N

N

KPZ formula for log-infinitely divisible multifractal
random measures
Rémi Rhodes, Vincent Vargas

» To cite this version:

Rémi Rhodes, Vincent Vargas. KPZ formula for log-infinitely divisible multifractal random measures.
2008. hal-00293878v1

HAL Id: hal-00293878
https://hal.science/hal-00293878v1
Preprint submitted on 7 Jul 2008 (v1), last revised 27 Jul 2008 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00293878v1
https://hal.archives-ouvertes.fr

KPZ formula for log-infinitely divisible multifractal
random measures

7th July 2008

Rémi Rhodes, Vincent Vargas
CNRS, UMR 7534, F-75016 Paris, France

Université Paris-Dauphine, Ceremade, F-75016 PariscEran
e-mail:r hodes @er enade. dauphi ne. fr,

var gas@er emade. dauphi ne. fr

Abstract

We consider the continuous model of log-infinitely divisilhultifractal random mea-
sures (MRM) introduced in [1]. IfM is a non degenerate multifractal measure with
associated metrip(x,y) = M ([z,y]) and structure functioq, we show that we have
the following relation between the (Euclidian) Hausdoriindnsiondimy of a mea-
surable setk” and the Hausdorff dimensiodim/, with respect top of the same set:
¢(dim%,(K)) = dimpy (K).
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1 Introduction

Multiplicative cascades are random measures that werednted by Mandelbrot in [11]
to model the energy dissipation of a turbulent flow. This modéich arises as the limit of
discrete random multipliers, has been the object of nunsstudies in probability theory (see
for instance [9] for an account on the achieved results)hémiote [4], the authors related the
Hausdorff dimensionlim; of a measurable sét” to the Hausdorff dimension of the same



set in the random metric induced by the multiplicative cdscahis gave the so called KPZ
formula in analogy with a similar formula in quantum gravity

In this work, we derive a similar formula in the context of odinitely divisible multi-
fractal random measures (MRM) introduced by the author& JnJIRM are scale invariant
generalisations of the log normal model introduced in [HDId rigorously defined mathemat-
ically by Kahane in [8]) and the log Poisson model studied3jp MRM have been used as
models of the energy dissipation in a turbulent flow (see &njj of the volatility of a finan-
cial asset (see [2], [5]); as such, MRM are much more realisibdels than multiplicative
cascades whose construction relies on a discrete dyadmmbexsition of the unit interval.
In particular, this dyadic dependent construction entagé multiplicative cascades have non
stationary increments which is not the case of MRM.

The following note is organized as follows: section 2 remsirtide definition and main
properties of MRM. Section 3 reminds the background on HaxiEdimensions needed in
the proof of the main theorem. In section 4, we state the nfaorem: theorem 4.1. In
section 5, we give the detailed proof of theorem 4.1: our pfoltows tightly the one given
in [4] for multiplicative cascades. Nevertheless, the nestimates needed to carry out the
proof are more difficult for MRM (the use of scale invarians&iucial).

2 Introductory background about MRM

The reader is referred to [1] for all the proofs of the ressitged in this section.

Independently scattered infinitely divisible random measee. Let S* be the half-plane
ST ={(ty);tc Ry e R} }
with which we associate the measure (on the Beralgebra3(S™))
0(dt, dy) = y2dt dy.

The characteristic function of an infinitely divisible rawd variableX can be written as
E[eX] = e#(@), wherey is characterized by the Lévy-Khintchine formula

1 4
o(q) = imq — 502(12 + / (' —1 —igsin(z)) v(dx)
R*
andv/(dx) is the so-called Lévy measure. It satisfigs min(1, 2?) v(dz) < 4oc.
Following [1], we consider an independently scattered itdin divisible random measure
w associated tdyp, #) and distributed on the half-plang™ (see [12]). More preciselyy
satisfies:



1) For every sequence of disjoint sét§,),, in B(S™), the random variableg.(A,,)),, are

independent and

2) for any measurable set in B(S™), u(A) is an infinitely divisible random variable
whose characteristic function is

E<€iqu(A)) — #(0)0(A)

We stress the fact thatis not necessarily a random signed measure. Let us additignn
mention that there exists a convex functiomlefined orR such that for all non empty subset
Aof ST:

-1h(q) = +oo0, if E(e?4)) = 400,

-E(etA) = ¥@9(4) otherwise.

Let ¢. be defined ag. = sup{q > 0;v¢(q) < +o0}. For anyq € [0, q.[, ¥(q) < +o0 and
¥(g) = ¢(—iq).

Multifractal Random Measures (MRM). We consider an independently scattered in-
finitely divisible random measupeassociated t0y, §) such that,. > 1, namely that:

de >0, ¥(1+¢€) < +o0,
andy (1) = 0.

Definition 2.1. Filtration F,. Let () be the probability space on whighis defined. F; is
defined as the-algebra generated b (A); A C ST, dist(A4,R?\ S*) > }.

Let us now define the functiofi: R, — R by

I, ifl<T
f(l):{T if i >7
The cone-like subset,(t) of ST is defined by

At) ={(s,y) € STy =L, —f(y)/2 < s =t < f(y)/2}.

For forthcoming computations, we stress that,(t)) = [ f(y)y~2dy < +oc and, for
I <T,0(A() =In(T/l)+ 1.

Definition 2.2. wy(t) process.The process)(t) is defined as(t) = u(A;(t)).



Definition 2.3. M;(t) measure. For any! > 0, we define the measurd,(dt) = e~® dt,
that is

for any Lebesgue measurable subket R.

Definition 2.4. Multifractal Random Measure (MRM). With probability one, there exists a
limit measure (in the sense of weak convergence of measures)

M(dt) = lim M(dt).

1—0+

This limit is called the Multifractal Random Measure. Thalsty exponent of\/ is defined
by
Vg =0, ((q)=q—v(q)

Proposition 2.5. Main properties of the MRM.

1. the measuré/ has no atoms in the sense thdi{¢}) = 0 for anyt¢ € R.

2. The measuré/ is different fronD if and only if there exists > 0 such that/ (1+¢) > 1;
in that caseE(M ([0,t])) = t.

3. if{(q) > 1 thenE[M(][0,t])?] < +oc.

4. For any fixed\ €]0,1] and! < T, the two processefuy(\t))o<i<r and (Qy +
wi(t))o<t<r have the same law, whef®, is an infinitely divisible random variable inde-
pendent from the process (t))o<;<r and its law is characterized B[e’] = \~#(@),

5. For any A €0, 1], the law of the processM ([0, At]))o<i<7 iS equal to the law of
(WAM([0,1]))o<t<r, WhereWy = Xe» and (), is an infinitely divisible random vari-
able (independent @f\/ ([0, t]))o<:<r) and its characteristic function is

E[etiA] — \ ¥
6. If ((q) # —oo then
E[M([0,2))7] = (t/T)*“WE[M([0,T))7].
Proposition 2.6. Main properties of the scaling exponent.If there ise > 0 such that

¢(1+4¢€) > 1, the functiong € [0, 1] — ((q) is continuous, strictly monotone increasing and
maps|0, 1] onto |0, 1].



3 Hausdorff dimension

In this section, we just set out the minimal required backgrbabout the Hausdorff dimen-
sion to understand our main result and its proof. We refe6}dédr an account on Hausdorff
dimensions.

Definition 3.1. Let (X, d) be a metric space. IK C X ands € [0, +oc[, the s-dimensional
Hausdorff content ok is defined by

C}(K) = inf {Z r'; there is a cover of K by balls with radii > 0} .

Using the standard conventianf () = +oo, the Hausdorff dimension df is defined by
dimpy(K) =inf {s > 0; O (K) =0} .

Lemma 3.2. (Frostman)Let (X, d) be a metric space.Thecapacity of a Borelian sek” C
X

Cap,(K) = inf { (/ ly — x\*sy(daz)y(dy))_l; ~ is a Borel measure such thatK') = 1}
KxK

is linked to the Hausdorff dimension &f by the relation

dimpg (K) = sup {s > 0; Cap,(K) > 0} .

4 Main result

If we define forz,y € R, p(z,y) = M([z,y]), thenP a.s. p is a random metric oiR. The
interval [0, T'] can be seen as a metric space when it is equipped either weitBublidean
metric | - | or with the random metrip. The main purpose of this paper is to establish a
relation between the Hausdorff dimension of a measuralilé{se- [0, 7] equipped with
the Euclidean metric and its Hausdorff dimension with respe the (random) metric space

([0, 77, p)-

Theorem 4.1. Assume there is > 0 such that{(1 + ¢) > 1 and that for allg € [0,1] we
havey(—q) < oo. Let K C [0, 7] be some deterministic and measurable nonempty sef,and
its Hausdorff dimension with respect to the Euclidian neetiihen the Hausdorff dimension
dim’, (K') of K with respect to the random metriccoincidesP a.s. with the unique solution
4 in [0, 1] of the equatiord, = ¢(0).



5 Proof of Theorem 4.1
Lemmab5.1. Letz <y € R. If ¢ € [0, 1] then
Elp(z,y)?] < C(T, q)|x — y|°?,

whereC' (T, q) is a positive constant only depending . As a consequence,if, 9, d, are
defined as in Theorem 4.1, then & &lim’; (K)) < dp.

Proof. By stationarity of the measur® and Proposition 2.5, we have
Elp(z,y)"] = E[M([z,y])*] = E[M([0,y — 2])7] = |y — 2" DT*DE[M([0,T])].

So we can choos€(T, q) = T-WE[M([0,T])1] < +oc.
Leta > 0 andq € [0, 1] such that(¢) > do. There exists a covering & by a countable
family ([2,,, Yu])n Such thadd” |z, — 4.|°@ < a. Hence

B[S plen 5n)?| = DBl 32)7] < C(T,0) S Iy — a9 < C(T, g)ar

By the Markov inequalityP( >°,, p(zn, y2)? < C(T, q)y/a) > 1—/a. Putin other words,with
probability1 — \/a, we have a covering of K with balls whopeadii satisfy) " p(z,, y,)? <
C(T, q)\/a. Thusq > dim’;(K) a.s. and the lemma follows. O

Proposition 5.2. Let K, 9, 6y, dim’, (K) be as in Theorem 4.1 and lgte [0, 1] be such that
C(q) < do. Then a.sq < dim%(K), thatisdy < ((dim%,(K)).

Proof. Since((q) < o, by the Frostman Lemma, there is a Borel probability measyre
supported by such thaty,(K) = 1 and

/ |z — y|_<(q) Yo(dzx) vo(dy) < +o00.
[0,7]2

Let us define, for any < [ < T, the measure oft), T'|:
vi(dr) = et M=e@nT/D+D) gy
and its associated metric dn

Ve,y R, pi(z,y) = vi([z,y]).



We now investigate the quantity:
o0 =E[ [ plo.y) uldo) n(dy)]
(0,72
= / E [/)l(llf, y) " 9et! (r)+qwz(y)*2w(q)(ln(T/l)+1)] Yo(dz)yo(dy)
(0,772
_ 2/ E[pl<07 y— x)fqeqwz(0)+qwz(y*:':)*?w(q)(ln(T/l)Jrl)] Yo(dx)yo(dy)
y>x
by stationarity of the process. To this purpose, we split the above integral in two terms as
¢(l7%) :2/ E[pz((),y _ x)*qeqwl(0)+qwl(y*:l:)*Qw(Q)(ln(T/l)Jrl)} fyo(da:)fyo(dy)
0<y—z<l

+ 2/ E [01(07 y— x)fqeqwz(0)+qwz(y*:':)*?w(q)(ln(T/l)Jrl)} Yo(dz)vo(dy)
y—x>1

=o1(1,v0) + P21, 70)-

We first estimatey; (/,v0). Using the Jensen inequality and the decrease of the mapping
x +— x%yields

o1(1,7)

y—x —q
=2 / E|( / () g O ) 20D | (1 (dy)
0<y—x<l 0

2e—2¢(9) |2¢(9) / Y-z g
_e T T E [( / 1)1 (0) w1 () dr) } o ()0 (dy)
T2%() 0<y—a<l 0

2e—2¢(q) [2¢(q) vz ar
< E[e 0 (qwz(0)+qwz(yf:r)*qwz(r))yfz] vo(dx)%(dy).
/(;Sym<l T2¢(Q)‘y — x|q

Given( < z < y < T suchthay —z < [, defined! = A;(0)NA;(y —x) # 0. Each cone-like
subset4,(r) (0 < r < y — z) can be splitinto three terms as(r) = A?(r) U A U Af(r),
where A7 (r) (resp. A¢(r)) denotes the part of;(r) located on the left (resp. right) ofi. It
is worth emphasizing that:

(@] (M)ogry— = (AL (y—2)\ Al (y —2—7) =" (0)0(A} (y —2) \ A (y =2 —7) )o<r<y—

is a right-continuous martingale, as well@g (r))o<,<,—. Where:

wi(r) = p(A7(0) \ A7 (r)) — ¢ (0)0(A7 (0) \ A (r)).



By using the fact that’(0) < 0, we get:

qui(0) + qui(y — ) — qui(r) = qu] + qu(Af(y — ) \ Al(r)) + qu(A7(0) \ Af(r))
< quj + quii(y — x — 1) + qui ().

Since(w{(r)),, (w(r)), andw} = u(A!) are independent, the last expression is estimated as:

gbl (la 70)
2e—2¢(q) 2¢(9) . . ,
< == Fle™E[ su el (== R, su o9 (r) dr d
a /OSy—x<l T20@ |y — z|9 ! [OSTSE—JC | [ogrgg—x Jr0(dz)70(cy)
2012 0—2¢(a) [2¢/(a)
</ q

0<y—z<l TQw(q) |y - x|q

E[e?!|E[e®! W2 ]E[e™ V=] 5o (dz)yo(dy),

the last inequality resulting from the Doob inequality apglto the functionr — ¢* (C, is a
constant only depending @p. It remains to computé( A}), 6(AY(0)) andd(A¢(y — x)). Itis
plain to see that

0(A) =W(T/1) +1 = (y— )/l 0(A](y —2)) = 0(A}(0)) = (y — 2)/L,
in such a way that (we use thatg) < 0 for all ¢ in |0, 1]):
1)
ACSES|

0<y—z<l T2¢(Q)|y - l»|q

20q26—2w(q)52¢(q)

¥ (m(@/)+1+(y—2)/1) 2@V O5E) o (da) o (dy)

/ 1
<2 2O er) o | oldr)roldy).

o<y—a<t [y — 2|¢@
Let us now focus om, (1, 7). In what follows, we make a change of variable- T'r /(y—

x):

¢2 (la 70)
/ e2w1(0)+qwi (y—)—2¢(q) (In(T/1)+1)
_9 [
y—x>1

(fy_x ewi(r) dr) a ] fyo(dx)/yo(dy)

T4 e4@1(0)+qwi (y—)=2¢(q) (In(T/1)+1)
/ [ — | 20(dz)roldy)
y ( I ewl«y—x)w*l)du)

—x>1 |y - x|q



We remind the reader of the following property: the prodess (at))o<:<r has the same law
as the procesf?, + wy(t))o<i<r, Wherea €0, 1], I’ < T and(2, is an infinitely divisible
random variable independent from the process(t))o<:<7 such thatE[e’*] = a=¢@, In

particular, choosing = IT/(y — x) anda = (y — =) /T, the procesgw, ((y — =)t/T)) -,

has the same law as the proc€S§, .),r +wir/(y—2)(t))o<i<r. Plugging this relation into the
above estimate af, (1, o) yields

¢2(l7 70)
/ 9T4 qu(y—x)/T-i-qw%(O)'quleTx(T)—2¢(Q)(1H(T/l)+1)
Yy

0 € V7°

—x>l \y — x‘qE ( T wir (u) du)q ’Yo(dl’)”y()(dy)

9T¢(a) Iz Orbaw iz (T)=20(@)(n(475)+1)
B / [ ] “o(dw)yo(dy)
Yy

w U q
(foTe yl*T””( )du>

—x>l ‘y - x‘C(q)

Thus it just remains to show that there exiSts> 0 such that for all’ in [0, 7]

[ e2wi (0)+qw (T)=2¢(q) (In(T/1")+1)

( foT ewr () du) !

In the above inequality, we will restrict to the (non obvipoase’ € [0,7/4]. We have:

<

[equ (0)+quwy (T)=2¢(q)(In(T/1')+1)

( foT ewrr (1) du)q ]

[equ/(O)Jrqu (T)=24(q)(In(T/1")+1) }
— q
(f;/TZ * e () du)
It is worth mentioning that the set, (0), A, (7)) are disjoint. We then define

B = Ap(0) \ Ap(T'/4)
Bji = Ap(T) \ Ap(3T/4)

We stress that for any in [1'/4, 3T/4]:

Ap(u)NBY =0, Ap(w)NBj =0



Using the relatiord(BY) = 0(B)) = In(T/I') + 1 — In(4) and the independence pf B),
M(Bﬁ), (n(Ap (U)))T/4gu§3T/4, we get:

. [eqwu (0)+qwy (T)=2¢(q) (In(T/1")+1) }

3T/4 0 (u q
(5 e

— e~ 2(@Wn(T/) DR [equ(Bf,)} E [equ(B[",)] E [

edt(Ay (0)NAy (T/4))+qu(Ay (T)NAy (3T/4)) }

(fT/4 ewr ( )du>
GQH(AV(O) Ap (T/4)+qu(Ay (T)NAy (31 /4))]

q
(il et )

_ e—2ln<4)w(q)E[

Let us denoted?, (u), A¢(u) the following sets fow € [T'/4,3T/4]:

(Ar(0) N Ay (u)) \ Av(3T/4)
Aj(u) = (Ap(T) N Ap(w)) \ Ar(T/4)

P

<

S
I

We have the following decompositions:
(Au(0) N Au(T/4)) = u(ALT/4)) + po(An(0) N A0 (3T/4) )
M(Al/ (T) N Al/(3T/4)> - u(Ald,(ST/zl)) n M(A,/ (T) N Ay (T/4)).

We also have for all in [T°/4, 37 /4]:

o+ p(Av(u) \ (A0(0) U An(T)).
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Therefore, we get:

[eqwl/ (0)+quwy (T)—2¢(q)(In(T/1')+1) ]

3T/ wpr(u !
(fT/4 et ) du)
r e (Ay (O)NA (T/4))+qu(Ay (T)NAy (3T /4)) ]

( f BT/4 oy () du)q
equ(«‘lf/ (T/4))+qu( A (3T/4))

( IBT/4 (AS () + (A% () Ay (w)\(Ay (0)UA (T du) }

— e 2m@Y(@)R

_ 2@u@p|

< o 2P [ [ pan(A l,<T/4>>—quuu<A;’,<u>>]

< E [equ(Af, (3T/4)) g infu p(A (u))] E[ 1 }
( f3T /4 (A (w)\(Ay (0)UA (T du)

— 2@ [eq sup,, (1(AY (T/4)— pu(AS, <u>>)]

< E [eq sup,, (u(Af} (3T/4)—p(AY (u)))] E[ 1 }
(f3T/4 Ay (w)\ (A (0)UA, (T du)

— 2@ [eq sup,, (1( A7, (T/4)\Af, (u)))}

< E [eq sup., (u(A3 (37 /4)\ A2 (u)))} E[ 1 ]
( f3T/4 (A W\ (A (0)UA (T)) du)

The process
(AL (T/4)\ Ap (u) — ' (0)0(AZ(T'/4) \ Aj (u)

is a martingale for in [T'/4, 3T, 4] and we havé(.A;} (T/4)) bounded independently froth
By applying Doob’s inequality, there exists some constant 0 independent frond’ such

that:
E[eqsupuw(A (T/4)\ A <u>>)] <C.

Similarly, we have:
E [eq sup,, (1A (3T/4)\ A5, (u)))} <C

Therefore, we get:

11



[eqwl/<0)+qu(T)—w(q)an(T/z’)H)
(fT/4 e« () du)

1
< CE [ J
<f3T/4 et (Ay (W\(Ay (0)UA (T)) du)

Sincey(—q) < oo, by using the same argument than the proof of theorem 3 (Mtseén
negative orders) in [3], one can show that:

1

supE[ ] < 00.

v 37/4 u(Ay \(Al/<o>uAy<T>) i)’
(fT/4 u)

To sum up, gathering the estimates®fl, 7o) ando, (1, 7o), we have proved the existence
of some constant’ > 0 such that:

1
ly — z[c@

o(l, ) < C/

(0,77

(dz)yo(dy) < +o0.

Let us now define the measurélt) = lim,; .+ v4(dt) (see Lemma 5.3 below). From Lemma
5.3 and the Fatou lemma, we obtain

E| /[O NS W(dy)) < B[ limint /[0 e ) )]

1—0+*

< liminf E [/ oz, y) Ty (dr) l/l(dy)}
(0,77

1—0t+

1
gC/ ————o(dx)yo(dy) < 400.
o172 [y — o[¢@ olde)o(dy)
As a consequenc®, a.s. the mtegraf[0 T2 p(x,y)"1v(dr)v(dy) is finite. We complete the
proof with the Frostman Lemma. 0J

Lemma 5.3. Assume that we are givene [0, 1] such that

/ %(dﬂc_)%(dy)
(0,71

y—af@ -

12



We consider, for any > 0, the measure oft), 7'):
wi(dt) = e O=@ (@) Ly
Then the weak limit (in the sense of measures)

v(dt) = lim v (dt)

—0+

existsP-a.s., is finite, supported by P-a.s., and we have

/ ple. )" v(dz) v(dy) < lim inf / o, )~ vi(d) v(dy).
(0,72 (0,772

1—0+

Proof. According to the proof of Propositioh2, we have

o(l,7) < C/ no(d)yo(dy)

<
o2 |y —x¢@ e

Furthermorep,(z,y) < p(0,T) forany0 < x < y < T, in such a way that

E[n(A4)(0,7) @] < ¢(1,7%) < C / Yo(dz)70(dy)

<
o2 |y —z[¢@ e

for any Lebesgue measurable subdaif [0, T'|. Moreover, if the Lebesgue measureAfs
strictly positive then the Holder inequality yields

E[v;(A)% @] <B[v,(A)2M, ([0, T]) @O DIR[0, T])]5 @/ 1+¢(@)

2
(2) SC'/ Yo(dw)vo(dy) < +o00.
o2 |y —x¢@

We remind the reader that;(A)); is martingale for any Lebesgue measurable sudset
[0, T]. From (2), this martingale is bounded i< for somee > 0. As a consequence, it
convergesP-a.s. towards a limit denoted by(A) as! — 0. It is readily seen that is a
measure o0, 7] P-a.s. Since,(K°) = 0, itis clear that/(K¢) = 0 P-a.s.
Finally, E[v([0, T])] = lim;—¢ E[14([0,T])] = 7([0,T]) > 1. Moreover{v([0,7]) > 0}
is an event of the asymptotie-field generated by the random variables(A)), and has
therefore probability O or 1. As a consequence, the e{«efi0, 7']) > 0} has probability 1.
The last inequality of the lemma results from Lemma 5.4 bedad the weak convergence
of measures. O
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Lemma 5.4. P a.s., the metri¢p,); uniformly converges towards the metfi@as! — 0, that
is

Pas, lm sup |p(z,y)—p(z,y)| = 0.
=0 0<z<y<T

Proof. The mappingz — p(0,z) is continuous because of the non-degeneracy (gfee
Proposition 2.5). Moreover, for ea¢h> 0, the mappingr — p;(0,x) is increasing and
the sequencép,(0, z) converges pointwis® a.s. toward$(0, z) (see Definition 2.4). The
uniform convergence then results from the Dini theorem. O
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