(1 +

φi(v, s)) ≤ 1. In particular,

∫ 0

−1

φi(v, s)

1 + φi(v, s)
ds ≤ 1.

The first term can be extended to v ∈ D(0) (again by Lemma A.1 and by the

exponential decay in (23)) and can be shown to be bounded on D(0). Indeed, for
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v ∈ D(0) and s ≤ −1, 1 + φi(v, s) is positive and tends to 1 as s tends to −∞
uniformly in v ∈ D(0) since, by (23),

sup
v∈D(0)

‖φ(v, s)‖ ≤ C2 · eηs sup
v∈D(0)

‖v‖.(24)

Then 1 +φi(v, s) is bounded below by some positive δ for (v, s) ∈ D(0)×]−∞,−1]

(by (24), this is the case on D(0)×]−∞,−κ] for κ large enough, and D(0)×[−κ,−1]

is compact), and the following bound holds for v ∈ D(0), using (24):
∣∣∣∣
∫ −1

−∞

φi(v, s)

1 + φi(v, s)
ds

∣∣∣∣ ≤
C2

δ
· sup

u∈D(0)

‖u‖
∫ −1

−∞
eηsds =

C2e
−η

δη
sup

u∈D(0)

‖u‖.

Let us now show the continuity of
∫ 0

−∞ φi(v, s)/(1 + φi(v, s))ds with respect to

v ∈ D(0), using the continuity of φi(v, s) for fixed s, together with Lebesgue’s
dominated convergence theorem. The difficulty is that φi(v, s)/(1 + φi(v, s)) is
not clearly dominated uniformly in v ∈ D(0) by some integrable function of s on
]−∞, 0], since for s close to 0 and v close to the the portion of ∂D(0) where 1+vi = 0,
the ratio φi(v, s)/(1 + φi(v, s)) goes to infinity and is not easily controlled.

It is however possible to show local domination, using (21) in the particular case
t0 = 0 and dominating the integrand on each D(t), t > 0. This will prove continuity
on each D(t), t > 0, hence continuity on D(0) since the D(t), t > 0, are open subsets
of D(0). The domination uses the same argument as in the last point: if t > 0,
then

δ(t) = inf
{
1 + φi(v, s), (v, s) ∈ D(t)×] −∞, 0]

}

is positive. Then, for any v ∈ D(t) and s ≤ 0,
∣∣∣∣

φi(v, s)

1 + φi(v, s)

∣∣∣∣ ≤
C2

δ(t)
· eηs sup

u∈D(t)

‖u‖

where the right hand side is integrable on ]−∞, 0], and hence provides the required
domination.

(ii) We use the group structure of (Ps, s ∈ R) to rewrite both integrals as:
∫ t

−∞
φi(v, s)ds =

∫ 0

−∞
φi(v, s+ t)ds =

∫ 0

−∞
φi(P−tv, s)ds

and
∫ t

−∞

φi(v, s)

1 + φi(v, s)
ds =

∫ 0

−∞

φi(v, s+ t)

1 + φi(v, s+ t)
ds =

∫ 0

−∞

φi(P−tv, s)

1 + φi(P−tv, s)
ds,

which ensures their existence for Ptv ∈ D(0), i.e., v ∈ D(t) or equivalently (v, t) ∈ A,
and proves the connexion between ϕ and ϕ0, hence the stated properties of ϕ.

�

The function ϕ is now legitimately defined by (19) for t ∈ R and v ∈ D(t).
For fixed t ∈ R , ϕ(·, t) is continuous (hence measurable) with respect to v in

D(t) and bounded above on this domain.
Reversely, for fixed v ∈ D(0), ϕ(v, ·) is clearly C1 on the interval ] − ∞, tv[,

where tv = sup{t ≥ 0 : 1 + φ(v, t) > 0} > 0 (by continuity of φ(v, ·) on R), and
∂ϕ(v, t)/∂t =

∑n
1 [µiφi(v, t)/(1 + φi(v, t)) − λiφi(v, t)] on this interval.
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The following proposition constitutes the first step in defining a new space-
time harmonic function, obtained by integrating with respect to v ∈ D(t) the
parametrized family of functions hv given by (18), with ϕ given by (19).

As D(t) ⊂ H and H is an n− 1 dimensional subspace of Rn which is isomorphic
to Rn−1 through the one to one linear mapping

H :
Rn−1 −→ H
u 7−→ û = (u,−∑n−1

i=1 πiui/πn)
,

the new harmonic function will rather take the form of an integral over the following
subset of Rn−1:

C(t) = H−1(D(t)) =
{
u ∈ Rn−1 : û ∈ D(t)

}
=
{
u ∈ Rn−1 : 1+ φ(û, t) > 0

}
.

Proposition A.1. For any locally Lebesgue-integrable f on Rn−1, the function
g(t, x) given by the formula

g(t, x) =

∫

C(t)

hû(t, x)f(u)du =

∫

C(t)

eϕ(û,t) ·
n∏

i=1

(1 + φi(û, t))
xi · f(u)du(25)

is space-time harmonic in the domain [0,+∞[×N∗n.

Proof. g is well-defined on [0,+∞[×N∗n. Indeed
∏n

1 (1 + φi(̂·, t))xi is continuous
on Rn−1 for fixed t ≥ 0 and x ∈ N∗n, hence bounded on the bounded set C(t) (since
C(t) corresponds to D(t) through H−1). By Lemma A.2, eϕ(̂·,t) also is continuous
and bounded on C(t) since ϕ(·, t) is continuous and bounded above on D(t). Then,
since f is locally integrable, the product of these three functions is integrable on
C(t).

We have to show that ∂g/∂t exists and satisfies ∂g(t, x)/∂t+ Ω(g(t, ·))(x) = 0.
As a rough argument, one expects that

∂g

∂t
(t, x) =

∫

C(t)

∂hû

∂t
(t, x) · f(u)du.(26)

Indeed the additional derivation term resulting from the t-dependency of the domain
C(t) is bound to vanish, since hû(t, x) is zero for u on the frontier of C(t) (recall
that x ∈ N∗n). Therefore, since Ω commutes with integration,

∂g

∂t
(t, x) + Ω(g(t, ·))(x) =

∫

C(t)

[
∂hû

∂t
(t, x) + Ω(hû(t, ·))(x)

]
· f(u)du = 0

by harmonicity of the functions hv, using Proposition 3.1 with V = [0, tv[.
To make this rigorous, all is needed is to prove (26), by fixing some arbitrary

x ∈ N∗n and t0 ≥ 0 and studying the ratio [g(t0 + δ, x) − g(t0, x)]/δ as δ tends to
zero. The monotonicity of the family of sets C(t) forces to distinguish the two cases
δ > 0 and (for t0 > 0) δ < 0. For the sake of shortness we will only present here
the case δ > 0, the other side being similar: both cases make a repeated use of the
mean-value theorem and of Lebesgue’s dominated convergence theorem.

To simplify notations, define for u ∈ C(t), t ≥ 0 and x ∈ N∗n,

h(u, t, x) = hû(t, x) = eϕ(û,t)
n∏

i=1

(1 + φi(û, t))
xi .

Note that h inherits the derivability properties of ϕ with respect to t (the factor
involving φ being C1 on R): for fixed u ∈ C(0) and x ∈ N∗n, h is C1 on ] −∞, tû[.
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Let x ∈ N∗n and t0 ≥ 0 be fixed. For any positive δ, using the inclusion
D(t0 + δ) ⊂ D(t0) one can write:

g(t0 + δ, x) − g(t0, x)

δ
=

∫

C(t0+δ)

h(u, t0 + δ, x) − h(u, t0, x)

δ
f(u)du

−
∫

C(t0)\C(t0+δ)

h(u, t0, x)

δ
f(u)du.

Let first show that the first term tends to
∫
C(t0)

∂h
∂t (u, t0, x)f(u)du as δ tends to zero.

Using the mean value theorem, since h(u, ·, x) is C1 on [0, t0 + δ] for u ∈ C(t0 + δ),
this first term can be rewritten as∫

C(t0+δ)

∂h

∂t
(u, t0 + p(u)δ, x)f(u)du

for some p(u) ∈]0, 1[ depending on u, t0, x and δ.
As δ goes to zero, ∂h

∂t (u, t0 + p(u)δ, x)f(u) tends to ∂h
∂t (u, t0, x)f(u) and the indi-

cator function of C(t0+δ) tends to the indicator function of C(t0) due to relation (21)
which obviously extends to the sets C(t). The convergence of the first term will then
result from Lebesgue’s theorem by computing (we omit the variable (û, t) under φ):

∂h

∂t
(u, t, x) = eϕ(û,t)

n∑

i=1

(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj

(
µi − λiφi(1 + φi) + xi

∂φi

∂t

)
,

and then using the following domination: for 0 < δ < 1 and u ∈ Rn−1,

∣∣∣∣
∂h

∂t
(u, t0 + p(u)δ, x)f(u)1C(t0+δ)

∣∣∣∣ ≤ k(t0, x) · |f(u)| · 1C(t0),

where the right hand side is integrable on Rn−1, and k(t0, x) holds for:

sup
A
eϕ × sup

D(t0)×[0,t0+1]

∣∣∣∣∣∣

n∑

i=1

(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj (µi − λiφi(1 + φi) + xi

∂φi

∂t
)

∣∣∣∣∣∣
.

The convergence of the first term is thus proved.
We now prove that the second term vanishes as δ tends to 0. For any u ∈

C(t0)\C(t0+δ) there exists some index i (depending on u) such that 1+φi(û, t0) > 0
while 1 + φi(û, t0 + δ) ≤ 0, and this implies by the mean value theorem that

0 < 1 + φi(û, t0) ≤ −δ ∂φi

∂t
(û, t0 + q(u)δ) for some q(u) ∈]0, 1[ depending on u, t0

and δ. One can deduce the following upper bound, again assuming 0 < δ < 1:
∣∣∣∣∣

∫

C(t0)\C(t0+δ)

h(u, t0, x)

δ
f(u)du

∣∣∣∣∣ ≤ k

∫

C(t0)\C(t0+δ)

|f(u)|du,

where k is the following constant:

sup
A
eϕ × max

1≤i≤n



 sup

D(t0)×[0,t0+1]

∣∣∣∣
∂φi

∂t

∣∣∣∣× sup
D(t0)×{t0}

∣∣∣(1 + φi)
xi−1

∏

j 6=i

(1 + φj)
xj

∣∣∣



 .

The right hand side of the previous inequality converges to zero, again by
Lebesgue’s theorem, because f is integrable on the bounded set C(t0), and the
sets C(t0) \ C(t0 + δ) decrease to ∅ as δ decreases to zero, due to relation (21).

�
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A.2. Change of variables. The last step is now a change of variable in the har-
monic function given by the integral (25), for a suitable choice of f so as to separate
the time and space variables.

It informally consists in choosing as new variables the quantities πi

(
1 + φi(v, t)

)

(1 ≤ i ≤ n), changing the domain D(t) into P ≡ {v ∈ Rn : v > 0 and
∑n

i vi = 1}.
Formally, it will be slightly more complicated due to integration with respect to
Lebesgue’s measure on subdomains of Rn−1 (the C(t)’s), which forces to a round
trip from Rn−1 through Rn. So, to be correct, this change of variable will rather
transform the domain C(t) into the following one:

S =

{
u ∈ Rn−1 : u > 0 and

n−1∑

i=1

ui < 1

}
.(27)

We need to introduce some additional notations. Denote by ∆ the diagonal n× n
square matrix having π1, . . . , πn as its diagonal elements, by J the projection

J :
Rn −→ Rn−1

(v1, . . . , vn) 7−→ (v1, . . . , vn−1)
,

and by K, the hyperplane of Rn defined by

K =

{
v ∈ Rn :

n∑

i=1

vi = 1

}
.

K corresponds to Rn−1 through the one to one affine transformation (analogous to
H from Rn−1 to H):

K :
Rn−1 −→ K
u 7−→ ũ = (u, 1 −∑n−1

i=1 ui)
,

Notice that the inverse mapping of K (resp. H) is given by the restriction of J
to K (resp. H). The announced change of variable is given by the t-depending
transformation

Ψt :
Rn−1 −→ Rn−1

u 7−→ J∆(P−tHu+ 1)
.

The next lemma shows that Ψt can be considered for a change of variables:

Lemma A.3. For any t ≥ 0, Ψt is a one to one affine transformation on Rn−1

which inverse mapping is given by

Ψ−1
t (u) = JPt(∆

−1Ku− 1)

and which Jacobian is Jac(Ψt) = eθt
∏n−1

i=1 πi. Moreover, Ψt(C(t)) = S.

Proof. Since Ψt is clearly an affine transformation in Rn−1, its Jacobian is the one
of its linear part J∆P−tH . Now J∆ = ∆′J , where ∆′ is the diagonal (n−1)×(n−1)
square matrix having π1, . . . , πn−1 as its diagonal elements, so that

Jac (J∆P−tH) =
( n−1∏

i=1

πi

)
Jac (JP−tH) =

( n−1∏

i=1

πi

)
Jac (P−t) = eθt

n−1∏

i=1

πi.

The second equality results from the facts that J restricted to H coincides with
H−1 and that H is generated by the first n− 1 eigenvectors of P−t, so that H is in-

variant under P−t, which restriction to H has Jacobian
∏n−1

i=1 e
−θit =

∏n
i=1 e

−θit =

Jac (P−t) (= eθt) since θn = 0. In particular Jac(Ψt) 6= 0, so that Ψt is invertible.
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The formula for Ψ−1 easily results from the fact that ∆(· + 1) maps H onto K
and that the inverse mapping of K is given by the restriction of J to K.

Now using C(t) =
{
u ∈ Rn−1 : 1+ P−tHu > 0

}
together with the facts that ∆

preserves the relation v > 0 and (again) that ∆(· + 1) maps H onto K, one gets
that Ψt(C(t)) is included in J({v ∈ K : v > 0}) = S. Equality results from a similar
argument for Ψ−1

t (S) ⊂ C(t).
�

The transformation Ψt hence corresponds to the two following diagrams:

H ⊂ Rn K ⊂ Rn H ⊂ Rn K ⊂ Rn

C(t) ⊂ Rn−1 S ⊂ Rn−1 C(t) ⊂ Rn−1 S ⊂ Rn−1

H

∆(P−t·+1)
J

Ψt

J K

Pt(∆
−1·−1)
Ψ−1

t

All is left now is to choose for (25) a family of locally integrable functions inRn−1 which behave nicely with respect to the change of variable Ψt. It will be
given by the functions fα−1 for positive α’s, where, for u ∈ Rn−1 and v ∈ Rn,

f(u) = ψ(Hu) = ψ(û) and ψ(v) =

n−1∏

i=1

|(ω−1v)i|.

Here, for any v ∈ Rn and 1 ≤ i ≤ n, vi denotes the ith coordinate of v, so that the
(ω−1v)i’s (1 ≤ i ≤ n−1) are the first n−1 coordinates of v in the base (ω1, . . . , ωn)
of eigenvectors of Q. As will become clear in (30), the next lemma establishes the
property of ψ that makes it behave nicely with respect to the change of variables
given by Ψt, by isolating the dependency in time in a separate factor:

Lemma A.4. For any t ≥ 0 and v ∈ Rn, ψ(Ptv) = e−θtψ(v).

Proof. This result stems from diagonalizing Pt as ω−1Ptω = e−tΘ, where Θ is the
diagonal n×n square matrix having θ1, . . . , θn as its diagonal elements. This readily
gives ψ(Ptv) =

∏n−1
i=1 |(e−tΘω−1v)i| = e−θtψ(v).

�

The main technical point is to establish that fα−1 is locally integrable: the next
lemma provides in addition a useful upper bound.

Lemma A.5. fα−1 is locally integrable on Rn−1 for any α > 0. Moreover, for any
compact set T ⊂ Rn−1,

sup
0<α≤1

(
αn

∫

T

f(u)α−1du

)
< +∞.(28)

Proof. If α ≥ 1, fα−1 is continuous on Rn−1, hence locally integrable. So consider
only the case when 0 < α < 1

If the matrix ω has real coefficients (it can be chosen such when the eigenvalues
θj of Q are real, which is in particular the case for a reversible Q), fα−1 is easily
shown to be integrable on any compact set T of Rn−1 by operating the change of
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variable: Rn−1 −→ Rn−1

u 7−→
(
(ω−1Hu)i

)
1≤i≤n−1

= Jω−1Hu

which is linear and one to one, and transforms
∫

T f(u)α−1du into the integral over

some compact subset of Rn−1 of the locally integrable function
∏n−1

i=1 |ui|α−1 (up
to the Jacobian constant factor). Then by considering A large enough so that
Jω−1H(T ) ⊂ [−A,A]n−1 and A ≥ 1, (28) is obtained from the fact that

∫

[−A,A]n−1

n−1∏

i=1

|ui|α−1
du = (2Aα)n−1α−(n−1) ≤ (2A)n−1α−n.

This is not directly possible when ω has non real coefficients. In this case we can
show that fα−1 is upper bounded by

∏n−1
i=1 |(Lu)i|α−1 for some invertible (n− 1)×

(n − 1) square matrix L with real coefficients. The change of variable u 7→ Lu is
then possible, showing (28) in this case similarly as before, which implies the local
integrability of fα−1 for 0 < α < 1.

Since α < 1 this amounts to lower bounding f by
∏n−1

i=1 |(Lu)i|.
Call C the complex invertible (n − 1) × (n − 1) square matrix associated to

the linear mapping Jω−1H on Rn−1, so that f(u) =
∏n−1

j=1 |(Cu)j |, and write

C = A+ iB where A and B are real square matrices. For any p ∈ [0, 1], u ∈ Rn−1

and j ∈ {1, . . . , n− 1} , the following inequalities hold:

|(Cu)j | ≥ max{|(Au)j |, |(Bu)j |} ≥ |p(Au)j +(1−p)(Bu)j| =
∣∣((pA+(1−p)B)u

)
j

∣∣.

All is left now is to prove the existence of some p ∈ [0, 1] such that pA+(1− p)B is
invertible. It is done through considering the degree n−1 polynomial with complex
variable: det(A+zB), which is non zero at z = i (since detC 6= 0), hence not equal
to the null polynomial. It then cannot be zero on the whole real interval [0, 1],
which gives the result.

�

Proof of Theorem 3.1. The previous lemma shows that fα−1 is a suitable function
to plug in (25): since ϕ(v, t) = ϕ0(P−tv) for (v, t) ∈ A, rewriting (25) and using
the definition of f gives

g(t, x) =

∫

C(t)

eϕ(û,t)
n∏

i=1

(1 + φi(û, t))
xi f(u)α−1du

=

∫

C(t)

eϕ0(P−tHu)
n∏

i=1

(1+ P−tHu)
xi

i ψ(PtP−tHu)
α−1du.

Expressing P−tHu through Ψtu for u ∈ Rn−1, one gets, since K is the inverse of J
restricted to K and ∆(P−tHu+ 1) ∈ K,

P−tHu = ∆−1KΨtu− 1, u ∈ C(t),(29)

so that operating the change of variables given by Ψt yields by Lemma A.3

g(t, x) = eθt
n−1∏

i=1

πi

∫

S
eϕ0(∆

−1ũ−1) n∏

i=1

(
∆−1ũ

)xi

i
ψ
(
Pt(∆

−1ũ− 1)
)α−1

du.(30)

Since ωn = 1, we have ψ(v−1) = ψ(v) for any v ∈ Rn, hence ψ
(
Pt(∆

−1ũ− 1)
)

=

ψ
(
Pt∆

−1ũ
)

= e−θtψ(∆−1ũ), where the last equality comes from Lemma A.4. The
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following function g′, which only differs from g by a multiplicative factor, is thus
again space-time harmonic:

g′(t, x) = eθt

∫

S
G(ũ)

n∏

i=1

(
∆−1ũ

)xi

i

(
e−θtψ(∆−1ũ)

)α−1
du

= e−αθt

∫

S
G(ũ)

n∏

i=1

(
ũi

πi

)xi

ψ(∆−1ũ)α−1du,

where we have defined

G(v) = eϕ0(∆
−1v−1), v ∈ P .

Hence defining F as
F (v) = ψ(∆−1v), v ∈ Rn

yields exactly the local martingale of Theorem 3.1. The second expression (2) is
easily obtained. All one needs to do to complete the proof of Theorem 3.1 is to
check the announced properties of these two functions F and G.

First, G is continuous and bounded on P since, by Lemma A.2, ϕ0 is continuous
and bounded above on D(0) (if v ∈ P , then ∆−1v − 1 ∈ H and ∆−1v > 0, so that
∆−1v − 1 ∈ D(0)).

Moreover, F is clearly positive and continuous on Rn, and thus bounded on the
bounded subset P of Rn, and so (3) is the only property left to be checked.

Relation (29) and the fact that ψ(· − 1) = ψ(·), together with the definitions of
F and f , yield that F (ũ) = f(Ψ−1

0 u) according to the following steps:

F (ũ) = ψ(∆−1Ku) = ψ(∆−1KΨ0(Ψ
−1
0 u) − 1) = ψ(HΨ−1

0 u) = f(Ψ−1
0 u).

It follows by the change of variables induced by Ψ0 that, for α ≤ 1,
∫

S
F (ũ)α−1du =

∫

S
f(Ψ−1

0 u)α−1du = Jac(Ψ0)

∫

T

f(u)α−1du,

where T = Ψ−1
0 (S). (3) then follows using Lemma A.5.
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