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NUMERICAL APPROXIMATION OF KERR-DEBYE EQUATIONS

DENISE AREGBA-DRIOLLET AND CHRISTOPHE BERTHON

Abstract. We investigate finite volume schemes for the one-dimensional
Kerr-Debye model of electromagnetic propagation in nonlinear media. In
this relaxation quasilinear hyperbolic system, the relaxation parameter is the
response time of the media. When it tends to zero, the relaxed limit is known as
the Kerr system. We show that basic explicit splitting methods fail to preserve
this asymptotic. Following two different viewpoints, we construct splitting
implicit and well-balanced explicit approximations which are stable, entropic
and own the correct asymptotic behavior. Various numerical experiments are
performed.

1. Introduction

Nonlinear Maxwell’s equations are used for modeling nonlinear optical
phenomena. For a nonlinear Kerr medium, the electromagnetic field (E, H) is
linked to the electric and magnetic displacements D and B by the constitutive
relations:

{

B = µ0H
D = ǫ0E + P

where P is the nonlinear polarization.
If the medium exhibits an instantaneous response we have a Kerr model:

P = PK = ǫ0ǫr|E|2E.

If the medium exhibits a finite response time τ we have a Kerr-Debye model:

P = PKD = ǫ0χE, ∂tχ +
1

τ
χ =

1

τ
ǫr|E|2.

See for example [22] or [24] for details.
So the Kerr-Debye model is a relaxation approximation of the Kerr model and

τ is the relaxation parameter. Formally when τ tends to 0, χ converges to ǫr|E|2
and PKD converges to PK .

In the one-dimensional setting and after adimensionalization, we denote
(d(x, t), h(x, t)), ((x, t) ∈ R×R

+) the electromagnetic field. Moreover and as usual
for relaxation systems, we denote ǫ the response time τ .

With those notations, writing Maxwell’s equations for the Kerr model leads to
the following Kerr system:

(1)

{

∂td + ∂xh = 0,
∂th + ∂xp(d) = 0

where p is the reciprocal function of

q(e) = e + e3.
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The Kerr system is a p-system where the function p is strictly increasing and is
strictly convex on ]−∞, 0] and strictly concave on [0, +∞[. It is strictly hyperbolic
with the eigenvalues

(2) λ1(d) = −
√

p′(d) < 0 < λ2(d) =
√

p′(d) .

The energy is a mathematical entropy for the Kerr system:

(3) EK(d, h) =
p(d)2

2
+

h2

2
+

3p(d)4

4

and the entropy flux is given by

(4) QK(d, h) = h p(d).

On another hand, the Kerr-Debye model writes:

(5)







































∂tdǫ + ∂xhǫ = 0,

∂thǫ + ∂x
dǫ

1 + χǫ
= 0,

∂tχǫ =
1

ǫ

[

(

dǫ

1 + χǫ

)2

− χǫ

]

.

In the following we denote

(6) G(d, h, χ) =

(

d

1 + χ

)2

− χ .

In the domain Ω = {(d, h, χ), χ ≥ 0} this system is strictly hyperbolic with the
eigenvalues:

(7) λ1 = − 1√
1 + χǫ

< λ2 = 0 < λ3 =
1√

1 + χǫ
.

It is easy to see that all the three characteristic fields are linearly degenerate.
The equilibrium set for system (5) is given by

(8) E =

{

(d, h, χ) ∈ R
2 × [0, +∞[, χ =

(

d

1 + χ

)2
}

which can also be written as

(9) E =
{

(d, h, χ) ∈ R
2 × [0, +∞[, χ = p(d)2

}

.

In the smooth case, the convergence of the solutions of the initial value problem
for the relaxation system (5) to those of the initial value problem for the relaxed
system (1) has been proved in [16]. Convergence of smooth solutions also holds for
the initial boundary value problem [8]. Global existence of smooth solutions holds
for Kerr-Debye system, while shock creation can be proven for Kerr equations [9].

As far as one is concerned with weak solutions of Kerr system, to our knowledge
there is no general convergence result. We are able to construct the general solution
of the Riemann problem and we know that for a given shock wave, there exists a
relaxation Kerr-Debye shock profile approximating it [3]. The energy density

(10) EKD(d, h, χ) =
d2

2(1 + χ)
+

h2

2
+

χ2

4

is a strictly convex entropy for system (5) and the entropy flux is given by

(11) QKD(d, h, χ) =
h d

1 + χ
.
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For smooth solutions of system (5) we have the entropy dissipation property:

(12) ∂tEKD(d, h, χ) + ∂xQKD(d, h, χ) =
−1

2ǫ
G(d, h, χ)2.

In this article, we construct numerical schemes for the Kerr-Debye system (5).
Such approximations have to be accurate, stable and they must be asymptotic
preserving: when ǫ tends to zero, we have to obtain a scheme which is consistent
with the Kerr system (1).

The plan of the paper is the following: in Sect. 2 we study splitting schemes for
system (5). We show that an explicit treatment of the source term is not efficient
to insure the good asymptotic behavior. We then derive an implicit discretization
of the source term and we prove the convergence of Newton’s method to the unique
solution of the scheme. From a practical point of view, this convergence is reached
with very few iterations. Next, we construct a scheme based on the knowledge of
the exact solution of the ODE

χ′ =
1

ǫ
G(d, h, χ)

when d is a constant. This approximation is also implicit and the unique solution
of the scheme is computed by a dichotomy method. Both implicit schemes own the
same relaxed limit which is an explicit consistent approximation of Kerr system. We
prove that the positivity of χ is preserved and that a discrete entropy inequality
holds. In view of those results, we conclude that such an approach cannot give
rise to explicit asymptotic preserving schemes. We therefore turn our attention
to explicit well-balanced schemes: it is the purpose of Sect. 3. Involving recent
works issuing from numerical approximations of shallow-water equations [7, 13] or
radiative transfer [6], we propose a relaxation scheme [2, 4, 5, 7, 18] such that
the stiff source term enters the definition of the associated relaxation approximate
Riemann solver. From this technique, we exhibit a relevant discrete form of the
stiff source term which is next applied to a Godunov type scheme. Concerning
this last numerical method, the positivity of χ is preserved and a discrete entropy
inequality is established. In Sect. 4 we present numerical experiments: we explore
the behavior of our schemes for large values of ǫ, and then we study their asymptotic
behavior when ǫ tends to zero. In particular, we analyze relaxation shock profiles
and solutions of the Riemann problem for Kerr system (1).

Throughout the paper we denote u = (d, h, χ), ∆x the uniform space step, ∆t
the possibly variable time step, t0 = 0, tn = tn−1 + ∆t,

xi− 1
2

= (i − 1

2
)∆x, Ci =]xi− 1

2
, xi+ 1

2
[, i ∈ Z

and

xi =
xi− 1

2
+ xi+ 1

2

2
.

The approximation of u on Ci at time tn is denoted un
i .

We denote u0 the initial data:

(13) u(x, 0) = u0(x), x ∈ R.

The numerical initial condition is in general taken as

(14) u0
i =

∫

Ci

u0(x)dx, i ∈ Z.

However, if we take data in the equilibrium set E, we put

(15) d0
i =

∫

Ci

d0(x)dx, h0
i =

∫

Ci

h0(x)dx, χ0
i = p(d0

i )
2, i ∈ Z.
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In all the sequel we use the following notation:

(16) e =
d

1 + χ
.

2. Splitting techniques.

The first idea is to split the system (5) into a system of conservation laws and
an ordinary differential system:

(17)



























∂tdǫ + ∂xhǫ = 0,

∂thǫ + ∂x
dǫ

1 + χǫ
= 0,

∂tχǫ = 0

and

(18)



























∂tdǫ = 0,

∂thǫ = 0,

∂tχǫ =
1

ǫ
G(uǫ).

Suppose that the approximate solution un at time tn is known. As all the three
characteristic fields are linearly degenerate it is easy to approximate the first system
(17) by Godunov’s scheme and to obtain an intermediate solution un+ 1

2 at time
tn+1.

The second step consists in solving system (18) on [tn, tn+1] with data un+ 1
2 at

time tn. At this stage several schemes can be constructed.
Let us detail the first step. Let uh be a solution of system (17) on R× [tn, tn+1]

with

(19) uh(x, tn) = un
i if x ∈ Ci , i ∈ Z.

It is well-known that for a half CFL condition one can construct uh by juxtaposing
solutions of Riemann problems at cell interfaces. It is therefore enough to give the
solution of the Riemann problem for system (17). Let u0 be the initial data defined
by

(20) u(x, 0) = u0(x) =

∣

∣

∣

∣

u− if x < 0,
u+ if x > 0

where u− and u+ are constant states. As all the characteristic fields are linearly
degenerate the solution of problem (17)(20) consists in three contact discontinuities
propagating at characteristic velocities:

(21) u(x, t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u− if
x

t
<

−1√
1 + χ−

u1 if
−1√

1 + χ−
<

x

t
< 0

u2 if 0 <
x

t
<

+1√
1 + χ+

u+ if
x

t
>

+1√
1 + χ+
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The intermediate constant states u1 and u2 are calculated via the Rankine-Hugoniot
jump conditions. We find
(22)






























































h1 = h2 = h⋆ =
−(e+ − e−)

√
1 + χ−

√
1 + χ+ + h+

√
1 + χ− + h−

√
1 + χ+√

1 + χ+ +
√

1 + χ−

d1 = d− − (h⋆ − h−)
√

1 + χ−

d2 = d+ − (h+ − h⋆)
√

1 + χ+

χ1 = χ−

χ2 = χ+

The numerical flux of the Godunov scheme is then given by

(23)























hi+ 1
2

=
hi
√

1 + χi+1 + hi+1
√

1 + χi − (ei+1 − ei)
√

1 + χi
√

1 + χi+1√
1 + χi+1 +

√
1 + χi

ei+ 1
2

=
hi − hi+1 + ei

√
1 + χi + ei+1

√
1 + χi+1√

1 + χi+1 +
√

1 + χi

and we put

(24) u
n+ 1

2

i = un
i − ∆t

∆x
(Fn

i+ 1
2

− Fn
i− 1

2

), Fn
i+ 1

2

= t(hn
i+ 1

2

, en
i+ 1

2

, 0) i ∈ Z.

The following lemma is useful in the sequel.

Lemma 1. For i ∈ Z and n ≥ 0 let un
h,i+ 1

2

(x, t) be the solution of the Riemann

problem for system (17) with data

(25) u(x, tn) =

∣

∣

∣

∣

un
i if x < xi+ 1

2
,

un
i+1 if x > xi+ 1

2
.

Under the half CFL condition

(26) sup
i∈Z

∆t

∆x
√

1 + χn
i

≤ 1

2

the function uh defined by

uh(x, t) = un
h,i+ 1

2

(x, t) if x ∈]xi, xi+1[

is a solution of problem (17)(19) on R × [tn, tn+1] and we have

u
n+ 1

2

i =
1

∆x

∫

Ci

uh(x, tn+1)dx.

Proof. This result is classical, see [14] for example, so we omit the proof. �

We now turn our attention to system (18). For every cell Ci, we take u
n+ 1

2

i ,

defined in (24), as data for t = tn. Then, un+1
i is an approximate solution of (18)

at time tn+1. The two first equations give

(27) dn+1
i = d

n+ 1
2

i , hn+1
i = h

n+ 1
2

i .
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2.1. Explicit schemes. We observe that the solution of the third equation can be
expressed as

(28) χ(x, t) = e−(t−tn)/ǫχ(x, tn) +
1

ǫ

∫ t

tn

e−(t−s)/ǫe2(x, s)ds ,

where e is defined by (16). On the cell Ci, we approach this formula by replacing
e by

e
n+ 1

2

i =
d

n+ 1
2

i

1 + χ
n+ 1

2

i

and by taking the average on Ci. As χ
n+ 1

2

i = χn
i , we obtain for t = tn+1:

(29) χn+1
i = e−∆t/ǫχn

i + (1 − e−∆t/ǫ)

[

dn+1
i

1 + χn
i

]2

.

A second approximation is based on the fact that for a one-half CFL condition, the
solution of system (17) with data un is explicitly known in the domain Ci×[tn, tn+1].
In particular, we have for all (x, s) ∈ Ci × [tn, tn+1]:

(30) e(x, s) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

en
i− 1

2

if xi− 1
2

< x < xi− 1
2

+
s − tn
√

1 + χn
i

,

en
i if xi− 1

2
+

s − tn
√

1 + χn
i

< x < xi+ 1
2
− s − tn
√

1 + χn
i

,

en
i+ 1

2

if xi+ 1
2
− s − tn
√

1 + χn
i

< x < xi+ 1
2

where en
i± 1

2

are defined in (23). We replace e(x, s) by this value in (28) and take

the average of the result over the cell Ci. We obtain:

(31)

χn+1
i = e−∆t/ǫχn

i + (1 − e−∆t/ǫ)(en
i )2

+
∆t − ǫ(1 − e−∆t/ǫ)

∆x
√

1 + χn
i

[

(en
i− 1

2

)2 − 2(en
i )2 + (en

i+ 1
2

)2
]

.

2.2. The formal limit of the explicit splitting schemes. Let us let ǫ tend
to zero in the two schemes above. The first (Godunov) part of each of them is
unchanged. The value of χ in formula (29) tends to

χn+1
i =

[

dn+1
i

1 + χn
i

]2

.

The one in formula (31) tends to

χn+1
i = (en

i )2 +
∆t

∆x
√

1 + χn
i

[

(en
i− 1

2

)2 − 2(en
i )2 + (en

i+ 1
2

)2
]

.

We observe that in neither of the two cases the equilibrium is not reached. The
numerical experiments show in fact that the asymptotic behavior of those schemes
is sometimes false. In practice the scheme with (31) gave almost the same results
than the one with (29), when ǫ is large as well as in the relaxation limit ǫ → 0.
Therefore we do not consider anymore the scheme with (31) in this paper.
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2.3. An implicit scheme. We again consider formula (28) but here we replace e
by

en+1
i =

dn+1
i

1 + χn+1
i

and we obtain:

(32) χn+1
i = e−∆t/ǫχn

i + (1 − e−∆t/ǫ)

[

dn+1
i

1 + χn+1
i

]2

.

We then use Newton’s method to find χn+1
i .

Lemma 2. Let dn+1
i and χn

i ≥ 0 be fixed. The equation (32) owns a unique solution

χn+1
i ≥ 0 and Newton’s method converges to this solution when χn

i e−∆t/ǫ is taken
as initial value.

Proof. We suppose that χn
i ≥ 0. Let us set X = 1 + χn+1

i . Equation (32) can be
written as f(X) = 0 where

f(X) = X3 − X2(1 + χn
i e−∆t/ǫ) − (dn+1

i )2(1 − e−∆t/ǫ).

We observe that this function has a negative maximum for X = 0, a negative
minimum for X = 2

3 (1 + χn
i e−∆t/ǫ) and that it is strictly convex and increasing on

the interval [23 (1 + χn
i e−∆t/ǫ), +∞[. Moreover f(1 + χn

i e−∆t/ǫ) is negative. Hence

the unique root of f is greater than 1 + χn
i e−∆t/ǫ and Newton’s method converges

when 1 + χn
i e−∆t/ǫ is taken as initial value. �

2.4. The formal limit of the implicit splitting scheme. Let us let ǫ tend to
zero in the implicit scheme above. The first (Godunov) part is unchanged. The
value of χ in formula (32) tends to

χn+1
i =

[

dn+1
i

1 + χn+1
i

]2

.

The equilibrium is reached: this scheme is asymptotic preserving. Let us observe
that in the limit:

χn
i = p(dn

i )2 = (en
i )2

where we denote

(33) e = p(d).

The relaxed scheme for the Kerr system is given by the following consistent
numerical flux functions:

(34)











































hi+ 1
2

=
hi

√

1 + e2
i+1 + hi+1

√

1 + e2
i − (ei+1 − ei)

√

1 + e2
i

√

1 + e2
i+1

√

1 + e2
i+1 +

√

1 + e2
i

ei+ 1
2

=
hi − hi+1 + ei

√

1 + e2
i + ei+1

√

1 + e2
i+1

√

1 + e2
i+1 +

√

1 + e2
i

We denote u = t(d, h). The relaxed scheme can be written as

(35) un+1
i = un

i − ∆t

∆x
(F

n

i+ 1
2
− F

n

i− 1
2
), F

n

i+ 1
2

= t(hn
i+ 1

2

, en
i+ 1

2

), i ∈ Z.
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2.5. Exact solving of the χ equation. Here, un+ 1
2 is still given by (23)(24),

we take (dn+1, hn+1) as (27) and now for each cell Ci, we solve exactly the third
equation of system (18). Hence we look for the solution of the initial value problem

(36)



















χ′ =
1

ǫ

[

(

d

1 + χ

)2

− χ

]

, t > t0

χ(t0) = χ0

where d is a real constant and χ0 is nonnegative. As already observed, the right-
hand side is zero if and only if

χ = e2

with the notation (33).

Lemma 3. For all χ0 ≥ 0 the problem (36) has a unique global solution χ ∈
C1([t0, +∞[).

If χ0 = e2 then the solution of problem (36) is χ0 for all times.
If 0 ≤ χ0 < e2 then χ is an increasing function and

∀t > t0 χ0 < χ(t) < e2 .

If χ0 > e2 then χ is a decreasing function and

∀t > t0 e2 < χ(t) < χ0 .

Proof. We study the sign of χ′(t), that is the sign of the function ϕ defined for
y ≥ 0 by

ϕ(y) = d2 − y(1 + y)2.

We have d = q(e), so that

ϕ(y) = (e2 − y)
[

(e2 + 1)2 + y(e2 + 2) + y2
]

.

Therefore, ϕ(y) > 0 if and only if e2 > y. The conclusion follows by the general
theory of ODE’s. �

The second lemma gives the solution of the equation:

Lemma 4. Let χ0 6= e2 be a nonnegative real number. Let Ψ be the function
defined for 0 ≤ y 6= e2 by

Ψ(y) = − e2 + 1

3e2 + 1
ln |y − e2| − e2

3e2 + 1
ln

[

4(y2 + y(e2 + 2) + (e2 + 1)2)

e2(3e2 + 4)

]

(37)

− 2e

(3e2 + 1)
√

3e2 + 4
Arctg

[

2y + e2 + 2

e(3e2 + 4)

]

.

The function Ψ is strictly convex, increasing on the interval [0, e2[, decreasing on
the interval ]e2, +∞[ and

lim
y→e

2
Ψ(y) = +∞.

Moreover the solution of problem (36) is

(38) χ(t) = Ψ−1

(

Ψ(χ0) +
t − t0

ǫ

)

t ≥ t0

where Ψ−1 is the reciprocal function of Ψ on [0, e2[ if χ0 < e2, on ]e2, +∞[ if
χ0 > e2.
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Figure 1. Representation of the function Ψ.

Proof. We know that for χ0 6= e2 the solution χ(t) satisfies the following equation:
∫ χ(t)

χ0

(1 + χ)2

d2 − χ(1 + χ)2
dχ =

t − t0
ǫ

.

We then proceed classically and find Ψ as a primitive of the rational function in
the left-hand side. The properties of Ψ are easy to verify. �

We do not know Ψ−1 explicitly so that this scheme is implicit. We use a
dichotomy method. In the following, we do not take into account this numerical
approximation and we analyze the splitting method with the exact value

(39) χn+1
i = (Ψn+1

i )−1

(

Ψn+1
i (χn

i ) +
∆t

ǫ

)

, i ∈ Z.

Here we denote Ψn+1
i the function Ψ with d = dn+1

i .

2.6. Formal limit of the scheme. When ǫ tends to zero, then χn+1
i computed

by formula (39) tends to (en+1
i )2. Therefore, the scheme is asymptotic preserving

and the relaxed scheme for Kerr system is the same as the one we found with the
implicit scheme, that is (35) with (34).

2.7. Stability properties. We remark that the positivity of χ is preserved by our
schemes:

Proposition 1. We consider the schemes (23) (24) with explicit (29), implicit
(32), or (39) as second step. We impose the CFL condition (26). If the initial
data χ0 is nonnegative then, for all n ≥ 0 and for all i ∈ Z the value of χn

i is
nonnegative.

Proof. First, we remark that χ0
i ≥ 0 for all i ∈ Z. Then, Godunov’s scheme is such

that

χ
n+ 1

2

i = χn
i .

From formulas (29), (32) and lemma 3, the three considered discretizations of
system (18) preserve the positivity of χ, which ends the proof. �

We now turn our attention to entropy properties. We begin with the following
result, due to the linear degeneracy of the fields:

Lemma 5. Let (E, Q) be an entropy-entropy flux pair for system (17). If the left
and right states ul and ur are connected by a i-contact discontinuity propagating
with velocity λi(ul) = λi(ur), then we have the entropy equality

(40) λi(ul) [E(ur) − E(ul)] = Q(ur) − Q(ul).

As a consequence, if ul and ur are connected by a 2-contact discontinuity then
Q(ul) = Q(ur).
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Proof. This result is classical and can be obtained by using the fact that ul and ur

are connected by a i-contact discontinuity if and only if ul and ur belong to the
same integral curve of i-right eigenvectors, see for example [21]. �

For the solution of the Riemann problem (17)(25) we denote

(41)























un,1

h,i+ 1
2

= un
h,i+ 1

2

(x, t) if − 1
√

1 + χn
i

<
x − xi+ 1

2

t − tn
< 0,

un,2

h,i+ 1
2

= un
h,i+ 1

2

(x, t) if 0 <
x − xi+ 1

2

t − tn
<

1
√

1 + χn
i+1

.

As un,1

h,i+ 1
2

and un,2

h,i+ 1
2

are connected by a 2-contact discontinuity, by lemma 5 we

have Q(un,1

h,i+ 1
2

) = Q(un,2

h,i+ 1
2

) for all entropy flux Q. We denote this common value

by

(42) Qn
i+ 1

2

= Q(un
i , un

i+1) = Q(un,1

h,i+ 1
2

) = Q(un,2

h,i+ 1
2

).

We are now in position to prove the cell entropy inequality for the conservation law
part of the scheme:

Proposition 2. We consider the scheme (24) with (23) and the CFL condition
(26). Let (E, Q) be an entropy-entropy flux pair for system (17). The function Q

defined in (42) is a numerical entropy flux and we have the discrete cell entropy
inequality:

(43)
E(u

n+ 1
2

i ) − E(un
i )

∆t
+

Qn
i+ 1

2

− Qn
i− 1

2

∆x
≤ 0.

Proof. This result is rather classical, we give the proof for the sake of completeness.
We denote

λ =
1

√

1 + χn
i

.

By lemma 1 and Jensen’s inequality:

E(u
n+ 1

2

i ) ≤ 1

∆x

∫ x
i− 1

2

+λ∆t

x
i− 1

2

E(un,2

h,i− 1
2

)dx

+
1

∆x

∫ x
i+ 1

2

−λ∆t

x
i− 1

2

+λ∆t

E(un
i )dx +

1

∆x

∫ x
i+ 1

2

x
i+ 1

2

−λ∆t

E(un,1

h,i+ 1
2

)dx.

This can be also written as

E(u
n+ 1

2

i ) ≤ E(un
i ) − λ

∆t

∆x

[

−E(un,2

h,i− 1
2

) + 2E(un
i ) − E(un,1

h,i+ 1
2

)
]

.

By (40):

λ
[

E(un
i ) − E(un,2

h,i− 1
2

)
]

= Q(un
i ) − Q(un,2

h,i− 1
2

) (3 − contact discontinuity)

and

−λ
[

E(un,1

h,i+ 1
2

) − E(un
i )
]

= Q(un,1

h,i+ 1
2

) − Q(un
i ) (1 − contact discontinuity),

which ends the proof. �

We now take into account the source term to obtain a discrete version of equality
(12) for the implicit and exact solving based schemes.
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Theorem 1. We consider the schemes (24)(32) and (24)(39), with (23) and the
CFL condition (26). Let QKD(ui, ui+1) = QKD,i+ 1

2
be the numerical entropy flux

function (42) for the entropy flux QKD. The following cell entropy dissipation holds
for both schemes:

(44)
EKD(un+1

i ) − EKD(un
i )

∆t
+

Qn
KD,i+ 1

2

− Qn
KD,i− 1

2

∆x
≤ − 1

2ǫ
G(un+1

i )2 .

Proof. We first consider the implicit scheme (24)(32). One can see un+1
i as the

exact solution at time tn+1 of

(45)



















∂td = 0,
∂th = 0,

∂ty =
1

ǫ

[

(

d

1 + χn+1
i

)2

− y

]

with data u
n+ 1

2

i at time tn. Let us denote vi(t) = (dn+1
i , hn+1

i , yi(t)) the solution
of this same problem for t ∈ [tn, tn+1]:

vi(tn+1) = un+1
i .

We multiply the system (45) by E′
KD(vi). We obtain

∂tEKD(vi) = − 1

2ǫ

[

(

dn+1
i

1 + χn+1
i

)2

− yi(t)

]

G(vi(t)) .

Hence

EKD(un+1
i ) = EKD(u

n+ 1
2

i ) − 1

2

∫ tn+1

tn

G(vi) y′
i dt.

Let us denote g(t) the function inside the integral. As y′′
i = − 1

ǫ y′
i we have

g′ = −1

ǫ
y′

iG(vi) + (y′
i)

2∂3G(vi)

The sign of y′
i is constant on [tn, tn+1] because

y′
i(t) =

1

ǫ
e−

t−tn

ǫ

[

(

dn+1
i

1 + χn+1
i

)2

− χn
i

]

.

Moreover, ∂3G < 0 for y > 0 and G(vi(tn+1)) = ǫ y′
i(tn+1). Therefore, if y′

i ≥ 0 then
χn

i ≤ yi(t) ≤ χn+1
i and 0 ≤ G(un+1

i ) ≤ G(vi(t)). If y′
i ≤ 0 then χn

i ≥ yi(t) ≥ χn+1
i

and 0 ≥ G(un+1
i ) ≥ G(vi(t)). In each case we have y′

iG(vi) ≥ 0. Therefore, the
function g is not increasing and

(46) EKD(un+1
i ) ≤ EKD(u

n+ 1
2

i ) − ∆t

2ǫ
G(un+1

i )2 .

The same inequality can be obtained with the scheme (24)(39): we recall that

un+1
i is the exact solution at time tn+1 of system (18) with data u

n+ 1
2

i at time

tn. Let us denote ui(t) = (dn+1
i , hn+1

i , χi(t)) the solution of this same problem for
t ∈ [tn, tn+1]. We multiply the system (18) by E′

KD(ui). We obtain

∂tEKD(ui) = − 1

2ǫ
G(ui(t))

2 .

Hence

EKD(un+1
i ) = EKD(u

n+ 1
2

i ) − 1

2ǫ

∫ tn+1

tn

G(ui(t))
2dt.

Moreover
d

dt
(G(ui)

2) = 2ǫ χ′
i(t)

2 ∂3G(ui(t)) ≤ 0
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so that (46) holds. We then use inequality (43) and obtain the result. �

As a corollary, we have a cell entropy inequality for the Kerr relaxed scheme (35)
with (34). Actually, EKD is an entropy extension of the Kerr entropy EK in the
sense of [10]. Let us denote

Pu =





d
h

p(d)2





the equilibrium state for u = t(d, h). We have

EKD(Pu) = EK(u), QKD(Pu) = QK(u)

We define the Kerr numerical entropy flux as

(47) QK(u, v) = QKD(Pu, Pv), Qn
K,i+ 1

2

= QK(un
i , un

i+1).

As the Kerr-Debye numerical entropy flux is consistent, we have

QK(u, u) = QK(u).

As for all n ≥ 1 and i ∈ Z, un
i is an equilibrium state, the inequality (43) gives

EKD(u
n+ 1

2

i ) ≤ EK(un
i ) − ∆t

∆x
(Qn

K,i+ 1
2

− Qn
K,i− 1

2

).

The second step of the relaxed scheme is just a projection onto equilibrium which
minimizes the entropy. More precisely, we have

∂EKD

∂χ
(Pu) = 0,

∂2EKD

∂χ2
(Pu) > 0.

As dn+1
i = d

n+ 1
2

i , hn+1
i = h

n+ 1
2

i , and un+1
i = Pun+1

i the following corollary holds:

Corollary 1. We consider the relaxed scheme (35) with (34) and the CFL condition
(26). Let QK,i+ 1

2
be the numerical entropy flux function defined in (47). The

following cell-entropy inequality holds:

(48)
EK(un+1

i ) − EK(un
i )

∆t
+

Qn
KD,i+ 1

2

− Qn
KD,i− 1

2

∆x
≤ 0 .

3. Well-balanced schemes

At the discrepancy with the above presented schemes, the present section
concerns the derivation of approximate Riemann solver including, in a sense to
be specified, the source term. After the pioneer work by Greenberg-LeRoux [15]
(see also [7, 6, 13] to further extensions), we propose to introduce a new variable Z
defined as follows: Z(x, t) = x. As a consequence, we have

∂tZ(x, t) = 0 and ∂xZ(x, t) = 1.

Now, when considering an hyperbolic system with source terms in the form:

(49) ∂tw + ∂xf(w) =
1

ǫ
R(w),

the original idea consists in studying approximations for the following extended
system:

(50)

{

∂tw + ∂xf(w) = 1
ǫ R(w)∂xZ,

∂tZ = 0



APPROXIMATION OF KERR-DEBYE EQUATIONS 13

Such an approach has been used with large benefits as soon as (49) coincides
with shallow-water equations [7, 13] or radiative transfer equations [6] for instance.
Unfortunately, when considering the Kerr-Debye model (5):

(51) w = uǫ, f(uǫ) =







hǫ

dǫ

1 + χǫ

0






, R(uǫ) =









0
0

(

dǫ

1 + χǫ

)2

− χǫ









,

the extended system (50) is easily shown to be not hyperbolic. Indeed, the Jacobian
flux matrix associated with (50)(51) admits four real eigenvalues but it is not
diagonalisable in R.

3.1. A relaxation model. To overcome the problems arising with weakly
hyperbolic systems, we propose to approximate the weak solutions of (50)(51)
by the weak solutions of a suitable first-order system with singular perturbations
[10, 2, 20], a namely relaxation model. Following the work of Jin-Xin [18] (see
also [7, 11, 4, 5] where several extensions are detailed), we suggest to consider the
following nonlinear nonconservative relaxation model:











































∂td + ∂xh = 0,

∂th + ∂xΠ = 0,

∂tχ + ∂xΣ =
1

ǫ
(Π2 − χ)∂xZ,

∂tZ = 0,

(52)















∂tΠ + a2∂xh = µ

(

d

1 + χ
− Π

)

,

∂tΣ + a2∂xχ = −µΣ,

(53)

where a > 0 is a relaxation parameter to be defined and µ is a parameter devoted
to tend to infinity.

The relaxation model (52)(53) involves two new variables, Π and Σ, coming with
their own evolution laws (53). Clearly and at least formally, in the limit of µ to
infinity, the pair (Π, Σ) tends to ( d

1+χ , 0). This limit will be referred to as the

equilibrium limit. As a consequence, as µ goes to infinity, we recover the initial
system (50)(51) from the relaxation system (52).

Let us note from now on that the relaxation parameter a must satisfy additional
stability conditions to prevent instabilities whenever µ goes to infinity. This
condition, a Whitham sub-characteristic type restriction [23] (see also [2, 5, 7]),
reads as follows:

a2 >
1

1 + χ
.(54)

In the present work, we do not prove this restriction but it will be adopted testing
the resulting relaxation scheme.

For the sake of simplicity in the notations, let us introduce the relaxation state
vector U = t(tu, Z, Π, Σ), associated with the admissible state space:

V = {U ∈ R
6, χ ≥ 0}.

The first result we give concerns the linear degeneracy of the fields of (52)(53).
This property turns out to be essential to make easily solvable the associated
Riemann problem.
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Lemma 6. Let be given a > 0 and assume µ = 0. The first-order system
(52)(53)µ=0 is hyperbolic for all U ∈ V. The eigenvalues, defined by λ0 = 0 and

λ± = ±a are double. The associated fields are linearly degenerate.

The proof of this result turns out to be classic (for instance, see [14]) and we skip
it. We complete the above lemma giving the Riemann invariants associated with
each field. Performing an easy algebra analysis of (52)(53)µ=0, with clear notations
the eigenvectors associated with each eigenvalue read as follows:

r1
λ0 =

















1
0
0
0
0
0

















, r2
λ0 =

















0
0
0
1
0

Π2−χ
ǫ

















, r1
λ± =

















1
±a
0
0
a2

0

















, r2
λ± =

















0
0
1
0
0
±a

















.

Riemann invariants associated with λ0 (respectively λ±), denoted Φλ0 (resp. Φλ±),

satisfy ∇UΦ.r = 0 where r = r1,2
λ0 (resp. r = r1,2

λ±). We easily deduce

Φ1
λ0(U) = h, Φ2

λ0(U) = Π, Φ3
λ0(U) = χ, Φ4

λ0(U) = Σ − Π2 − χ

ǫ
Z,

Φ1
λ±(U) = Z, Φ2

λ±(U) = Σ ∓ aχ, Φ3
λ±(U) = Π − a2d, Φ4

λ±(U) = ±ah − Π.

Let us note that the nonlinear system (52)(53)µ=0 is in non-conservation form since

the product (Π2−χ)∂xZ never recasts in a divergence form. As a consequence, the
Rankine-Hugoniot relations are here unknown. Now, let us recall that the Riemann
invariants for a linearly degenerate field stay continuous across the associated
contact wave. Since the system (52)(53)µ=0 solely involved linearly degenerate
field, we deduce from the Riemann invariant formulas that the nonconservative
product is never ambiguous (see [12] where ambiguities involved by product
in non conservation form are considered, or [7] for example of non ambiguous
nonconservative products). As a consequence, we can exhibit the Riemann solution
for the nonconservative system (52)(53)µ=0. Let U± be constant states in V.
Consider the initial state U0 defined as follows:

(55) U0(x) =

{

U− if x < 0,
U+ if x > 0.

The Riemann solution of (52)(53)µ=0(55) consists in three contact discontinuities
propagating at characteristic velocities:

(56) U(x, t) =















U− if x/t < −a,
U1 if − a < x/t < 0,
U2 if 0 < x/t < a,
U+ if x/t > a,
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where the intermediate states are evaluated involving the continuity of the Riemann
invariants across their associated contact discontinuity waves. We obtain

Z1 = Z−, Z2 = Z+,

h1 = h2 = h⋆ =
h− + h+

2
− 1

2a
(Π+ − Π−),

Π1 = Π2 = Π⋆ =
Π− + Π+

2
− a

2
(h+ − h−),

χ1 = χ2 = χ⋆ =
a(χ− + χ+) − (Σ+ − Σ−) + (Π⋆)2 Z+−Z−

ǫ

2a + Z+−Z−

ǫ

,

d1 = d− − 1

a2
(Π− − Π⋆), d2 = d+ +

1

a2
(Π+ − Π⋆),

Σ1 = Σ− + a(χ− − χ⋆), Σ2 = Σ+ − a(χ+ − χ⋆).

We conclude this brief analysis of the relaxation model (52)(53) by establishing
the following positive preserving property satisfied by the Riemann solver under
consideration:

Lemma 7. Assume U± ∈ V to be equilibrium state; i.e. Π± =
d±

1 + χ±
and Σ± = 0.

Assume a > 0 and Z+ − Z− > 0. Then U(x, t), solution of the Riemann problem
(52)(53)µ=0(55), stays entirely in V.

We omit the proof of the above result since it is a direct consequence of the
formula of χ⋆.

3.2. A relaxation scheme. We derive numerical approximations of the weak
solutions of (50)(51) with the relaxation model (52)(53). At the very discrepancy
with the splitting schemes, introduced in Section 2, the resulting relaxation scheme
involves a relevant approximation of the source term. Such a linearization of the
source term makes the scheme explicit and, sometime, reduces the cost of the
numerical experiments.

To access such an issue, a two step method is adopted. The first step, called

evolution step, is devoted to evolve the approximate solution from un
i to u

n+ 1
2

i

involving the relaxation model with µ = 0. During the second step, the relaxation
step, the relaxation source terms are approximated in the regime µ = ∞.

First, assume known a piecewise constant approximation of the solution, un
i ,

at time tn. Let us introduce an equilibrium piecewise constant state Un
i :=

t(un
i , Zn

i , Πn
i = dn

i /(1 + χn
i ), Σn

i = 0). This equilibrium state is now evolved in
time by a Godunov scheme for (52)(53)µ=0. Let us recall that the Godunov scheme

for (52)(53)µ=0 is derived by solving elementary Riemann problems stated at each

interface xi+ 1
2

and integrating the obtain Riemann solutions, given by (56), on

(xi− 1
2
, xi+ 1

2
) at time tn + ∆t. Now, we have to fix the relaxation paramater a.

At each interface xi+ 1
2
, we define the parameter ai+ 1

2
according to the Whitham

condition (54). Assuming the following CFL like restriction:

(57)
∆t

∆x
max
i∈Z

ai+ 1
2
≤ 1

2
,



16 DENISE AREGBA-DRIOLLET AND CHRISTOPHE BERTHON

tha relaxation parameter a may vary from one interface to another. Setting Zi+1−
Zi = ∆x, after computation we obtain

(58)







































d
n+ 1

2

i = dn
i − ∆t

∆x
(hn

i+ 1
2

− hn
i− 1

2

),

h
n+ 1

2

i = hn
i − ∆t

∆x
(Πn

i+ 1
2

− Πn
i− 1

2

),

χ
n+ 1

2

i = χn
i − ∆t

∆x
(Σn

i+ 1
2

− Σn
i− 1

2

) + ∆tSn
i ,

where the numerical Godunov flux functions are given as follows:

(59)



































hi+ 1
2

=
hi + hi+1

2
− 1

2ai+ 1
2

(ei+1 − ei),

Πi+ 1
2

=
ei + ei+1

2
−

ai+ 1
2

2
(hi+1 − hi),

Σi+ 1
2

= −ǫai+ 1
2
αi+ 1

2
(χi+1 − χi).

The source term is defined by

Si = (αi+ 1
2

+ αi− 1
2
)

(

αi+ 1
2
Π2

i+ 1
2

+ αi− 1
2
Π2

i− 1
2

αi+ 1
2

+ αi− 1
2

− χn
i

)

,(60)

αi+ 1
2

=
ai+ 1

2

2ai+ 1
2
ǫ + ∆x

.(61)

The second step of the relaxation method consists in solving the following system:














∂td = 0,
∂th = 0,
∂tχ = 0,
∂tZ = 0,

and















∂tΠ = µ

(

d

1 + χ
− χ

)

,

∂tΣ = −µΣ,

with U
n+ 1

2

i as initial data. Whenever µ tends to infinity, the final scheme reads as
follows:











dn+1
i = d

n+ 1
2

i ,

hn+1
i = h

n+ 1
2

i ,

χn+1
i = χ

n+ 1
2

i ,

and















Πn+1
i =

dn+1
i

1 + χn+1
i

,

Σn+1
i = 0.

To conclude the derivation of the relaxation scheme, let us note that this
numerical method is positive preserving since the associated approximate Riemann
solver is positive preserving (see Lemma 7). As a consequence, we have χn+1

i ≥ 0
as soon as χn

i ≥ 0 for all i in Z.
Concerning the asymptotic behavior of the method, it is clear that the standard

asymptotic preserving property cannot be reached since, for ǫ = 0, we have

χn+1
i = χn

i − ∆t

αi+ 1
2

+ αi− 1
2

(

αi+ 1
2
(Πn

i+ 1
2

)2 + αi− 1
2
(Πn

i− 1
2

)2

αi+ 1
2

+ αi− 1
2

− χn
i

)

.

In fact, the asymptotic behavior of the scheme cannot be analyzed independently
of the convergence when ∆x tends to zero. Indeed we have (similar idea can be
found in [1]):
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Lemma 8. Assume the ratio ∆x
ǫ admits a limit, denoted ℓ, as ǫ tends to zero. The

evolution law for χn+1
i , in the limit of ǫ to zero, writes

χn
i =

βi+ 1
2
(Πn

i+ 1
2

)2 + βi− 1
2
(Πn

i− 1
2

)2

βi+ 1
2

+ βi− 1
2

,(62)

where βi+ 1
2

> 0 where βi+ 1
2

= ai+ 1
2
/(2ai+ 1

2
+ ℓ).

Proof. Let the evolution law for χn+1
i be rewritten as follows:

ǫχn+1
i = ǫχn

i −

ǫ
∆t

∆x

(

−
a2

i+ 1
2

2ai+ 1
2

+ ∆x
ǫ

(χn
i+1 − χn

i ) +
a2

i− 1
2

2ai− 1
2

+ ∆x
ǫ

(χn
i − χn

i−1)

)

+

∆t

(

ai+ 1
2

2ai+ 1
2

+ ∆x
ǫ

(Πn
i+ 1

2

)2 +
ai− 1

2

2ai− 1
2

+ ∆x
ǫ

(Πn
i− 1

2

)2−
(

ai+ 1
2

2ai+ 1
2

+ ∆x
ǫ

+
ai− 1

2

2ai− 1
2

+ ∆x
ǫ

)

χn
i

)

.

The proof is completed as soon as ǫ tends to zero. �

Note that Πn
i+ 1

2

is nothing but a discrete form of d
1+χ at the cell interface xi+ 1

2
.

As a consequence, (62) turns out to be a discrete form of the expected equilibrium
relation χ = ( d

1+χ )2.

The numerical experiments performed with this method are in a good agreement
with the expected solution. In addition, the method will be shown to be able to
capture the asymptotic regime: better than expected by the theoritical result of
Lemma 8, we can fix ∆x and let ǫ go to zero. However, this scheme turns out to
be poorly accurate. It does not capture the stationary contact discontinuities for χ
and it introduces too much numerical viscosity. Actually this scheme is the starting
point for a better numerical procedure, as described in the following Subsection.

3.3. A Godunov extension. In the framework of the Kerr-Debye model, the
Godunov method produces an accurate scheme. When considering such an
approach, the main difficulty stays in the discretization of the source term. To
access such an issue, we suggest to adopt the discrete source term, involved in (60),
but for the Godunov characteristic speed. Put in other words, we adopt the discrete
formula (60) where the characteristic velocities, ai+ 1

2
and ai− 1

2
, involved on the cell

(xi− 1
2
, xi+ 1

2
) are now defined by

1
√

1 + χn
i

. As a consequence, the discrete source

term reads as follows:

(63) Si =

2√
1+χi

2ǫ√
1+χi

+ ∆x

(

e2
i+ 1

2

+ e2
i− 1

2

2
− χi

)

.

Thus we suggest the following scheme:

(64)



































dn+1
i = dn

i − ∆t

∆x
(hn

i+ 1
2

− hn
i− 1

2

),

hn+1
i = hn

i − ∆t

∆x
(en

i+ 1
2

− en
i− 1

2

),

χn+1
i = χn

i + ∆tSn
i ,
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where the numerical flux function hi+ 1
2

and ei+ 1
2

are the Godunov numerical flux

(23), and the source term Si is given by (63). Let us note that the scheme (64) is
an explicit approximate solver, and its implementation turns out to be very easy.

Concerning the asymptotic behavior of the scheme (23)(63)(64) for ǫ → 0, we
have

Lemma 9. Assume the ratio ∆x/ǫ admits a limit as ǫ tends to zero. In the limit
of ǫ to zero, the sequence (χn

i )i∈Z satisfies:

(65) χn
i =

1

2
((en

i+ 1
2

)2 + (en
i− 1

2

)2).

Proof. From (63)(64), let us rewrite the evolution laws for χn
i as follows:

ǫχn+1
i = ǫχn

i + ∆t

2√
1+χi

2√
1+χi

+ ∆x
ǫ

(

e2
i+ 1

2

+ e2
i− 1

2

2
− χi

)

.

The proof is achieved whenever ǫ tends to zero. �

Let us emphasize that ei+ 1
2

is a discrete form at the cell interface xi+ 1
2

of the

continuous relation e = d/(1 + χ). As a consequence, the above relation (65) is
nothing but a discrete form of the equilibrium equation χ = ( d

1+χ )2.

Now, we turn establishing the robustness and the stability properties satisfied by
this numerical method. To access such an issue, let us first prove that the scheme
(23)(63)(64) is a Godunov like scheme. Indeed, consider the Riemann solver (21)
but for intermediate constant states defined as follows:
(66)


















































































h1 = h2 = h⋆ =
−(e+ − e−)

√
1 + χ−

√
1 + χ+ + h+

√
1 + χ− + h−

√
1 + χ+√

1 + χ+ +
√

1 + χ−

d1 = d− − (h⋆ − h−)
√

1 + χ−

d2 = d+ − (h+ − h⋆)
√

1 + χ+

χ1 =
2

2 + ∆x
ǫ

√
1 + χ−

χ− +
∆x
ǫ

√
1 + χ−

2 + ∆x
ǫ

√
1 + χ−

(

d1

1 + χ−

)2

,

χ2 =
2

2 + ∆x
ǫ

√
1 + χ+

χ+ +
∆x
ǫ

√
1 + χ+

2 + ∆x
ǫ

√
1 + χ+

(

d2

1 + χ+

)2

.

The Godunov type scheme interpretation of the scheme (23)(63)(64) is thus
established in the following result:

Lemma 10. For i ∈ Z and n ≥ 0, let un
h,i+ 1

2

(x, t) be the approximate Riemann

solution (21)(66) stated at the cell interface xi+ 1
2
, where we have set u− = un

i and

u+ = un
i+1. Under the half CFL condition (26), define the function uh by

uh(x, t) = un
h,i+ 1

2

(x, t) if x ∈]xi, xi+1[.

Then, the updated state un+1
i , defined by (23)(63)(64), reads as follows:

(67) un+1
i =

1

∆x

∫

Ci

uh(x, tn+1)dx.

Proof. This result is classical (see [17]) and we give the proof for the sake of
completeness. Under the CFL restriction (26), since the juxtaposition of the
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approximate Riemann solutions (21)(66) are noninteracting, the expected result
comes from a direct evaluation of the integral. Indeed, setting λ = 1√

1+χn

i

, we have

1

∆x

∫

Ci

uh(x, tn+1)dx =

∫ x
i− 1

2

+λ∆t

x
i− 1

2

un,2

h,i− 1
2

dx

+
1

∆x

∫ x
i+1

2

−λ∆t

x
i− 1

2

+λ∆t

un
i dx +

1

∆x

∫ x
i+1

2

x
i+1

2

−λ∆t

un,1

h,i+ 1
2

dx,

= un
i − λ

∆t

∆x

(

(un
i − un,2

h,i− 1
2

) + (un
i − un,1

h,i+ 1
2

)
)

.

Involving the definition of un,1

h,i+ 1
2

and un,2

h,i− 1
2

, deduced from (66), a straightforward

computation gives the expected identity (67) and the proof is thus completed. �

Since it will be usefull in the sequel, involving the intermediate states (66), let
us note that the Godunov numerical flux function ei+ 1

2
now reads

(68) en
i+ 1

2

=
dn,1

i+ 1
2

1 + χn
i

=
dn,2

i+ 1
2

1 + χn
i+1

.

Now, we give the main statement concerning the robustness and the stability of
the Godunov type scheme (23)(63)(64).

Theorem 2. Let χn
i ≥ 0 for all i in Z. Assume the CFL condition (26) and

consider the updated state un+1
i given by the numerical scheme (23)(63)(64). Then

χn+1
i ≥ 0 for all i in Z. In addition, as soon as ∆x is small enough and ǫ > 0 is

fixed, the following discrete entropy inequality holds:

EKD(un+1
i ) − EKD(un

i )

∆t
+

hi+ 1
2
ei+ 1

2
− hi− 1

2
ei− 1

2

∆x
≤ 0,

where the Kerr-Debye entropy function EKD is defined by (10).

Proof. First, let us adopt the notations introduced Lemma 10. From (66), we note
that χ1 ≥ 0 and χ2 ≥ 0 as soon as χ± ≥ 0. As a consequence, with χn

i ≥ 0 for all
i in Z, the function χh(x, t) is nonnegative. Now, involving the integral definition
of χn+1

i , given by (67), we immediately deduce that χn+1
i ≥ 0 for all i in Z.

Next, concerning the discrete entropy inequality, by Lemma 10 and the Jensen’s
inequality we have

EKD(un+1
i ) ≤ EKD(un

i )− ∆t

∆x
√

1 + χn
i

(

−EKD(un,2

h,i− 1
2

) + 2EKD(un
i ) − EKD(un,1

h,i+ 1
2

)
)

.

For the sake of simplicity in the notations, let us introduce the function φ ∈
C1(R+, R), defined as follows:

φ(∆x) = −EKD(un,2

h,i− 1
2

) + 2EKD(un
i ) − EKD(un,1

h,i+ 1
2

),

= 2

(

(dn
i )2

2(1 + χn
i )

+
(hn

i )2

2
+

(χn
i )2

4

)

−




(dn,2

i− 1
2

)2

2(1 + χn,2

i− 1
2

)
+

(hn,2

i− 1
2

)2

2
+

(χn,2

i− 1
2

)2

4



−





(dn,1

i+ 1
2

)2

2(1 + χn,1

i+ 1
2

)
+

(hn,1

i+ 1
2

)2

2
+

(χn,1

i+ 1
2

)2

4



 ,
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to write

EKD(un+1
i ) ≤ EKD(un

i ) − ∆t

∆x
√

1 + χn
i

φ(∆x).

From (66) to define un,2

h,i− 1
2

and un,1

h,i+ 1
2

, note that the dependence on ∆x of the

function φ just comes from the definition of χn,2

i− 1
2

:= χn,2

i− 1
2

(∆x) and χn,1

i+ 1
2

:=

χn,1

i+ 1
2

(∆x). With ∆x = 0, we have χn,2

i− 1
2

(∆x = 0) = χn
i and χn,1

i+ 1
2

(∆x = 0) = χn
i to

write

φ(0) =
√

1 + χn
i

(

1
√

1 + χn
i

(

EKD(un
i ) − EKD(wn,1

i+ 1
2

)
)

+

1
√

1 + χn
i

(

EKD(un
i ) − EKD(wn,2

i− 1
2

)
)

)

,

where we have set

wn,1

i+ 1
2

=
(

dn,1

i+ 1
2

, hn
i+ 1

2

, χn
i

)

and wn,2

i− 1
2

=
(

dn,2

i− 1
2

, hn
i− 1

2

, χn
i

)

.

Now, Lemma 5 can be applied to write

1
√

1 + χn
i

(EKD(un
i ) − EKD(wn,1

i+ 1
2

)) = hn
i+ 1

2

en
i+ 1

2

− hn
i en

i ,

1
√

1 + χn
i

(EKD(un
i ) − EKD(wn,2

i− 1
2

)) = hn
i en

i − hn
i− 1

2

en
i− 1

2

.

As a consequence, φ(0) reads as follows:

φ(0) =
√

1 + χn
i

(

hn
i+ 1

2

en
i+ 1

2

− hn
i− 1

2

en
i− 1

2

)

.

Next, let us analyze the behavior of the function φ in a neighborhood of zero.
Concerning the variation of φ we have

φ′(∆x) =
1

2











dn,2

i− 1
2

1 + χn,2

i− 1
2

(∆x)





2

− χn,2

i− 1
2

(∆x)







d

d∆x
χn,2

i− 1
2

(∆x) +

1

2











dn,1

i+ 1
2

1 + χn,1

i+ 1
2

(∆x)





2

− χn,1

i+ 1
2

(∆x)







d

d∆x
χn,1

i+ 1
2

(∆x),

where

d

d∆x
χn,2

i− 1
2

(∆x) =

2ǫ√
1+χn

i

(

2ǫ√
1+χn

i

+ ∆x

)2











dn,2

i− 1
2

1 + χn
i





2

− χn
i






,

d

d∆x
χn,1

i+ 1
2

(∆x) =

2ǫ√
1+χn

i

(

2ǫ√
1+χn

i

+ ∆x

)2











dn,1

i+ 1
2

1 + χn
i





2

− χn
i






.

Since we have χn,2

i− 1
2

(0) = χn
i and χn,1

i+ 1
2

(0) = χn
i , we immediately deduce

φ′(0) =

√

1 + χn
i

4ǫ

















dn,2

i− 1
2

1 + χn
i





2

− χn
i







2

+











dn,1

i+ 1
2

1 + χn
i





2

− χn
i







2




≥ 0.
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If φ′(0) > 0, invoking standard continuity arguments, we obtain φ(∆x) > φ(0) as
soon as ∆x is small enough. Now, with φ′(0) = 0 we easily obtain

χn
i =





dn,2

i− 1
2

1 + χn
i





2

= (en
i− 1

2

)2 and χn
i =





dn,1

i+ 1
2

1 + χn
i





2

= (en
i+ 1

2

)2.

As a consequence of the definition of the Godunov flux function (68), the source
term Sn

i , defined by (63), vanishes independently of ∆x. Then we obtain φ(∆x) =
φ(0) for all ∆x ≥ 0. We have thus proved that φ(∆x) ≥ φ(0) for all χn

i ≥ 0 and
∆x small enough.

To conclude, by definition of φ we have for all ∆x > 0 small enough

EKD(un+1
i ) ≤ EKD(un

i ) − ∆t

∆x
√

1 + χn
i

φ(0).

The proof is thus achieved. �

To conclude the derivation of the Godunov type scheme (23)(63)(64), let us
emphasize that the above result solely establishes a discrete entropy inequality
while one wants to specify this inequality according to the entropy dissipation
relation (12). It is possible to exhibit a discrete entropy dissipation with ∆x small
enough. Indeed, as the function φ is smooth enough, we can perform an asymptotic
expansion of φ in a neighborhood of zero, to write:

EKD(un+1
i ) ≤ EKD(un

i ) − ∆t

∆x
√

1 + χn
i

(

φ(0) + ∆xφ′(0) + O(∆x2)
)

.

From the obtained evaluations of φ(0) and φ′(0), the above inequality reads:

EKD(un+1
i ) − EKD(un

i )

∆t
+

hn
i+ 1

2

en
i+ 1

2

− hn
i− 1

2

en
i− 1

2

∆x
≤ − 1

2ǫ
S̄2

i + O(∆x2),

where

S̄2
i =

1

2











dn,2

i− 1
2

1 + χn
i





2

− χn
i







2

+
1

2











dn,1

i+ 1
2

1 + χn
i





2

− χn
i







2

,

to obtain a discrete form of (12).

4. Numerical experiments

In this section, we present numerical experiments performed with the schemes
derived in the present paper.

We first present computations on Kerr-Debye relaxation shock profiles. Such
functions are exact known solutions of Kerr-Debye system. Those tests validate the
schemes when the positive parameter ǫ is fixed. All the schemes under consideration
give good results.

Then a particular attention is paid to the asymptotic behavior of the solutions
as ǫ tends to zero. The explicit scheme (Sect. 2.1) is shown converging to
wrong solutions while the more sophisticate schemes: the implicit scheme (Sect.
2.3), the exact solving source term scheme (ESST, Sect. 2.5), the well-balanced
relaxation scheme (WBR, Sect. 3.2) and the well-balanced modified Godunov
scheme (WBMG, Sect. 3.3), give the expected solutions.

All the simulations are performed with an uniform mesh. As prescribed by the
analysis, the CFL number is fixed to 0.5. Moreover, a second-order extension is
proposed involving a standard MUSCL scheme (see van Leer [19]) based on a usual
minmod reconstruction. We set the CFL number to 0.25 when the second-order
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scheme is used. The obtained numerical results are compared to the exact solutions
given in [3].

The two first simulations are devoted to approximate relaxation shock profiles,
that are smooth solutions of Kerr-Debye system (5) under the form

(69) uǫ(x, t) = W

(

x − σt

ǫ

)

, W = (D, H, Υ),

and such that

(70)







D(±∞) = d±
H(±∞) = h±
Υ(±∞) = χ± .

In [3], it is proved that non trivial relaxation shock profiles exist if and only if

(71) d− 6= d+ d− d+ > 0, χ± = p(d±)2,

and (d−, h−), (d+, h+) are connected by an entropic Kerr shock. Moreover, the
profile is determined by the solution of an ODE which we solve numerically. We
consider here one-shock solutions of the Kerr model with d− > d+ > 0 and we
perform the computations with ǫ = 1.

ESST scheme WBMG scheme
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ESST first-order
ESST second-order
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Figure 2. Relaxation shock profile 1: d, h and χ with first and
second order schemes ESST and WBMG with an uniform mesh
made of 100 cells
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ESST scheme WBMG scheme
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Figure 3. Relaxation shock profile 2: d, h and χ with first and
second order schemes ESST and WBMG with an uniform mesh
made of 100 cells

At time t = 0, the initial data is given by an exact relaxation profile. The
first considered relaxation profile is characterized by d− = 1.5 and d+ = 0.75. It
stays very smooth in time, see Figure 2. According to the theory [3], when d+

tends to zero the profiles tend to a discontinuous solution of Kerr-Debye system.
This behavior can be observed with our second profile, determined by d− = 1.5
and d+ = 0.15. At time t = 5, both approximated profile are displayed Figures 2
and 3 when considering the ESST and WBMG schemes. The comparison with the
exact solution shows that the approximations are accurate. In fact, all the derived
schemes in the present paper are able to capture those solutions as proved by the
following L1-error computations obtained involving the second-order extensions of
the schemes:
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First profile

cells Explicit Implicit ESST WBR WBMG
100 5.46E-4 6.16E-4 5.67E-4 1.66E-3 1.46E-3
400 1.35E-4 7.73E-5 1.01E-4 3.06E-4 2.93E-4
800 7.25E-5 3.72E-5 5.60E-5 1.44E-4 1.41E-4
1600 3.75E-5 1.91E-5 3.24E-5 7.05E-5 6.97E-5

Second profile

cells Explicit Implicit ESST WBR WBMG
100 1.38E-2 1.14E-2 1.13E-2 1.55E-2 1.35E-2
400 2.35E-3 1.22E-3 1.20E-3 2.35E-3 2.05E-3
800 1.20E-3 2.85E-4 2.76E-4 8.07E-4 7.21E-4
1600 3.76E-4 8.34E-5 8.71E-5 3.07E-4 2.86E-4

As expected, the WBMG scheme gives better results than the WBR one. We also
remark that the implicit schemes are more accurate than the explicit ones. Among
explicit approximations the splitting scheme is better than the well-balanced ones
for the first (smooth) profile, while it becomes worse for the second (stiff) one. We
underline the fact that the computationnal times are of the same order, except the
one of the ESST scheme, which is greater.

Let us now turn our attention to the asymptotic behavior of the schemes, that
is their behavior when ǫ tends to zero. It is expected that in this limit we obtain
numerical approximations of the relaxed Kerr system. We fix the parameter ǫ = 0.
We recall that the limit of both implicit and ESST schemes coincide. We have
verified that this coincidence is actually true numerically and we just present here
the results for ESST, WBR and WBMG schemes. We consider an initial data made
of two constant states separated by a discontinuity located at x = 0. This initial
data is given as follows:

(d, h, χ)(x, 0) =

{

(1.5, 0, 5) if x < 0,
(−3, 1.5339, 5) if x > 0.

We underline the fact that the initial value of χ has been fixed to a constant,
χ(x, 0) = 5, far from its equilibrium value given by χeq(x, 0) = p(d(x, 0)). This is
not important for the implicit splitting schemes because for n ≥ 1 χ is automatically
at equilibrium but it is for the well balanced approximations.

The exact solution of Kerr Riemann problem is known [3] and it is made of a
composite wave (1-shock, 1-rarefaction) and a 2-shock wave. The ability of the
schemes to capture the relevant Kerr regime is now tested.

In Figure 4, the numerical approximation obtained with the ESST scheme and
both WBR and WBMG schemes are displayed at time t = 1. For the sake of clarity
in the presentation of the numerical results, the approximations are centered in the
interval of computation (−2.0039, 1.2113). The results clearly show a very good
agreement with the exact solution. This agreement is checked in the following
L1-error evaluations:

First-order schemes Second-order schemes

cells ESST WBR WBMG
100 5.03E-2 6.42E-2 6.23E-2
500 1.69E-2 1.86E-2 1.81E-2
1000 1.01E-2 1.12E-2 1.09E-2

cells ESST WBR WBMG
100 2.82E-2 4.05E-2 3.81E-2
500 7.74E-3 8.80E-3 8.23E-3
1000 4.35E-3 4.96E-3 4.65E-3
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Figure 4. Riemann problem 1: d and h with first and
second order schemes ESST, WBR and WBMG on the interval
(−2.0039, 1.2113) with an uniform mesh made of 100 cells

In Figure 5, we display the approximate solutions obtained with the explicit
splitting schemes of Sect. 2.2. These schemes do not capture the exact solution.
They do not own the correct limit.

The second Riemann problem is concerned with initial data as follows:

(d, h, χ)(x, 0) =

{

(1.5, 0, 5) if x < 0,
(2.5958, 5.1153, 5) if x > 0,

The exact solution is made of two composite waves (1-shock, 1-rarefaction and
2-rarefaction, 2-shock). In Figure 6, we exhibit the numerical solutions obtained
with the schemes ESST (or equivalently the implicit scheme), WBR and WBMG.
The approximations are displayed at time t = 1 on the interval (−2.0039, 1.7831)
to center the solution. The following L1-error evaluations ensure the expected
convergence of the three schemes:
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Figure 5. Riemann problem 1: d and h with the second order
explicit splitting schemes on the interval (−2.0039, 1.2113) with an
uniform mesh made of 1000 cells

First-order schemes Second-order schemes

cells ESST WBR WBMG
100 5.08E-2 6.51E-2 5.77E-2
500 1.73E-2 2.14E-2 1.98E-2
1000 1.04E-2 1.28E-2 1.20E-2

cells ESST WBR WBMG
100 3.28E-2 3.29E-2 3.09E-2
500 9.47E-3 9.81E-3 9.20E-3
1000 5.37E-3 5.59E-3 5.29E-3

5. Conclusion

In the present paper, we have derived numerical schemes to approximate the
solutions of the Kerr-Debye model. The main difficulty of these equations comes
from the approximation of the stiff source term. We have shown that basic explicit
numerical procedures are relevant to approximate shock profiles but converge to
wrong solutions in the Kerr relaxation limit. To overcome such a problem, we
have introduced more sophisticate schemes: implicit splitting schemes and explicit
well-balanced approximate Riemann solvers. These methods are proved to be
positive and entropy preserving. The numerical experiments show their accuracy
and stability for fixed positive ǫ as well as in the asymptotic Kerr regime.
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