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Abstract

We consider the continuous model of log-infinitely divisible multifractal random mea-
sures (MRM) introduced in [1]. IfM is a non degenerate multifractal measure with
associated metricρ(x, y) = M([x, y]) and structure functionζ, we show that we have
the following relation between the (Euclidian) Hausdorff dimensiondimH of a mea-
surable setK and the Hausdorff dimensiondimρ

H with respect toρ of the same set:
ζ(dimρ

H(K)) = dimH(K). Our results can be extended to higher dimensions in the log
normal case: inspired by quantum gravity in dimension2, we consider the2 dimensional
case.

Key words or phrases:Random measures, Hausdorff dimensions, Multifractal processes.
MSC 2000 subject classifications: 60G57, 28A78, 28A80

1 Introduction

Multiplicative cascades are random measures that were introduced by Mandelbrot in [16]
to model the energy dissipation of a turbulent flow. This model, which arises as the limit of
discrete random multipliers, has been the object of numerous studies in probability theory (see
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for instance [14] for an account on the achieved results). Inthe beautiful note [4], inspired by
the work of [7], the authors related the Hausdorff dimensiondimH of a measurable setK to
the Hausdorff dimension of the same set in the random metric induced by the multiplicative
cascade: this gave the so called KPZ formula in analogy with asimilar formula in quantum
gravity ([12]).

In this work, we derive a similar formula in the context of log-infinitely divisible multi-
fractal random measures (MRM) introduced by the authors in [1]. MRM are scale invariant
generalisations of the log normal model introduced in [15] (and rigorously defined mathemat-
ically by Kahane in [11]) and the log Poisson model studied in[3]. MRM have been used
as models of the energy dissipation in a turbulent flow (see [9]) and of the volatility of a fi-
nancial asset (see [2], [6]); as such, MRM are much more realistic models than multiplicative
cascades whose construction relies on a discrete dyadic decomposition of the unit interval.
In particular, this dyadic dependent construction entailsthat multiplicative cascades have non
stationary increments which is not the case of MRM.

The following note is organized as follows: section 2 reminds the definition and main
properties of MRM. Section 3 reminds the background on Hausdorff dimensions needed in the
proof of the main theorem. In section 4, we state the main theorem in dimension 1: theorem
4.1. In section 5, we give the 2-dimensional analog for MRM and the Gaussian free field
(inspired by quantum gravity). In section 6, we give the detailed proof of theorem 4.1: our
proof follows tightly the one given in [4] for multiplicative cascades. Nevertheless, the main
estimates needed to carry out the proof are more difficult forMRM (the use of scale invariance
is crucial: see item 4. in proposition 2.5 below). In section7, we prove the theorems of section
5.

Remark 1.1. At the time we write this article, we have not seen the work of Duplantier and
Sheffield ([7]) which inspired the note [4]: we are thereforeindirectly indebted to them. It
seems that in [7] the authors prove a result similar to our theorem 5.4 (see below) using the
theory of large deviations for Gaussian processes: it wouldbe interesting to compare their
result with our theorem 5.4. In this article, we do not use large deviation theory; we prove
theorem 5.4 by a straightforward adaptation of the proof of theorem 4.1 (valid in dimension 1
for log infinitely divisible measures and in particular for log Gaussian measures).

2 Introductory background about MRM

The reader is referred to [1] for all the proofs of the resultsstated in this section.

Independently scattered infinitely divisible random measure. LetS+ be the half-plane

S+ = {(t, y); t ∈ R, y ∈ R
∗
+}
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with which we associate the measure (on the Borelσ-algebraB(S+))

θ(dt, dy) = y−2dt dy.

The characteristic function of an infinitely divisible random variableX can be written as
E[eiqX ] = eϕ(q), whereϕ is characterized by the Lévy-Khintchine formula

ϕ(q) = imq − 1

2
σ2q2 +

∫

R∗

(eiqx − 1 − iq sin(x)) ν(dx)

andν(dx) is the so-called Lévy measure. It satisfies
∫

R∗
min(1, x2) ν(dx) < +∞.

Following [1], we consider an independently scattered infinitely divisible random measure
µ associated to(ϕ, θ) and distributed on the half-planeS+ (see [17]). More precisely,µ
satisfies:

1) For every sequence of disjoint sets(An)n in B(S+), the random variables(µ(An))n are
independent and

µ
(

⋃

n

An
)

=
∑

n

µ(An) a.s.,

2) for any measurable setA in B(S+), µ(A) is an infinitely divisible random variable
whose characteristic function is

E(eiqµ(A)) = eϕ(q)θ(A).

We stress the fact thatµ is not necessarily a random signed measure. Let us additionnally
mention that there exists a convex functionψ defined onR such that for all non empty subset
A of S+:

- ψ(q) = +∞, if E(eqµ(A)) = +∞,
-E(eqµ(A)) = eψ(q)θ(A) otherwise.

Let qc be defined asqc = sup{q ≥ 0;ψ(q) < +∞}. For anyq ∈ [0, qc[, ψ(q) < +∞ and
ψ(q) = ϕ(−iq).

Multifractal Random Measures (MRM). We consider an independently scattered in-
finitely divisible random measureµ associated to(ϕ, θ) such thatqc > 1, namely that:

∃ǫ > 0, ψ(1 + ǫ) < +∞,

andψ(1) = 0.

Definition 2.1. Filtration Fl. Let Ω be the probability space on whichµ is defined.Fl is
defined as theσ-algebra generated by{µ(A);A ⊂ S+, dist(A,R2 \ S+) ≥ l}.
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Let us now define the functionf : R+ → R by

f(l) =

{

l, if l ≤ T
T if l ≥ T

The cone-like subsetAl(t) of S+ is defined by

Al(t) = {(s, y) ∈ S+; y ≥ l,−f(y)/2 ≤ s− t ≤ f(y)/2}.

For forthcoming computations, we stress thatθ(Al(t)) =
∫ +∞

l
f(y)y−2 dy < +∞ and, for

l ≤ T , θ(Al(t)) = ln(T/l) + 1.

Definition 2.2. ωl(t) process.The processωl(t) is defined asωl(t) = µ(Al(t)).

Definition 2.3. Ml(t) measure. For any l > 0, we define the measureMl(dt) = eωl(t) dt,
that is

Ml(I) =

∫

I

eωl(r) dr

for any Lebesgue measurable subsetI ⊂ R.

Definition 2.4. Multifractal Random Measure (MRM). With probability one, there exists a
limit measure (in the sense of weak convergence of measures)

M(dt) = lim
l→0+

Ml(dt).

This limit is called the Multifractal Random Measure. The scaling exponent ofM is defined
by

∀q ≥ 0, ζ(q) = q − ψ(q).

Proposition 2.5. Main properties of the MRM.

1. the measureM has no atoms in the sense thatM({t}) = 0 for anyt ∈ R.

2. The measureM is different from0 if and only if there existsǫ > 0 such thatζ(1+ǫ) > 1;
in that case,E(M([0, t])) = t.

3. if ζ(q) > 1 thenE[M([0, t])q] < +∞.

4. For any fixedλ ∈]0, 1] and l ≤ T , the two processes(ωλl(λt))0≤t≤T and (Ωλ +
ωl(t))0≤t≤T have the same law, whereΩλ is an infinitely divisible random variable inde-
pendent from the process(ωl(t))0≤t≤T and its law is characterized byE[eiqΩλ ] = λ−ϕ(q).
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5. For anyλ ∈]0, 1], the law of the process(M([0, λt]))0≤t≤T is equal to the law of
(WλM([0, t]))0≤t≤T , whereWλ = λeΩλ andΩλ is an infinitely divisible random vari-
able (independent of(M([0, t]))0≤t≤T ) and its characteristic function is

E[eiqΩλ ] = λ−ϕ(q).

6. If ζ(q) 6= −∞ then

E
[

M([0, t])q
]

= (t/T )ζ(q)E
[

M([0, T ])q
]

.

Proposition 2.6. Main properties of the scaling exponent. If there is ǫ > 0 such that
ζ(1 + ǫ) > 1, the functionq ∈ [0, 1] 7→ ζ(q) is continuous, strictly monotone increasing and
maps[0, 1] onto[0, 1].

3 Hausdorff dimension

In this section, we just set out the minimal required background about the Hausdorff dimen-
sion to understand our main result and its proof. We refer to [8] for an account on Hausdorff
dimensions.

Definition 3.1. Let (X, d) be a metric space. IfK ⊂ X ands ∈ [0,+∞[, thes-dimensional
Hausdorff content ofK is defined by

Cs
H(K) = inf

{

∑

i

rsi ; there is a cover of K by balls with radiiri > 0

}

.

Using the standard conventioninf ∅ = +∞, the Hausdorff dimension ofK is defined by

dimH(K) = inf {s ≥ 0;Cs
H(K) = 0} .

Lemma 3.2. (Frostman)Let (X, d) be a metric space.Thes-capacity of a Borelian setK ⊂
X

Caps(K) = inf

{

(

∫

K×K

|y − x|−sγ(dx)γ(dy)
)−1

; γ is a Borel measure such thatγ(K) = 1

}

is linked to the Hausdorff dimension ofK by the relation

dimH(K) = sup {s ≥ 0; Caps(K) > 0} .

5



4 KPZ formula in one dimension

If we define forx, y ∈ R, ρ(x, y) = M([x, y]), thenP a.s. ρ is a random metric onR. The
interval [0, T ] can be seen as a metric space when it is equipped either with the Euclidean
metric | · | or with the random metricρ. The main purpose of this paper is to establish a
relation between the Hausdorff dimension of a measurable set K ⊂ [0, T ] equipped with
the Euclidean metric and its Hausdorff dimension with respect to the (random) metric space
([0, T ], ρ).

Theorem 4.1. Assume there isǫ > 0 such thatζ(1 + ǫ) > 1 and that for allq ∈ [0, 1] we
haveψ(−q) <∞. LetK ⊂ [0, T ] be some deterministic and measurable nonempty set andδ0
its Hausdorff dimension with respect to the Euclidian metric. Then the Hausdorff dimension
dimρ

H(K) ofK with respect to the random metricρ coincidesP a.s. with the unique solution
δ in [0, 1] of the equationδ0 = ζ(δ).

Remark 4.2. We can seeρ as a strictly increasing function on[0, T ]: x → ρ(0, x). By
definition ofdimρ

H , we haveP a.s.:

∀K ∈ B(ρ([0, T ])), dimρ
H(ρ−1(K)) = dimH(K)

Applying the above equality toρ(K), we get an equivalent formulation to theorem 4.1: ifK
is some deterministic measurable set, we getP a.s.:

ζ(dimH(ρ(K))) = dimH(K)

5 KPZ formula in 2 dimensions

In this section, inspired by the KPZ formula in continuum quantum gravity ([12]), we consider
the natural extension in dimension2 of the results of the previous section in the log normal
case (the results of section 5.1 have analogs in all dimensions).

5.1 The log normal MRM measure in dimension 2

The log normal MRM in dimension 2 is the random measureM in R
2 defined formally by:

∀A ∈ B(R2), M(A) =

∫

A

eX(x)− 1
2

E[X(x)2]dx

where(X(x))x∈R2 is a "Gaussian field" whose covariance is given by:

E[X(x)X(y)] = γ2 ln+ R

|x− y| .
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whereγ2 andR are two positive parameters. To give a rigorous meaning toM , one can use
the theory of Gaussian multiplicative chaos introduced by Kahane in [11] or it’s extension
defined in [18]. In this framework, the measureM is the multiplicative chaos associated to
the functionln+ R

|x|
and it can be defined almost surely (see example 2.3 in [18]) asthe limit

(in the space of Radon measures) asl goes to0 of the random measuresMl(dx) defined by:

∀A ∈ B(R2), Ml(A) =

∫

A

eXl(x)−
1
2

E[Xl(x)
2]dx

where(Xl(x))x∈R2 is as centered Gaussian field whose covariance is given by:

E[Xl(x)Xl(y)] =







γ2 ln R
l

+ 2γ2(1 −
√

|y−x|
l

) if |y − x| ≤ l,

γ2 ln+ R
|y−x|

if |y − x| > l.

One can note the following scale invariance property for(Xl(x))x∈R2 : if λ ∈]0, 1] andl ≤ R,
the two fields(Xλl(λx))|x|≤R and(Ωλ+Xl(x))|x|≤R have the same law, whereΩλ is a centered
Gaussian random variable independent from(Xl(x))x∈R2 and of varianceγ2 ln 1

λ
. By taking

the limit asl goes to0, we get the following scale invariance forM : if λ ∈]0, 1], we have the
following identity in law:

(1) (M(λA))A⊂B(0,R)
(Law)
= λ2eΩλ−

γ2

2
ln 1

λ (M(A))A⊂B(0,R).

Taking the expectation in (1) to the powerq ∈ [0, 1], we get:

E[M(B(0, λ))q] = (
λ

R
)ζ(q)E[M(B(0, R))q]

with:

ζ(q) = (2 + γ2)q − γ2

2
q2.

Finally, it is possible to extend naturally the notion of Hausdorff content (and Hausdorff
dimension) on a metric space(X, d) to a measurable spaceX equipped with a measureµ by :

Cs
H(K) = inf

{

∑

i

µ(B(xi, ri))
s; there is a cover of K by ballsB(xi, ri)with radii ri > 0

}

.

With these extensions, we can state the following2-dimensional analog to theorem 4.1:

Theorem 5.2.Assume thatγ2 < 4. LetK ⊂ B(0, R) be some deterministic and measurable
nonempty set andδ0 its Hausdorff dimension with respect to the Euclidian metric. Then the
Hausdorff dimensiondimM

H (K) ofK with respect to the random measureM coincidesP a.s.
with the unique solutionδ in [0, 1] of the equationδ0 = ζ(δ).
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Proof. Just note that, in this setting, the Frostman lemma is unchanged if we define the ca-
pacity ofM by the following formula:

Caps(K) = inf

{

(

∫

K×K

(M(x, |y − x|))−sγ(dx)γ(dy)
)−1

; γ is a Borel measure such thatγ(K) = 1

}

The proof is then a straightforward adaptation of the proof of theorem 4.1.

5.3 The exponential of the Gaussian Free Field

In this subsection, as an application of the previous subsection, we prove the KPZ formula for
the exponential of the Gaussian Free Field (GFF) inB(0, R): this corresponds inB(0, R) to
the gravity measure considered on a 2 dimensional surface in[5]. The GFF is an important
object in Conformal Field theory since it has the conformal invariance property and a spatial
Markovian property (see [19]). Formally, the GFF (or Euclidian bosonic massless free field)
in B(0, R) is a "Gaussian Field"X with covariance given by:

E[XF (x)XF (y)] = GR(x, y),

whereGR is the Green function ofB(0, R) (see for example chapter 2.4 in [13] for the def-
inition and main properties). Let the processBt be Brownian motion starting fromx under
the measureP x and consider the stopping timeTR = inf{t ≥ 0, |Bt| = R}. If we denote
pR(t, x, y) = P x(Bt ∈ dy, TR > t), we have:

GR(x, y) = π

∫ ∞

0

pR(t, x, y)dt.

Note that for eacht > 0, pR(t, x, y) is a continuous positive and positive definite kernel
onB(0, R). Therefore, we can define the GFF measureMF as multiplicative chaos ([11])
associated to the kernelγ2GR whereγ2 < 4. In this framework,MF is the almost sure limit
(in the space of Radon measures) asl goes to0 of the measure:

Ml,F = eXl,F (x)− 1
2

E[Xl,F (x)2]dx

whereXl,F is a Gaussian field with the following covariance:

E[Xl,F (x)Xl,F (y)] = γ2π

∫ +∞

l2
pR(t, x, y)dt.

We know have the following analog of theorem 5.2:
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Theorem 5.4. Assume thatγ2 < 4 and r < R. LetK ⊂ B(0, r) be some deterministic
and measurable nonempty set andδ0 its Hausdorff dimension with respect to the Euclidian
metric. Then the Hausdorff dimensiondimM

H (K) ofK with respect to the random measureM
coincidesP a.s. with the unique solutionδ in [0, 1] of the equationδ0 = ζ(δ).

6 Proof of Theorem 4.1

Lemma 6.1. Letx < y ∈ R. If q ∈ [0, 1] then

E[ρ(x, y)q] ≤ C(T, q)|x− y|ζ(q),

whereC(T, q) is a positive constant only depending onT, q. As a consequence, ifK, δ, δ0 are
defined as in Theorem 4.1, then a.s.ζ(dimρ

H(K)) ≤ δ0.

Proof. By stationarity of the measureM and Proposition 2.5, we have

E[ρ(x, y)q] = E[M([x, y])q] = E[M([0, y − x])q] = |y − x|ζ(q)T−ζ(q)
E[M([0, T ])q].

So we can chooseC(T, q) = T−ζ(q)
E[M([0, T ])q] < +∞.

Let α > 0 andq ∈ [0, 1] such thatζ(q) > δ0. There exists a covering ofK by a countable
family ([xn, yn])n such that

∑

n |xn − yn|ζ(q) < α. Hence

E

[

∑

n

ρ(xn, yn)
q
]

=
∑

n

E
[

ρ(xn, yn)
q
]

≤ C(T, q)
∑

n

|yn − xn|ζ(q) ≤ C(T, q)α.

By the Markov inequality,P
(
∑

n ρ(xn, yn)
q ≤ C(T, q)

√
α
)

≥ 1−√
α. Put in other words,with

probability1−√
α, we have a covering of K with balls whoseρ-radii satisfy

∑

n ρ(xn, yn)
q ≤

C(T, q)
√
α. Thusq ≥ dimρ

H(K) a.s. and the lemma follows.

Proposition 6.2. LetK, δ, δ0, dimρ
H(K) be as in Theorem 4.1 and letq ∈ [0, 1] be such that

ζ(q) < δ0. Then a.s.q ≤ dimρ
H(K), that isδ0 ≤ ζ(dimρ

H(K)).

Proof. Sinceζ(q) < δ0, by the Frostman Lemma, there is a Borel probability measureγ0

supported byK such thatγ0(K) = 1 and
∫

[0,T ]2
|x− y|−ζ(q) γ0(dx) γ0(dy) < +∞.

Let us define, for any0 < l < T , the measure on[0, T ]:

νl(dr) = eqωl(r)−ψ(q)(ln(T/l)+1) γ0(dr)
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and its associated metric onR:

∀x, y ∈ R, ρl(x, y) = νl([x, y]).

We now investigate the quantity:

φ(l, γ0) ≡ E

[

∫

[0,T ]2
ρl(x, y)

−q νl(dx) νl(dy)
]

=

∫

[0,T ]2
E

[

ρl(x, y)
−qeqωl(x)+qωl(y)−2ψ(q)(ln(T/l)+1)

]

γ0(dx)γ0(dy)

= 2

∫

y≥x

E

[

ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)
]

γ0(dx)γ0(dy)

by stationarity of the processωl. To this purpose, we split the above integral in two terms as

φ(l, γ0) =2

∫

0≤y−x<l

E

[

ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)
]

γ0(dx)γ0(dy)

+ 2

∫

y−x≥l

E

[

ρl(0, y − x)−qeqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)
]

γ0(dx)γ0(dy)

≡φ1(l, γ0) + φ2(l, γ0).

We first estimateφ1(l, γ0). Using the Jensen inequality and the decrease of the mapping
x 7→ x−q yields

φ1(l, γ0)

=2

∫

0≤y−x<l

E

[(

∫ y−x

0

eωl(r) dr
)−q

eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)
]

γ0(dx)γ0(dy)

=
2e−2ψ(q)l2ψ(q)

T 2ψ(q)

∫

0≤y−x<l

E

[(

∫ y−x

0

eωl(r)−ωl(0)−ωl(y−x) dr
)−q]

γ0(dx)γ0(dy)

≤
∫

0≤y−x<l

2e−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|qE
[

e
∫ y−x
0 (qωl(0)+qωl(y−x)−qωl(r))

dr
y−x

]

γ0(dx)γ0(dy).

Given0 ≤ x < y ≤ T such thaty−x < l, defineAil ≡ Al(0)∩Al(y−x) 6= ∅. Each cone-like
subsetAl(r) (0 ≤ r ≤ y − x) can be split into three terms asAl(r) = Agl (r) ∪ Ail ∪ Adl (r),
whereAgl (r) (resp.Adl (r)) denotes the part ofAl(r) located on the left (resp. right) ofAil. It
is worth emphasizing that:

(ωdl (r))0≤r≤y−x = (µ(Adl (y−x)\Adl (y−x−r))−ψ′(0)θ(Adl (y−x)\Adl (y−x−r)))0≤r≤y−x
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is a right-continuous martingale, as well as(ωgl (r))0≤r≤y−x where:

ωgl (r) = µ(Agl (0) \Agl (r)) − ψ′(0)θ(Agl (0) \ Agl (r)).
By using the fact thatψ′(0) < 0, we get:

qωl(0) + qωl(y − x) − qωl(r) = qωil + qµ(Adl (y − x) \ Adl (r)) + qµ(Agl (0) \ Agl (r))
≤ qωil + qωdl (y − x− r) + qωgl (r).

Since(ωdl (r))r, (ωgl (r))r andwil = µ(Ail) are independent, the last expression is estimated as:

φ1(l, γ0)

≤
∫

0≤y−x<l

2e−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|qE[eqω
i
l ]E[ sup

0≤r≤y−x
eqω

d
l (y−x−r)]E[ sup

0≤r≤y−x
eqω

g
l (r)] γ0(dx)γ0(dy)

≤
∫

0≤y−x<l

2C2
q e

−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|q E[eqω
i
l ]E[eqω

d
l (y−x)]E[eqω

g
l (y−x)] γ0(dx)γ0(dy),

the last inequality resulting from the Doob inequality applied to the functionx → ex (Cq is a
constant only depending onq). It remains to computeθ(Ail), θ(A

g
l (0)) andθ(Adl (y−x)). It is

plain to see that

θ(Ail) = ln(T/l) + 1 − (y − x)/l, θ(Adl (y − x)) = θ(Agl (0)) = (y − x)/l,

in such a way that (we use thatψ(q) < 0 for all q in ]0, 1[):

φ1(l, γ0) ≤
∫

0≤y−x<l

2C2
q e

−2ψ(q)l2ψ(q)

T 2ψ(q)|y − x|q e
ψ(q)

(

ln(T/l)+1+(y−x)/l
)

e2(ψ(q) y−x
l

−ψ′(0) y−x
l

)γ0(dx)γ0(dy)

(2)

≤2e−2ψ′(0)C2
q (eT )−ψ(q)

∫

0≤y−x<l

1

|y − x|ζ(q)γ0(dx)γ0(dy).

Let us now focus onφ2(l, γ0). In what follows, we make a change of variableu = Tr/(y−
x):

φ2(l, γ0)

= 2

∫

y−x≥l

E

[eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)

(

∫ y−x

0
eωl(r) dr

)q

]

γ0(dx)γ0(dy)

=

∫

y−x≥l

2T q

|y − x|qE
[eqωl(0)+qωl(y−x)−2ψ(q)(ln(T/l)+1)

(

∫ T

0
eωl((y−x)uT−1) du

)q

]

γ0(dx)γ0(dy)
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We remind the reader of the following property: the process(ωl′α(αt))0≤t≤T has the same law
as the process(Ωα + ωl′(t))0≤t≤T , whereα ∈]0, 1], l′ ≤ T andΩα is an infinitely divisible
random variable independent from the process(ωl′(t))0≤t≤T such thatE[eiqΩα ] = α−ϕ(q). In
particular, choosingl′ = lT/(y− x) andα = (y− x)/T , the process

(

ωl
(

(y− x)t/T
))

0≤t≤T

has the same law as the process(Ω(y−x)/T +ωlT/(y−x)(t))0≤t≤T . Plugging this relation into the
above estimate ofφ2(l, γ0) yields

φ2(l, γ0)

=

∫

y−x≥l

2T q

|y − x|qE
[e

qΩ(y−x)/T +qω lT
y−x

(0)+qω lT
y−x

(T )−2ψ(q)(ln(T/l)+1)

(

∫ T

0
e
ω lT

y−x
(u)
du

)q

]

γ0(dx)γ0(dy)

=

∫

y−x≥l

2T ζ(q)

|y − x|ζ(q) E
[e

qω lT
y−x

(0)+qω lT
y−x

(T )−2ψ(q)(ln( y−x
l

)+1)

(

∫ T

0
e
ω lT

y−x
(u)
du

)q

]

γ0(dx)γ0(dy)

Thus it just remains to show that there existsC > 0 such that for alll′ in [0, T ]:

E

[eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ T

0
eωl′ (u) du

)q

]

≤ C

In the above inequality, we will restrict to the (non obvious) casel′ ∈ [0, T/4]. We have:

E

[eqωl′(0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ T

0
eωl′(u) du

)q

]

≤ E

[eqωl′(0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

It is worth mentioning that the setsAl′(0),Al′(T ) are disjoint. We then define

Bg
l′ = Al′(0) \ Al′(T/4)

Bd
l′ = Al′(T ) \ Al′(3T/4)

We stress that for anyu in [T/4, 3T/4]:

Al′(u) ∩ Bg
l′ = ∅, Al′(u) ∩ Bd

l′ = ∅

12



Using the relationθ(Bg
l′) = θ(Bg

l′) = ln(T/l′) + 1 − ln(4) and the independence ofµ(Bg
l′),

µ(Bd
l′), (µ(Al′(u)))T/4≤u≤3T/4, we get:

E

[eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

= e−2ψ(q)(ln(T/l′)+1)
E

[

eqµ(Bg

l′
)
]

E

[

eqµ(Bd
l′

)
]

E

[eqµ(Al′ (0)∩Al′ (T/4))+qµ(Al′ (T )∩Al′ (3T/4))

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

= e−2 ln(4)ψ(q)
E

[eqµ(Al′ (0)∩Al′ (T/4))+qµ(Al′ (T )∩Al′ (3T/4))

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

Let us denoteAg
l′(u),Ad

l′(u) the following sets foru ∈ [T/4, 3T/4]:

Ag
l′(u) = (Al′(0) ∩ Al′(u)) \ Al′(3T/4)

Ad
l′(u) = (Al′(T ) ∩ Al′(u)) \ Al′(T/4)

We have the following decompositions:

µ
(

Al′(0) ∩ Al′(T/4)
)

= µ
(

Ag
l′(T/4)

)

+ µ
(

Al′(0) ∩Al′(3T/4)
)

,

µ
(

Al′(T ) ∩ Al′(3T/4)
)

= µ
(

Ad
l′(3T/4)

)

+ µ
(

Al′(T ) ∩Al′(T/4)
)

.

We also have for allu in [T/4, 3T/4]:

µ
(

Al′(u)
)

= µ
(

Ag
l′(u)

)

+ µ
(

Al′(0) ∩ Al′(3T/4)
)

+ µ
(

Ad
l′(u)

)

+ µ
(

Al′(T ) ∩ Al′(T/4)
)

+ µ
(

Al′(u) \ (Al′(0) ∪ Al′(T )
)

.
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Therefore, we get:

E

[eqωl′ (0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

= e−2 ln(4)ψ(q)
E

[eqµ(Al′ (0)∩Al′ (T/4))+qµ(Al′ (T )∩Al′ (3T/4))

(

∫ 3T/4

T/4
eωl′(u) du

)q

]

= e−2 ln(4)ψ(q)
E

[ eqµ(Ag

l′
(T/4))+qµ(Ad

l′
(3T/4))

(

∫ 3T/4

T/4
eµ(Ag

l′
(u))+µ(Ad

l′
(u))+µ(Al′ (u)\(Al′ (0)∪Al′ (T ))) du

)q

]

≤ e−2 ln(4)ψ(q)
E

[

eqµ(Ag

l′
(T/4))−q infu µ(Ag

l′
(u))

]

× E

[

eqµ(Ad
l′

(3T/4))−q infu µ(Ad
l′

(u))
]

E

[ 1
(

∫ 3T/4

T/4
eµ(Al′ (u)\(Al′ (0)∪Al′ (T )) du

)q

]

= e−2 ln(4)ψ(q)
E

[

eq supu(µ(Ag

l′
(T/4))−µ(Ag

l′
(u)))

]

× E

[

eq supu(µ(Ad
l′

(3T/4))−µ(Ad
l′

(u)))
]

E

[ 1
(

∫ 3T/4

T/4
eµ(Al′ (u)\(Al′ (0)∪Al′ (T )) du

)q

]

= e−2 ln(4)ψ(q)
E

[

eq supu(µ(Ag

l′
(T/4)\Ag

l′
(u)))

]

× E

[

eq supu(µ(Ad
l′

(3T/4)\Ad
l′

(u)))
]

E

[ 1
(

∫ 3T/4

T/4
eµ(Al′ (u)\(Al′ (0)∪Al′ (T )) du

)q

]

The process
µ(Ag

l′(T/4) \ Ag
l′(u)) − ψ′(0)θ(Ag

l′(T/4) \ Ag
l′(u))

is a martingale foru in [T/4, 3T, 4] and we haveθ(Ag
l′(T/4)) bounded independently froml′.

By applying Doob’s inequality, there exists some constantC > 0 independent froml′ such
that:

E

[

eq supu(µ(Ag

l′
(T/4)\Ag

l′
(u)))

]

≤ C.

Similarly, we have:

E

[

eq supu(µ(Ad
l′

(3T/4)\Ad
l′

(u)))
]

≤ C

Therefore, we get:
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E

[eqωl′(0)+qωl′ (T )−2ψ(q)(ln(T/l′)+1)

(

∫ 3T/4

T/4
eωl′ (u) du

)q

]

≤ CE

[ 1
(

∫ 3T/4

T/4
eµ(Al′ (u)\(Al′ (0)∪Al′ (T )) du

)q

]

Sinceψ(−q) < ∞, by using the same argument than the proof of theorem 3 (Moments of
negative orders) in [3], one can show that:

sup
l′

E

[ 1

(

∫ 3T/4

T/4
e
µ

(

Al′ (u)\(Al′ (0)∪Al′ (T )

)

du
)q

]

<∞.

To sum up, gathering the estimates ofφ1(l, γ0) andφ2(l, γ0), we have proved the existence
of some constantC > 0 such that:

φ(l, γ0) ≤ C

∫

[0,T ]2

1

|y − x|ζ(q)γ0(dx)γ0(dy) < +∞.

Let us now define the measureν(dt) = liml→0+ νl(dt) (see Lemma 6.3 below). From Lemma
6.3 and the Fatou lemma, we obtain

E

[

∫

[0,T ]2
ρ(x, y)−q ν(dx) ν(dy)

]

≤ E

[

lim inf
l→0+

∫

[0,T ]2
ρl(x, y)

−q νl(dx) νl(dy)
]

≤ lim inf
l→0+

E

[

∫

[0,T ]2
ρl(x, y)

−q νl(dx) νl(dy)
]

≤ C

∫

[0,T ]2

1

|y − x|ζ(q)γ0(dx)γ0(dy) < +∞.

As a consequence,P a.s. the integral
∫

[0,T ]2
ρ(x, y)−q ν(dx) ν(dy) is finite. We complete the

proof with the Frostman Lemma.

Lemma 6.3. Assume that we are givenq ∈ [0, 1] such that

∫

[0,T ]2

γ0(dx)γ0(dy)

|y − x|ζ(q) < +∞.
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We consider, for anyl > 0, the measure on[0, T ]:

νl(dt) = eqωl(t)−ψ(q)
(

ln(T/l)+1
)

γ0(dt).

Then the weak limit (in the sense of measures)

ν(dt) = lim
l→0+

νl(dt)

existsP-a.s., is finite, supported byK P-a.s., and we have
∫

[0,T ]2
ρ(x, y)−q ν(dx) ν(dy) ≤ lim inf

l→0+

∫

[0,T ]2
ρl(x, y)

−q νl(dx) νl(dy).

Proof. According to the proof of Proposition6.2, we have

φ(l, γ0) ≤ C

∫

[0,T ]2

γ0(dx)γ0(dy)

|y − x|ζ(q) < +∞.

Furthermore,ρl(x, y) ≤ ρl(0, T ) for any0 ≤ x ≤ y ≤ T , in such a way that

E[νl(A)2ρl(0, T )−ζ(q)] ≤ φ(l, γ0) ≤ C

∫

[0,T ]2

γ0(dx)γ0(dy)

|y − x|ζ(q) < +∞

for any Lebesgue measurable subsetA of [0, T ]. Moreover, if the Lebesgue measure ofA is
strictly positive then the Hölder inequality yields

E[νl(A)2/(1+ζ(q))] ≤E[νl(A)2Ml([0, T ])−ζ(q)]1/(1+ζ(q))E[Ml([0, T ])]ζ(q)/(1+ζ(q))

≤ C ′

∫

[0,T ]2

γ0(dx)γ0(dy)

|y − x|ζ(q) < +∞.
(3)

We remind the reader that(νl(A))l is martingale for any Lebesgue measurable subsetA of
[0, T ]. From (3), this martingale is bounded inL1+ǫ for someǫ > 0. As a consequence, it
convergesP-a.s. towards a limit denoted byν(A) as l → 0. It is readily seen thatν is a
measure on[0, T ] P-a.s. Sinceνl(Kc) = 0, it is clear thatν(Kc) = 0 P-a.s.

Finally, E[ν([0, T ])] = liml→0 E[νl([0, T ])] = γ0([0, T ]) ≥ 1. Moreover{ν([0, T ]) > 0}
is an event of the asymptoticσ-field generated by the random variables(νl(A))l and has
therefore probability 0 or 1. As a consequence, the event{ν([0, T ]) > 0} has probability 1.

The last inequality of the lemma results from Lemma 6.4 belowand the weak convergence
of measures.
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Lemma 6.4. P a.s., the metric(ρl)l uniformly converges towards the metricρ as l → 0, that
is

P a.s., lim
l→0

sup
0≤x≤y≤T

|ρl(x, y) − ρ(x, y)| = 0.

Proof. The mappingx 7→ ρ(0, x) is continuous because of the non-degeneracy ofρ (see
Proposition 2.5). Moreover, for eachl > 0, the mappingx 7→ ρl(0, x) is increasing and
the sequence(ρl(0, x) converges pointwiseP a.s. towardsρ(0, x) (see Definition 2.4). The
uniform convergence then results from the Dini theorem.

7 Proof of theorem 5.4

Let r < R. We chooseδ > 0 such thatr + δ < R. With the notations of section 5.1, one
can see that there exists two positive constantscr,δ, Cr,δ such that for allx, y ∈ B(0, r+ δ) we
have (independently ofl andx, y):

(4) E[Xl(x)Xl(y)] + cr,δ ≤ E[Xl,F (x)Xl,F (y)] ≤ E[Xl(x)Xl(y)] + Cr,δ.

Proof of: ζ(dimMF
H (K)) ≤ dimH(K).

The inequality (4) and the classical corollary 6.2 in [18] imply the existence forq ∈ [0, 1]
of Cq,r,δ > 0 such that:

∀B(xi, ri) ⊂ B(0, r + δ), E[MF (B(xi, ri))
q] ≤ Cq,r,δr

ζ(q)
i .

We conclude by using the same argument than in the proof of theorem 4.1.
Proof of: ζ(dimMF

H (K)) ≥ dimH(K).
Supposeζ(q) < dimH(K). Following the notations of section 6 (proof of theorem 4.1),

we consider a measureγ0 supported byK such thatγ0(K) = 1 and
∫

[0,T ]2
|x− y|−ζ(q) γ0(dx) γ0(dy) < +∞.

The inequality (4) and the classical corollary 6.2 in [18] imply the existence of some constant
Cq,r,δ > 0 such that for allx, y ∈ B(0, r) with |y − x| ≤ δ:

E

[

(

∫

B(x,|y−x|)

eXl,F (z)− 1
2

E[Xl,F (z)2]dz)−qeqXl,F (x)+qXl,F (y)− q2

2
E[Xl,F (x)2]− q2

2
E[Xl,F (y)2]

]

≤ Cq,r,δE
[

(

∫

B(x,|y−x|)

eXl(z)−
1
2

E[Xl(z)
2]dz)−qeqXl(x)+qXl(y)−

q2

2
E[Xl(x)

2]− q2

2
E[Xl(y)

2]
]
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Taking the limit asl goes to0, this implies:

lim
l→∞

∫

|y−x|≤δ

γ0(dx)γ0(dy)E
[

(

∫

B(x,|y−x|)

eXl,F (z)− 1
2

E[Xl,F (z)2]dz)−qeqXl,F (x)+qXl,F (y)− q2

2
E[Xl,F (x)2]− q2

2
E[Xl,F (y)2]

≤ Cq,r,δ lim
l→∞

∫

|y−x|≤δ

γ0(dx)γ0(dy)E
[

(

∫

B(x,|y−x|)

eXl(z)−
1
2

E[Xl(z)
2]dz)−qeqXl(x)+qXl(y)−

q2

2
E[Xl(x)

2]− q2

2
E[Xl(y)

2]
]

<∞.

We remind that the second inequality above results from a straightforward adaptation to
the2 dimensional case of the proof of theorem 4.1 (in the log normal case).

We then conclude by using the same argument than in the proof of theorem 4.1.
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