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BOUNDARY OF THE RAUZY FRACTAL SETS IN R × C GENERATED BY P (x) = x 4 -x 3 -x 2 -x -1

We study the boundary of the 3-dimensional Rauzy fractal E ⊂ R × C generated by the polynomial P (x) = x 4 -x 3 -x 2 -x -1. The finite automaton characterizing the boundary of E is given explicitly. As a consequence we prove that the set E has 18 neighborhoods where 6 of them intersect the central tile E in a point. Our construction shows that the boundary is generated by an iterated function system starting with 2 compact sets.

Introduction

Consider A = {1, 2, 3} as an alphabet. Let A * be the set of finite words on A and σ : A → A * be the map (called Tribonacci substitution) defined by σ(1) = 12, σ(2) = 13, σ(3) = 1.

We extend σ to A N by concatenation : σ(a 0 • • • a n . . .) = σ(a 0 ) • • • σ(a n ) . . .. It is clear that σ has a unique fixed point u : σ(u) = u ∈ A N . The dynamical system associated to σ is the couple (Ω, S) where S : A N → A N is the shift map (S((x n ) n∈N ) = (x n+1 ) n∈N ) and Ω is the S-orbit closure of u : Ω = {S n u|n ∈ N}. It is well known that (Ω, S) is minimal, uniquely ergodic and of zero entropy (see [Q87, F02] for more details). In 1982, G. Rauzy [R82] studied the Tribonacci substitution σ. He proved that the dynamical system generated by σ is measure theoretically conjugate to an exchange of domains X 1 , X 2 , X 3 in a compact tile X = X 1 ∪ X 2 ∪ X 3 . The set X is the classical two-dimensional Rauzy fractal. It has been extensively studied and is related to many topics : numeration systems [M00, M06, M05], geometrical representation of symbolic dynamical systems [START_REF] Arnoux | Pisot substitutions and Rauzy fractals[END_REF][START_REF] Arnoux | Higher dimensional extensions of substitutions and their dual maps[END_REF][START_REF] Canterini | Geometric representation of substitutions of Pisot type[END_REF][START_REF] Holton | Geometric realizations of susbstitutions[END_REF][START_REF] Messaoudi | Propriétés arithmétiques et dynamiques du fractal de Rauzy[END_REF][START_REF] Thuswaldner | Unimodular Pisot substitutions and their associated tiles[END_REF][START_REF] Sirvent | Relationships between the dynamical systems associated to the Rauzy substitutions[END_REF], multidimensional continued fractions and simultaneous approximations [START_REF] Arnoux | Discrete planes, Z 2 -actions, Jacobi-Perron algorithm and substitutions[END_REF][START_REF] Chekhova | Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci[END_REF][START_REF] Chevallier | Best simultaneous diophantine approximations of some cubic algebraic number[END_REF][START_REF] Hubert | Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals[END_REF], self-similar tilings [A99, A00, AI01, P99] and Markov partitions of Hyperbolic automorphisms of the torus [START_REF] Kenyon | Arithmetic Construction of sofic partitions of hyperbolic toral automorphisms[END_REF][START_REF] Messaoudi | Propriétés arithmétiques et dynamiques du fractal de Rauzy[END_REF][START_REF] Praggastis | Numeration systems and Markov partitions from self-similar tilings[END_REF]. Among the main properties of the set X, let us recall it is compact, connected, its interior is simply connected, its boundary is fractal and it induces a periodic tiling of R 2 ( [R82]). It is possible to associate such a fractal set to a large class of substitutions over an alphabet with d letters (called unimodular Pisot substitutions). Let us call them Rauzy fractals. P. Arnoux and S. Ito [START_REF] Arnoux | Pisot substitutions and Rauzy fractals[END_REF] (see also [START_REF] Canterini | Geometric representation of substitutions of Pisot type[END_REF]) proved that the dynamical system associated to such a substitution σ is measure theoretically conjugate to an exchange of domains X 1 , . . . , X d in the Rauzy fractal X σ = X 1 ∪ . . . ∪ X d ⊂ R d-1 provided that a certain combinatorial condition is true. All these sets X σ are compact and generate a periodic tiling of R d-1 .

There are different ways to define the Rauzy fractal associated to a given substitution σ over an alphabet of d + 1 letters. One is through numeration systems. Let d ≥ 2 and a 1 , a 2 , . . . , a d be integers such that a 1 ≥ a 2 ≥ . . . ≥ a d ≥ 1. Consider A = {1, 2, . . . , d + 1} as an alphabet. Let σ d be the substitution defined by σ d (i) = 11 . . . 1 ai (i + 1) if i ≤ d and σ d (d + 1) = 1.

We define the Rauzy fractal associated to σ d as follows. Consider the sequence (F n ) n≥0 defined by

F n+d+1 = a 1 F n+d + a 2 F n+d-1 + • • • + a d F n+1 + F n , ∀n ≥ 0,
with initial conditions (called Parry conditions)

F 0 = 1, F n = a 1 F n-1 + • • • + a n F 0 + 1, ∀ 1 ≤ n ≤ d.
It is well-known (using the greedy algorithm) that for every integer n we have n = N i=0 c i F i with (c i ) 0≤i≤N ∈ D a1,...,a d , where D a1,...,a d is the set of sequences (ε i ) l≤i≤k , l, k ∈ Z, such that for all l ≤ i ≤ k :

(1)

ε i ∈ {0, 1, . . . , a 1 } ; (2) ε i ε i-1 . . . ε i-d < lex a 1 a 2 . . . a d 1 when i ≥ l + d . ( 3 
) ε i ε i-1 . . . ε l 0 d-i+l < lex a 1 a 2 . . . a d 1 when l ≤ i ≤ l + d, where < lex is the usual lexicographic ordering. We set D ∞ a1,...,a d = {(ε i ) i≥l ; l ∈ Z, (ε i ) l≤i≤n ∈ D a1,.
..,a d , ∀n ≥ l} . Now, consider the following polynomial

P a1,...a d (x) = x d+1 -a 1 x d -a 2 x d-1 -• • • -a d x -1.
It can be checked that P has a root β = β 1 ∈]1, +∞[ and d roots with modulus less than 1. Let β 1 , β 2 , β 3 , . . . , β r be the roots of P belonging to R and β r+1 , . . . , β r+s , β r+1 , . . . , β r+s its complex roots. For all i ∈ Z, we set

α i = (β i 2 , . . . , β i r , β i r+1 , .
. . , β i r+s ). We also put α 0 = 1 = (1, . . . , 1). Then, the Rauzy fractal associated to σ is the set

E a1,...a d ⊂ R r-1 × C s ≈ R d defined by E a1,...a d = +∞ i=d+1 ε i α i ; (ε i ) i≥d+1 ∈ D ∞ a1,...,a d . The set E 1,1 = X is the classical two-dimensional Rauzy fractal.
The structure of the boundary of Rauzy fractals has been first investigated by Ito and M. Kimura in [START_REF] Ito | On the Rauzy Fractal[END_REF]. They showed that the boundary of E 1,1 is a Jordan curve generated by the Dekking method [D82] and they calculated its Hausdorff dimension. Relating the boundary of E a1,1 to the complex numbers having at least two expansions in base α, A. Messaoudi [M00, M05] constructed a finite automaton characterizing and generating this boundary. As a consequence it permitted to parameterize the boundary of E a1,1 , to compute its the Hausdorff dimension and to show it is a quasi circle. In [T06], J. M. Thuswaldner studied the set E a1,a2 . In particular, he gave an explicit formula for the fractal dimension of the boundary of this set.

In this paper we propose to study the boundary of the Rauzy fractal set E 1,1,1 ⊂ R× C. We construct a finite automaton characterizing its boundary. As a consequence we prove that E 1,1,1 has 18 neighborhoods where 6 of them intersect the central tile E 1,1,1 in a point. We also prove that the boundary can be generated by two subregions. More precisely, the boundary of E 1,1,1 is 18 i=1 X i where X i , i = 1, . . . , 6 are singletons, and for all i ∈ [7, 18], there exist affine functions f ij , j = 1, . . . , m i and g ij , j = 1, . . . , n i from R × C to itself such that

X i = mi j=1 f ij (X 7 ) ni j=1 g ij (X 8 ).
2. Notations, definitions and background

2.1. β-expansions. Let β > 1 be a real number. A β-representation of a non- negative real number x is an infinite sequence (x i ) i≤k , x i ∈ Z + = [0, +∞[, such that x = x k β k + x k-1 β k-1 + • • • + x 1 β + x 0 + x -1 β -1 + x -2 β -2 + • • • .
where k is an integer. It is denoted by

x = x k x k-1 . . . x 1 x 0 .x -1 x -2 . . . .
A particular β-representation, called the β-expansion, is computed by the "greedy algorithm" (see [P60]): denote by ⌊y⌋ and {y} respectively the integer part and the fractional part of a number y. There exists k ∈ Z such that β k ≤ x < β k+1 . Let x k = ⌊x/β k ⌋ and r k = {x/β k }. Then for i < k, put x i = ⌊βr i+1 ⌋ and r i = {βr i+1 }. We get

x = x k β k + x k-1 β k-1 + • • • If k < 0 (x < 1), we put x 0 = x -1 = • • • = x k+1 = 0.
If an expansion ends by infinitely many zeros, it is said to be finite, and the ending zeros are omitted.

The digits x i belong to the set

A = {0, • • • , β -1} if β is an integer, or to the set A = {0, • • • , ⌊β⌋} if β is not an integer.
The β-expansion of every positive real number x is the lexicographically greatest among all β-representations of x.

We denote by Fin(β) the set of numbers which have finite greedy β-expansion.

Let N ∈ Z, we denote by Fin N (β) the set of numbers x such that in their βexpansion (x i ) i≤k , x i = 0 for all i < N . We will sometimes denote a β-expansion

x n • • • x k , n ≥ k by (x i ) k≤i≤n .
We put

E β = {(x i ) i≥k ; k ∈ Z, ∀n ≥ k, (x i ) k≤i≤n is a finite β-expansion}.
In the case where β is the dominant root of the polynomial P a1,...a d , it is known (see [START_REF] Frougny | Finite β-expansions[END_REF]) that E β = D ∞ a1,...,a d . We will need the two following classical lemmas. Lemma 1 ([P60]). Let x n • • • x 0 and y m • • • y 0 be two β-expansions. Then, the following are equivalent

• n i=0 x i β i < m i=0 y i β i , • x n • • • x 0 < lex y m • • • y 0 , where < lex is the lexicographical order. Lemma 2 ([FS92]). If β = β 1 , then Z[β] ∩ [0, +∞[⊂ Fin(β).
2.2. Boundary of E a1,...,a d . The coordinates of α have modulus strictly less than 1. Moreover, 0 belongs to the interior of E a1,...,a d ( [A00], see also [R82] for E 1,1 ). Hence, for all z ∈ R r-1 × C s there exists k ∈ N such that α k z ∈ E a1,...,a d . Then, all z ∈ R r-1 × C s can be written as follows z = ∞ i=l ε i α i , where l ∈ Z and (ε i ) i≥l ∈ D ∞ a1,...,a d . The sequence (ε i ) i≥l is called α-expansion of z. We should remark that these α-expansions are not unique : some z can have many different α-expansions. In [M05] it is proven that the points belonging to the boundary of E a1,...,a d have at least two different α-expansions. These points are characterized by the following theorem which is a straightforward consequence of a result due to W. Thurston [T90] (see also [M05]).

Theorem 3. There exists a finite automaton B such that for all distinct elements of D ∞ a1,...,a d , (b i ) i≥l and (c i ) i≥l , the following are equivalent :

• ∞ i=l b i α i = ∞ i=l c i α i • ((b i , c i ))
i≥l is recognizable by B (i.e an infinite path in B beginning in the initial state).

The proof of this result does not give explicitly the states of the automaton. In [M98] is given an algorithm that gives these states for E 1,1 . In [M06], they were given for E a1,1 where a 1 ≥ 2.

Characterization of the boundary of E 1,1,1

In the sequel we suppose d = 3 and a 1 = a 2 = a 3 = 1, and

P (x) = P 1,1,1 (x) = x 4 -x 3 -x 2 -x -1 = (x -β 1 )(x -β 2 )(x -β 3 )(x -β 3 )
where β 1 , β 2 , β 3 are defined in Section 1. Approximations of these numbers are β = β 1 = 1.9275 . . . , β 2 = -0.7748 . . . and β 3 = -0.0763 • • • + i0.8147 . . . . We recall that we defined for all i ∈ Z, α i = (β i 2 , β i 3 ). In this situation

D = D 1,1,1 = {(ε i ) l≤i≤n ; l, n ∈ Z, ε i ∈ {0, 1}, ε i ε i-1 ε i-2 ε i-3 = 1111, l ≤ i ≤ n} , D ∞ = D ∞ 1,1,1 = {(ε i ) i≥l ; l ∈ Z, (ε i ) l≤i≤n ∈ D 1,1,1 , n ≥ l} and E = E 1,1,1 = +∞ i=4 ε i α i ; (ε i ) i≥4 ∈ D ∞ = +∞ i=4 ε i α i ; ε i ∈ {0, 1}, ε i ε i-1 ε i-2 ε i-3 = 1111, i ≥ 4 .
An important and known result is:

Proposition 4. The set E is compact, connected and generates a periodic tiling of R × C with group periods G = Zα 0 + Zα + Zα 2 : R × C = p∈G (E + p),
and the Lebesgue measure of (E + p) ∩ (E + q) is zero whenever p = q, p, q ∈ G.

Proof. The proof can easily be deduced from [R82] or [START_REF] Arnoux | Pisot substitutions and Rauzy fractals[END_REF].

3.1. Definition of the automaton recognizing the points with at least two expansions. In the sequel we proceed to the construction of the automaton A that characterize the boundary of E. This characterization will be proven in Section 3.2. The set of states of the automaton A is

S = ± 3 i=0 c i α i ; c 0 c 1 c 2 c 3 = 1111, c i ∈ {0, 1}, 0 ≤ i ≤ 3 ±(α -1 + 1 + α 2 ), ±(α -2 + α -1 + α), ±(α -3 + α -2 + 1 + α 3 ) .
Let s and t be two states. The set of edges is the set of (s, (a, b), t)

∈ S × {0, 1} 2 × S satisfying t = s α + (a -b)α 3 . The set of initial states is {0} and the set of states is S. A path (resp. infinite path) of A is a sequence (a n , b n ) k≤n≤l (resp. (a n , b n ) n≥k ) such that there exists a sequence (e n ) k≤n≤l+1 (resp. (e n ) n≥k ) of elements of S for which (e n , (a n , b n ), e n+1 ) belongs to S for all n ∈ {k, k + 1, . . . , l + 1} (resp. n ≥ k).
We say it starts in the initial state when e k = 0. The automaton is explicitly defined in the Annexe at the end of this paper. Let us explain the behavior of this automaton.

Let ε = (ε i ) i≥l and ε ′ = (ε ′ i ) i≥l belonging to D ∞ , x = ∞ i=l ε i α i and y = ∞ i=l ε ′ i α i . For all k ≥ l we set A k (ε, ε ′ ) = α -k+3 k i=l (ε i -ε ′ i )α i (1)
In Subsection 3.2 we will prove that x = y if and only if all the A k , k ≥ l, belong to S. But as, for all k ≥ l, we have

A k+1 (ε, ε ′ ) = A k (ε, ε ′ ) α + (ε k+1 -ε ′ k+1 )α 3 , (2) this means that x = y if and only if (0, (ε l , ε ′ l ) , A l (ε, ε ′ )) (A k (ε, ε ′ ), (ε k+1 , ε ′ k+1 ), A k+1 (ε, ε ′ ))
k≥l is an infinite sequence of edges of S starting in the initial state. And, this is equivalent to say that (ε i , ε ′ i ) i≥l is an infinite path of A starting in the initial state. Let us give an example on how we can use this automaton to obtain information about the digits of x and y. Let s be the smallest integer such that

ε s = ε ′ s . Hence A i (ε, ε ′ ) = 0 for i ∈ {l, • • • , s -1}. Suppose ε s > ε ′ s , that is ε s = 1 and ε ′ s = 0. Then, A s = α 3 . From (2) we deduce A s+1 (ε, ε ′ ) = α 2 + (ε s+1 -ε ′ s+1 )α 3 which should belong to S. Hence A s+1 (ε, ε ′ ) = α 2 ∈ S if ε s+1 = ε ′ s+1 , and, A s+1 (ε, ε ′ ) = α 2 + α 3 ∈ S if (ε s+1 , ε ′ s+1 ) = (1, 0)
. Hence, (α 3 , (1, 0), α 2 + α 3 ), (α 3 , (0, 0), α 2 ) and (α 3 , (1, 1), α 2 ) are edges coming from the state α 3 . Let us explain why (α 3 , (0, 1), α 2 -α 3 ) is not an edge, and hence why we cannot have (ε s+1 , ε ′ s+1 ) = (0, 1). We should have that α 2 -α 3 = -α -1 -1 -α belongs to S. Then β should satisfies the same equality. Hence

β -1 + 1 + β should belong to 3 i=0 c i β i ; c 0 c 1 c 2 c 3 = 1111, c i ∈ {0, 1}, 0 ≤ i ≤ 3 (β -1 + 1 + β 2 ), (β -2 + β -1 + β), (β -3 + β -2 + 1 + β 3 ) ,
which is not possible by Lemma 1.

3.2. Characterization of the points with at least two expansions.

Lemma 5. Let (ε i ) i≥0 , (ε ′ i ) i≥0 ∈ D ∞ . Then, +∞ i=0 (ε i -ε ′ i )β i 2 ≤ 1 1 + β 2 , +∞ i=0 (ε i -ε ′ i )β i 3 ≤ C 1 -|β 3 | 6 . where C = max 5 i=0 (c i -d i )β i 3 ; (c i ) 0≤i≤5 ∈ D, (d i ) 0≤i≤5 ∈ D .
Proof. The second inequality is easy to establish. For the first inequality, as -1 < β 2 < 0, all sequences (c i ) i≥0 which terms are 0 or 1 satisfy the following inequality :

β 2 1 -β 2 2 = +∞ i=0 β 2i+1 2 ≤ +∞ i=0 c i β i 2 ≤ +∞ i=0 β 2i 2 = 1 1 -β 2 2 .
This achieves the proof.

For all ε = (ε i ) i≥l and ε ′ = (ε ′ i ) i≥l belonging to D ∞ , we set S(ε, ε ′ ) = {A k (ε, ε ′ ); k ≥ l} = α -k+3 k i=l (ε i -ε ′ i )α i ; k ≥ l . Proposition 6. Let x = ∞ i=l ε i α i , y = ∞ i=l ε ′ i α i , where ε = (ε i ) i≥l and ε ′ = (ε ′ i ) i≥l belong to D ∞ . Then, x = y if and only if the set S(ε, ε ′ ) is finite. Moreover S(ε, ε ′ ) ⊂ S = ± 3 i=0 c i α i ; (c i ) 0≤i≤3 ∈ D ±(α -1 + 1 + α 2 ), ±(α -2 + α -1 + α), ±(α -3 + α -2 + 1 + α 3 ) and S = (ε,ε ′ )∈∆ S(ε, ε ′ ), where ∆ = ((ε i ) i≥l , (ε ′ i ) i≥l ) ∈ D ∞ × D ∞ ; ∞ i=l ε i α i = ∞ i=l ε ′ i α i . Proof. It is easy to establish that if S(ε, ε ′ ) is finite then x = y. Let us prove the reciprocal. Let x = ∞ i=l ε i α i = ∞ i=l ε ′ i α i = y with ε = (ε i ) i≥l and ε ′ = (ε ′ i ) i≥l belonging to D ∞ . Let us prove that A k = A k (ε, ε ′ ) belongs to S for all k ≥ l. As x = y, for all k ≥ l, we have A k = ∞ i=k+1 (ε ′ i -ε i )α i-k+3 = ∞ i=4 (ε ′ i+k-3 -ε i+k-3 )α i . (3)
Let us fix k ≥ l and assume A k = 0. From (1), we deduce there exist n, p, q, r ∈ Z such that

A k = nα 3 + pα 2 + qα + r. (4) But nβ 3 + pβ 2 + qβ + r or -(nβ 3 + pβ 2 + qβ + r) belongs to Z[β] ∩ R + ,
which is contained in Fin(β) (see Lemma 2). We deduce there exists (c i ) s≤i≤m ∈ D such that c m = 1 and

nβ 3 + pβ 2 + qβ + r = ± m i=s c i β i . (5)
We suppose it is equal to m i=s c i β i . The other case can be treated in the same way. As β, β 2 and β 3 are algebraically conjugate, from (1), ( 4) and ( 5) we have

β -k+3 k i=l ε i β i = β -k+3 k i=l ε ′ i β i + m i=s c i β i . (6) From Lemma 1, β -k+3 k i=l ε i β i < β 4 , consequently m ≤ 3. Setting c i = 0 for i > m, we have A k = 3 i=s c i α i . (7)
Remark that if s ≥ 0 then A k belongs to S. Hence we suppose s ≤ -1. Suppose s = -1 and c -1 = 1. Let us show that A k is equal to α -1 + 1 + α 2 and consequently belongs to S. In order to do so, we show that the other cases are not possible. Using Lemma 5 and (3), the first entry of (

A k ), (A k ) 1 , should satisfy |(A k ) 1 | ≤ β 4 2 (1 + β 2 ) -1
which is less than a = 1.6004. This excludes the following points : α -1 + α+ α 2 + α 3 , α -1 + α+ α 3 , α -1 + α and α -1 + α 3 because the absolute value of their first entries is greater than the value below it in the following array :

β -1 2 + β 2 + β 2 2 + β 3 2 β -1 2 + β 2 + β 3 2 β -1 2 + β 2 β -1 2 + β 3 2
1.9 2.5 2.0 1.7

In the same way we should have

|(A k ) 2 | ≤ C|β 3 | 4 (1 -|β 3 | 6
) -1 which is less than b = 1, 8120. This excludes the following points : α -1 + 1 + α 3 , α -1 + α 2 + α 3 and α -1 + 1 + α 2 + α 3 , because the absolute value of their second entries is greater than the value below it in the following array :

β -1 3 + 1 + β 3 3 β -1 3 + β 2 3 + β 3 3 β -1 3 + 1 + β 2 3 + β 3 3 2.0 1.9 1.9
In order to exclude the other cases, except 1 α + 1 + α 2 , we used (2) to compute A k+i , i ≥ 1. Let us explain the strategy. Suppose neither (A k ) 1 nor (A k ) 2 is greater than respectively a and b. Then, we compute A k+1 using (2). We have three possible values :

A k α , A k α + α 3 and A k α -α 3 .
To check that A k does not belong to S, it suffices to show that for all these values, either the first entry or the second is respectively greater than a or b. If it is not the case, for each value that does not satisfy this (both entries are less than, respectively, a and b) we apply again this strategy. Applying this just once we show that 1 α + 1 + α + α 3 does not belong to S. The values of the relevant entries are in the following array and should be read in the following way : The value (1.9 for example) below a relevant entry of A k+1 (resp. 1

β 2 2 + 1 β2 + 1 + β 2 2
) is greater than the absolute value of the relevant entry :

| 1 β 2 2 + 1 β2 + 1 + β 2 2 | > 1.9. A k 1 α + 1 + α + α 3 A k+1 1 β 2 2 + 1 β2 + 1 + β 2 2 1 β 2 3 + 1 β3 + 1 + β 2 3 + β 3 3 1 β 2 2 + 1 β2 + 1 + β 2 2 -β 3 2
1.9 1.9 2.4

For the following case, 1 α + 1, we need to apply the strategy twice because for

A k+1 = 1 β 2 3 + 1
β3 -β 3 3 both entries are respectively less than a and b.

A

k 1 α + 1 A k+1 1 β 2 3 + 1 β3 1 β 2 3 + 1 β3 + β 3 3 1.83 2.0 A k+2 1 β 3 3 + 1 β 2 3 -β 2 3 1 β 3 3 + 1 β 2 3 -β 2 3 + β 3 3 1 β 3 3 + 1 β 2 3 -β 2 3 -β 3 3 2.1 1.63 2.7
For the case A k = 1 α + 1 + α we need two steps because at the first one both

1 β 2 2 + 1 β2 + 1 and 1 β 2 2 + 1 β2 + 1 + β 3
3 have entries less than, respectively, a and b.

A k

1 α + 1 + α A k+1 1 β 2 2 + 1 β2 + 1 -β 3 2 1.84 A k+2 1 β 3 2 + 1 β 2 2 + 1 β2 1 β 3 2 + 1 β 2 2 + 1 β2 + β 3 2 1 β 3 3 + 1 β 2 3 + 1 β3 -β 3 3
1.77 2.23 1.818

1 β 3 3 + 1 β 2 3 + 1 β3 + β 2 3 1 β 3 2 + 1 β 2 2 + 1 β2 + β 2 2 + β 3 2 1 β 3 3 + 1 β 2 3 + 1 β3 + β 2 3 -β 3 3 1.86 1.63 2.24
For the three following cases, 1 α + α 2 , 1 α and 1 α + α + α 2 , we need three steps.

A k 1 α + α 2 A k+1 1 β 2 3 + β 3 1 β 2 3 + β 3 -β 3 3 1.89 2.34 A k+2 1 β 3 3 + 1 + β 2 3 1 β 3 3 + 1 + β 2 3 -β 3 3 1.83 2.26 A k+3 1 β 4 3 + 1 β3 + β 3 + β 2 3 1 β 4 3 + 1 β3 + β 3 + β 2 3 + β 3 3 1 β 4 2 + 1 β2 + β 2 + β 2 2 -β 3 2 1.818 2.32 1.77 A k 1 α A k+1 1 β 2 2 1 β 2 2 -β 3 2 1.66 2.13 A k+2 1 β 3 2 + β 2 2 + β 3 2 1 β 3 3 + β 2 3 -β 3 3 2.01 2.17 A k+3 1 β 4 3 + β 3 1 β 4 3 + β 3 + β 3 3 1 β 4 3 + β 3 -β 3 3 2.00 2.21 1.92 A k 1 α + α + α 2 A k+1 1 β 2 2 + 1 + β 2 1 β 2 2 + 1 + β 2 -β 3 2 1.89 2.35 A k+2 1 β 3 2 + 1 β2 + 1 + β 2 2 1 β 3 2 + 1 β2 + 1 + β 2 2 + β 3 2 1.84 2.30 A k+3 1 β 4 2 + 1 β 2 2 + 1 β2 + β 2 1 β 4 3 + 1 β 2 3 + 1 β3 + β 3 1 β 4 2 + 1 β 2 2 + 1 β2 + β 2 -β 2 2 -β 2 3 + β 3 3 -β 2 3 -β 3 3 1.77 1.818 2.23
Hence the only possible A k (with c -1 = 1) is 1 α + 1 + α 2 . Suppose now s ≤ -2 and c s = 1. It is useful for the sequel to remark that U = (u i ) i≥s = (c s , c s+1 , . . . , c 2 , c 3 , ε k+1 , ε k+2 , ε k+3 , . . . ) belongs to D ∞ . Indeed, if c 3 = 0, it is clear. If c 3 = 1 and c 2 = 0 then by ( 6), ε k = 1. Hence ε k+1 ε k+2 ε k+3 = 111 and U belongs to D ∞ . The other cases can be treated in the same way. Using ( 3) and ( 7) we obtain

u = 3 i=s c i α i + ∞ i=4 ε i+k-3 α i = ∞ i=4 ε ′ i+k-3 α i = v. We set V = (ε ′ i+k-3 ) i≥s where ε ′ i+k-3 = 0 when s ≤ i ≤ 3. Then (U, V ) belongs to ∆, A s+4 (U, V ) = c s α -1 +c s+1 +c s+2 α+c s+3 α 2 +c s+4 α 3 and A 3 (U, V ) = 3 i=s c i α i
. Doing what we did for x and y to u and v we obtain that A s+4 (U, V ) = α -1 +1+α 2 . Let us show that for all n ≥ s + 5, A n (U, V ) belongs to

C = ±(α -2 + α -1 + α), ±(α -3 + α -2 + 1 + α 3 ) .
This will imply that A k belongs to S for all k ≥ l. We have that A s+5 (U, V ) belongs to

1 α 2 + 1 α + α, 1 α 2 + 1 α + α + α 3 , 1 α 2 + 1 α + α -α 3 .
The third one can be excluded because 1

β 2 3 + 1 β3 + β 3 -β 3 3 ≥ 1.85.
We proceed as before to exclude the second element :

A k 1 α 2 + 1 α + α + α 3 A k+1 1 β 3 3 + 1 β 2 3 + 1 + β 2 3 1 β 3 3 + 1 β 2 3 + 1 + β 2 3 -β 3 3 2.00 2.55 A k+2 1 β 4 3 + 1 β 3 3 + 1 β3 + β 3 1 β 4 3 + 1 β 3 3 + 1 β3 + β 3 + β 3 3 1 β 4 3 + 1 β 3 3 + 1 β3 + β 3 -β 3 3 2.45 2.54 2.47 Consequently, A s+5 (U, V ) = 1 α 2 + 1 α + α. We deduce A s+6 (U, V ) = 1 α 3 + 1 α 2 + 1 + α 3 because 1 β 3 3 + 1 β 2 3 + 1 > 2.03 and 1 β 3 3 + 1 β 2 3 + 1 -β 3 3 > 2.56. Once again, A s+7 (U, V ) = 1 α 4 + 1 α 3 + 1 α + α 2 -α 3 because 1 β 4 3 + 1 β 3 3 + 1 β3 + β 2 3 > 1.
85 and

1 β 4 3 + 1 β 3 3 + 1 β3 + β 2 3 + β 3 3 > 2.16. But an easy computation leads to 1 α 4 + 1 α 3 + 1 α + α 2 -α 3 = -( 1 α 2 + 1 α + α) = -A s+5 (U, V ).
Then continuing in the same way we can check

A n (U, V ) = -A n+2 (U, V ) and A n ∈ C for n ≥ s + 5. As 3 ≥ s + 5, we obtain that A k (ε, ε ′ ) = A 3 (U, V ) belongs to C. Thus S(ε, ε ′ ) is included in S.
To complete the proof we should show that each element of S belongs to Γ = ∪ (ε,ε ′ )∈∆ S(ε, ε ′ ). Remark that if A k belongs to Γ then -A k also belongs to Γ. Consequently it is sufficient to consider the cases where

A k = 3 i=0 c i α i with (c i ) 0≤i≤3 ∈ D or A k = α -1 + 1 + α 2 , α -2 + α -1 + α or α -3 + α -2 + 1 + α 3 . Notice that we have -α 3 = +∞ i=1 (α 4i + α 4i+1 + α 4i+2 ) = 1 + α + α 2 + +∞ i=1 (α 4i+1 + α 4i+2 + α 4i+3 ) = α + α 2 + α 4 + +∞ i=1 (α 4i+2 + α 4i+3 + α 4i+4 ) = α 2 + α 4 + α 5 + +∞ i=1 (α 4i+3 + α 4i+4 + α 4i+5 ).
Hence, 1+α+α 2 , α+α 2 and α 2 belong to Γ. Multiplying by α we deduce α+α 2 +α 3 , α 2 + α 3 and α 3 belong to Γ. Now subtracting -α 2 we obtain 1 + α and α belong to Γ. We have that 1 belongs to Γ because

+∞ i=1 α 4i = 1 + +∞ i=1 α 4i+1 . Now, 1 + α 2 belongs to Γ because ∞ i=2 α 2i = 1 + α 2 + ∞ i=2 α 2i+1 .
Multiplying by α we deduce α + α 3 belongs to Γ. Because

α -3 + α -2 + 1 + α 3 + ∞ i=1 (α 4i+2 + α 4i+3 ) = ∞ i=1 (α 4i + α 4i+1 ), ( 8 
)
we obtain that α -3 + α -2 + 1 + α 3 belongs to Γ. Multiplying (8) by, respectively, α and α 2 we obtain, respectively, that α -2 + α -1 + α and α -1 + 1 + α 2 belong to Γ. From

α 4 + ∞ i=1 α 4i+3 = 1 + α 3 + ∞ i=1 α 4i+1 = 1 + α + α 3 + ∞ i=1 α 4i+2
it is clear 1 + α 3 and 1 + α + α 3 belong to Γ. The equality

α 4 + ∞ i=1 α 4i+2 = 1 + α 2 + α 3 + ∞ i=1 α 4i+1
implies that 1 + α 2 + α 3 belongs to Γ and achieves the proof.

Corollary 7. Let A be the automaton defined in Subsection 3.1. Then, for all (ε i ) i≥l and (ε ′ i ) i≥l belonging to D ∞ the following assertions are equivalent :

• i≥l ε i α i = i≥l ε ′ i α i ; • (ε i , ε ′ i ) i≥l is an infinite path in A beginning in the initial state. i=12 h i (X), where h 0 (z) = α 4 + α 4 z, h 1 (z) = α 4 + α 6 + α 4 z h 2 (z) = α 4 + α 5 + α 4 z, h 3 (z) = α 4 + α 5 + α 6 + α 4 z, h 4 (z) = 1 + α + α 2 + α 7 + α 5 z, h 5 (z) = h 2 (z) h 6 (z) = α 4 + α 7 + α 4 z, h 7 (z) = α 4 + α 8 + α 9 + α 7 z, h 8 (z) = h 0 (z), h 9 (z) = α 4 + α 5 + α 7 + α 4 z, h 10 (z) = α 4 + α 5 + α 8 + α 9 + α 7 z, h 11 (z) = 1 + α + α 6 + α 7 + α 5 z h 12 (z) = α 4 + α 8 + α 7 z, h 13 (z) = h 7 (z), h 14 (z) = α 4 + α 5 + α 8 + α 7 z, h 15 (z) = h 10 (z) h 16 (z) = 1 + α + α 6 + α 5 z, h 17 (z) = h 11 (z),
Proof. a) The set 1 + αX is clearly included in 1 + αE. Moreover it is easy to check that 1 + αX is a subset of α 4 + αE which is included in E. Hence 1 + αX ⊂ E(1).

On the other hand, let z ∈ E(1). Then, there exist

(ε i ) i≥4 and (ε ′ i ) i≥4 in D ∞ such that z = 1+ i≥4 ε i α i = i≥4 ε ′ i α i . From Corollary 7, (1, 0)(0, 0)(0, 0)(0, 0)(ε 4 , ε ′ 4 ) (ε 5 , ε ′ 5
) is a finite path in the automaton A starting at the initial state. Following this path in the automaton we deduce (ε 4 , ε ′ 4 ) = (0, 1) and (ε 5 , ε

′ 5 ) = (1, 0). It gives z = 1 + α 5 + α 2 w = α 4 + α 2 w ′ where w, w ′ ∈ E. Consequently E(1) ⊂ (1 + αE) ∩ (α 4 + αE) = 1 + α(E ∩ (1 + α + α 2 + E)) = 1 + αX. b) We have 1+α+α 2 +αE(α 2 ) = (α 4 +αE)∩(1+α+α 2 +αE) ⊂ E ∩(1+α+α 2 +E) = X. Hence E(α 2 ) ⊂ -1 α -1 -α + X α .
To prove the other inclusion, let z ∈ X. Then by the automaton we deduce that z

= 1 + α + α 2 + αw = α 4 + αw ′ , w, w ′ ∈ E. Hence -1 α -1 -α + z α = w = α 2 + w ′ and -1 α -1 -α + X α ⊂ E(α 2 ). c) Let z ∈ E(1 + α 2 ) : z = i≥4 ε i α i = 1 + α 2 + i≥4 ε ′ i α i , (ε i ) i≥4 , (ε ′ i ) i≥4 ∈ D ∞ .
Corollary 7 and the automaton show that (0, 1)(0, 0)(0, 1)(0, 0)(ε 4 , ε ′ 4 ) . . . is a infinite path starting in the initial state and (ε i , ε ′ i ) i≥4 is equal to uuu . . . where u = (1, 0)(0, 1). Then,

z = α 4 + α 6 + α 8 + • • • = 1 + α 2 + α 5 + α 7 + α 9 + . . . and E(1 + α 2 ) = α 4 (1 -α 2 ) -1 . d) Let z ∈ E(α -2 + α -1 + α).
From Corollary 7 and using the automaton we deduce that z

= α -2 + α -1 + α + α 4 + ∞ i=2 (α 4i-1 + α 4i ) = ∞ i=1 (α 4i+1 + α 4i+2 ). Hence E(α -2 + α -1 + α) = (α 5 + α 6 )(1 -α 4 ) -1 .
e) Corollary 7 and the automaton give the result. f) Let z ∈ E(α). Then, there exist (ε i ) i≥4 and (ε

′ i ) i≥4 in D ∞ such that z = i≥4 ε i α i = α + i≥4 ε ′ i α i . From Corollary 7, (0, 0)(0, 1)(0, 0)(0, 0)(ε 4 , ε ′ 4 ) . . . is a path in the automaton starting in the initial state. Hence, (ε 4 , ε ′ 4 )(ε 5 , ε ′ 5 )(ε 6 , ε ′ 6 ) belongs to {(0, 0), (1, 1), (0, 1)}(1, 0)(0, 1). Consequently, z belongs to the union of (α 5 +α 2 E)∩(α+α 2 E), (α 4 +α 5 +α 2 E)∩(α+α 4 +α 2 E) and (α 5 +α 2 E)∩(α+α 4 +α 2 E) which is equal to f 0 (X) ∪ f 1 (X) ∪ f 1 (Y ). Hence E(α) = f 0 (X) ∪ f 1 (X) ∪ f 1 (Y ). g) Let z ∈ E(α + α 2 ). Then, there exist (ε i ) i≥4 and (ε ′ i ) i≥4 in D ∞ such that z = i≥4 ε i α i = α + α 2 + i≥4 ε ′ i α i .
From Corollary 7, (0, 0)(0, 1)(0, 1)(0, 0)(ε 4 , ε ′ 4 ) . . . is a path in the automaton starting in the initial state. Hence, we either have (1) ((ε i , ε ′ i )) 4≤i≤7 ∈ (0, 1)(1, 0){(0, 0), (1, 1), (1, 0)}(0, 1), (2) (ε 4 , ε ′ 4 ) ∈ {(0, 0), (1, 1)}, or (3) ((ε i , ε ′ i )) i≥4 ∈ (0, 1){(0, 0)(0, 0), (0, 0)(1, 1), (1, 1)(0, 0)}ww . . . , where w = (0, 1)(1, 0)(1, 0)(0, 1). This means that z belongs to

(α 5 + α 4 E) ∩ (α + α 2 + α 4 + α 7 + α 4 E) ∪ (α 5 + α 6 + α 4 E) ∩ (α + α 2 + α 4 + α 6 + α 7 + α 4 E) ∪ (α 5 + α 6 + α 4 E) ∩ (α + α 2 + α 4 + α 7 + α 4 E) ∪ (αE ∩ (α + α 2 + αE) ∪ (α 4 + αE) ∩ (α + α 2 + α 4 + αE) ∪ {z 1 , z 2 , z 3 } = g 0 (X) ∪ g 1 (X) ∪ g 1 (Y ) ∪ g 2 (Y ) ∪ g 3 (Y ) ∪ {z 1 , z 2 , z 3 } where z 1 = +∞ i=2 (α 4i + α 4i+1 ) = α + α 2 + α 4 + α 7 + +∞ i=2 (α 4i+2 + α 4i+3
), z 2 = α 6 +z 1 and z 3 = α 5 +z 1 . We can also check that (1, 0)(1, 0)(0, 0)(0, 0)uuu . . . , where u = (0, 1)(1, 1)(1, 0)(1, 0), is an infinite path of the automaton starting in the initial state. Consequently, z 1 = α 4 + α 5 + +∞ i=2 (α 4i+1 + α 4i+2 ) and

z 1 ∈ (α 4 + αE) ∩ (α + α 2 + α 4 + αE) = g 3 (Y ).
Moreover, it shows that z 2 belongs to g 3 (Y ). In the same way,

z 1 = α 5 + α 6 + α 8 + +∞ i=2 (α 4i+3 + α 4i+4 ). Thus, z 3 = 2α 5 + α 6 + α 8 + +∞ i=2 (α 4i+3 + α 4i+4 ) = α 5 + +∞ i=2 (α 4i + α 4i+1 ). But 2α 5 + α 6 = α + α 2 + α 7 , consequently z 3 belongs to αE) ∩ (α + α 2 + αE) = g 2 (Y ). h) Let z ∈ X = E(1 + α + α 2 ). Then, there exist (ε i ) i≥4 and (ε ′ i ) i≥4 in D ∞ such that z = i≥4 ε i α i = 1 + α + α 2 + i≥4 ε ′ i α i .
From Corollary 7, we necessarily have (ε 4 , ε ′ 4 ) = (1, 0) and one of the following situations :

(1) ((ε i , ε ′ i )) i≥5 ∈ (1, 0){(0, 0), (1, 1)}ww . . . where w = (0, 1)(1, 0); (2) ((ε i , ε ′ i )) i≥5 ∈ (0, 1){(0, 0), (1, 1)}ww . . . where w = (0, 1)(1, 0)(1, 0)(0, 1); (3) (ε i , ε ′ i ) 5≤i≤8 ∈ {(0, 0), (1, 1)} 2 (0, 1)(1, 0); (4) (ε i , ε ′ i ) 5≤i≤9 = (1, 0)(1, 0)(0, 1)(1, 0)(0, 1); (5) (ε i , ε ′ i ) 5≤i≤8 ∈ {(0, 0), (1, 1)}(1, 0)(0, 1)(1, 0). This means z belongs to 4 i=0 h i (X) ∪ h 1 (Y ) ∪ h 3 (Y ) ∪ {x 1 , x 2 , x 3 , x 4 } where x 1 =α 4 + α 5 + +∞ i=4 α 2i = 1 + α + α 2 + +∞ i=3 α 2i+1 , x 2 =x 1 + α 6 , x 3 =α 4 + +∞ i=2 (α 4i + α 4i+1 ) = 1 + α + α 2 + α 5 + α 7 + +∞ i=2 (α 4i+2 + α 4i+3 ), x 4 =x 3 + α 6 , h 0 (X) =(α 4 + α 4 E) ∩ (1 + α + α 2 + α 7 + α 4 E), h 1 (X) =(α 4 + α 6 + α 4 E) ∩ (1 + α + α 2 + α 6 + α 7 + α 4 E), h 2 (X) =(α 4 + α 5 + α 4 E) ∩ (1 + α + α 2 + α 5 + α 7 + α 4 E), h 3 (X) =(α 4 + α 5 + α 6 + α 4 E) ∩ (1 + α + α 2 + α 5 + α 6 + α 7 + α 4 E), h 4 (X) =(α 4 + α 5 + α 6 + α 8 + α 5 E) ∩ (1 + α + α 2 + α 7 + α 5 E), h 1 (Y ) =(α 4 + α 6 + α 4 E) ∩ (1 + α + α 2 + α 7 + α 4 E) and h 3 (Y ) =(α 4 + α 5 + α 6 + α 4 E) ∩ (1 + α + α 2 + α 5 + α 7 + α 4 E).
We easily can check (using Corollary 7 and the automaton) that

x 1 = x 3 = α 4 + +∞ i=2 (α 4i + α 4i+1 ),
and thus x 1 ∈ h 0 (X), x 2 ∈ h 1 (X), and x 2 = x 4 , which concludes the proof of h). i) Let z ∈ X = E(1 + α). Then, there exist (ε i ) i≥4 and (ε

′ i ) i≥4 in D ∞ such that z = i≥4 ε i α i = 1 + α + i≥4 ε ′ i α i .
From Corollary 7, we necessarily have (ε 4 , ε ′ 4 ) = (1, 0) and one of the following situations :

(1) ((ε i , ε ′ i )) i≥5 ∈ {(0, 0), (1, 1)}(0, 1) 2 {(0, 0), (1, 1)} 2 ww . . . ; (2) ((ε i , ε ′ i )) i≥5 ∈ (1, 0){(0, 0), (1, 1)} 2 (1, 0)(0, 1)ww . . . ; (3) ((ε i , ε ′ i )) 5≤i≤7 ∈ {(0, 0), (1, 1)}(0, 1){(0, 0), (1, 1)}; (4) ((ε i , ε ′ i )) 5≤i≤8 ∈ {(0, 0), (1, 1)}(0, 1) 2 (1, 0){(0, 0), (1, 1), (1, 0)}(0, 1)(1, 0); (5) ((ε i , ε ′ i )) 5≤i≥8 ∈
(1, 0)(0, 1){(0, 0), (1, 1), (0, 1)}(1, 0)(0, 1). where w = (0, 1)(1, 0)(1, 0)(0, 1). Hence z belongs to

11 i=5 h i (Y ) ∪ 17 i=12 h i (X) ∪ {y i ; 1 ≤ i ≤ 8},
where

y 1 =α 4 + +∞ i=2 (α 4i+3 + α 4i+4 ) = 1 + α + α 6 + α 7 + α 10 + +∞ i=3 (α 4i+1 + α 4i+2 ), y 2 =y 1 + α 9 , y 3 = y 1 + α 8 , y 4 = y 1 + α 5 , y 5 = y 1 + α 5 + α 9 . y 6 =y 1 + α 5 + α 8 = 1 + α + +∞ i=2 (α 4i+1 + α 4i+2 ), y 7 = y 6 + α 7 , y 8 = y 6 + α 6 , h 5 (Y ) =(α 4 + α 5 + α 4 E) ∩ (1 + α + α 5 + α 6 + α 4 E), h 6 (Y ) =(α 4 + α 7 + α 4 E) ∩ (1 + α + α 6 + α 7 + α 4 E), h 7 (Y ) =(α 4 + α 8 + α 9 + α 7 E) ∩ (1 + α + α 6 + α 7 + α 10 + α 7 E), h 8 (Y ) =(α 4 + α 4 E) ∩ (1 + α + α 6 + α 4 E), h 9 (Y ) =(α 4 + α 5 + α 7 + α 4 E) ∩ (1 + α + α 5 + α 6 + α 7 + α 4 E), h 10 (Y ) =(α 4 + α 5 + α 8 + α 9 + α 7 E) ∩ (1 + α + α 5 + α 6 + α 7 + α 10 + α 7 E), h 11 (Y ) =(α 4 + α 5 + α 8 + α 5 E) ∩ (1 + α + α 6 + α 7 + α 5 E), h 12 (Y ) =(α 4 + α 8 + α 7 E) ∩ (1 + α + α 6 + α 7 + α 10 + α 7 E), h 13 (X) =(α 4 + α 8 + α 9 + α 7 E) ∩ (1 + α + α 6 + α 7 + α 9 + α 10 + α 7 E), h 14 (X) =(α 4 + α 5 + α 8 + α 7 E) ∩ (1 + α + α 5 + α 6 + α 7 + α 10 + α 7 E), h 15 (X) =(α 4 + α 5 + α 8 + α 9 + α 7 E) ∩ (1 + α + α 5 + α 6 + α 7 + α 9 + α 10 + α 7 E), h 16 (X) =(α 4 + α 5 + α 8 + α 5 E) ∩ (1 + α + α 6 + α 5 E), h 17 (X) =(α 4 + α 5 + α 7 + α 8 + α 5 E) ∩ (1 + α + α 6 + α 7 + α 5 E),
Let us prove that for each integer i ∈ {1, . . . , 8}, there exists j ∈ {5, . . . , 11} or k ∈ {12, . . . , 17} such that y i belongs to h j (X) or to h k (Y ). Indeed, since y 1 = α 4 + α 3 z 1 (see case g)), then y 1 ∈ (α 4 + α 7 + α 4 E) ∩ (2α 4 + α 5 + α 7 + α 4 E) = h 6 (Y ). We deduce that y 2 and y 3 belong also to h 6 (Y ), and, y 4 and y 5 belong to h 9 (Y ). Using the automaton we can verify that y 6 = 1+α+α 5 +α 6 + +∞ i=2 (α 4i+2 +α 4i+3 ). Hence, y 6 belongs to 1 + α + α 5 + α 6 + α 4 E. But it also belongs to α 4 + α 5 + α 4 E. Thus y 6 ∈ h 5 (Y ) and y 7 ∈ h 9 (Y ). We have y 8 = y 6 + α 6 ∈ (1 + α + α 6 + α 5 E). On the other hand we can check using the automaton that y 8 = α 4 + α 5 + α 8 + +∞ i=5 α 2i , hence y 8 ∈ (α 4 + α 5 + α 8 + α 5 E) and y 8 belongs to h 16 (X).

Remarks and comments. There are points which has at least 6 expansions in base α. For example:

α + +∞ i=2 α 2i = +∞ i=1 (α 4i + α 4i+1 ) = 1 + α + α 2 + ∞ i=2 α 2i+1 = 1 + α + ∞ i=1 (α 4i+1 + α 4i+2 )) = α + α 2 + α 4 + ∞ i=1 (α 4i+3 + α 4i+4 ) = α -3 + α -2 + 1 + α 3 + ∞ i=1 (α 4i+2 + α 4i+3 ).
We address the two following questions :

(1) Can you parameterize the boundary of E 1,1,1 ?

(2) Does this boundary be homeomorphic to the sphere ? The technics used in this work can be used to study E a1,a2,...,a d with the assumption that a 1 ≥ a 2 ≥ • • • ≥ a d ≥ 1.
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Annexe.

0 -α -α 2 -α 3 α + α 2 + α 3 -α 3 α 3 -1 -α 1 + α -α 2 -α 3 -α -α 2 α 2 + α 3 α + α 2 -1 -α 2 1 + α 2 1 + α + α 2 -α 2 -α -α 3 α + α 3 α 2 -1 -α -α 2 1 + α + α 3 -1 -α -α 3 -α α -1 1 1 α + 1 + α 2 -1 α -1 -α 2 1 α 2 + 1 α + α -1 α 2 -1 α -α -1 -α 2 -α 3 1 + α 2 + α 3 1 α 3 + 1 α 2 + 1 + α 3 -1 α 3 -1 α 2 -1 -α 3 -1 -α 3 1 + α 3
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(1, 1)

(1, 0)

(1, 0) (0, 0)
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Neighbors of E.

Here we prove that the set E has 18 neighbors where 6 of them have an intersection with E reduced to a singleton, and that the boundary can be generated by just 2 subregions.

Lemma 8. Let (ε i ) i≥4 and (ε ′ i ) i≥l be two elements of D ∞ such that

, where l < 4 and ε ′ l = 1, then ε ′ l α l + ε ′ l+1 α l+1 • • • + ε ′ 3 α 3 belongs to S. In particular l ≥ -3 and

In particular, for i = l, we obtain the result.

Lemma 9. Let u ∈ S. Then, there exists

Proof. This comes from Proposition 6 and the identity (3).

In our context, Lemma 2 in [M05] can be formulated in the following way.

Lemma 10. Let x ∈ R × C, then x belongs to the boundary of E if and only if there exists l ≤ 3 such that x = +∞ i=4 ǫ i α i = +∞ i=l ǫ ′ i α i , where (ǫ i ) i≥4 and (ǫ ′ i ) i≥l belong to D ∞ , and, ǫ ′ l = 0. Proposition 11. The boundary of E is the union of the 18 non empty regions E(u), u ∈ {a, -a; a ∈ A}, whose pairwise intersections have measure zero, where

Proof. Let u be an element of A, then u is a state of the automaton A. From Lemma 9, there exist

is not empty and with measure zero. It will be useful to check that

Consequently, Proposition 4 implies u∈A E(u)∪E(-u) is contained in the boundary of E. Now, let z be an element of the boundary of E, then by Lemma 10 there exist two elements of D ∞ , (ε i ) i≥4 and (ε

We can suppose ε l = 1. Let us consider the following four cases. Suppose l = -3. From Lemma 8, we deduce that z ∈ E(α -3 + α -2 + 1 + α 3 ). Suppose l = -2. From Lemma 8, we deduce that z ∈ E(α -2 + α -1 + α).

Corollary 7 implies that t = (0, 1)(0, 1)(0, 0)(0, 1)(0, 0)(ε 4 , ε ′ 4 ) . . . is an infinite path of the automaton A starting at the initial state. Using the automaton, we see that t = (0, 1)(0, 1), (0, 0)(0, 1)(0, 0)awww . . . , where a = (1, 1) or (0, 0) and w = (0, 1)(1, 0)(1, 0)(0, 1). Consequently,

. is an infinite path in the automaton beginning in the initial state. This implies that t = (0, 1)(0, 1)(0, 0)(0, 1)(1, 1)(0, 0)ww . . . where w = (0, 1)(1, 0)(1, 0)(0, 1). Hence z = 1+α+α

, there is no infinite path in the automaton starting in the initial state and beginning with (0, ε ′ 0 )(0, ε ′ 1 )(0, 0)(0, 1)(ε 4 , 1)(ε 5 , 1). • Hence it remains to consider the case : ε ′ 0 + ε ′ 1 = 2. But it is easy to check that this implies ε ′ 6 = 1 which is not possible. This ends the proof.

Using the automaton given in the Annexe, we deduce the following result.

g) E(α + α 2 ) = g 0 (X) ∪ g 1 (X) ∪ g 1 (Y ) ∪ g 2 (Y ) ∪ g 3 (Y ), where f 0 (z) = α + α 2 z, f 1 (z) = α + α 4 + α 2 z, g 0 (z) = α 5 + α 4 z, g 1 (z) = α 5 + α 6 + α 4 z, g 2 (z) = αz, g 3 (z) = α 4 + αz, h) X =