
HAL Id: hal-00293898
https://hal.science/hal-00293898v1

Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving a real-time allocation problem with constraint
programming

Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche,
Narendra Jussien

To cite this version:
Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, Narendra Jussien. Solving a
real-time allocation problem with constraint programming. Journal of Systems and Software, 2007,
81 (1), pp.132-149. �10.1016/j.jss.2007.02.032�. �hal-00293898�

https://hal.science/hal-00293898v1
https://hal.archives-ouvertes.fr

Solving a Real-Time Allocation Problem with

Constraint Programming

Pierre-Emmanuel Hladik a,b,∗, Hadrien Cambazard b,
Anne-Marie Déplanche a, Narendra Jussien b

aUniversité de Nantes, IRCCyN, UMR CNRS 659, 1 rue de la Noë – BP 9210,
44321 Nantes Cedex 3, France

bÉcole des Mines de Nantes, LINA CNRS, 4 rue Alfred Kastler – BP 20722,
44307 Nantes Cedex 3, France

Abstract

In this paper, we present an original approach (CPRTA for ”Constraint Pro-
gramming for solving Real-Time Allocation”) based on constraint programming to
solve a static allocation problem of hard real-time tasks. This problem consists in
assigning periodic tasks to distributed processors in the context of fixed priority pre-
emptive scheduling. CPRTA is built on dynamic constraint programming together
with a learning method to find a feasible processor allocation under constraints.
Two efficient new approaches are proposed and validated with experimental results.
Moreover, CPRTA exhibits very interesting properties. It is complete (if a problem
has no solution, the algorithm is able to prove it); it is non-parametric (it does
not require specific tuning) thus allowing a large diversity of models to be easily
considered. Finally, thanks to its capacity to explain failures, it offers attractive
perspectives for guiding the architectural design process.

Key words: hard real-time task allocation, fixed priority scheduling, constraint
programming, global constraint, Benders decomposition

1 Introduction

Real-time systems have applications in many industrial areas: telecommunica-
tion systems, the automotive and aircraft industries, robotics, etc. Today’s ap-
plications are becoming more and more complex, not only in their software (an

∗ Corresponding author. Tel: 00 33(0)251-8582-25 Fax: 00 33(0)251-8582-49
Email address: Pierre-Emmanuel.Hladik@emn.fr (Pierre-Emmanuel Hladik).

Preprint submitted to Elsevier Science 22 December 2006

increasing number of concurrent tasks with various interaction schemes) and
their execution platform (many distributed processing units interconnected
through specialized network(s)), but also in their numerous functional and
non-functional requirements (timing, resources, power, etc.). One of the main
issues in the architectural design of such complex distributed applications is
to define an allocation of tasks onto processors so as to meet all the specified
requirements. Even if it has to be solved off-line most of the time, it needs
efficient and adaptable search techniques, which can be integrated into a more
global design process. Furthermore, it is desirable that these techniques return
relevant information intended to help the designer who is faced with architec-
tural choices. In particular the ”binary” result (has a feasible allocation been
found? Yes and here it is, or no, and that is all) which is usually returned
by the search algorithm is not satisfactory in failure situations. The designer
expects some explanations justifying the failure and enabling him to revisit his
design. Therefore, more sophisticated search techniques that can collect some
knowledge about the problem they solve are required. These are the general
objectives of the work we are conducting.

More precisely, the problem we are concerned with consists in assigning a set
of periodic, pre-emptive tasks to distributed processors in the context of fixed
priority scheduling not only to respect schedulability but also to account for
requirements related to memory capacity, co-residence, redundancy, and so on.
The mapping we are concerned with is static, i.e. all allocation decisions are
made off-line, before the application runs, and they do not change afterwards.
We assume that the characteristics of tasks (execution time, priority, etc.) and
those of the physical architecture (processors and network) are all known a
priori.

In the literature, the allocation problem is studied extensively. A classifica-
tion of related works is difficult because of the varied nature of the hardware
architecture model (multiprocessor, distributed, homogeneous, etc.), the soft-
ware architecture model (periodic tasks, deadline, precedence relations, etc.),
the set of constraints (memory, allocation constraints, etc.), the objective (to
minimize execution and communication costs, to balance the load, etc.), and
the solving strategy.

Since the problem of allocating tasks is generally NP-hard [34], some form
of enumerative method or approximation using heuristics needs to be de-
veloped for this problem: graph theory techniques [57,38,18], branch-and-
bound [41,45,44,50,65], genetic algorithm [40,6,53,2,39,19,20,42,21], cluster-
ing [4,1,36], steepest descent (or Hill climbing) [40,64], tabu search [46,64];
simulated annealing [63,11,40,14,15,17,19,64], neural network [56,2], and ded-
icated heuristics [54,17,32,66,3]. However, today, for a specific problem, no
technique seems to be more appropriate than another.

2

Moreover, the majority of these techniques suffer from two main drawbacks:
firstly, their implementation is widely conducted by the considered models
or objective, so it is difficult to add a new constraint or to consider a new
model; secondly, their performances are sensitive to initial parameters and
need experimental tuning.

That is why we decided to tackle the allocation problem with a quite innova-
tive approach, constraint programming (cp). The main advantages of cp are:
its declarativity, the variables, domains, constraints are simply described; its
genericity, it is not a problem-dependent technique, general rules are mechan-
ically performed during the search; its adaptability, each constraint can be
considered as independent and a model could be simply extended by merg-
ing these different constraints; and its non-parametric ability. This technique
has been widely used to solve a large range of combinatorial problems. It has
proved quite effective in a variety of applications (from planning and schedul-
ing to finance – portfolio optimization – through biology). Up to now, solving
the allocation problem of hard real-time tasks with cp has not been studied ex-
tensively. To our knowledge, only Szymanek et al. [58], Schild and Würtz [55]
and Ekelin [16] have used cp to produce an assignment and a pre-runtime
scheduling of distributed systems under optimization criteria. Even though
their context is different from ours, their results have shown the ability of
such an approach to solve an allocation problem for embedded systems and
have encouraged us to go further.

In this paper, two approaches are considered. The first one introduces a global
constraint 1 and an ad hoc algorithm, i.e. a filtering algorithm, to tackle
schedulability. This algorithm is a custom-written filtering algorithm designed
to take into account and to exploit the structure of the schedulability con-
straints. The second investigated approach uses the complementary strengths
of constraint programming and optimization methods from operational re-
search like numerous hybridation schemes [61,28,26,8]. It is a decomposition-
based method (related to logic-based Benders decomposition [27]), which sep-
arates the allocation problem from the scheduling one: the allocation problem
is solved by means of dynamic constraint programming tools, whereas the
scheduling problem is treated with specific real-time schedulability analysis.
The main idea is to ”learn” from the schedulability analysis to re-model the
allocation problem so as to reduce the search space. In that sense, we can
compare this approach to a form of learning from failures.

First experimental results show that these two methods produce an efficient
way to solve the allocation problem. Moreover, a fundamental property of
these methods is their completeness: when a problem has no solution, they
are able to prove it (contrary to heuristic methods that are unable to decide).

1 A constraint is said to be global when it is a conjunction of a set of constraints.

3

Moreover, they are also able to produce an explanation when they fail to find
a solution. As will be shown in the paper, this explanation could be used in
the future as a way to help the designer of real-time systems during the design
process.

The remainder of this paper is organized as follows. In Section 2, we describe
the problem. Some related works are presented in Section 3. Section 4 briefly
introduces constraint programming before translating the problem as a con-
straint satisfaction one in Section 5. The two approaches we propose are then
described: Section 6 is concerned with the global constraint and Section 7 is
dedicated to the logical Benders decomposition. Some experimental results
are presented in Section 8. Section 9 shows how it is possible to set up a fail-
ure analysis able to aid the designer to review his plans. It is a first attempt
that proves its feasibility but it will need to go deeper. The paper ends with
concluding remarks in Section 10.

2 Description of the problem

We base our research on the model in [63] with few differences as the commu-
nication protocol and the schedulability test.

2.1 The real-time system architecture

The hard real-time system we consider can be modeled by a software archi-
tecture, the set of tasks, and a hardware architecture, the execution platform
for the tasks, as represented in Fig. 1.

By hardware architecture, we mean a set P = {p1, . . . , pk, . . . , pm} of m pro-
cessors with fixed memory capacity mk and identical processing speed. Each
processor schedules tasks assigned to it with a fixed priority strategy. It is
a simple rule: a static priority is given to each task and, at run-time, the
ready task with the highest priority is put in the running state, pre-empting a
lower priority task. These processors are fully connected through a communi-
cation medium with a bandwidth δ. In this paper, we look at a communication
medium called a CAN bus, which is currently used in a wide spectrum of real-
time embedded systems. However, any other communication network could be
considered if its timing behavior (including its protocol rules) is predictable.
Thus, the first experiments we conducted addressed a token ring network [24].

CAN (Controller Area Network) [10] is both a protocol and a physical network.

4

CAN works as a broadcast bus, meaning that all connected nodes can read all
messages sent on the bus. Each message has a unique identifier, which is also
used as the message priority. On each node, waiting messages are queued. The
bus makes sure that when a new message is selected to transfer, the message
with the highest priority, waiting on any connected node, will be transmitted
first. When at least one bit of a message has started to be transferred it cannot
be pre-empted even though higher priority messages arrive. As a result, the
CAN behavior will be seen subsequently as that of a non-pre-emptive fixed
priority message scheduling.

p1 p2

p3 p4 m4

m1 m2

m3

τ1

τ2 τ3

τ4

τ5

τ6

τi : (Ti, Ci, prioi, µi)
cij : (dij , prioij)

c12

c24

c13

c34

c56
δbandwidth

Fig. 1. An example of hardware (left) and software (right) architecture.

The software architecture is modeled as a valued, oriented and acyclic graph
(T , C). The set of nodes T = {τ1, ..., τn} represents the tasks. A task in turn is
a set of instructions that must be executed sequentially in the same processor.
The set of edges C ⊆ T × T refers to the data sent between tasks.

A task τi is defined through timing characteristics and resource needs: its
period Ti (as a task is periodically activated, the date of its first activation is
free), its worst-case execution time without pre-emption Ci and its memory
need µi. A priority prioi is given to each task. Task τj has priority over τi if,
and only if, prioi < prioj. In our approach, we treat allocation as an issue
separate from that of scheduling. Priority assignment is globally performed
before allocation. Rate monotonic or deadline monotonic algorithms can be
used. However, our approach does not consider a specific scheduling policy.

Edges cij = (τi, τj) ∈ C are weighted with the amount of exchanged data dij

together with a priority value prioij (useful in the CAN context) 2 . In this
model, we assume that communicating tasks have the same activation period
but we do not consider any precedence constraint between them. They are
periodically activated in an independent way, and they read input data and
write output data at the beginning and the end of their execution.

The underlying communication model is inspired by OSEK-COM specifica-
tions [43]. OSEK-COM is a uniform communication environment for automo-

2 Task priorities are all assumed to be different. The same assumption is made
about message priorities.

5

(b) tasks are allocated on
different processors

(a) tasks are allocated on the
same processor

τi τj

Mij

cij

τi τi τjτj

Fig. 2. Depending on the task allocation, a message exists or not.

tive control unit application software. It defines common software communica-
tion interface and behavior for internal communications (within an electronic
control unit) and external ones (between networked vehicle nodes) which are
independent of the communication protocol used. It is the following. Tasks
that are located on the same processor communicate through local memory
sharing. Such a local communication cost is assumed to be zero. On the other
hand, when two communicating tasks are assigned to two distinct processors,
the data exchange needs the transmission of a message on the network. Here
we are interested in the periodic transmission mode of OSEK-COM. In this
mode, data production and message transmission are not synchronized: a pro-
ducer task writes its output data into a local unqueued buffer from where a
periodic protocol service reads it and sends it into a message. The building
of protocol data units considered here is very simple: each piece of data dij

that has to be sent from a producer task τi to a consumer task τj in a distant
way gives rise to its own message Mij. Moreover, in this paper, for the sake
of simplicity, the asynchronous receiving mode is preferred. It means that the
release of a consumer task τj is strictly periodic and unrelated to the Mij mes-
sage arrival. Thus, when a node receives a message from the bus, its protocol
records its data into a local unqueued buffer from where it can be read by
the task τj. In [25], an extension of this work to a synchronous receiving mode
is proposed in which a message reception notification activates the consumer
task.

As a result, depending on the task allocation, an edge cij of the software
architecture may give rise to two different equivalent schemes as illustrated in
Fig. 2. In Fig. 2(b), Mij inherits its period Ti from τi and its priority prioij

from cij.

Therefore, from a scheduling point of view, messages on the bus are very
similar to tasks on a processor. Like for tasks, each message Mij is ”activated”
every Ti units of time; its (bus) priority is prioij; and it has a transmission
time Cij (the time it takes to transfer the message on the bus, see Section 2.2.3
for its computation).

6

2.2 The allocation problem

An allocation is a mapping A : T → P such that:

τi 7→ A(τi) = pk (1)

The allocation problem consists in finding a mapping A that respects the
whole set of constraints described below.

2.2.1 Resource constraints

Three kinds of constraints are considered 3 :

• Memory capacity: The memory use of a processor pk cannot exceed its
capacity (mk):

∀k = 1..m,
∑

A(τi)=pk

µi ≤ mk (2)

• Utilization factor: The utilization factor of a processor cannot exceed its
processing capacity. The following inequality is a necessary schedulability
condition:

∀k = 1..m,
∑

A(τi)=pk

Ci

Ti

≤ 1 (3)

• Network use: To avoid overload, the messages carried along the network
per unit of time cannot exceed the network capacity:

∑
cij = (τi, τj)

A(τi) 6= A(τj)

sij

Ti

≤ δ (4)

where sij is the message size; it is a function of dij depending on the message
structure (see Section 2.2.3).

2.2.2 Allocation constraints

Allocation constraints are due to the system architecture. We distinguish three
kinds of constraint.

• Residence: a task may need a specific hardware or software resource that
is only available on specific processors (e.g. a task monitoring a sensor has
to run on a processor connected to the input peripheral). This constraint is

3 Precise units are not specified but obviously they have to be consistent with the
given expressions.

7

expressed as a couple (τi, α) where τi ∈ T is a task and α ⊆ P is the set of
available host processors for the task. A given allocation A must respect:

A(τi) ∈ α (5)

• Co-residence: several tasks may have to be assigned to the same processor
(they share a common resource). Such a constraint is defined by a set of
tasks β ⊆ T and any allocation A has to fulfil:

∀(τi, τj) ∈ β2, A(τi) = A(τj) (6)

• Exclusion: Some tasks may be replicated for some fault-tolerance objec-
tives and therefore cannot be assigned to the same processor. It corresponds
to a set γ ⊆ T of tasks, which cannot be put together. An allocation A must
satisfy:

∀(τi, τj) ∈ γ2, A(τi) 6= A(τj) (7)

2.2.3 Timing constraints

Timing constraints are expressed by means of the relative deadlines for the
tasks and messages. A timing constraint enforces the duration between the
activation date of any instance of the task τi and its completion time to be
bounded by its relative deadline Di. Depending on the task allocation, such
timing constraints may concern the instantiated messages too. For tasks as
well as messages, their relative deadline is hereafter assumed equal to their
activation period.

A widely chosen approach for the schedulability analysis of a task and message
set S is based on the following necessary and sufficient condition [35]: S is
schedulable if, and only if, for each task and message of S, its worst-case
response time is less than or equal to its relative deadline. Thus, it leads us
to compute worst-case response times for the tasks on the processors and for
the messages on the bus. According to the features of the considered task and
message models, as well as the processor and bus scheduling algorithms, a
classical computation can be used and its main results are given below.

Task worst-case response time. For independent and periodic tasks with
a pre-emptive fixed priority scheduling algorithm, it has been proved that
the worst-case execution scenario for a task τi happens when it is released
simultaneously with all the tasks that have a priority higher than prioi. When
Di is (less or) equal to Ti, the worst-case response time for τi is given by [35]:

Ri = Ci +
∑

τj∈hpi(A)

⌈
Ri

Tj

⌉
Cj (8)

8

where dxe is the smallest integer greater than x and hpi(A) is the set of tasks
with a priority higher than prioi and located on the processor A(τi) for a given
allocation A. The summation gives the time that tasks with higher priority
will take before τi has completed. The worst-case response time Ri can be
easily solved by looking for the fix-point of Eq. (8) in an iterative way.

Message worst-case response time. As mentioned earlier, message schedul-
ing on the CAN bus can be viewed as a non-pre-emptive fixed priority schedul-
ing strategy. Thus, when writing the worst-case response time equation for a
message, Eq. (8) has to be reused with some modifications. First, it has to
be changed so that a message can only be pre-empted during its first trans-
mitted bit instead of its whole execution time. Second, a blocking time, i.e.
the longest time the message might be blocked by a lower priority message,
must be added. The resulting worst-case response time equation for the CAN
message Mij is [62]:

Rij = Cij + Lij (9)

with

Lij =
∑

M ′∈hpij(A)

⌈
Lij + τbit

T ′

⌉
C ′ + max

M ′∈lpij(A)
{C ′ − τbit} (10)

where hpij(A) (respectively lpij(A)) is the set of messages derived from the
allocation A with a priority higher (respectively lower) than prioij; τbit is
the transmission time for one bit (τbit is related to the bus bandwidth δ, τbit

(second) = 1/δ (bit per second)); C ′ is the worst-case transmission time for
the message M ′.

Here as well the computation of Eq. (10) can be solved iteratively.

To calculate the worst-case transmission time Cij of a message, Eq. (11) is
used [62]:

Cij = sijτbit (11)

with

sij =

⌊
34 + 8dij

5

⌋
+ 47 + 8dij (12)

It shows that the message size is not given directly from the data size dij (in
bytes) and the frame overhead of 47 bits (identifier, CRC, etc.). It has to take
into account the possible overhead caused by the bit stuffing process of CAN
controllers.

From now on, an allocation A is said to be valid if it meets allocation and
resource constraints. It is schedulable if it meets timing constraints. Finally, a
solution to our problem is a valid and schedulable allocation of the tasks.

Notice that the objective of this article is to validate an application (find a
solution) and not optimize a function such as workload balancing [60,2], the

9

number processors used [42] nor the response time of tasks [45,2].

3 Related work

In a general way, the task mapping problem includes assigning (allocation)
each task to a processor and ordering (scheduling) the execution of the tasks
on each one such that all functional and temporal constraints of the system
are respected. In the literature, mapping problems are studied extensively and
an exhaustive overview, or even a classification of them, is difficult because of
the huge variety of problems and solving techniques they consider.

For models quite similar to the one presented in Section 2, [63,11,41,54,4,50,21]
are good examples of the research efforts. Like us, they all consider a fixed
priority scheduler. Allocation and scheduling are usually considered as two
independent stages. For most of them [63,11,41,54,4,21], only the allocation
problem is solved since task priorities are known. In [50], Richard et al. pro-
pose a method that simultaneously allocates tasks to processors and assigns
priorities to tasks and messages.

Different techniques are used: a simulated annealing algorithm in [63,11], a
branch-and-bound search algorithm in [41,50], a genetic algorithm in [21], and
a dedicated heuristic in [54]. In [4], a clustering algorithm is proposed. In that
case, the solving process is divided into two steps. Firstly, the search space
is reduced by merging some tasks according to some specific criteria (this is
the clustering step). Secondly, a classic solving algorithm (simulated anneal-
ing, branch-and-bound, etc.) is used for allocating task clusters to processors.
However, by reducing the search space, clustering suffers from the risk of not
finding any feasible assignment.

All these techniques seem effective ways for solving allocation problems. How-
ever, they all suffer from two important drawbacks: 1) they are sensitive to
their initial parameters, i.e. temperature and cooling for simulated annealing,
selection criteria and population size for genetic algorithm, enumeration order
for branch-and-bound, etc. 2) much work is necessary to efficiently extend a
method to a new model, i.e. the objective function of the simulated annealing
must be redefined, branch-and-bound functions have to be designed for each
mapping problem, crossing-over or mutation operators of genetic algorithm
are dedicated to only one problem, etc.

Now it seemed to us that a constraint programming (cp) approach should be
able to limit, indeed to avoid, these disadvantages. Moreover, it constitutes
a new solving strategy for the real-time task allocation problem. It is true
that little attention has been paid to it [55,58,59,16]. Furthermore, these dif-

10

fer fundamentally in the scheduling technique: only cyclic task schedulers are
assumed, i.e. a scheduling cycle is derived before runtime, and the runtime
system dispatches tasks based on current time in respect with the cycle. The
fact that only a cyclic scheduling is considered makes the problem of map-
ping very different from ours. Indeed, the scheduling cycle is viewed as a set
of discrete intervals, the constraints of which can be naturally expressed in
the classical formalism of cp. The main problem with dynamic scheduling is
that it is not possible to simply express the schedulability test as an efficient
constraint for a cp solver.

In [55], precedence constraints between tasks as well as end-to-end deadlines
are taken into account for computing the scheduling cycle. In [58], more con-
straints are considered: i) resources (memory and shared resource), ii) com-
munications (a cyclic scheduling is also produced for messages), iii) power
consumption. In [16], Ekelin summarizes of all these works and proposes a
general approach for multi-constraints and multi-objective functions for real-
time cyclic scheduling. As in [4], Szymanek and Kuchcinski [59] studied the
problem of task clustering under multi-resource constraints.

The first objective of our work has been to study the applicability of cp to
our allocation problem. It has led us to propose an efficient way to include
the dynamic scheduling model in the cp solver. From this point of view, this
paper makes an innovative contribution in comparison with previous works.

4 A short introduction to constraint programming

A constraint satisfaction problem (csp) consists of a set V of variables xi

defined by a corresponding set Di of possible values (the so-called domain)
and a set C of constraints. A solution to the problem is an assignment of a
value in Di to each variable xi in V such that all constraints are satisfied.
For example, consider a 3-uple of variables V = {x1, x2, x3}, their domains
D1 = D2 = D3 = {1, 2, 3} and two constraints C1: x1 > x2 and C2: x1 = x3.
A solution of this csp is x1 = 2, x2 = 1 and x3 = 2.

The solutions to a csp can be found by systematically searching through the
possible assignments of values to variables. The variables are sequentially la-
beled and, as soon as all the variables relevant to a constraint are instantiated,
the validity of the constraint is checked. If any of the constraints is violated,
backtracking is performed to the most recently instantiated variable that still
has available values.

However, cp offers more accurate methods to solve a csp. One of them is based
on removing inconsistent values from domains of variables till a solution is

11

found. Consider the previous example: the value 1 could be removed from
D1, because C1 cannot be respected if x1 = 1. Several consistency techniques
exist and they are combined to solve a csp. For example, when a value is
removed from the domains of variables, it could be propagated through other
constraints. In the previous example, after removing 1 from D1, 1 could be
removed from D3 because of C2.

This mechanism coupled with a backtracking scheme allows the search space
to be explored in a complete way. For a more detailed introduction to cp, we
refer the reader to [52].

In this paper, the search is performed by the Maintaining Arc-Consistency
algorithm (mac). mac is nowadays considered as one of the best algorithms
for solving a csp. Moreover, a specific mac algorithm has been used, based on
the use of explanations. In a few words, an explanation can be considered as
a limited trace of the past activity of the constraint solver. It is a set of con-
straints, and records enough information to justify any decision of the solver
such as a reduction of domain or a contradiction. Due to space limitation, we
cannot expand upon this point but the reader may refer to [30] for a detailed
presentation.

5 Translation of the allocation problem into a csp

The first thing one has to do when using cp to solve a problem is to word it
as a csp. In our case, it relies on a redundant formulation using three sets of
variables: x, y, w.

Let us first consider n integer-valued variables xi which are decision vari-
ables, each one corresponding to one task, and representing the processor
selected to process the task: ∀i ∈ {1..n}, xi ∈ {1, . . . ,m}. Then, boolean
variables yip indicate the presence of a task on a processor: ∀i ∈ {1..n},∀p ∈
{1..m}, yip ∈ {0, 1}. Finally, boolean variables wij are introduced to express
whether a pair of tasks exchanging data are located on the same processor
or not: ∀cij = (τi, τj) ∈ C, wij ∈ {0, 1}. Integrity constraints are used to en-
force the consistency of the redundant model. This redundant model has been
chosen to speed up the search and propagate algorithms.

Moreover, the constraints of our allocation problem have to be mapped on
this model. It appears that allocation and resource constraints can be directly
expressed with the classical constraints of cp. Their translation into the csp
are given here:

• Resource constraints

12

· Memory capacity: (cf. Eq. (2)) ∀p ∈ {1..m}, ∑
i∈{1..n} yipµi ≤ µp

· Utilization factor: (cf. Eq. (3)) Let lcm(T) be the least common multiple
of periods of the tasks 4 . The constraint can be written as follows:

∀p ∈ {1..m},
∑

i∈{1..n}

yip lcm(T)Ci

Ti

≤ lcm(T)

· Network use: (cf. Eq. (4)) The network capacity is bound by δ. There-
fore, the size of the set of messages carried on the network cannot exceed
this limit: ∑

i∈{1..n}j∈{1..n}

wij lcm(T)sij

Ti

≤ lcm(T)δ

• Allocation constraints
· Residence: (cf. Eq. (5)) it consists of forbidden values for x. A constraint

is added for each forbidden processor p of τi: xi 6= p
· Co-residence: (cf. Eq. (6)) ∀(τi, τj) ∈ β2, xi = xj

· Exclusion 5 : (cf. Eq. (7)) AllDifferent(xi|τi ∈ γ)

However, because of the schedulability analysis they require, timing con-
straints cannot be translated as directly as the previous ones. Two approaches
have been studied to consider timing constraints. For the first approach, tim-
ing constraints are taken into account at each variable assignment the solver
makes. Partial schedulability analyses must be conducted and their results
transformed into new constraints on variables. This method is introduced in
Section 6. Inversely, the second approach consists in breaking down the al-
location problem into two subproblems (one that deals with allocation and
resource constraints, the other with timing constraints), and managing coop-
eration between them so as to find a valid and schedulable solution. Section 7
is dedicated to this method.

6 A global constraint for schedulability

To tackle schedulability during search, a classical approach is to integrate it as
a constraint of the cp solver. For this purpose, some notations used previously
for a full allocation are extended to a partial one:

4 Utilization factor and network use are reformulated with the lcm of task periods
because our constraint solver cannot currently handle constraints with both real
coefficients and integer variables.
5 An AllDifferent constraint on a set V of variables ensures that all variables among
V have different values.

13

Definition 6.1 A partial allocation is a mapping a : U ⊂ T → P such that:

τi ∈ U 7→ a(τi) = pk (13)

Definition 6.2 We call a decision from a partial allocation a : U → P, a
partial allocation δ of a task set ∆ (U . We denote the new allocation produced
as a′ = a + δ. It is such that a′ : U ⋃

∆ → P and ∀τi ∈ U , a′(τi) = a(τi),
∀τi ∈ ∆, a′(τi) = δ(τi)

We denote Ri(a) the worst-case response time of τi for a partial allocation
a. It is the worst-case response time that τi would exhibit if only those tasks
allocated in a were considered. hpi(a), respectively lpi(a) is the set of higher,
respectively lower, priority tasks than τi on the same processor as a(τi).

6.1 Filtering algorithm

The cp solver proceeds step by step. At each step, a decision is taken from
a partial allocation and a filtering algorithm is used. A filtering algorithm
associated with a constraint C is an algorithm that may remove some val-
ues that are inconsistent with C, but that does not remove any consistent
values [49]. For example, consider the same csp as in Section 4: a 3-uple of
variables {x1, x2, x3}, their domains D1 = D2 = D3 = {1, 2, 3} and two con-
straints C1 : x1 < x2 and C2 : x1 = x3. In the first step, x1 takes the value
1. The filtering algorithm of C1 removes the value 1 of D2 and the filtering
algorithm of C2 removes the values 2 and 3 of D3. At the next step, x2 takes
the value 2 and so on.

The holy grail with a global constraint is to achieve generalized arc consistency
(gac) which simply means a complete filtering algorithm so that any value that
does not belong to a solution is eliminated. This involves providing polynomial
necessary and sufficient conditions regarding the existence of a solution for the
constraint (according to current domains of variables).

τi τ1 τ2 τ3 τ4 τ5

Ti 20 10 15 15 4

Ci 12 2 5 7 2

prioi 1 2 3 4 5

Table 1
Task and message characteristics

For example, consider a simple example of five tasks τi with domain {p1, p2}
such that every triple (10 triples exist) is unschedulable (Table 1 gives an
example). Assigning five tasks to two processors will force placing three of
them together, which will raise a contradiction as any triple is forbidden. A
polynomial filtering algorithm for our global schedulability constraint that

14

respects the gac should detect this inconsistency. However, we can prove it is
impossible to do.

Property 6.1 Achieving generalized arc-consistency for the schedulability con-
straint is NP-hard.

Proof. In [37], Leung and Whitehead proved that (Theorem 2.6, page 242)
for a given software architecture T and a hardware architecture P , the prob-
lem of deciding whether an allocation from T to P is schedulable is NP-hard.
The proof is done by reducing the 3-Partition problem to the schedulability
problem. The 3-Partition is a classical problem that has been shown to be
NP-complete and so achieving generalized arc-consistency for the schedulabil-
ity problem is NP-hard. Moreover, as the schedulability test (Equation 8) is
pseudo-polynomial, we cannot conclude whether the problem of gac is NP-
complete. �

Our filtering algorithm is therefore based on a relaxation of the gac. Algo-
rithm 1 shows the pseudo-code of the filtering algorithm for the global con-
straint to tackle schedulability. It begins to check the schedulability of the
current partial allocation (line 1). It is easily done by computing the worst-
case response time of only allocated tasks and present messages (property 11.1,
Appendix 1). A present message is a message that we are sure exists for a par-
tial allocation: consider a communication cij, the message Mij exists if, and
only if, the domains of values of τi and τj are disjoint (Di ∩ Dj = ∅). Notice
that a message can exist even if its producer or its consumer is not allocated.
If the allocation is schedulable, the filtering algorithm removes values that
are inconsistent (lines 2 to 13) by testing the schedulability for each value of
each remaining variable (line 7). Then, the pruning is propagated within the
constraint set until a fix-point is reached (while loop).

This filtering can, however, miss powerful deductions of the gac. With the
example presented in Table 1, an inconsistent state will not be detected by
our pragmatic approach and a search tree will be built over three tasks among
the five to prove this inconsistency, see Figure 3: (1) τ1 is allocated to p1. All
other tasks could still be allocated to p1 (loop from line 4 to line 12). (2) τ2

is also allocated to p1. The inconsistency is detected because D3, D4 and D5

are reduced to p2 (line 8) and τ3, τ4 and τ5 are not schedulable on p2. (3) τ2

is allocated to p2. All domains of unallocated tasks are still {p1, p2}. (4) τ3 is
allocated to p1. The inconsistency is detected because D4 and D5 are reduced
to p2 and τ2, τ4 and τ5 are not schedulable on p2. (5) τ3 is allocated to p2. The
inconsistency is detected because D4 and D5 are reduced to p1 and τ1, τ4 and
τ5 are not schedulable on p1. (...) and so on. However, this approach is already
very costly and we will now discuss ways to speed it up.

15

Algorithm 1 Filtering algorithm for the schedulability global constraint after
a decision δ from a partial allocation a

Global constraint(a′ := a + δ)

1: flag := checkSchedulability(a′) {flag becomes true if a′ is schedula-
ble}

2: while flag do
3: flag := false
4: for each unallocated task τi do
5: for each p in τi’s domain do
6: a′′ := a′ + δ1 with δ1(τi) := p
7: if not checkSchedulability(a′′) then
8: Remove p from domain of τi {Propagate to other constraints}
9: flag := true

10: end if
11: end for
12: end for
13: end while

τ1

p1

τ3p2

τ2

τ2

p1

p2

p2

p1

p1

p1

p2

p2

τ3

(1)

(2)

(3)

(4)

(5)

Fig. 3. Tree-search for an allocation with the global constraint. Colored nodes are
those where the problem is inconsistent.

6.2 Incrementality

To speed up the filtering of the global constraint for a partial allocation, it
is possible to use some knowledge from the previous partial allocations. This
incrementality can be used twice in the filtering algorithm. Firstly, during
the schedulability test and, secondly, during the propagation by reducing the
number of values to check in the domains of variables. These two points are
now developed.

6.2.1 Incrementality of the schedulability test

From now on, we suppose that all other constraints are met, and so the partial
allocation is valid too. Consider a partial but schedulable allocation a and a

16

decision from a that allocates only one task τi with a′(τi) = pk. Since the
scheduling of processors is made in an independent way, only those tasks on
pk may suffer from the allocation of τi. Moreover, all tasks in hpi(a

′) are still
schedulable because the worst-case response time equation (Eq. 8) ensures
that all tasks τj ∈ hpi(a

′) keep the same response time: Rj(a
′) = Rj(a).

Rule 1 When a task is allocated to a processor from a schedulable partial
allocation, schedulability has to be checked only for this task and the lower
priority ones on that processor.

This rule could be extended to a decision δ with #∆ > 1, where #X stands
for the cardinality of the set X. For the same reason, schedulability has to be
checked only for the tasks τi ∈ ∆, a′(τi) = pk, and the tasks τj ∈ U such that
a′(τj) = pk ∧ prioi > prioj.

The same reasoning can be applied to message schedulability analysis.

Rule 2 When a new message appears Mab, message schedulability has to be
checked only for that message, the lower priority ones and the higher priority
ones Mij such that Cab > maxM ′∈lpij(a){C ′}.

Rule 2 can be extended to a decision that gives rise to many messages. Let
∆∗ be the set of these new messages. After a decision δ, message schedula-
bility has to be checked only for Mab, the highest priority message of ∆∗, the
messages in lpab(a

′) and the higher priority messages Mij ∈ hpab(a) such that
maxM∈∆∗ C > maxM ′∈lpij(a){C ′}.

These rules can be implemented into the checkSchedulability function
called at lines 1 and 7 in algorithm 1.

6.2.2 Incrementality of domains

By considering the previous partial allocation and the current decision, the
number of values in the domain of a variable that have to be checked in order
to remove inconsistency values (line 5 in algorithm 1) can be reduced.

Let a be a partial allocation and δ a decision such that a′ = a + δ, ∆∗ = ∅
and τi /∈ U ⋃

∆. If pk is a processor not used in δ, i.e. no task is assigned to it
in δ, and τi is schedulable on pk for a, then τi is still schedulable on pk for a′.

If ∆∗ 6= ∅, because of messages, we cannot conclude about the schedulability
of the system without checking the network.

Rule 3 After a decision δ where ∆∗ = ∅, the domains of non-allocated tasks
to check during filtering are reduced to the processor set where a task has been

17

added in δ.

6.3 Reducing further schedulability tests

Other rules can be introduced to reduce domains during filtering by consider-
ing some dominance relationships between tasks. A rule can be deduced from
property 11.2 (see Appendix 1):

Rule 4 If, from a schedulable partial allocation, allocating τi to pk makes τi

unschedulable, then pk has to be removed from the domain of all tasks τj such
that prioj < prioi ∧ Cj ≥ Ci ∧ Tj ≤ Ti.

In the same way, the following rule can be stated from property 11.3 (see
Appendix 1):

Rule 5 If, from a schedulable partial allocation, allocating τi to pk makes an
allocated task τb unschedulable, then pk has to be removed from the domain of
all tasks τj with prioj > priob ∧ Cj ≥ Ci ∧ Tj ≤ Ti.

Finally, a trivial propagation rule can be added by considering message schedu-
lability:

Rule 6 If, from a schedulable partial allocation a, allocating a communicating
task τi makes a message unschedulable, then the domain of τi has to become⋃

τj
{a(τj)} where τj is an allocated task that exchanges data with τi.

These rules can be easily implemented in Algorithm 1 on line 8.

7 Solving the problem with logic-based Benders decomposition

Contrary to the global constraint strategy, which includes schedulability in
the search algorithm, the approach presented in this section is based on the
Benders decomposition and separates resource and allocation constraints from
schedulability ones.

7.1 Benders decomposition scheme

We only give the basic principles of this technique, for a more detailed descrip-
tion please refer to [12]. Our approach is based on an extension of a Benders
scheme. A Benders decomposition [7] is a solving strategy of linear problems

18

that uses a partition of the problem among its variables: x, y. A master prob-
lem considers only x, whereas a subproblem tries to complete the assignment
on y and produces a Benders cut added to the master. This cut is the central
element of the technique, it is usually a linear constraint on x inferred by the
dual of the subproblem. Benders decomposition can therefore be seen as a
form of learning from mistakes.

For a discrete satisfaction problem, the resolution of the dual consists in com-
puting the unfeasibility proof of the subproblem (in this case, the dual is called
an inference dual) and determining under what conditions the proof remains
valid to infer valid cuts. The Benders cut can be seen in this context as an
explanation of failure that is learnt by the master. We refer here to a more gen-
eral Benders scheme called logic Benders decomposition [27] where any kind
of subproblem can be used as long as the inference dual of the subproblem
can be solved.

We propose an approach inspired by methods used to integrate constraint
programming into a logic-based Benders decomposition [61,8]. The allocation
and resource constraints are considered on one side, and timing ones through
schedulability on the other (see Fig. 4). The master problem solved with cp
yields a valid allocation. The subproblem checks the schedulability of this al-
location, eventually finds out why it is unschedulable and designs a set of
constraints, named nogoods, which rules out all the assignments that are un-
schedulable for the same reason.

Master problem
(constraint programming)

Resource constraints
Allocation constraints

Subproblem
(schedulability analysis)

Timing constraints

Le
ar

ni
ng

valid allocation
unschedulable

nogoods

schedulable allocation

Fig. 4. Logic-based Benders decomposition to solve an allocation problem

7.2 Cooperation between master and subproblem

The subproblem considered here is to check whether a valid solution produced
by the master problem is schedulable or not. Schedulability analysis is used
(see section 2.2.3). We now consider a valid allocation (like the one the cp
solver may propose) in which some tasks are not schedulable. Our purpose is
to explain why this allocation is unschedulable, and to translate this into a
new constraint for the master problem.

19

τ1

τ2

τ3

τ4

τ1

τ2

τ3

τ4

Deadline miss Deadline miss

Fig. 5. Illustration of a schedulability analysis. The task τ4 does not meet its dead-
line. The subset {τ1, τ2, τ4} is identified to explain the unschedulability of the system.

Tasks. The explanation for the unschedulability of a task τi is the presence
of tasks with higher priority on the same processor that interfere with τi. For
any other allocation with τi and hpi(A) on the same processor, it is certain
that τi will still be detected unschedulable. So, the master problem must be
constrained so that all solutions where τi and hpi(A) are together are not
considered any further. This constraint corresponds to a NotAllEqual 6 on x:

NotAllEqual (xj|τj ∈ Si(A) = hpi(A) ∪ {τi})

It is worth noticing that this constraint could be expressed as a linear combi-
nation of variables y. However, NotAllEqual(x1,x3,x4) excludes the solutions
that contain the tasks τ1, τ3, τ4 gathered on any processor.

Nevertheless it is easy to see that this constraint is not totally relevant. For
example, in Fig. 5, τ4 that shares a processor with τ1,τ2 and τ3 misses its
deadline. Actually, the set S4(A) = {τ1, τ2, τ3, τ4} explains the unschedulability
but it is not minimal in the sense that, if we remove one task from it, the set
is still unschedulable. Here, the set S4(A)′ = {τ1, τ2, τ4} is sufficient to justify
the unschedulability. To explain the unschedulability of a task, there could be
more than one minimal task set, this is dependent on the order of enumeration
of hpi(A). In the example, {τ1, τ3, τ4} is also a minimal set. However, the more
constraints there are, the slower the solver is, thus we consider just one minimal
set in explanation.

In order to derive more precise explanations (to achieve a more relevant learn-
ing), a conflict detection algorithm, namely QuickXplain [29] (see algorithm 2),
has been used to determine a minimal (w.r.t. inclusion) set of involved tasks
Si(A)′. A new function is defined, Ri(X), as the worst-case response time of
τi as if it was scheduled with those tasks belonging to the set X that have
priority over it:

Ri(X) = Ci +
∑

τj∈hpi(A)∩X

⌈
Ri(X)

Tj

⌉
Cj (14)

6 A NotAllEqual on a set V of variables ensures that at least two variables among
V take distinct values.

20

Algorithm 2 Minimal task set

QuickXPlainTask(τi, A,Di)

1: X := ∅
2: σ1, ..., σ#hpi(A) {an enumeration of hpi(A). The enumeration order of

hpi(A) may have an effect on the content of the returned minimal task
set}

3: while Ri(X) ≤ Di do
4: k := 0
5: Y := X
6: while Ri(Y) ≤ Di and k < #hpi(A) do
7: k := k + 1
8: Y := Y ∪ {σk} {according to the enumeration order}
9: end while

10: X := X ∪ {σk}
11: end while
12: return X ∪ {τi}

Messages. The reasoning is quite similar. If a message Mij is found un-
schedulable, it is because of the messages in hpij(A) and the longest message
in lpij(A). We denote Mij(A) their union together with {Mij}. The translation
of this information in terms of constraint yields:∑

Mab∈Mij(A)

wab < #Mij(A)

It is equivalent to a NotAllEqual constraint on a set of messages since, to be
met, it requires that at least one message of Mij(A) ”disappears” (wab = 0).

Like for tasks, so as to reduce the set of involved messages, QuickXplain has
been implemented, using a similar adaptation of Eqs. (9) and (10). It returns
a minimal set of messages Mij(A)′.

7.3 Applying the method to an example

An example to illustrate the theory is developed hereafter. It shows how the
cooperation between master and subproblems is performed. Table 2 shows the
characteristics of the considered hardware architecture (with 4 processors)
and Table 3 those of the software architecture (with 20 tasks). The entry
”x, y → j” for the task τi indicates an edge cij with Cij = x and prioij = y.

The problem is constrained by:

• residence constraints:

21

pi p0 p1 p2 p3

mi 102001 280295 360241 41617

Table 2
Processor characteristics

τi Ti Ci µi prioi Message

τ0 36000 2190 21243 1 600,1 → 13

τ1 2000 563 5855 6 500,3 → 8

τ2 3000 207 2152 15 600,7 → 7

τ3 8000 2187 21213 3

τ4 72000 17690 168055 7 300,4 → 9

τ5 4000 667 6670 8 800,5 → 19

τ6 12000 3662 36253 14

τ7 3000 269 2743 16

τ8 2000 231 2263 12 100,6 → 18

τ9 72000 6161 59761 9

τ10 12000 846 8206 4 200,2 → 15

τ11 36000 5836 60694 20

τ12 9000 2103 20399 10

τ13 36000 5535 54243 13

τ14 18000 3905 41002 18

τ15 12000 1412 14402 5

τ16 6000 1416 14301 17 700,8 → 17

τ17 6000 752 7369 19

τ18 2000 538 5487 11

τ19 4000 1281 12425 2

Table 3
Task and message characteristics

· CC1: τ0 must be allocated to p0 or p1 or p2.
· CC2: τ16 must be allocated to p1 or p2.
· CC3: τ17 must be allocated to p0 or p3.

• co-residence constraints:
· CC4: τ7, τ17 and τ19 must be on the same processor.

• exclusion constraints:
· CC5: τ3, τ11 and τ12 must be on different processors.

To start the resolution process, the solver for the master problem finds a valid
solution in accordance with CC1, CC2, CC3, CC4 and CC5. How the cp solver
finds such a solution is not our objective here. The valid solution it returns is:

• processor p0: τ2, τ5, τ7, τ8, τ9, τ17, τ19.
• processor p1: τ4, τ6, τ12, τ13.
• processor p2: τ0, τ11, τ14, τ15, τ16.
• processor p3: τ1, τ3, τ10, τ18.

One deduces that messages are M0,13, M1,8, M4,9, M8,18, M10,15, and M16,17.

22

It is easy to check that it is a valid solution by considering allocation and
resource constraints:

• µ2 + µ5 + µ7 + µ8 + µ9 + µ17 + µ19 = 93383 ≤ m0;
• µ4 + µ6 + µ12 + µ13 = 278950 ≤ m1;
• µ0 + µ11 + µ14 + µ15 + µ16 = 151642 ≤ m2;
• µ1 + µ3 + µ10 + µ18 = 40761 ≤ m3;
• C2

T2
+ C5

T5
+ C7

T7
+ C8

T8
+ C9

T9
+ C17

T17
+ C19

T19
= 0.972 ≤ 1;

• C4

T4
+ C6

T6
+ C12

T12
+ C13

T13
= 0.938 ≤ 1;

• C0

T0
+ C11

T11
+ C14

T14
+ C15

T15
+ C16

T16
= 0.794 ≤ 1;

• C1

T1
+ C3

T3
+ C10

T10
+ C18

T18
= 0.894 ≤ 1.

• C0,13

T0
+ C1,8

T1
+ C4,9

T4
+ C8,18

T8
+ C10,15

T10
+ C16,17

T16
= 0.454 ≤ 1.

The subproblem now checks the schedulability of the valid solution. The
schedulability analysis proceeds in three steps.

First step: analyzing the schedulability of tasks. The worst-case re-
sponse time for each task is obtained by application of Eq. (8) and it is
compared with its relative deadline. Here τ5, τ12, τ16 and τ19 are found un-
schedulable.

Second step: analyzing the schedulability of messages. The worst-case
response time for each message is obtained by application of Eq. (9) and
Eq. (10) and it is compared with its relative deadline. Here M1,8 is found
unschedulable.

Third step: explaining why this allocation is not schedulable. The
unschedulability of τ5 is due to the interference of higher priority tasks on the
same processor: hp5 = {τ2, τ7, τ8, τ9, τ17}. By applying QuickXPlainTask
(see algorithm 2) with hp5 ordered by increasing index, we find S5(A)′ =
{τ5, τ9} as the minimal set. Consequently, the explanation of the unschedula-
bility is translated into the new constraint:

CC6: NotAllEqual{x5, x9}

In the same way, by applying QuickXPlainTask for τ12, we find:

CC7: NotAllEqual{x6, x12, x13}

for τ16:

CC8: NotAllEqual{x11, x16}

and for τ19:

CC9: NotAllEqual{x9, x19}

23

For M1,8, we have:

M1,8(A) = {M0,13, M1,8, M4,9, M8,18, M16,17}.

QuickXPlain returns M1,8(A)′ = {M0,13, M1,8, M4,9, M16,17} as the minimal
set. So another constraint is created:

CC10: w0,13 + w1,8 + w4,9 + w16,17 < 4

These new constraints CC6, CC7, CC8, CC9 and CC10 are added to the master
problem. They define a new problem for which it has to search for a valid
solution and so on.

After 20 iterations between the master problem and the subproblem, this
allocation problem is proven without solution. This results from 78 constraints
learnt all along the solving process. This example has been solved using Œdipe
(see Section 8). On a computer with a G4 processor (800MHz), its computing
time was 10.3 seconds.

8 Experimental results

We have developed a dedicated tool named Œdipe [13] that implements our
solving approaches. Œdipe is based on the Choco [33,31] cp system and
Palm [30], an explanation-based cp system.

The time that cp takes to find a solution depends on three parameters: the
size of the search space, the ability to reduce that search space, and the way it
is searched. In cp the search of solutions is managed by a search strategy that
aims at quickly directing the search towards good solutions without loosing
the completeness. A search strategy is related to the order of choice of variable
and value. It consists in defining an algorithm that specifies at each branching
the next variable to be chosen, together with its value. Different approaches
have been studied in [23] (conduct by the domain sizes, by the task worst case
execution times, etc.) and the most efficient strategy we found is a general
search strategy for constraint programming inspired by integer programming
techniques and based on the concept of impact of a variable [48]. The impact
measures the importance of a variable for the reduction of the search space.
Impacts are learnt from the observation of domain reduction during search and
need no tuning. Experiments have been conduct with this search strategy.

For the allocation problem, no specific benchmarks are available as a refer-
ence in the real-time community. Experiments are usually done on didactic

24

examples [63,4] or randomly generated configurations [47,39]. We adopted the
latter solution. Our generator takes several parameters into account:

• Tasks. The number of tasks, n, is fixed at 40. Periods are generated to have
a limitation of the hyper-period while various values are possible [22]. Prior-
ities are randomly assigned. Worst-case response times are generated with
the routine UUniFast [9], which implements an algorithm for efficiently
generating unbiased vectors of utilization. A parameter, %global, is used to
scale the global utilization such that

∑n
i=1 Ci/Ti = m%global. The difficulty

of a problem related to schedulability is evaluated using %global, which varies
from 40 to 90%.

• Communications. The number of communications, mes, i.e. the num-
ber of edges in the task graph, and the network workload, %mes, impact
on the difficulty of a problem. For the sake of simplicity, only linear data
communications between tasks are considered and the priority of a message
is inherited from the task producing it. Worst-case transmission times are
generated with the same technique as worst-case execution times such that∑n

i=1 Cij/Ti = %mes.
• Processors. The number of processors, m, is fixed at 7. The memory ca-

pacity of a processor is generated such that
∑m

k=1 mk = (1 + %mem)
∑n

i=1 µi

where %mem represents the global memory over-capacity for the hardware
architecture. The memory over-capacity has a significant impact on the dif-
ficulty of a problem (a very low capacity can lead to solving a packing
problem, sometimes very difficult).

• Allocation constraints. The percentage of tasks involved in allocation
constraints is given by the parameters %res for residence constraints, %co

for co-residence, and %exc for exclusion constraints. Different constraints are
sized such that %res, %co and %exc are respected. The allocation difficulty
for a problem is given by these percentages.

Several classes of problems have been defined depending on the difficulty of
both allocation and schedulability problems. Table 4 describes the parameters
of each basic difficulty class. By combining them, categories of problems can be
specified. For instance, a W-X-Y-Z category corresponds to problems with a
memory difficulty in class W, an allocation difficulty in class X, a schedulability
difficulty in class Y and a network difficulty in class Z.

Memory Allocation Schedulability Message

%mem %res %co %exc %global mes %mes

1 60 1 0 0 0 1 40 1 0 0

2 30 2 15 15 15 2 60 2 20 70

3 10 3 33 33 33 3 90 3 30 150

Table 4
Details of difficulty classes

25

8.1 Results

The method with the global constraint is denoted as Global-CPRTA and the
Benders decomposition method is denoted by Benders-CPRTA. A problem
with a solution is called a consistent problem. A problem for which the proof
that no solution exists is given, is called an inconsistent problem. A problem
for which we cannot state whether a solution exists or not, is an open problem.
A time limit is fixed at 10 minutes per problem. If the problem is still open
within this time limit, the search is stopped.

2−2−2−1 3−2−2−1 2−3−2−1 2−2−3−1 1−1−3−1 2−2−2−2 1−2−2−3 2−2−2−3
0

20

40

60

80

100

%

Consistent
Inconsistent

Fig. 6. Sum of percentages (y-axis) of consistent (black) and inconsistent (grey)
problems for each difficulty class (x-axis) with Benders-CPRTA (right) and
Global-CPRTA (left)

2−2−2−1 3−2−2−1 2−3−2−1 2−2−3−1 1−1−3−1 2−2−2−2 1−2−2−3 2−2−2−3
0

1000

2000

3000

4000

5000

T
im

e
(m

s)

Fig. 7. Median time (y-axis) for solving a problem (consistent and inconsistent) for
each difficulty class (x-axis) with Benders-CPRTA (right) and Global-CPRTA (left)

Figures 6 and 7 summarize some of the results (Appendix 2 gives detailed
results). We do not give the results for all the intermediate classes of problems
(like 1-1-1-1, 2-1-1-1, etc.) because they are easily solved and they do not
exhibit a specific behavior. The data are obtained on 100 instances (40 tasks,
7 processors) per class of difficulty with a Pentium 4 (3.2 GHz).

Figure 6 gives the percentage of consistent and inconsistent problems solved by
Benders-CPRTA and Global-CPRTA. For a difficulty class, Global-CPRTA is
the left bar and Benders-CPRTA is the right one. Benders- and Global-CPRTA

26

are efficient for solving problems with less than 20% of open problems for each
difficulty class (and less than 10% if we do not consider 2-2-3-1).

Figure 7 gives the median time for solving a problem. For hard schedulabilty
problems (e.g. class 1-1-3-1) and for a heavy load network (e.g. classes 1-2-2-3
and 2-2-2-3), Benders-CPRTA is clearly slower than Global-CPRTA. We can
explain this because, for Benders-CPRTA, the schedulability constraint set is
empty at the beginning of the search. Therefore, all the knowledge dealing with
schedulability has to be learnt from the subproblem. Furthermore, learning is
only effective when a valid solution is produced by the master problem solver
and, as a consequence, it is not really integrated into the cp algorithm. Global-
CPRTA improves performances from this point of view. For a heavy loaded
network, Benders-CPRTA has the same difficulty in taking into account the
schedulability of messages. Moreover, we have observed that nogoods inferred
from message unschedulability are usually ”weaker” (the search space cut is
smaller) than those inferred from task unschedulability. Learning is thus less
efficient for this kind of problem.

However, Benders-CPRTA is on average better in time than Global-CPRTA
for classes where schedulability constraints are negligible. In these cases, for
Benders-CPRTA, memory and allocation constraints are directly considered
by the master problem, which does not consider schedulability, contrary to
Global-CPRTA, and thus problems are solved faster.

8.2 Comparison with simulated annealing

As stated in Section 3, there are numerous search methods for static alloca-
tion problems. However, each technique needs some expertise for optimizing it
when a new model is considered. For example, for the branch-and-bound tech-
nique, branching and bounding algorithms need to be implemented for each
specific allocation problem, and the efficiency of the method depends on the
effectiveness of them. Moreover, each technique is sensitive to some parame-
ters. For example, a branch-and-bound is sensitive to the enumeration order of
variables. Thus, implementing an efficient solving algorithm (with optimiza-
tion and smart parameters) is a full problem for each method. Establishing a
comparison between different techniques is beyond our present concern.

Thus, we have only implemented and optimized a simulated annealing algo-
rithm (SA) for comparison purposes. The SA algorithm is inspired by [63]. This
choice was motivated by similarity with our model and because this work is
often referred to allocation problems of hard real-time systems. In [63], the en-
ergy function takes into account residence, exclusion and memory constraints
as well as task deadline constraints. To be consistent with the CPRTA model,

27

the schedulability of messages on the CAN bus and co-residence constraints
have been integrated in the same way. All constraints are weighted to make
the cost of each one uniform in the objective function. We took great care in its
implementation so as to reduce the computation time of this energy function.
Moreover, different neighbor functions were experimented as well as different
parameters like cooling, number of iterations and initial temperature so as to
optimize its behavior. Figures 8 and 9 show only the best results computed by
SA for all difficulty classes. When an iteration limit is reached, a new initial
solution is produced and a new research is done until a time limit fixed at 10
minutes. If this time limit is reached, the problem is considered as open.

Notice that SA is a heuristic method. As a consequence, in our case, SA
can only conclude on consistent problems (Fig. 8). SA is always as or less
efficient than Global-CPRTA. Figure 9 shows the median time to solve a con-
sistent problem with SA and CPRTA. Global-CPRTA is always faster than
SA. Benders-CPRTA is also faster than SA except for difficult schedulability
problems 1-1-3-1. All these results show that cp is an efficient way to mix
different constraints without an initial step.

2−2−2−1 3−2−2−1 2−3−2−1 2−2−3−1 1−1−3−1 2−2−2−2 1−2−2−3 2−2−2−3
0

20

40

60

80

100

%

Consistent
Inconsistent

Fig. 8. Sum of percentages (y-axis) of consistent (black) and inconsistent (grey)
problems for each difficulty class (x-axis) with SA (right), Benders-CPRTA (middle)
and Global-CPRTA (left)

2−2−2−1 3−2−2−1 2−3−2−1 2−2−3−1 1−1−3−1 2−2−2−2 1−2−2−3 2−2−2−3
0

1

2

3

4

5

6
x 10

4

T
im

e
(m

s)

Fig. 9. Median time (y-axis) for solving a problem (consistent and inconsistent)
for each difficulty class (x-axis) with SA (right), Benders-CPRTA (middle) and
Global-CPRTA (left)

28

9 Explanations

In comparison with other search methods, using a constraint solver may help
”intrinsically” to answer some classical queries when a problem is proved with-
out a solution such as: why does my problem have no solution? Usually, when
the domain of a variable of a csp becomes empty (no value exists that will re-
spect all the constraints on that variable), basic cp systems notify the user that
there is no solution. Nevertheless, thanks to the versatility of the explanation-
based constraint approach we use, those relevant constraints, which explain
the failure, are made available [30]. This advantage of the approach is another
motivation to go further in the utilization of cp. At present, only Benders-
CPRTA has been investigated with this objective.

Thus, in the case of an allocation problem for which no solution has been
found, we analyze the set of constraints that is returned to explain the problem
inconsistency. There can be many reasons to explain inconsistency. At the
design level, we would like to be able to incriminate high level characteristics
of the system such as: allocation constraints, schedulability requirements of
tasks, processors or network limitation. However, two points of view, based on
the software or hardware architecture, can be adopted. To begin, we only focus
on the characteristics of the software architecture by analyzing how each task
is ”responsible” for the failure. We give some insight into the way a critical
task from the schedulability point of view can be identified. Each failure of
the search process due to schedulability is analyzed and transformed into a
constraint criterion that encapsulates an accurate reason for this failure. The
study of these criteria may lead to the guilty task(s). The rationale of this
evaluation is based on the following remarks:

• The more a task appears within a nogood, the more this task has an impact
on the schedulability inconsistency.

• The level of propagation performed by a nogood (either NotAllEqual(xi) or∑
wij < B), i.e its impact within the proof, is strongly related to its size

(the number of tasks it involves). ”Small” NotAllEqual have greater impact.

In its general form, a constraint (learnt from a nogood) is defined by NotAllEqual(xi)
or

∑
wij < B (see Section 7.2). We denote NAE the set of constraints in the

NotAllEqual form and SUM the set of constraints in the second form. For a
task τi a constraint criterion Ci is evaluated:

Ci =
∑

c ∈ NAE

xi ∈ c

1

#c
+

∑
c ∈ SUM

∃j, wij ∈ c ∨ wji ∈ c

1

#c
(15)

This criterion considers the presence of a task in each constraint and its im-

29

pact. The bigger Ci is, the bigger the impact of τi is on the inconsistency. By
studying tasks with high Ci and understanding why they have such an impact
on the inconsistency (e.g. low priority allocation, too large processor utiliza-
tion), it is possible to change some requirements (e.g. by adapting priorities,
or choosing a different version for a task with another period) and so to obtain
a solution for the problem.

τi Ci τi Ci τi Ci τi Ci

τ19 6.33 τ13 4.78 τ2 3.22 τ3 2.53

τ14 5.98 τ9 3.95 τ1 2.85 τ16 2.25

τ11 5.98 τ6 3.83 τ10 2.77 τ18 1.97

τ5 5.42 τ7 3.45 τ4 2.65 τ8 1.73

τ12 5.42 τ15 3.32 τ17 2.55 τ0 1.15
Table 5
Constraint criteria computed on the example of Section 7.3

Table 5 gives Ci computed with Œdipe in accordance with equation (15)
for the inconsistent example of Section 7.3 with Œdipe [13]. Task τ19 has
the biggest Ci. This task has a low priority together with a high processor
utilization (C19/T19 = 0.32). By just changing its priority to the highest one,
and reusing Benders-CPRTA, we found a solution for this problem.

Notice that this process consists in analyzing the final set of constraints with a
heuristic based on the information about nogoods gathered during the search
with Benders decomposition. This process can be generalized to memory and
allocation constraints by the use of a specific search technique [48]. However,
this work is in progress and still needs more study before becoming significant.

10 Conclusion and future work

In this paper, we present an original and complete approach (CPRTA) to
solve a hard real-time allocation problem with constraint programming. To
tackle this problem, two approaches are proposed. For the first one, timing
constraints have been conducted to define a global constraint. This method
has been optimized to speed up the search by exploiting specific properties of
schedulability analysis. For the second one, a decomposition method built on
a logic Benders scheme is used. The whole problem is split into a master prob-
lem handling allocation and resource constraints and a subproblem for timing
constraints. A rich interaction between master and subproblems is performed
with the computation of minimal sets of unschedulable tasks and messages.
It implements a learning technique in an effort to combine the various issues
into a solution that satisfies all the constraints.

30

Experimental results show that these two methods produce an efficient way of
solving allocation problems. Thanks to the specialized global constraint, the
Global-CPRTA achieves a better performance.

Another important specificity of CPRTA is its completeness, i.e. if a problem
has no solution, the search algorithm is able to prove it. In future work, our
aim is to integrate into the design process an intelligent tool based on CPRTA
able to return pertinent explanations justifying the failure.

In the future, we hope to improve the solving method by considering prop-
erties of schedulability tests in a constraint expressed by automata [51]. The
problem of priorities assignment is another way to investigate by using the op-
timal algorithm of Audsley [5] in the Benders decomposition or a new global
constraint.

11 Acknowledgements

Many thanks to Carol Robins for her excellent work in making the document
more readable.

References

[1] T. F. Abdelzaher and K. G. Shin. Period-based partitioning and assignment
for large real-time applications. IEEE Transactions on Computers, 49(1):81–87,
2000.

[2] J. Aguilar and E. Gelenbe. Task assignment and transaction clustering
heuristics for distributed systems. Information Sciences, 97(2):199–219, 1997.

[3] S. Ali, J.-K. Kim, H. Siegel, A. Maciejewski, Y. Yu, S. Gundala, S. Gertphol, and
V. Prasanna. Greedy heuristic for resource allocation in dynamic distributed
real-time heterogeneous computing systems. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA 2002), volume 29, 2002.

[4] P. Altenbernd and H. Hansson. The slack method: A new method for static
allocation of hard real-time tasks. Real-Time Systems, 15(2):103–130, 1998.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, pages 284–292, 1993.

[6] L. Baccouche. Un Mécanisme d’Ordonnancement Distribué de Tâches Temps
Réel. PhD thesis, Institut National Polytechnique de Grenoble, 1995.

31

[7] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[8] T. Benoist, E. Gaudin, and B. Rottembourg. Constraint programming
contribution to Benders decomposition: a case study. Lecture Notes in Computer
Science, 2470:603–617, 2002.

[9] E. Bini and G. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30:129–154, 2005.

[10] Bosch. CAN Specification version 2.0, 1991.

[11] A. Burns, M. Nicholson, K. Tindell, and N. Zhang. Allocating and scheduling
hard real-time task on a point-to-point distributed system. In Proceedings of the
Workshop on Parallel and Distributed Real-Time Systems, pages 11–20, 1993.

[12] H. Cambazard, P.-E. Hladik, A.-M. Déplanche, N. Jussien, and Y. Trinquet.
Decomposition and learning for a hard real-time task allocating problem. In
Proceedings of the 10th International Conference on Principles and Practice of
Constraint Programming (CP 2004), 2004.

[13] H. Cambazard and P.E. Hladik. Œdipe.
http://oedipe.rts-software.org/index.php.

[14] M. Coli and P. Palazzari. A new method for optimisation of allocation and
scheduling in real-time applications. In Proceedings of the 7th Euromicro
Workshop on Real-Time Systems, pages 262–269, 1995.

[15] M. DiNatale and J. A. Stankovic. Applying of simulated annealing methods
to real-time scheduling and jitter control. In proceedings of the 16th IEEE
Real-Time Systems Symposium (RTSS 1995), 1995.

[16] C. Ekelin. An Optimization Framework for Scheduling of Embedded Real-Time
Systems. PhD thesis, Chalmers University of Technology, 2004.

[17] A. A. Elsadek and B. E. Wells. A heuristic model for task allocation in
heterogeneous distributed computing systems. The International Journal of
Computers and Their Applications, 6(1), 1999.

[18] F. Ercal, J. Ramanujan, and P. Sadayappan. Task allocation on a hyper-cube
by recursive bipartitioning. Journal of Parallel and Distributed Computing,
10:35–44, 1990.

[19] E. Ferro, R. Cayssials, and J. Orozco. Tuning the cost function in a
genetic/heuristic approach to the hard real-time multitask-multiprocessor
assignment problem. In Proceedings of the 3th World Multiconference on
Systemics Cybernetics and Informatics, pages 575–577, 1999.

[20] E. Ferro, D. Sanchez, R. Cayssials, and J. Orozco. New scheduling and
assignment real time control task with precedence and deadline constraint in
distributed control systems, 2000. url:citeseer.ist.psu.edu/405977.html.

32

[21] J. Fredriksson, K. Sandstrm, and M. Åkerholm. Optimizing resource usage in
component-based real-time systems. In Proceedings of the 8th International
Symposium on Component-based Software Engineering (CBSE8), 2005.

[22] J. Goossens and C. Macq. Limitation of the hyper-period in real-time periodic
task set generation. In Proceedings of the RTS Embedded System (RTS’01),
pages 133–147, 2001.

[23] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien. Dynamic
constraint programming for solving hard real-time allocation problems.
Technical Report 7, IRCCyN, 2005.

[24] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien. How to solve
allocation problems with constraint programming. In Proc. of the Work In
Progress of the 17th Euromicro, pages 25–28, Palma de Mallorca, Balearic
Islands, Spain, July 2005.

[25] P.-E. Hladik and A.-M. Déplanche. Extension au réseau can des problèmes de
placement. Technical Report 4, IRCCyN, 2005.

[26] J. Hooker, G. Ottosson, E. Thorsteinsson, and H. Kim. A scheme for unifying
optimization and constraint satisfaction methods. Knowledge Engineering
Review, 15(1):11–30, 2000.

[27] J. N. Hooker and G. Ottoson. Logic-based Benders decomposition.
Mathematical Programming, 96:33–60, 2003.

[28] V. Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class
of optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

[29] U. Junker. Quickxplain: Conflict detection for arbitrary constraint propagation
algorithms. In Proc. of the 8th International Joint Conference on Artificial
Intelligence (IJCAI 01), 2001.

[30] Narendra Jussien. The versatility of using explanations within constraint
programming. Habilitation thesis of Université de Nantes, 2003.

[31] Choco. http://choco.sourceforge.net/.

[32] N. Koziris, M. Romesis, P. Tsanakas, and G. Papakonstantinou. An efficient
algorithm for the physical mapping of clustered task graphs onto multiprocessor
architectures. In Proceedings of the 8th EuroPDP, pages 406–413, 2000.

[33] F. Laburthe. Choco: implementing a cp kernel. In Proceedings of CP
00 Post Conference Workshop on Techniques for Implementing Constraint
Programming Systems, 2000.

[34] E. Lawler. Recent results in the theory of machine scheduling. Mathematical
Programming: The State of the Art, 1983.

[35] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of the 11th IEEE Real-Time Systems Symposium
(RTSS 1990), pages 201–209, 1990.

33

[36] R. Lepère and D. Trystram. A new clustering algorithm for scheduling
task graphs with large communication delays. In Proceedings of the 16th
International Parallel and Distributed Processing Symposium (IPDPS 2002,
2002.

[37] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation, 22:237–250, 1982.

[38] V. Lo. Heuristic algorithms for task assignment in distributed systems. IEEE
Transactions on computers, 37(11):1384–1397, 1988.

[39] Y. Monnier, J.-P. Beauvais, and A.-M. Déplanche. A genetic algorithm for
scheduling tasks in a real-time distributed system. In Proceedings of the 24th
Euromicro Conference, 1998.

[40] T. Muntean and E-G. Talbi. Hill-climbing, simulated annealing and genetic
algorithms, a comparative study. In Proceedings of the 26th Hawaii
International Conference on Task Scheduling in Parallel and Distributed
Systems (HICSS-26), 1993.

[41] M. Mutka and J-P. Li. A tool for allocating periodic real-time tasks to a set of
processors. The Journal of Systems and Software, 29(2):135–164, 1995.

[42] J. Oh, H. Bahn, C. Wu, and K. Koh. Pareto-based soft real-time task scheduling
in multiprocessor systems. In Proceedings of the Seventh Asia-Pacific Software
Engineering Conference (APSEC’00), pages 24–28, 2000.

[43] OSEK Group. OSEK/VDX Communication version 3.0.2.

[44] H-J. Park and B. Kim. An optimal scheduling algorithm for minimizing the
computing period of cyclic synchronous tasks on multiprocessors. The Journal
of Systems and Software, 56:213–229, 2001.

[45] D-T. Peng, K. Shin, and T. Abdelzaher. Assignment and scheduling
communicating periodic tasks in distributed real-time systems. IEEE
Transactions on Software Engineering, 23(12), 1997.

[46] S. C. S. Porto and C.C. Ribeiro. A tabu search approach to task scheduling on
heterogeneous processors under precedence constraints. International Journal
of High-Speed Computing, 7(2), 1993.

[47] K. Ramamritham. Allocation and scheduling of complex periodic tasks. In
Proceedings of the 10th International Conference on Distributed Computing
Systems (ICDCS 1990), 1990.

[48] P. Refalo. Impact-based search strategies for constraint programming. In
Proceedings of the 10th International Conference on Principles and Practice
of Constraint Programming (CP 2004), 2004.

[49] J.C. Régin. Constraints and Integer Programming Combined, chapter Global
Constraints and Filtering Algorithms. Kluwer, 2003.

34

[50] M. Richard, P. Richard, and F. Cottet. Allocating and scheduling tasks in
multiple fieldbus real-time systems. In Proceedings of the IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), volume 16, pages
137–144, 2003.

[51] G. Richaud, H. Cambazard, B. O’Sullivan, and N. Jussien. Automata for
nogood recording in constraint satisfaction problems. In CP06 Workshop on
the Integration of SAT and CP techniques, Nantes, France, Sep 2006.

[52] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[53] F. Sandnes. A hybrid genetic algorithm applied to automatic parallel controller
code generation. In Proceedings of the 8th Euromicro Workshop on Real-Time
Systems, pages 70–75, 1996.

[54] J. Santos, E. Ferro, J. Orozco, and R. Cassials. A heuristic approach to
multitask-multiprocessing assignment problem using the empty-slots method
and rate monotonic scheduling. Real-Time Systems, 13(2):167–199, 1997.

[55] K. Schild and J. Würtz. Scheduling of time-triggered real-time systems.
Constraints, 5(4):335–357, 2000.

[56] M. Silva, C. Cardeira, and Z. Mammeri. Solving real-time scheduling
problems with hopfield-type neural networks. In Proceedings of the Euromicro
Conference, pages 671–678, 1997.

[57] H. Stone. Multiprocessor scheduling the aid of network flow algorithms. IEEE
Transactions on Software Engineering, 3(1):85–93, 1977.

[58] R. Szymanek, F. Gruian, and K. Kuchcinski. Digital systems design using
constraint logic programming. In Proceedings of The Practical Application of
Constraint Technologies and Logic Programming (PACLP 2000), 2000.

[59] R. Szymanek and K. Kuchcinski. Partial task assignment of task graphs under
heterogeneous resource constraints. In Proceedings of the 40th conference on
Design Automation (DAC ’03), pages 244–249, 2003.

[60] E-G. Talbi and T. Muntean. General heuristics for the mapping problem. In
Proceedings of the World Transputer Conference, 1993.

[61] E. S. Thorsteinsson. Branch-and-check: A hybrid framework integrating mixed
integer programming and constraint logic programming. Lecture notes in
Computer Science, 2239, 2001.

[62] K. Tindell, H. Hansson, and A. Wellings. Analysis real-time communications:
controller area network (CAN). In Proceedings of the 15th IEEE Real-Time
Systems Symposium (RTSS 1994), pages 259–265, 1994.

[63] K. W. Tindell, A. Burns, and A. Wellings. Allocating hard real-time tasks: An
np-hard problem made easy. Real-Time Systems, 4(2):145–165, 1992.

35

[64] L. Vargas and R. Olivaira. Empirical study of tabu search, simulated annealing
and multi-start in fieldbus scheduling. In Proceedings of the 10th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA 2005), volume 1, pages 101–108, 2005.

[65] S. Wang, J. Merrick, and K. Shin. Component allocation with multiple resource
constraints for large embedded real-time software design. In Proceedings of the
10th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’04), 2004.

[66] C. Wong, F. Thoen, K. Catthoor, and D. Verkest. Requirements for static task
scheduling in real-time embedded systems. In Proceedings of the 3rd Workshop
on System Design Automation (SDA 2000), pages 23–30, 2000.

Appendix 1: Properties of the schedulability analysis

Property 11.1 If a partial allocation a is unschedulable, then all decisions
from a produce an unschedulable allocation.

Proof: Consider Eq.8 that defines Ri(a), its computation is derived by itera-

tively calculating formula R
(n)
i (a) = Ci+

∑
τj∈hpi(a)

⌈
R

(n−1)
i (a)

Tj

⌉
Cj with R

(0)
i (a) =

Ci +
∑

τj∈hpi(a) Cj.

Property is proved if for a task τi ∈ U , all decisions δ from a are such that
Ri(a

′) > Ti with a′ = a+ δ. It is easy to prove it by induction by pointing out
that hpi(a) ⊂ hpi(a

′).

Induction basis. By definition R
(0)
i (a′) > R

(0)
i (a).

Induction step. Assume that R
(n)
i (a′) > R

(n)
i (a) is true. Therefore,

R
(n+1)
i (a′) >Ci +

∑
τj∈hpi(a′)

R
(n)
i (a)

Tj

 Cj

= Ci +
∑

τj∈hpi(a)

R
(n)
i (a)

Tj

 Cj +
∑

τj∈hpi(δ)

R
(n)
i (a)

Tj

 Cj

>R
(n+1)
i (a)

At the fix-point, we have : Ri(a
′) > Ri(a) > Ti.

The same reasoning could be made for messages by considering Eq.11 and
Eq.12. For a messsage Mij we have hpij(a) ⊂ hpij(a

′) and lpij(a) ⊂ lpij(a
′) �

36

Property 11.2 Consider a schedulable partial allocation a and δ, a decision
from a that allocates only τi with δ(τi) = pk. If τi is unschedulable in a′ = a+δ,
then all decisions from a that allocate a task τj with prioj < prioi ∧ Cj ≥
Ci ∧ Tj ≤ Ti on pk produce unschedulable allocations.

Proof: Consider a partial schedulable allocation a and two others a′ and a′′

such that a′ = a + δ1, a′′ = a + δ2, δ1(τi) = δ2(τj) = pk, Ri(a
′) > Ti and

prioj < prioi ∧ Cj ≥ Ci ∧ Tj ≤ Ti. We want to prove that Rj(a
′′) > Tj.

By definition of priorities, hpj(a
′′) ⊇ hpi(a

′).

The property will be proved by induction.

Induction basis. R
(0)
i (a′) = Ci+

∑
τx∈hpi(a′) Cx 6 Cj+

∑
τ∈hpj(a′′) C = R

(0)
j (a′′).

Induction step. Assume that R
(n)
j (a′′) > R

(n)
i (a′) is true. Therefore,

R
(n+1)
j (a′′) >Ci +

∑
τx∈hpj(a′′)

R
(n)
i (a′)

T

 Cx

= Ci +
∑

τx∈hpi(a′)

R
(n)
i (a′)

T

 Cx +
∑

τx∈hpj(a′′)−hpi(a′)

R
(n)
i (a′)

T

 Cx

>R
(n+1)
i (a′)

At the fix-point, we have : Rj(a
′′) > Ri(a

′) > Ti > Tj �

Property 11.3 Consider a schedulable partial allocation a and δ, a decision
from a that allocates only τi with δ(τi) = pk and where τb is unschedulable due
to τi, then all decisions from a that allocate a task τj with prioj > priob∧Cj ≥
Ci ∧ Tj ≤ Ti on pk produce unschedulable allocations.

Proof: Consider a partial allocation a, two others a′ and a′′ such that a′ =
a + δ1, a′′ = a + δ2, δ1(τi) = δ2(τj) = δ1(τb) = δ2(τb) = pk, Rb(a

′) > Tb and
prioj > priob ∧ Cj ≥ Ci ∧ Tj ≤ Ti. We want to prove that Rb(a

′′) > Tb.

By definition of priorities, hpb(a
′′)− {τj} = hpb(a

′)− {τi} = hpb.

The property will be proved by induction.

Induction basis. R
(0)
b (a′) = Cb +

∑
τ∈hpb

Cj + Ci 6 Cb +
∑

τ∈hpb
C + Cj =

R
′(0)
b (a′′).

Induction step. Assume that R
(n)
b (a′′) > R

(n)
b (a′) is true. Therefore,

37

R
(n+1)
b (a′′) >Cb +

∑
τ∈hpb

R
(n)
b (a′)

T

 C +

R
(n)
b (a′)

Ti

 Ci

>R
(n+1)
b (a′)

At the fix-point, we have : Rb(a
′′) > Rb(a

′) > Tb �

Appendix 2: Experimental results

The following tables are the detailed forms of the results shown in Section 8.
CPU is the computation time in milli-seconds. NODE is the number of nodes
explored during the search with the Global-CPRTA. ITER is the number of
iterations between the master problem and the subproblem for the Benders-
CPRTA. NOG is the mean of nogoods inferred from the subproblem for the
Benders-CPRTA. The data are obtained on 100 instances (40 tasks, 7 proces-
sors) per class of difficulty with a Pentium 4 (3.2 GHz).

CPU NODE CPU NODE CPU NODE

2-2-2-1 100 solved 56 consistent 44 inconsistent

Median 343.0 32.0 359.5 35.0 297.0 1.0

3-2-2-1 99 solved 57 consistent 42 inconsistent

Median 328.0 30.0 359.0 34.0 296.5 1.0

2-3-2-1 100 solved 19 consistent 81 inconsistent

Median 375.0 1.0 437.0 25.0 344.0 1.0

2-2-3-1 90 solved 30 consistent 60 inconsistent

Median 359.0 1.0 1906.5 604.5 328.0 1.0

1-1-3-1 99 solved 99 consistent 0 inconsistent

Median 453.0 78.0 453.0 78.0 0.0 0.0

2-2-2-2 100 solved 70 consistent 30 inconsistent

Median 312.0 30.0 328.0 33.0 266.0 1.0

1-2-2-3 100 solved 76 consistent 24 inconsistent

Median 578.0 72.0 851.5 160.0 297.0 1.0

2-2-2-3 95 solved 73 consistent 22 inconsistent

Median 734.0 120.0 1016.0 166.0 289.5 1.0

Table 6
Results for Global-CPRTA

38

CPU ITER NOG CPU ITER NOG CPU ITER NOG

2-2-2-1 100 solved 56 consistent 44 inconsistent

Median 266.0 12.0 44.0 343.5 18.5 83.5 203.0 1.0 13.0

3-2-2-1 99 solved 57 consistent 42 inconsistent

Median 328.0 20.0 61.0 594.0 42.0 147.0 219.0 1.0 11.0

2-3-2-1 100 solved 19 consistent 81 inconsistent

Median 265.0 1.0 14.0 422.0 29.0 111.0 250.0 1.0 13.0

2-2-3-1 90 solved 30 consistent 60 inconsistent

Median 250.0 2.0 22.5 7586.0 80.0 383.0 219.0 1.0 15.5

1-1-3-1 99 solved 99 consistent 0 inconsistent

Median 2828.0 78.0 367.0 2828.0 78.0 367.0 0.0 0.0 0.0

2-2-2-2 100 solved 70 consistent 30 inconsistent

Median 289.5 12.0 40.0 313.0 18.0 60.0 226.5 1.0 9.5

1-2-2-3 99 solved 76 consistent 23 inconsistent

Median 2641.0 152.0 375.0 6891.0 302.5 938.0 281.0 1.0 15.0

2-2-2-3 92 solved 70 consistent 22 inconsistent

Median 4726.5 179.5 452.5 7476.5 289.0 859.5 265.0 1.0 11.5

Table 7
Results for Benders-CPRTA

Class 2-2-2-1 3-2-2-1 2-3-2-1 2-2-3-1 1-1-3-1 2-2-2-2 1-2-2-3 2-2-2-3

% consistent 56.0 58.0 17.0 22.0 99.0 68.0 64.0 64.0

Median time 2140.0 2438.0 6750.0 53234.5 2187.0 11273.0 23664.0 28664.0

Table 8
Results for SA

39

