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Identifying and exploiting problem structures using explanationbased constraint programming

Identifying structures in a given combinatorial problem is often a key step for designing efficient search heuristics or for understanding the inherent complexity of the problem. Several Operations Research approaches apply decomposition or relaxation strategies upon such a structure identified within a given problem. The next step is to design algorithms that adaptively integrate that kind of information during search. We claim in this paper, inspired by previous work on impact-based search strategies for constraint programming, that using an explanation-based constraint solver may lead to collect invaluable information on the intimate dynamically revealed and static structures of a problem instance. Moreover, we discuss how dedicated OR solving strategies (such as Benders decomposition) could be adapted to constraint programming when specific relationships between variables are exhibited.

Introduction

Generic search strategies for solving combinatorial optimisation problems represent the Holy Grail for both Operations Research (OR) and Constraint Programming (CP) people. Several tracks are now explored: dynamically adapting the search strategy, identifying specific structures in a given instance in order to speed up search, etc. Whatever the technique, the key point is to be able to identify, understand and use the intimate structure of a given combinatorial problem instance [START_REF] Gomes | Heavy-tailed distributions in combinatorial search[END_REF]William et al, 2003a;William et al, 2003b). For example, [START_REF] Bessière | Neighborhood-based variable ordering heuristics for the constraint satisfaction problem[END_REF] proposed to take into account variable neighborhood; more recently, [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] defined impact-based solving strategies for constraint programming. These new techniques, taking into account propagation, dynamically use the structure of the solved problem.

In this paper, we attempt to identify, differentiate and exploit problem structure that is revealed during the course of the solution algorithm. We focus on structure that appears in the form of subsets of variables that play a specific role in the problem. To this end we define several fine-grained measures of the impact of fixing the values of the variables in these subsets. The goal is to:

-identify structure that is not initially visible; -pave the way for the use of impact analysis in such decompositionbased methods as Benders decomposition.

Our new impact measures are made possible by the use of an explanation-based constraint solver that provides inside information about the solver embedded knowledge gathered from the problem. This information represent some kind of trace of the inferences made during propagation and therefore implicitly outlines relationships between variables.

The paper is organized as follows: Section 2 introduces the basis and motivations of our work. Several impact measures and associated graphs are presented in Section 3 distinguishing their respective ability to reflect dynamically revealed and static structures on a concrete example. Finally, as we believe that the detection of hidden structures can be explicitly used into CP, we start to show the interest of those such structures as a guide for searching as well as the design of a dedicated resolution strategy inspired from a logic-based decomposition.

Search strategies for structured problems

Efficient constraint programming search strategies exploit specific aspects or characteristics of a given (instance of a) problem. In OR, relaxation or decomposition strategies exploit the fact that part of the problem can be considered as a classical problem (such as compatible or optimal flow problems, shortest path problems, knapsack problems, etc.). This aspect of the problem is often called structure.

A problem is more generally said to be structured if its components (variables1 and/or constraints) do not all play the same role, or do not have the same importance within the problem. In such a problem, the origin of the complexity relies on the different behavior (or impact) for specific components of the problem. One of the main difficulties in identifying structures in problems is that it is not always evident until one begins to solve the problem. The interplay between a given instance and the search algorithm itself may define or help to exhibit a hidden structure within the problem. We call it a dynamically revealed structure. It is related to initial choices that direct search to wrong directions as well as new relationships due to the addition of constraints during search.

Structures are characterized using various notions: for example, backbones [START_REF] Monasson | Determining computational complexity for characteristic 'phase transitions[END_REF] are variable assignments that appear in every solutions. Backdoors recently introduced in (William et al, 2003b) represent an interesting concept to characterize hidden structures within a problem. Informally, it can be defined as a subset of variables that encapsulate the whole combinatorics of the problem: once this subset instantiated, the remaining sub-problem can be solved very quickly. Several search strategies are based upon backdoors. The following two are central in this paper:

-Branching heuristics in CP attempt to early guide the search towards the backdoor variables as they try to perform choices that simplify the whole problem as much as possible. They are based on a simple idea: select a variable that leads to the possibly smallest search space and that raises contradictions as early as possible. This principle (often referred to as the first fail principle [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF]) is often implemented by taking the current domain and degree of constraindness of the variables into account (see [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF] or [START_REF] Bessière | Neighborhood-based variable ordering heuristics for the constraint satisfaction problem[END_REF] for variants).

More recently, [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] proposed to characterize the impact of a choice and a variable by looking at the average search space reduction caused by this choice (another way of identifying a backdoor );

-Benders decomposition [START_REF] Benders | Partitionning procedures for solving mixed-variables programming problems[END_REF] falls exactly within the range of backdoors techniques. It is a solving strategy based on a partition of the problem among its variables into two sets x, y.

A master problem provides an assignment x * , and a sub-problem tries to complete this assignment over the y variables. If this proves impossible, the sub-problem produces a cut2 (a constraint) added to the master problem in order to prune this part of the search space on the x side. The interesting cuts are those which are able to prune not only the current x * solution from the search space (this is mandatory) but also the largest possible class of assignments that share common characteristics with x * which make them suboptimal or inconsistent for the same reason. This technique is intended for problems with a special structure. The master problem is based on a relevant subset of variables that generally verifies the two following assumptions:

1. The resulting subproblem is easy. In practice, several small independent subproblems are used, making it easy to perform the required exhaustive search in order to produce the Benders cut; 2. The Benders cut is accurate enough to ensure a quick convergence of the overall technique.

In such a decomposition, the master problem can be considered as a backdoor because, thanks to condition (1), once the master problem completely instantiated the subproblem can be solved efficiently. Moreover, if the remaining subproblem can be actually solved polynomially (this is referred to as strong backdoors), a powerful cut based on the minimal conflict can often be computed.

For decomposition techniques, the structure needs to be identified before search starts. Classical structure identification is made through an analysis of the constraint network. For example, it is common for solving graph coloring problems to look for maximal cliques in order to compute bounds or to add global constraints such as all-different [START_REF] Régin | A filtering algorithm for constraints of difference in CSPs[END_REF] in order to tighten propagation on the problem. But, such an analysis only provides information on visible static structures. Nevertheless, hidden structures and dynamically revealed ones seem to be of very high interest for a lot of search strategies. Of course, their identification is at least as costly as solving the original problem. However, we believe that the propagation performed by the solver during search provides information that should lead to approximate those hidden structures. One way of exploiting that information is to use explanations (a limited, readable, and useable trace of the propagation process).

3. Identifying problem structure using explanations [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] introduced an impact measure with the aim of detecting choices with the strongest search space reduction. He proposes to characterize the impact of a decision by computing the Cartesian product of the domains (an evaluation of the size of the search space) before and after the considered decision. We want to go a step further by analyzing where this reduction occurs and how past choices are involved. We extend those measures into an impact graph of variables, taking into account both the effects of old decisions and their effective involvement in each inference made during resolution.

Our objective is to identify variables that maximally constrain the problem, or subsets of variables that have strong relationships and a strong impact upon the whole problem (just like a backdoor ). We have focused our study on the following points:

-the impact or influence of a variable on the direct search space reduction;

-the impact of a variable inside a chain of deductions made by the solver even a long time after the variable has been instantiated;

-the region of the problem under the influence of a variable and the precise links between variables.

Explanations for constraint programming seem a relevant tool for providing such an information.

Explanations and Constraint Programming

Constraint programming is a generic search paradigm which relies on a tree-based exploration of the search space along with inference mechanisms (filtering algorithms) aimed at pruning as much as possible the search space. Search can be considered as a dynamic constraint addition technique. Such dynamic constraints will be referred to in the following as decision constraints. In this paper, we will consider assignment-like decision constraints: x i = a (the decision here amounts to choose a value for a variable). Each decision is propagated to the whole constraint network until a fix-point is achieved, a solution is found or a contradiction is identified. In this latter case, the search algorithms backtracks to the last choice point and choose another alternative. Explanations have been initially introduced to improve backtrackingbased algorithms. They have been recently used for other purposes including dynamic constraint satisfaction problems and user interaction [START_REF] Jussien | The versatility of using explanations within constraint programming[END_REF]. DEFINITION 1. An explanation records some sufficient information to justify an inference made by the solver (domain reduction, contradiction, etc.). It is made of a set of constraints C (a subset of the set C of the original constraints of the problem) and a set of decisions dc 1 , ..., dc n taken during search. An explanation of the removal of value a from variable v will be written:

C ∧ dc 1 ∧ dc 2 ∧ . . . ∧ dc n ⇒ v = a
Explanations computed by the constraint solver represent the logical chain of inferences made by the solver during propagation. In a way, they provide some kind of a trace of the behavior of the solver as any operation needs to be explained. In the following, we will refer to E as the set of explanations computed so far and E val i the set of explanations computed for all3 removals of value val from the domain of variable i.

Explanations are computed on-the-fly by each constraint and stored at the variable level. They induce some additional time complexity (filtering algorithms need to integrate an explaining algorithm) and some additional space complexity (O(nd) where n is the number of variables and d the maximum size of the domaine as at most one explanation is stored for any value4 ). Let |e| be the size of an explanation e i.e. the number of constraints in e. Explanation e 1 will be considered as more precise than explanation e 2 if |e 1 | < |e 2 |. Indeed, the smaller an explanation, the more precise it is, as the number of necessary hypothesis to infer the associate value removal is reduced. Finally, the age a d e of a decision when computing explanation e is defined as the number of decisions taken since d when e is produced.

Characterizing impact

Refalo ( 2004) characterizes the impact of the decision x i = a as the search space reduction induced by this decision (following the first fail principle). Nevertheless, this reduction does not only occur when the decision is posted to the problem but also when other (future) deductions that are partially based on the hypothesis x i = a are made.

The use of explanations can provide more information on the real involvement of the decision in the reduction. A past decision x i = a has an effective impact (in the solver's point of view) over a value val of variable x j if it appears in the explanation justifying its removal.

Our first measure is expressed as the number of times a decision occurs in a removal explanation for value val from variable x j . The size of the explanation is also taken into account as it reflects directly the number of hypothesis required to deduce the removal. Limited hypothesis means higher possibility of occurrence for the associated removal. Hence, the relationship between associated variables should be stronger. I 0 is meant to measure this influence:

I 0 (x i = a, x j , val) = {e∈E val j ,x i =a∈e} 1/ |e| (1)
From this basic measure we define several different others: first, two measures (I 1 and I 2 ) based on the solver's activity and explanations are introduced; second, a third one (I 3 ) taking into account the search space reduction is proposed in order to identify static structures and to guide the search process.

As search and propagation are intricately related, it seems natural to normalize those measures wrt search.

-First, the impact is normalized wrt the number of times |x i = a| decision x i = a is taken. The idea is just not to overestimate frequently taken decisions:

I 1 (x i = a, x j , val) = I 0 (x i = a, x j , val) |x i = a|
-Another possible normalization is to consider the age a d e of a decision d when computing explanation e in order to decrease the impact of old decisions. We get:

I 2 (x i = a, x j , val) = {e∈E val j ,x i =a∈e} 1 |e| × a x i =a e
-As opposed to the approach used in [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]) (which computes an instantaneous impact) impact computation is scattered through the solving process each time an explanation is computed. I 3 therefore tries to identify recurrent search space reductions related to a given decision:

I 3 (x i = a, x j , val) = I 0 (x i = a, x j , val) |{x i = a active ∧ val ∈ Dom(x j )}| I 3 (x i = a, x j , val
) can be considered as the probability that the value val of x j will be pruned if the decision x i = a is taken. This measure is therefore updated each time a new removal occurs and as long as x i = a is active. It takes into account the frequency as well as the proportion of the involvement of a decision within explanations of removals. Finally, I 1 tends to favor old decisions as opposed to I 2 who favors recent decisions. Section 3.4 will show the interest of these parameters for a final user and its comprehension of the solver's behavior.

Those impact measures highly depend on the effective exploration of the search space and techniques similar to those used in [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] will be used to initialize them (propagation of each value in each variable's domain) and to sharpen them (using a restart protocol which restarts search in order to take into account from the root node, impacts computed in previous searches).

Variable relationships

We aim now at providing the final user a synthetic representation of the structure of the problem. This representation will be used to analyse and understand the problem and how the solver addressed it. Therefore, we would like to point out relations between variables. Thus, we need to aggregate the measures introduced above on all the values in the domain of a variable:

∀α ∈ [0, 1, 2], I α (x i = a, x j ) = val∈D(x j ) I α (x i = a, x j , val)
I 3 needs to be handled separately as we need to relate the search space reduction of one variable on another one. We therefore consider the initial size of the domain:

I 3 (x i = a, x j ) = |D(x j )| -val∈D(x j ) (1 -I 3 (x i = a, x j , val)) |D(x j )|
In this context, 1 -I 3 (x i = a, x j , val) corresponds to the probability of presence of the value val of the variable x j after taking x i = a. We can now define the influence of a variable on another one in the following way:

I α (x i , x j ) = v∈D(x i ) I α (x i = v, x j )
Relationships between variables can now be represented using an impact graph associated to each measure α. This graph is a valued oriented graph GI α (X, E, W ) where X is the set of variables in the problem and the weight for an arc (x i , x j ) ∈ E (E = X × X) is defined as I α (x i , x j ). Each variables is a node of this graph and the weight of arc (x i , x j ) represents the influence of x i on x j . The greater the weight, the greater the influence.

How to use impacts to analyze structures

We want now to show how the impact graph can be used to identify structures. We use here a concrete example and will show how information from the impact graph is analyzed to get information about the problem and its resolution.

A particular instance

We consider a random binary problem in which a structure is added by increasing the tightness of a subset of constraints in order to create several subsets of variables with strong relationships. Random instances are characterized by the tuple < N, D, p 1 , p 2 > (we use the classical B model (Achliptas et al, 1997)) where N is the number of variables, D the unique domain size, p 1 the density of the constraint network and p 2 the tightness (the proportion of forbidden tuples) of the constraints.

Here we consider N = 30, D = 10, p 1 = 50%. We design three subsets of 10 variables whose tightness is p 2 = 53% while it is set to 3% in the remainder of the network.

The specific instance we chose here to illustrate our different measures is interesting because it seems harder to solve than expected for the mindom [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF] classical variable selection heuristic (where the variable with the smallest current domain is chosen for instantiation). Using the different impact graphs introduced above, we would like to illustrate how several questions may be addressed when facing a problem instance:

-is it possible without any network analysis to identify the structure embedded within the instance ?

-why mindom is not performing as expected on this instance ? Is this due to the instance or to the heuristic itself ?

3.4.2. Visualizing the impact graph Figures 1 to 4 show the impact graph GI of the 30 variables involved in our instance. We use here a matrix-based representation [START_REF] Ghoniem | VISEXP: visualizing constraint solver dynamics using explanations[END_REF]: variables are represented both on the rows and columns of the matrix. The cell at the intersection of row i and column j corresponds to the impact of the variable v j on the variable v i . The stronger the impact, the heavier the edge, the darker the cell. The matrix is ordered according to the order of the hidden kernel of variables5 . Search is initiated with singleton consistency propagation (every value of every variable is propagated [START_REF] Prosser | Singleton consistencies[END_REF]) to ensure that the impacts of variables are homogenously initialized. Although the graph is almost entirely connected, the matrix-based visualization depicted in Figure 1 makes it possible to see very clearly the structure of the problem, i.e. the three sets of variables having strong internal links, right after this first propagation step (we use here the generic impact measure I 0 ).

Figure 2 depicts the impact graph after two minutes of search using mindom as variable selection heuristic. Impacts are not used here for search but are only maintained during search in order to generate the associated graphs. One can notice how I 0 highly concentrates on dynamically revealed structure (initial clusters are no longer visible compared to Figure 1) whereas I 3 is focused on the original static structure and interestingly forgets the weak links even after two minutes of computation (see Figure 2). The darker area for I 0 at the bottom left corner shows that the variables in the first two sets have an apparently strong influence on the variables belonging to the third set. This can be accounted for by the fact that bad decisions taken early on the variables of the first sets lead the solver into numerous try-and-fail steps on the variables of the third set hiding the existing structure in the problem. Notice that this zone would get darker if search would not have been interrupted for analysis. Figure 3 represents GI 1 the impact graph related to I 1 . It is a normalized graph where the impact of a decision taken by the solver is divided by the number of times this decision has been taken during search so far. By doing so, we aim at refining the previous analysis by distinguishing two types of decisions: those having a great influence because they are repeated frequently, and those having a great influence because they guide the solver in some inconsistent branch of the search tree and appear in all inconsistency explanations. We can thus isolate early bad decisions that seem to involve the second set of variables. Finally, Figure 4 represents the activity within the impact graph where the effect of old decisions is gradually discarded (I 2 ). As expected, it appears that the solver keeps going back and forth between the first and third sets of variables, with very negligible involvement of the second set. This must be related to poor decisions taken on the variables of the second set. We therefore modified our search heuristic so that decisions whose apparent influence increases too much (because they appear in many explanations but do not provide any valuable pruning) are discarded as soon as possible. The problem was then solved almost instantaneously.

Using impacts to improve search

In this section, we illustrate how the impact measure introduced above can be used in order to improve search techniques.

Branching strategies

Classical branching strategies take into account the current domains (mindom) and/or the degree of the variables in the constraint network (dom + deg or dom/deg) in order to identify most constrained variables whose instantiation will simplify the problem. Impacts as presented above naturally generalize this idea.

Variable-oriented impacts

Impacts have been aggregated to express relationships between variables. In order to be used for branching, we need a problem-wide aggregation. For measures I 0 to I 2 , the global impact of a decision is computed by aggregation on the whole set of variables in the problem6 :

∀α ∈ [0, 1, 2], I α (x i = a) = x j ∈X I α (x i = a, x j )
Upon branching, first, we choose the variable x that maximizes a∈D(x) I(x = a) and second, for that variable, we choose the value v that minimizes I(x = a) in order to allow a maximum possible future assignments (D(x) is here the current domain of x).

Constraint-oriented impacts

Impacts have been defined based on decision constraints ins order to reveal relationships between variables through search. But, they can be defined in a similar way for any constraint ct following I 0 :

I(ct) = {e∈E,ct∈e} 1/ |e| (2)
One of the best branching strategies nowadays is dom/deg introduced in (Bessière and Régin, 1996). dom/deg selects the variable that minimizes the ratio between the size of its current domain and its degree in the constraint network. The idea is to favor smaller domains and most constrained variables. It has been improved recently for binary constraints by [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF] leading to the dom/Wdeg heuristic which increments the degree of a given constraint each time it raises a contradiction. We propose here to get a step further by replacing the degree with the impact measure of the constraints on the considered variable (this is the dom/Ict heuristic).

Experiments

For simplicity and clarity, we have chosen to present the results obtained for the two most significative variants: I 2 et dom/Ict. The framework of our experiments is the following:

-As explanations are nevertheless maintained to compute the impact measures, we can easily switch from standard chronological backtracking to back-jumping (we use mac-cbj [START_REF] Prosser | Singleton consistencies[END_REF]);

-We will compare our strategies to dom/deg, dom/Wdeg and I R the impact measure introduced in [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]. I R compares the remaining search space (taking the Cartesian product of the domains) after and before each decision in order to precisely quantify the search space reduction. In order to test the influence of the back-jumping mechanism, I R and dom/deg are both tested using mac and mac-cbj. The best combination is reported;

-All ties are randomly broken;

-Finally, experiments were conducted on a Pentium 4, 3 GHz running Windows XP. We use choco, an open-source constraint library in Java (choco-solver.net). [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] mentions that initializing impact is critical and using restart can pay off when initialization is not able to efficiently approximate impacts. Note that impacts become more pertinent as time goes by. The two following techniques were therefore implemented:

-restart procedures enforce an increasing limitation on the number of nodes authorized during search. This limit is doubled at each iteration providing a complete technique. Results with restart with an heuristic h are denoted in the results h + rest. They are mentioned as soon as they outperform h alone.

-impacts are initialized using a propagation phase similar to singleton consistency [START_REF] Prosser | Singleton consistencies[END_REF] (each value for each variable is propagated). The cost of this initialization is reported in the indicated times.

We considered three sets of benchmark problems:

1. The first set comes from experiments in [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]: a set of multiknapsack problems modelled with binary variables. Each problem is solved as a satisfaction problem (the optimal value for the original problem is set as a hard constraint). For this set a time limit of 1500s is considered. We report here an average for 30 executions of the algorithms for solving each instance (recall that ties are randomly broken).

2. Our second set is made of random structured instances made as described in Section 3.4. A < 45, 10, 35, p 2 > problem is structured with three kernels of 15 variables linked with an intra-kernel tightness p 2 and an inter-kernel tightness of 3%. 100 instances are considered for each value of p 2 . Average results are presented.

3. Our last set is made of real world frequency allocation problems [START_REF] Cabon | Radio Link Frequency Assignment[END_REF] coming from the FullRLFAP archive. The problem resides in finding frequencies (f i ) for different channels of communication minimizing interferences. Interferences are expressed using minimal distance constraints between frequencies of some channels

(|f i -f j | > E ij or |f i -f j | = E ij ).
We followed [START_REF] Bessière | Neighborhood-based variable ordering heuristics for the constraint satisfaction problem[END_REF][START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF] to generate hard satisfaction instances. Therefore, scenXX-wY-fZ will correspond to the original instance scenXX where constraints with a weight greater than Y are removed as well as the Z highest frequencies. Results are reported on a set of 15 hard instances identified by [START_REF] Bessière | Neighborhood-based variable ordering heuristics for the constraint satisfaction problem[END_REF][START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF].

First benchmark : multiknapsack problems

On this first benchmark (results are reported in Table I), I R is the best strategy. We get the same results as in [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]) regarding I R . The use of restart does not provide any improvement for any of the tested heuristics. The random tie-breaking takes a too large part for I 2 and dom/Ict 7 . Those two heuristics are not pertinent here as they require a too long learning before impacts get to stabilize and allow variable discrimination. It is quite clear for I 2 when looking at the number of nodes of the last iteration upon restart (cf. Table I). Thus, restart makes I 2 a viable alternative but it takes too long and the overall time necessary for solving the problem increases. The efficiency of I 2 and dom/Wdeg is probably due to the fact that the complexity of this benchmark does not only rely at the instance level but also because of the high degree of interaction with the search algorithm. Artificial structures are in favor of heavy-tailed behaviors (William et al, 2003a) which is characterized by a great variation in pure random search leading to highly difficult to identify bad initial choices. Notice that the bad behavior for I R starts just before the phase transition.

Third benchmark: frequency allocation

On this benchmark, mac-cbj is crucial as shown in the first two columns in Table II (7 solved instances for mac-cbj as opposed to only 3 for mac). A way of analyzing this result is to look at the impact graph.

The first matrix on Figure 7 gives the impact graph at the end of the initialization phase. One can immediately see that the constraint network is really sparse. Moreover, even after a repeated random search (for a limited number of nodes) in order to let indirect relations appear (the second matrix on Figure 7), impacts do not appear throughout the problem but stay quite localized. Thrashing commonly arises in such situations. As propagation remains quite local, a contradiction can be discovered quite late on a part of the graph after a long search on another part (because the two parts are poorly related).

Results for the four stragegies 8 are presented on Table II. We systematically use here mac-cbj. I R is better that I 2 which is in turn better than dom/deg. The initialization phase can be quite costly (up to 40 seconds in the worst cases) but can alone prove the inconsistency of some instances. Initialization is not applied for dom/Wdeg as it does not need it compared to dom/Ict. dom/Wdeg is the winning strategy on this benchmark. However, our new strategy dom/Ict is as efficient (in terms of solved instances -12 out of the 15 instances considered 9 ) and is only outperformed in terms of time because of its necessary initialisation step. What is important also is to notice that dom/Ict really improves I R , the first impact-based strategy from [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]. 8 IR needs to compute the Cartesian product of domains. In order to discard integer overflowing, we based IR on the measure of the reduced values instead of the remaining space. 9 3 out of the 15 instances could not be solved by none of the tested techniques. 

Impact-based strategies: first insights

Strategies I α (α ranging from 0 to 2) are strongly related to the solver's activity during search (thus, focussing on the dynamically revealed component of the structures). Their use can be quite efficient as they reveal bad initial choices (whose influence will grow incommensurably during search without any useful pruning because the solver cannot manage to get back to them). Moreover, when applying impacts to constraints, the ones responsible for the propagation are identified. But, we think that the explanation-based impact varies too much between two different nodes in the search tree so that I α will not make robust generic strategies alone. I 3 is clearly too costly (wrt. time) in its current implementation to be used as default heuristic.

Our experiments allowed us to understand the different phenomena at stake here and also showed the interest for I R to take into account a fine-grained information available in the explanations getting to dom/Ict which competes well with dom/Wdeg (which remains the best strategy for this benchmark).

Specific structures exploitation

Benders decomposition in OR is a technique dedicated to problems that have a static structure: a subset of variables which has a great impact on the others and for which the remainder of the problem can be decomposed in independent sub-problems. The decomposition uses a master-slave relationship between variables. The master vari-ables are called complicating variables by [START_REF] Geoffrion | Generalized Benders Decomposition[END_REF]. Once these variables instantiated, the resulting optimization subproblem is much more simple.

Our aim here is to use this decomposition technique, which has proven quite efficient in OR, for our hidden structures revealed by the impact graphs we defined (we have subsets with strong intra-relations and light inter-relations). Using this technique in CP is not immediate. Usually, classical Benders cuts are limited to linear programming and are obtained by solving the dual of the subproblem. Therefore, they require that dual variables or multipliers to be defined to apply the decomposition. However, Hooker and Ottosson (2003) proposed to overcome this limit and to enlarge the classical notion of dual by introducing an inference dual available for all kinds of subproblems. They refer to a more general scheme and suggest a different way of considering duality, a Benders decomposition based on logic: being able to produce a proof and a sufficient set of hypothesis to justify this proof.

However this inference dual must be implemented for each class of problems to derive accurate Benders cuts [START_REF] Jain | Algorithms for hybrid milp/cp models for a class of optimization problems[END_REF]. One way of thinking the dual is to consider it as a certificate of optimality or an explanation (as introduced in Section 3.1) of inconsistency in our case. Our explanation-based constraint programming framework therefore provides in a sense an implementation of the logic-based Benders decomposition in case of satisfaction problems [START_REF] Cambazard | Decomposition and learning for a real time task allocation problem[END_REF]. One can notice here as the computation of explanations is lazy10 , the first explanation is taken whereas several explanations exist. One cannot look for the minimal explanation for evident scalability reasons. Therefore, such an inference dual provides an arbitrary11 dual solution but not necessarily the optimal one. Obviously, the success of such an approach depends on the degree to which accurate explanations can be computed for the constraints of the subproblem.

Explanation-based constraint programming as used in algorithms like mac-dbt (Jussien and al, 2000) or in decision-repair [START_REF] Jussien | Local search with constraint propagation and conflictbased heuristics[END_REF] automatically focus on the master problem of such a decomposition but may revert to a more conventional behavior (similar to mac) when independence is not properly identified. The next step would be here to use the structure exhibited from the impact graphs presented above in order to apply a Benders decomposition scheme in a second phase of resolution. The identification of sub-structures once the master instantiated could guide the generation of cuts for the master to gather as much information as possible where lies the real combinatorics of the problem.

Conclusion

In this paper, we introduced several indicators useful for both identification and use while searching of key structures at the heart of combinatorial problems. We focused our study on the relationship between variables and gave new perspectives on the design of generic search heuristics for constraint programming as well as search algorithms. We believe that the presence of backdoors or subset of variables exhibiting a strong impact over the whole problem could be explicitly used by ad hoc decomposition or relaxation strategies inspired from Operation Research. A concrete example is Benders decomposition and its generic extension based on logic. It is indeed exactly a backdoors technique and could be applied in Constraint Programming as a nogood learning strategy.
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 1 Figure1. The impact graph GI0 (using I0) after the initialization phase.
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 2 Figure 2. Impact graph GI0 (left) and GI3 (right) after two minutes of computation using mindom.
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 3 Figure 3. The impact graph GI1 after two minutes of computation using mindom.
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 4 Figure 4. The impact graph GI2 after two minutes of computation using mindom.
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 56 Figure 5. Average resolution time (left axis) and number of satisfiable instances (sat) (right axis) for dom/deg, IR and dom/Ict.

Figure 7 .

 7 Figure 7. The impact graph at the end of the initialisation phase and after a repeated random search of fixed size.

  On this benchmark, mac-cbj seems critical (mac dom/deg, mac I R or mac I R + rest are not able to compete) except for dom/Wdeg (Figures 5 and 6 report the obtained results). I 2 , dom/Wdeg as well as dom/Ict are much more efficient than I R which is better than dom/deg. Here, restart does not pay off for I 2 and dom/Ict. However, restart with I R is a good strategy as the initialisation phase is insufficient to get useful information.

	Table I. Impacts on multiknapsack problems randomly breaking ties (average
	results on 30 executions)				
	mac dom/deg	mac IR	mac dom/Wdeg
	Tps (s) Nodes	Tps (s) Nodes	Tps (s) Nodes
	mknap1-2 0	11.2	0	24.3	0	11.9
	mknap1-3 0	85.9	0	165.7	0	89.8
	mknap1-4 0.3	2236.7	0.2	1149.5	0.4	2506.1
	mknap1-5 3.6	27749.1	3.5	23158.1	4.7	32437.6
	mknap1-6 316.8	2031108.5 201.1	1066116.4 452.9	2636561.5
	dom/Ict		I2	I2 + rest
	Tps (s) Nodes	Tps (s) Nodes	Tps (s) Nodes
	mknap1-2 0	32.8	0	26.0	0	26.0
	mknap1-3 0.1	334.5	0.1	594.3	0.1	200.8
	mknap1-4 4.3	15063.8	2	7141.5	6	6770.8
	mknap1-5 723	2881651.4 234	861328.5 317	446652.6
	mknap1-6 > 1500		> 1500		> 1500	
	4.4. Second benchmark: structured random binary	
	problems					

Table II .

 II Impacts on frequency allocation problems

			mac dom/deg	mac-cbj dom/deg	I 2 + rest	I R + rest	dom/Ict	dom/Wdeg
	scen11	Time (s)	47	7.9	38	53	40	11.5
	(sat)	Nodes	5863	1207	1432	3986	524	907
	scen02-f24	Time (s)	0.8	0.1	3	3	3	0.1
	(sat)	Nodes	620	104	88	90	104	95
	scen02-f25	Time (s)	> 1h	3.6	4.6	3.7	8.5	1.4
	(unsat)	Nodes	-	610	270	77	1252	83
	scen03-f10	Time (s)	> 1h	1766	11.5	9.7	10.5	0.5
	(sat)	Nodes	-	527507	1128	415	186	188
	scen03-f11	Time (s)	> 1h	> 1h	> 1h	> 1h	17.5	19.6
	(unsat)	Nodes	-	-	-	-	788	1369
	scen06-w2	Time (s)	> 1h	75	14.6	13.5	15.8	1.1
	(unsat)	Nodes	-	68669	0	0	0	78
	scen07-w1-f4	Time (s)	0.2	0.2	6	5.9	6.9	0.3
	(sat)	Nodes	271	202	194	191	185	207
	scen07-w1-f5	Time (s)	> 1h	0	4.4	4.3	5	0.1
	(unsat)	Nodes	-	26	0	0	0	29
	graph08-f10	Time (s)	> 1h	> 1h	> 1h	679	19	14
	(sat)	Nodes	-	-	-	200898	757	1392
	graph08-f11	Time (s)	> 1h	> 1h	> 1h	174	14	3.3
	(unsat)	Nodes	-	-	-	32653	25	254
	graph14-f27	Time (s)	> 1h	> 1h	14.9	26.2	32.9	3.7
	(sat)	Nodes	-	-	4886	9845	7080	1817
	graph14-f28	Time (s)	> 1h	> 1h	> 1h	> 1h	14.3	4
	(unsat)	Nodes	-	-	-	-	1377	901
	nb solved		3/15	7/15	8/15	10/15	12/15	12/15

In the following, we will focus our study only on variables as components inducing a structure. impact-constraints.tex;

20/06/2006; 16:21; p.2 

This cut is often referred to as the Benders cut. impact-constraints.tex;20/06/2006; 16:21; p.3 
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A value can be removed from the domain of a variable several times during search. This is due to backtracking.

This is an upper bound used to limit space occupation. impact-constraints.tex;20/06/2006; 16:21; p.6 
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We are currently working on clustering algorithms[START_REF] Cleuziou | Disjunctive learning with a soft-clustering method[END_REF] to discover this particular ordering from the impact graph alone. impact-constraints.tex;20/06/2006; 16:21; p.9 
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I3 is handled differently as we need to focus on search space reduction as it is done in Section 3.3 for I3(xi = a, xj). impact-constraints.tex;20/06/2006; 16:21; p.12 
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Results are much more better (for all heuristics) on this benchmarks when ties are broken deterministically. impact-constraints.tex;20/06/2006; 16:21; p.14 
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Not all possible explanations are computed when removing a value. Only the one corresponding to the solver actual reasoning is kept.

This can also be accounted for linear duality where any dual solution is a bound for the primal problem. impact-constraints.tex;20/06/2006; 16:21; p.19