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Abstract

We consider the continuous model of log-infinitely divisilphultifractal random mea-
sures (MRM) introduced in [1]. IfM is a non degenerate multifractal measure with
associated metrip(z,y) = M([x,y]) and structure functioq, we show that we have
the following relation between the (Euclidian) Hausdoriimégnsiondimy of a mea-
surable setx” and the Hausdorff dimensiodim?, with respect top of the same set:
¢(dim%,(K)) = dimp (K). Our results can be extended to higher dimensions in the log
normal case: inspired by quantum gravity in dimenslpwe consider th@ dimensional
case.
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1 Introduction

Multiplicative cascades are random measures that werednted by Mandelbrot in [16]
to model the energy dissipation of a turbulent flow. This moddich arises as the limit of
discrete random multipliers, has been the object of nunssstudies in probability theory (see



for instance [14] for an account on the achieved resultsthdérbeautiful note [4], inspired by
the work of [7], the authors related the Hausdorff dimensiony of a measurable sé{ to
the Hausdorff dimension of the same set in the random meiticded by the multiplicative
cascade: this gave the so called KPZ formula in analogy wahmalar formula in quantum
gravity ([12]).

In this work, we derive a similar formula in the context of {odinitely divisible multi-
fractal random measures (MRM) introduced by the author&nIRM are scale invariant
generalisations of the log normal model introduced in [B5id rigorously defined mathemat-
ically by Kahane in [11]) and the log Poisson model studieBin MRM have been used
as models of the energy dissipation in a turbulent flow (s@ea®d of the volatility of a fi-
nancial asset (see [2], [6]); as such, MRM are much morestgatnodels than multiplicative
cascades whose construction relies on a discrete dyadargessition of the unit interval.
In particular, this dyadic dependent construction entads multiplicative cascades have non
stationary increments which is not the case of MRM.

The following note is organized as follows: section 2 rensittide definition and main
properties of MRM. Section 3 reminds the background on Hadsdimensions needed in the
proof of the main theorem. In section 4, we state the mainrmeon dimension 1: theorem
4.1. In section 5, we give the 2-dimensional analog for MRM #me Gaussian free field
(inspired by quantum gravity). In section 6, we give the detaproof of theorem 4.1: our
proof follows tightly the one given in [4] for multiplicatercascades. Nevertheless, the main
estimates needed to carry out the proof are more difficufi@M (the use of scale invariance
is crucial: see item 4. in proposition 2.5 below). In secliowe prove the theorems of section
5.

Remark 1.1. At the time we write this article, we have not seen the workugl&ntier and
Sheffield ([7]) which inspired the note [4]: we are thereforglirectly indebted to them. It
seems that in [7] the authors prove a result similar to ourdfesn 5.4 (see below) using the
theory of large deviations for Gaussian processes: it wdaddnteresting to compare their
result with our theorem 5.4. In this article, we do not usegadeviation theory; we prove
theorem 5.4 by a straightforward adaptation of the proothafdrem 4.1 (valid in dimension 1
for log infinitely divisible measures and in particular farg Gaussian measures).

2 Introductory background about MRM

The reader is referred to [1] for all the proofs of the ressi&ged in this section.

Independently scattered infinitely divisible random measee. Let S* be the half-plane

ST={(t,y);te Ry eR}}



with which we associate the measure (on the Beralgebra3(S™))
0(dt, dy) = y2dt dy.

The characteristic function of an infinitely divisible rawd variableX can be written as
E[e’X] = e#(@), wherey is characterized by the Lévy-Khintchine formula

1 ‘
©(q) =imq — 502q2 + / (' —1 —igsin(z)) v(dx)
R*

andv/(dx) is the so-called Lévy measure. It satisfigs min(1, 2?) v(dz) < 4oc.

Following [1], we consider an independently scattered itdin divisible random measure
p associated tdyp, #) and distributed on the half-plang™ (see [17]). More preciselyy
satisfies:

1) For every sequence of disjoint sét§,),, in B(S™), the random variable§.(A,,)),, are

independent and

2) for any measurable set in B(S™), u(A) is an infinitely divisible random variable
whose characteristic function is

E<€iqu(A)) — e#(D)0(A)

We stress the fact thatis not necessarily a random signed measure. Let us additignn
mention that there exists a convex functiolefined onR such that for all non empty subset
Aof ST

-1h(q) = +oo, if E(e?4)) = 400,

-E(etW) = e¥@9(4) otherwise.

Let ¢. be defined ag. = sup{q > 0;v¢(q) < +o0}. For anyq € [0, q.[, ¥(q) < +o0 and
¥(q) = (—iq).

Multifractal Random Measures (MRM). We consider an independently scattered in-
finitely divisible random measurneassociated t¢p, ¢) such that,. > 1, namely that:

de >0, ¥(1+¢€) < +o0,
andy (1) = 0.

Definition 2.1. Filtration F. Let () be the probability space on whighis defined. 7 is
defined as the-algebra generated b (A); A C ST, dist(A4,R?\ St) > }.



Let us now define the functiofi: R, — R by

I, ifIl<T
f(l):{T if i >T
The cone-like subset,(t) of ST is defined by

At) ={(s,y) € STy =L —f(y)/2 < s =t < f(y)/2}.

For forthcoming computations, we stress that,(t)) = [ f(y)y~>dy < +oo and, for
I <T,0(A(t) =In(T/l)+ 1.

Definition 2.2. wy(t) process.The process)(t) is defined as(t) = u(A;(t)).

Definition 2.3. M;(t) measure. For any! > 0, we define the measurd,(dt) = ¢~® dt,
that is

for any Lebesgue measurable subset R.

Definition 2.4. Multifractal Random Measure (MRM). With probability one, there exists a
limit measure (in the sense of weak convergence of measures)

M(dt) = lim M,(dt).

1—0+*

This limit is called the Multifractal Random Measure. Thalsty exponent of\/ is defined
by
Vg >0, ((q)=q—v(q)

Proposition 2.5. Main properties of the MRM.
1. the measuré/ has no atoms in the sense thdi{¢}) = 0 for any?¢ € R.

2. The measuré/ is different fronD if and only if there exists > 0 such that/ (1+¢) > 1;
in that caseE(M ([0, t])) = t.

3. if{(q) > 1thenE[M([0,])?] < +o0.

4. For any fixed\ €]0,1] andl < T, the two processefvy;(\t))o<i<r and (Qy +
wi(t))o<t<r have the same law, whef®, is an infinitely divisible random variable inde-
pendent from the process (t))o<;<r and its law is characterized B[e’»] = \~#(@),



5. For any A €]0,1], the law of the processM ([0, At]))o<i<7 iS equal to the law of
(WAM([0,1]))o<t<r, WhereW, = X and ), is an infinitely divisible random vari-
able (independent d@f\/ ([0, t]))o<:<r) and its characteristic function is

E[etiA] — \ ¥

6. If {(q) # —oo then

E[M([0,])?] = (t/T)"PE[M ([0, T])"].

Proposition 2.6. Main properties of the scaling exponent.If there ise > 0 such that
¢(1+4¢€) > 1, the functiony € [0, 1] — ((q) is continuous, strictly monotone increasing and
maps|0, 1] onto |0, 1].

3 Hausdorff dimension

In this section, we just set out the minimal required backgobabout the Hausdorff dimen-
sion to understand our main result and its proof. We refe8}dédr an account on Hausdorff
dimensions.

Definition 3.1. Let (X, d) be a metric space. IK' C X ands € [0, +oc[, the s-dimensional
Hausdorff content ok is defined by

C}(K) = inf {Z r;;there is a cover of K by balls with radii > 0} :
Using the standard conventianf () = +oo, the Hausdorff dimension df is defined by

dimpy(K) =inf {s > 0; O} (K) =0} .

Lemma 3.2. (Frostman)Let (X, d) be a metric space.Thecapacity of a Borelian sek” C
X

Cap,(K) = inf { (/ ly — x|‘57(dx)7(dy))71; v is a Borel measure such that k') = 1}
KxK

is linked to the Hausdorff dimension &f by the relation

dimpg (K) = sup {s > 0; Cap,(K) > 0} .



4 KPZ formulain one dimension

If we define forz,y € R, p(z,y) = M([z,y]), thenP a.s. p is a random metric ofR. The
interval [0, T'] can be seen as a metric space when it is equipped either witBublidean
metric | - | or with the random metrig. The main purpose of this paper is to establish a
relation between the Hausdorff dimension of a measuraltlése- [0, 7] equipped with
the Euclidean metric and its Hausdorff dimension with respe the (random) metric space

([0, 77, p).

Theorem 4.1. Assume there is > 0 such that{(1 + ¢) > 1 and that for allg € [0,1] we
havey(—q) < co. LetK C [0, T] be some deterministic and measurable nonempty sef@and
its Hausdorff dimension with respect to the Euclidian neetiihen the Hausdorff dimension
dim’, (K') of K with respect to the random metriccoincidesP a.s. with the unique solution
4§ in [0, 1] of the equatior, = ((9).

Remark 4.2. We can seg as a strictly increasing function ofY, 7]: = — p(0,z). By
definition ofdim?, , we haveP a.s.:

VK € B(p(0,T)), dimfy(p~"(K)) = dimp (K)

Applying the above equality to K'), we get an equivalent formulation to theorem 4.1Kif
is some deterministic measurable set, welyjats.:

((dimpy (p(K))) = dimp (K)

5 KPZ formulain 2 dimensions

In this section, inspired by the KPZ formula in continuum uen gravity ([12]), we consider
the natural extension in dimensi@rof the results of the previous section in the log normal
case (the results of section 5.1 have analogs in all dimeggio

5.1 The log normal MRM measure in dimension 2

The log normal MRM in dimension 2 is the random measufén R? defined formally by:
VA € B(R?), M(A) = / (X (@)~ SEX (@] g
A

where(X (z)).cr2 is a "Gaussian field" whose covariance is given by:
R
lz —y|

E[X ()X (y)] = 7" In"



where+? and R are two positive parameters. To give a rigorous meaning f@ne can use
the theory of Gaussian multiplicative chaos introduced lah&he in [11] or it's extension
defined in [18]. In this framework, the measuyé is the multiplicative chaos associated to
the functionln™ |7R| and it can be defined almost surely (see example 2.3 in [18})eabmit

(in the space of Radon measuresj gses ta) of the random measuréd;(dz) defined by:
VA € B(R?), M(A) = / Xi(0)— EX ()] g
A

where(X;(z)).crz is as centered Gaussian field whose covariance is given by:

By — 47 2=/ ly— 1] <

fyzanr‘yTRx‘ if |y —z| >L
One can note the following scale invariance property(fof(z)),.crz: if A €]0,1] andl < R,
the two fields( X (Az)) 1<z and (€2 +X;(2) )|z <r have the same law, whef, is a centered
Gaussian random variable independent fro¥ia(z)),cr2 and of variancey? In § By taking
the limit asl goes ta), we get the following scale invariance fof: if A €]0, 1], we have the
following identity in law:

(1) (MOA)) acso.m "= A2eB T3 (M(A)) acson)-
Taking the expectation in (1) to the powgeke [0, 1], we get:

EIM(B(O, V)%) = () WM (B(0, R))]
with:

2

C(q) =2+ — %qg-

Finally, it is possible to extend naturally the notion of Iddorff content (and Hausdorff
dimension) on a metric spa¢é, d) to a measurable spaééequipped with a measuyeby :

Cy(K) = inf {ZM(B(% r;))%; there is a cover of K by ball®(z;, r;)with radii r; > 0} :

With these extensions, we can state the followdrdgjmensional analog to theorem 4.1:

Theorem 5.2. Assume that? < 4. Let K C B(0, R) be some deterministic and measurable
nonempty set and}, its Hausdorff dimension with respect to the Euclidian neetifhen the
Hausdorff dimensiodim?/ (k) of I with respect to the random measuve coincidesP a.s.
with the unique solution in [0, 1] of the equatiord, = ((J).



Proof. Just note that, in this setting, the Frostman lemma is urggwhif we define the ca-
pacity of M by the following formula:

Cap,(K) = inf {(/K K(M(:c, ly — x\))‘sy(d:c)y(dy))fl; ~ is a Borel measure such thatK') = 1}

The proof is then a straightforward adaptation of the prédaheorem 4.1.
]

5.3 The exponential of the Gaussian Free Field

In this subsection, as an application of the previous sulmsgave prove the KPZ formula for
the exponential of the Gaussian Free Field (GFER{0, R): this corresponds i® (0, R) to
the gravity measure considered on a 2 dimensional surfagg.imhe GFF is an important
object in Conformal Field theory since it has the conformabriance property and a spatial
Markovian property (see [19]). Formally, the GFF (or Euigdidbosonic massless free field)
in B(0, R) is a "Gaussian FieldX with covariance given by:

E[Xr(2)Xr(y)] = Gr(z,y),

whereGr, is the Green function oB(0, R) (see for example chapter 2.4 in [13] for the def-
inition and main properties). Let the proce8sbe Brownian motion starting froma under
the measure”” and consider the stopping tim&, = inf{¢t > 0, |B;| = R}. If we denote
pr(t,z,y) = P*(B, € dy, Tr > t), we have:

GR<x7 y) = 7T/ pR<t7 l’,y)dt
0

Note that for eacht > 0, pr(t,z,y) is a continuous positive and positive definite kernel
on B(0, R). Therefore, we can define the GFF measlfe as multiplicative chaos ([11])
associated to the kernetG'r wherey? < 4. In this framework M/ is the almost sure limit
(in the space of Radon measuresj gses ta) of the measure:

M, r = X1 (@) =X r (@)%] g

whereX,  is a Gaussian field with the following covariance:

“+oo

E[XZ,F(x)Xl,F(y)] = ’}/271'/1; pR(t, J],y)dt

We know have the following analog of theorem 5.2:



Theorem 5.4. Assume that? < 4 andr < R. Let K C B(0,r) be some deterministic
and measurable nonempty set apdts Hausdorff dimension with respect to the Euclidian
metric. Then the Hausdorff dimensidin? (K) of K with respect to the random measuve
coincidesP a.s. with the unique solutiohin [0, 1] of the equatior, = ¢(J).

6 Proof of Theorem 4.1

Lemma6.1.Letz <y € R. If ¢ € [0, 1] then
Elp(z,y)") < (T, q)|z —y[*?,

whereC(T', q) is a positive constant only depending Bn;. As a consequence,if, §, §, are
defined as in Theorem 4.1, then & &dim’; (K)) < do.

Proof. By stationarity of the measur® and Proposition 2.5, we have
Elp(z,y)*) = E[M([z,y])"] = E[M([0,y — 2])*] = |y — 2|*OT~@E[M ([0, T])7].

So we can choos€(T, q) = T-WE[M([0,T])1] < +oc.
Leta > 0 andq € [0, 1] such that(q) > dy. There exists a covering df by a countable
family ([x,, y.]), such thal” |z, — y,|°? < a. Hence

B[S plan 5n)?] = SB[, < CT0) S [y — a9 < C(T, g)ar

n

By the Markov inequalityP( 3", p(zn, y2)? < C(T, q)y/a) > 1—/a. Putin other words,with
probability1 — \/a, we have a covering of K with balls whopeadii satisfy) " p(z,, y,)? <
C(T,q)\/a. Thusq > dimf,(K) a.s. and the lemma follows. O

Proposition 6.2. Let K, 4, 6y, dim”, (K) be as in Theorem 4.1 and lete [0, 1] be such that
C(q) < do. Then a.sq < dim%(K), thatisdy < ((dim%,(K)).

Proof. Since((q) < 4y, by the Frostman Lemma, there is a Borel probability measgre
supported by« such thaty,(K) = 1 and

/ 2 — 5179 o (dz) 0(dy) < +oo.
[0,7]?

Let us define, for an§ < | < T, the measure o, 7:

v(dr) = e~ v@n@/D+) gy



and its associated metric @
Ve,y € R, pi(z,y) = vz, y]).
We now investigate the quantity:
o0 =E[ [ plo.o) uldo) m(dy)]
(0,772
= / E [/)z(x, y)—qeqwz(w)+qwz(y)—2w(q)(1n(T/l)+1)] Yo(dx)yo(dy)
(0,772
= 2/ E[Pl(O, y— x)—qeqwz(0)+qwz(y—x)—2w(q)(ln(T/l)+1)] Yo(dz)vo(dy)
y>x
by stationarity of the process. To this purpose, we split the above integral in two terms as
o(1,7) :2/ E[pl(O,y _ x)—qeqwl(0)+qwl(y—x)—2¢(Q)(ln(T/l)+1):| Yo(dx)yo(dy)
0<y—a<l

) / o [,01(0, Y x)—qeqwl<o>+qwl(y—x>—2w<q><ln<T/1>+1>} vo(dz)o(dy)
y—x>l

=¢1(l,v) + ¢2(1,7)-

We first estimate), (1, ,). Using the Jensen inequality and the decrease of the mapping
x — x~%yields

¢1(l, %)

y—x —q
0<y—z<l 0

2e—2v(a)2¢(q) / y-z —q
T2%() 0<y—z<l 0

2¢—2¢(9) [2¢(q) vz i
< S [e 0 (qwz(0)+qwz(y—w)—qwz(7"))yfx] vo(dx)%(dy).
/0§y—a:<l TQw(q) |y - x|q

Given0 < z < y < T'suchthay —x < [, defineA; = A;(0)NA;(y—=z) # 0. Each cone-like
subset4;(r) (0 < r < y — z) can be split into three terms as(r) = AJ(r) U Aj U Ad(r),
where A/ (r) (resp. A¢(r)) denotes the part of;(r) located on the left (resp. right) ofi. It
is worth emphasizing that:

(@] (M)ozrey-a = (AT (y = 2)\ Al (y =2 = 1)) =9 (0)0(A] (y = 2)\ Al (y =2 = 1) )o<r<y—o

10



is a right-continuous martingale, as well@g (r))o<,<,—. Where:

wi(r) = p(A7(0) \ A7 (r)) — 4'(0)6(A7 (0) \ Af(r)).
By using the fact that/(0) < 0, we get:

qwi(0) + qui(y — ) — qui(r) = qu] + qu(Af(y — ) \ Al(r)) + qu(A7(0) \ A(r))
< quj + quii(y — x — 1) + qui ().

Since(wi(r)),, (w{(r)), andw! = u(A}) are independent, the last expression is estimated as:
(bl (lu 70)

2¢—2¢(q) [2¢(q) ; 4 B
< / v Ele™E[ sup e™TWTIE] sup 00 (dx)yo(dy)
0

<y—x<l T2¢'(q) |y - x|q 0<r<y—zx 0<r<y—zx

202 —2¢(2) [2¢(2) . .
< : Efer[Bfer! 0= |E[e™ 0] (do)(dy),
0

<y—a<i T2 (q) |y — IL’|q

the last inequality resulting from the Doob inequality aeglto the functionc — e* (C, is a
constant only depending @f. It remains to computé( A}), 6(A7(0)) andf(A¢(y — x)). Itis
plain to see that

0(A) =In(T/D) +1—(y—2)/l, O(Al(y —)) = 0(A](0)) = (y — )/1,
in such a way that (we use thatg) < 0 for all ¢ in |0, 1]):

(2
o1(1,v0) S/

0<y—z<l T2¢'(Q)|y - x|q

202 e—2¢(a) [2¢(a) e s
4 w(@) (/)14 6-2)/1) 20T 0 O Ty )y (dy)

—oy _ 1
<2e~ 2 (O)Cg(eT) ¥(a) /0< Ty —al@
Sy—z<

Let us now focus oms (1, o). In what follows, we make a change of variable= T'r /(y—
x):

Yo(dz)vo(dy).

¢2 (la 70)
/ e2w1(0)+qwi (y—)—2¢(q) (In(T/1)+1)
_9 [
y—x>1

( foy_$ ewi(r) dr) I

/ T4 [eqwz (0)+qui (y—2) —24(q)(In(T/1)+1)
q
y ( T el—apr ) du)

[ 20(do0(ay

] Yo(dz)vo(dy)

—x>1 |y - x|q

11



We remind the reader of the following property: the prodess (at))o<:<r has the same law
as the procesf?, + wy(t))o<i<r, Wherea €0, 1], I’ < T and(2, is an infinitely divisible
random variable independent from the process(t))o<:<7 such thatE[e’*] = a=¢@, In

particular, choosing = IT/(y — x) anda = (y — =) /T, the procesgw, ((y — =)t/T)) -,

has the same law as the proc€S§, .),r +wir/(y—2)(t))o<i<r. Plugging this relation into the
above estimate af, (1, o) yields

¢2(l7 70)
/ 9T4 qu(y—x)/T-i-qw%(O)'quleTx(T)—2¢(Q)(1H(T/l)+1)
Yy

0 € V7°

—x>l \y — x‘qE ( T wir (u) du)q ’Yo(dl’)”y()(dy)

9T¢(a) Iz Orbaw iz (T)=20(@)(n(475)+1)
B / [ ] “o(dw)yo(dy)
Yy

w U q
(foTe yl*T””( )du>

—x>l ‘y - x‘C(q)

Thus it just remains to show that there exiSts> 0 such that for all’ in [0, 7]

[ e2wi (0)+qw (T)=2¢(q) (In(T/1")+1)

( foT ewr () du) !

In the above inequality, we will restrict to the (non obvipoase’ € [0,7/4]. We have:

<

[equ (0)+quwy (T)=2¢(q)(In(T/1')+1)

( foT ewrr (1) du)q ]

[equ/(O)Jrqu (T)=24(q)(In(T/1")+1) }
— q
(f;/TZ * e () du)
It is worth mentioning that the set, (0), A, (7)) are disjoint. We then define

B = Ap(0) \ Ap(T'/4)
Bji = Ap(T) \ Ap(3T/4)

We stress that for any in [1'/4, 3T/4]:

Ap(u)NBY =0, Ap(w)NBj =0

12



Using the relatiord(BY) = 0(B)) = In(T/I') + 1 — In(4) and the independence pf B),
M(Bﬁ), (n(Ap (U)))T/4gu§3T/4, we get:

. [eqwu (0)+qwy (T)=2¢(q) (In(T/1")+1) }

3T/4 0 (u q
(5 e

— e~ 2(@Wn(T/) DR [equ(Bf,)} E [equ(B[",)] E [

edt(Ay (0)NAy (T/4))+qu(Ay (T)NAy (3T/4)) }

(fT/4 ewr ( )du>
GQH(AV(O) Ap (T/4)+qu(Ay (T)NAy (31 /4))]

q
(il et )

_ e—2ln<4)w(q)E[

Let us denoted?, (u), A¢(u) the following sets fow € [T'/4,3T/4]:

(Ar(0) N Ay (u)) \ Av(3T/4)
Aj(u) = (Ap(T) N Ap(w)) \ Ar(T/4)

P

<

S
I

We have the following decompositions:
(Au(0) N Au(T/4)) = u(ALT/4)) + po(An(0) N A0 (3T/4) )
M(Al/ (T) N Al/(3T/4)> - u(Ald,(ST/zl)) n M(A,/ (T) N Ay (T/4)).

We also have for all in [T°/4, 37 /4]:

o+ p(Av(u) \ (A0(0) U An(T)).

13



Therefore, we get:

[eqwl/ (0)+quwy (T)—2¢(q)(In(T/1')+1) ]

3T/ wpr(u !
(fT/4 et ) du)
r e (Ay (O)NA (T/4))+qu(Ay (T)NAy (3T /4)) ]

( f BT/4 oy () du)q
equ(«‘lf/ (T/4))+qu( A (3T/4))

( IBT/4 (AS () + (A% () Ay (w)\(Ay (0)UA (T du) }

— e 2m@Y(@)R

_ 2@u@p|

< o 2P [ [ pan(A l,<T/4>>—quuu<A;’,<u>>]

< E [equ(Af, (3T/4)) g infu p(A (u))] E[ 1 }
( f3T /4 (A (w)\(Ay (0)UA (T du)

— 2@ [eq sup,, (1(AY (T/4)— pu(AS, <u>>)]

< E [eq sup,, (u(Af} (3T/4)—p(AY (u)))] E[ 1 }
(f3T/4 Ay (w)\ (A (0)UA, (T du)

— 2@ [eq sup,, (1( A7, (T/4)\Af, (u)))}

< E [eq sup., (u(A3 (37 /4)\ A2 (u)))} E[ 1 ]
( f3T/4 (A W\ (A (0)UA (T)) du)

The process
(AL (T/4)\ Ap (u) — ' (0)0(AZ(T'/4) \ Aj (u)

is a martingale for in [T'/4, 3T, 4] and we havé(.A;} (T/4)) bounded independently froth
By applying Doob’s inequality, there exists some constant 0 independent frond’ such

that:
E[eqsupuw(A (T/4)\ A <u>>)] <C.

Similarly, we have:
E [eq sup,, (1A (3T/4)\ A5, (u)))} <C

Therefore, we get:
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[eqwl/<0)+qu(T)—w(q)an(T/z’)H)
(fT/4 e« () du)

1
< CE [ J
<f3T/4 et (Ay (W\(Ay (0)UA (T)) du)

Sincey(—q) < oo, by using the same argument than the proof of theorem 3 (Mtseén
negative orders) in [3], one can show that:

1

supE[ ] < 00.

v 37/4 u(Ay \(Al/<o>uAy<T>) i)’
(fT/4 u)

To sum up, gathering the estimates®fl, 7o) ando, (1, 7o), we have proved the existence
of some constant’ > 0 such that:

1
ly — z[c@

o(l, ) < C/

(0,77

(dz)yo(dy) < +o0.

Let us now define the measurélt) = lim,; .+ v4(dt) (see Lemma 6.3 below). From Lemma
6.3 and the Fatou lemma, we obtain

E| /[O NS W(dy)) < B[ limint /[0 e ) )]

1—0+*

< liminf E [/ oz, y) Ty (dr) l/l(dy)}
(0,77

1—0t+

1
- C/[OT]Q m%(dfv)%(dy) < +oo0.

As a consequenc®, a.s. the mtegraf[0 T2 p(x,y)"1v(dr)v(dy) is finite. We complete the
proof with the Frostman Lemma. 0J

Lemma 6.3. Assume that we are givene [0, 1] such that

/ %(dﬂc_)%(dy)
(0,77
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We consider, for any > 0, the measure oft), 7'):
wi(dt) = e O=@ (@) Ly
Then the weak limit (in the sense of measures)

v(dt) = lim v (dt)

—0+

existsP-a.s., is finite, supported by P-a.s., and we have

/ ple. )" v(dz) v(dy) < lim inf / o, )~ vi(d) v(dy).
(0,72 (0,772

1—0+

Proof. According to the proof of Propositiof2, we have

o(l,7) < C/ no(d)yo(dy)

<
o2 |y —x¢@ e

Furthermorep,(z,y) < p(0,T) forany0 < x < y < T, in such a way that

E[n(A4)(0,7) @] < ¢(1,7%) < C / Yo(dz)70(dy)

<
o2 |y —z[¢@ e

for any Lebesgue measurable subdaif [0, T'|. Moreover, if the Lebesgue measureAfs
strictly positive then the Holder inequality yields

E[v;(A)% @] <B[v,(A)2M, ([0, T]) @O DIR[0, T])]5 @/ 1+¢(@)

(3) < C’/ M < +00.
o2 |y —x¢@

We remind the reader that;(A)); is martingale for any Lebesgue measurable sudset
[0, T]. From (3), this martingale is bounded i< for somee > 0. As a consequence, it
convergesP-a.s. towards a limit denoted by(A) as! — 0. It is readily seen that is a
measure o0, 7] P-a.s. Since,(K°) = 0, itis clear that/(K¢) = 0 P-a.s.
Finally, E[v([0, T])] = lim;—¢ E[14([0,T])] = 7([0,T]) > 1. Moreover{v([0,7]) > 0}
is an event of the asymptotie-field generated by the random variables(A)), and has
therefore probability O or 1. As a consequence, the e{«efi0, 7']) > 0} has probability 1.
The last inequality of the lemma results from Lemma 6.4 bedlad the weak convergence
of measures. O
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Lemma 6.4. P a.s., the metri¢p,); uniformly converges towards the metfi@as! — 0, that
is

Pas, lm sup |p(z,y)—p(z,y)| = 0.
=0 0<z<y<T

Proof. The mapping: — p(0,z) is continuous because of the non-degeneracy (gfee
Proposition 2.5). Moreover, for ea¢h> 0, the mappingr — p;(0,x) is increasing and
the sequencép,(0, z) converges pointwis® a.s. toward$(0, z) (see Definition 2.4). The
uniform convergence then results from the Dini theorem. O

7 Proof of theorem 5.4

Letr < R. We choose > 0 such that- + § < R. With the notations of section 5.1, one
can see that there exists two positive constantsC) s such that for all:, y € B(0,r + ) we
have (independently dfandz, y):

(4) E[Xi(2) Xi(y)] + crs < E[Xi p(2) X r(y)] < E[Xi(2)Xi(y)] + Crs.

Proof of: ¢(dimy* (K)) < dimg(K).
The inequality (4) and the classical corollary 6.2 in [18pisnthe existence fog € [0, 1]
of C,,s > 0 such that:
VB(wi,:) C B(0,r +8), E[Mp(B(;,1,))7) < Cyrors®.

We conclude by using the same argument than in the proof oféne4.1.

Proof of: ¢(dim}/* (K)) > dimy (K).

Suppose(q) < dimy(K). Following the notations of section 6 (proof of theorem 4.1)
we consider a measutg supported by such thaty,(K) = 1 and

/ |z — y|_<(q) Yo(dzx) vo(dy) < +o00.
[0, 772

The inequality (4) and the classical corollary 6.2 in [18pimthe existence of some constant
Cyro > 0 such that for alle, y € B(0,r) with |y — z| < §:

E[( / o X1,p(2) = 3EX r (2)?] dz)qeqxl,ﬂmnqxlf(y)‘fuz[xl,p(x)?}‘frﬁ[xl,p(y)ﬂ
B(,|y~a])

< Cyr B /B

eXi(2)— %]E[XL(Z)Q}dz)—qequ(x)-i-le (y)— éE[Xl ($)2]—§]E[Xl(y)2]}

(z,ly—=[)
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Taking the limit ad goes ta, this implies:

lim 70(dx)70(dy)E[( / ¢X0r () SEIXL P ()] ) ~000X1p ()X p ()~ 5 BLX P ()7~ BLX1 ()2

=00 J|y—z|<6 B(w,|y—xl)

< Cyprslim Yo(dx)0(dy)E [(/ eXz(z)EE[XZ(Z)2]dz)qeqxl(xHqu(y)qzz]E[Xl(x)Q]fE[Xl(y)2]]
" 500 Jiy—a|<s B(x,|y—xl)

< 00.

We remind that the second inequality above results fromaagsttforward adaptation to
the2 dimensional case of the proof of theorem 4.1 (in the log nboase).
We then conclude by using the same argument than in the pfdo¢orem 4.1.
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