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Abstract. We put recent results on the symmetry of the joint distribution of the num-
bers of crossings and nestings of two edges over matchings and set partitions in the larger
context of the enumeration of increasing and decreasing sequences of length 2 in fillings
of moon polyominoes.

1. Introduction

The main purpose of this paper is to put recent results of Klazar and Noy [10], Kasraoui
and Zeng [9], and Chen, Wu and Yan [2], on the enumeration of 2-crossings and 2-nestings
in matchings, set partitions and linked partitions in the larger context of enumeration of
increasing and decreasing chains in fillings of arrangements of cells. Our work is moti-
vated by the recent paper of Krattenthaler [11] in which results of Chen et al. [3] on the
symmetry of the crossing number and nesting number in matchings and set partitions
have been extended in a such context.

Let G be a simple graph (no multiple edges and loops) on [n] := {1, 2, . . . , n}. A graph
will be represented by its set of edges where the edge {i, j} is written (i, j) if i < j.

1 2 3 4 5 6 7 8 9 10 11

Figure 1. The graph {(1, 9), (2, 3), (2, 4), (3, 7), (5, 6), (6, 9), (6, 11), (9, 10)}

A sequence (i1, j1), (i2, j2), . . . , (ik, jk) of edges of G is said to be a k-crossing if i1 < i2 <

· · · < ik < j1 < j2 < · · · < jk and a k-nesting if i1 < i2 < · · · < ik < jk < · · · < j2 < j1.
If we draw the vertices of G in increasing order on a line and draw the arcs above the
line (see Figure 1 for an illustration), k-crossings and k-nestings have a nice geometrical
meaning. The largest k for which a graph G has a k-crossing (resp., a k-nesting) is denoted
cros(G) (resp., nest(G)) and called [3] the crossing number (resp., nesting number) of G.
The number of k-crossings (resp., k-nestings) of G will be denoted by crosk(G) (resp.,
nestk(G)). A graph with no k-crossing is called k-noncrossing and a graph with no k-
nesting is called k-nonnesting. As usual, a 2-noncrossing (resp., 2-nonnesting) graph is
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just said to be noncrossing (resp., nonnesting). Recently, there has been an increasing
interest in studying crossings and nestings in matchings, set partitions, linked partitions
and permutations (see e.g. [1, 2, 3, 4, 5, 6, 9, 10, 12]).

A (set) partition of [n] is a collection of non-empty pairwise disjoint sets, called blocks,
whose union is [n]. A (complete) matching of [n] is just a set partition whose each block
contains exactly two elements. The set of all set partitions and matchings of [n] will
be denoted respectively by Pn and Mn. Set partitions (and thus matchings) have a
natural graphical representation, called standard representation. To each set partition π

of [n], one associates the graph Stπ on [n] whose edge set consists of arcs joining the
elements of each block in numerical order. For instance, the standard representation of
the set partition π = {{1, 9, 10}, {2, 3, 7}, {4}, {5, 6, 11}, {8}} is the graph on {1, 2, . . . , 11}
Stπ = {(1, 9), (9, 10), (2, 3), (3, 7), (5, 6), (6, 11)} drawn in Figure 2.

1 2 3 4 5 6 7 8 9 10 11

Figure 2. Standard representation of π = {1, 9, 10}{2, 3, 7}{4}{5, 6, 11}{8}

Throughout this paper, set partitions (and matchings) will be identified with their
standard representation. It is well-known that the number of noncrossing matchings of [2n]
equals the number of nonnesting matchings of [2n], and that the number of noncrossing
partitions of [n] equals the number of nonnesting partitions of [n] (and these are the n-th
Catalan number), i.e.

|{M ∈ M2n : cros2(M) = 0}| = |{M ∈ M2n : nest2(M) = 0}|, (1.1)

|{π ∈ Pn : cros2(π) = 0}| = |{π ∈ Pn : nest2(π) = 0}|. (1.2)

In recent works, two generalizations of the latter identities have been investigated. The
first one is an extension of results obtained by De Sainte-Catherine, and Klazar and Noy
on the distributions of 2-crossings and 2-nestings on matchings. In her thesis [7], De
Sainte-Catherine have shown that the statistics cros2 and nest2 are equidistributed over
all matchings of [2n], that is for any integer ℓ ≥ 0,

|{M ∈ M2n : cros2(M) = ℓ}| = |{M ∈ M2n : nest2(M) = ℓ}|, (1.3)

i.e. in other words,
∑

M∈M2n

pcros2(M) =
∑

M∈M2n

pnest2(M). (1.4)

Klazar and Noy [10] have shown that (1.1) is even more true because the distribution of
the joint statistic (cros2, nest2) is symmetric over M2n that is

∑

M∈M2n

pcros2(M)qnest2(M) =
∑

M∈M2n

pnest2(M)qcros2(M). (1.5)

Equations (1.2) and (1.4)(1.5) motivates Kasraoui and Zeng to pose and solve the
following questions: Are the statistics cros2 and nest2 equidistributed over all partitions
of [n]? Is the distribution of the joint statistic (cros2, nest2) symmetric over all partitions
of [n]? For S, T two subsets of [n], let Pn(S, T ) be the set of all partitions of [n] whose the
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set of lefthand (resp., righthand) endpoints of the arcs of π is equal to S (resp., T ). For
instance, the set partition drawn in Figure 2 belong to Pn(S, T ), with S = {1, 2, 3, 5, 6, 9}
and T = {3, 6, 7, 9, 10, 11}. Generalizing Klazar and Noy’s result (1.5), Kasraoui and
Zeng [9] have proved that the distribution of the joint statistic (cros2, nest2) is symmetric
over each Pn(S, T ) (and thus, over Pn and Mn), that is

∑

π∈Pn(S,T )

pcros2(π)qnest2(π) =
∑

π∈Pn(S,T )

pnest2(π)qcros2(π). (1.6)

Note that recently, Chen, Wu and Yan [2] have generalized the above result (although it
is not explicitly stated) by considering linked set partitions (see (3.3)).

The second generalization of (1.4) and (1.5) is due to Chen, Deng, Du, Stanley and
Yan [3]. It states, remarkably, that for any k ≥ 2 the number of k-noncrossing partitions
(resp. matchings) of [n] equals the number of k-nonnesting partitions (resp. matchings)
of [n]. More generally, Chen et al. [3] have proved that the distribution of the joint statistic
(cros, nest) is symmetric over each Pn(S, T ), that is

∑

π∈Pn(S,T )

pcros(π)qnest(π) =
∑

π∈Pn(S,T )

pnest(π)qcros(π). (1.7)

In the recent paper [11], Krattenthaler have put Chen et al’s result (1.7) in the larger
context of the enumeration of increasing and decreasing chains in fillings of ferrers shapes.
First recall the correspondence between simple graphs of [n] and 01-fillings of ∆n, the
triangular shape with n − 1 cells in the bottom row, n − 2 cells in the row above, etc.,
and 1 cell in the top-most row. See Figure 3 for an example in which n = 11 (the filling
and labeling of the corners should be ignored at this point. For convenience, we also
joined pending edges at the right and at the top of ∆n). Let G be a simple graph of [n].
The correspondence consists in labeling in increasing order columns from left to right by
{1, 2, . . . , n} and rows from top to bottom by {1, 2, . . . , n}. Then assign the value 1 to
the cell on column labeled i and row labeled j if and only if (i, j) is an edge of G. An
illustration is given in Figure 3.

1 2 3 4 5 6 7 8 9 10 11 1

1

1

1

1

1

1

1

1 2 3 4 5 6 7 8 9 10 11

11
10
9
8
7
6
5
4
3
2
1

Figure 3. A graph and the corresponding 01-filling

It is obvious to see that in this correspondence a k-crossing (resp., k-nesting) cor-
responds to a SE-chain (resp., NE-chain) of length k such that the smallest rectangle
containing the chain is contained in ∆n, a SE-chain (resp., NE-chain) of length k being a
sequence of k 1’s in the filling such that any 1 in the sequence is below and to the right
(resp., above and to the right) of the preceding 1 in the sequence. Moreover, it is obvious
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that this correspondence establishes a bijection between set partitions of [n] and N (∆n),
the set of all 01-fillings of ∆n in which every row and every column contains at most one 1.
Therefore, Kasraoui and Zeng’s result (1.6) and Chen et al’s result (1.7) can be viewed
as a property of symmetry of NE-chains and SE-chains over N (∆n). Given a 01-filling F

of ∆n, denote by se(F ) (resp., ne(F )) the maximal k such that F has a SE-chain (resp.,
NE-chain) of length k, the smallest rectangle containing the chain being contained in F

and by se2(F ) (resp., ne2(F )) the number of SE-chains (resp., NE-chains) of length 2 such
that the smallest rectangle containing the chain is contained in F . Then the symmetry
of the distributions of the joint statistics (cros2, nest2) and (cros, nest) over set partitions
can be reformulated respectively as follows:

∑

F∈N (∆n)

pne2(F )qse2(F ) =
∑

F∈N (∆n)

pse2(F )qne2(F ) (1.8)

∑

F∈N (∆n)

pne(F )qse(F ) =
∑

F∈N (∆n)

pse(F )qne(F ). (1.9)

In the recent paper [11], Krattenthaler have shown that (1.9) remains true if we replace
∆n by any ferrers shapes and he proposed to investigate more general arrangements.
This was done successfully by Rubey [13] for moon polyominoes. It is thus natural to ask
if (1.8) remains true when we replace ∆n by any ferrers shape or, more generally by any
moon polyomino (We will answer this question by the affirmative): this is the original
motivation of our paper.

2. The main results

A polyomino is an arrangement of square cells. It is convex if along any row of cells
and along any column of cells there is no hole. It is intersection free if any two rows
are comparable, i.e., one row can be embedded in the other by applying a vertical shift.
Equivalently, it is intersection free if any two columns are comparable, i.e., one row can
be embedded in the other by applying an horizontal shift. A moon polyomino is a convex
and intersection free polyomino. An illustration is given in Figure 4.

1

1

11

1

1 1

1

Figure 4. A moon polyomino T and a 01-filling of T .

Let T be a moon polyomino. A 01-filling F of T consists of assigning 0 or 1 to each cell.
For convenience, we will omit the 0’s when we draw the fillings. See Figure 4. The set of
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all 01-fillings of T will be denoted N 01(T ). Recall that a SE-chain (resp., NE-chain) of
length k in a 01-filling F of T is a sequence of k 1’s in the filling such that any 1 in the
sequence is below and to the right (resp., above and to the right) of the preceding 1 in
the sequence. A SE-chain (resp., NE-chain) of length 2 such that the smallest rectangle
containing the chain is contained in F is said to be a descent (resp., an ascent). We will
denote by se2(F ) and ne2(F ) the number of descents and ascents in F . For instance, if F

is the filling drawn in Figure 3, we have ne2(F ) = 6 and se2(F ) = 4, while for the filling
in Figure 4 we have ne2(F ) = se2(F ) = 4. It is natural in view of the results presented in
the introduction to ask if the statistics cros2 and nest2 are equidistributed over all simple
graphs of [n], or equivalently, if the statistics se2 and ne2 are equidistributed over N 01(∆n)
for any nonnegative integer n. More generally, one can ask if the statistics se2 and ne2 are
equidistributed over N 01(T ) for any moon polyomino T . The answer to these questions
is no by means of Proposition 6.1. However, it appears that for particular 01-fillings we
have such an equidistribution and even more, namely the symmetry of the distribution
of the joint statistic (ne2, se2). Let N c(T ) (resp., N r(T )) be the set of all 01-fillings of T

with at most one 1 in each column (resp., row), and N (T ) := N c(T ) ∩ N r(T ) the set of
all 01-fillings of T with at most one 1 in each column and in each row. Then our main
result can be stated as follows.

Theorem 2.1. For any moon polyomino T , the distribution of the joint statistic (ne2, se2)
over any B ∈ {N (T ),N c(T ),N r(T )} is symmetric, or equivalently

∑

F∈B

pne2(F )qse2(F ) =
∑

F∈B

pse2(F )qne2(F ). (2.1)

In fact we have obtained much stronger results. Before stating these results, we need
to introduce some definitions. Let T be a moon polyomino with s rows and t columns.
By convention, we always label the rows of T from top to bottom in increasing order by
{1, 2, . . . , s} and the columns of T from left to right in increasing order by {1, 2, . . . , t}.
The row labeled i and the column labeled j will be denoted respectively by Ri and
Cj. The length-row sequence of T , denoted r(T ), is the sequence (r1, r2, . . . , rs) where
ri is the length (i.e., the number of cells) of the row Ri. Similarly, the length-column
sequence of T , denoted c(T ), is the sequence (c1, c2, . . . , ct) where ci is the length of the
column Ci. Clearly, the length-row and length-column sequence of any moon polyomino
are always unimodal sequences, that is there exist (unique) integers i0 and j0 such that
r1 ≤ r2 ≤ · · · ≤ ri0 > ri0+1 ≥ · · · ≥ rs and c1 ≤ c2 ≤ · · · ≤ cj0 > cj0+1 ≥ · · · ≥ ct. The
upper part of T , denoted Up(T ), is the set of rows Ri with 1 ≤ i ≤ i0, and the lower
part, denoted Low(T ), the set of rows Ri, i0 + 1 ≤ i ≤ s. Similarly, the left part of T ,
denoted Left(T ), is the set of columns Ci with 1 ≤ i ≤ j0, and the right part, denoted
Right(T ), the set of columns Ci, j0 +1 ≤ i ≤ t. For instance, if T is the moon polyomino
in Figure 4, we have r(T ) = (4, 6, 9, 10, 10, 8, 5, 2), Up(T ) = {Ri : 1 ≤ i ≤ 5} and
Low(T ) = {R6, R7, R8}, and c(T ) = (2, 3, 4, 4, 5, 7, 8, 8, 7, 6), Left(T ) = {Ci : 1 ≤ i ≤ 8}
and Right(T ) = {C9, C10}. Define the relation ≺ on the rows of T as follows: Ri ≺ Rj if
and only if

• ri < rj, or
• ri = rj, Ri ∈ Up(T ) and Rj ∈ Low(T ), or
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• ri = rj, Ri, Rj ∈ Up(T ) and Ri is above Rj, or
• ri = rj, Ri, Rj ∈ Low(T ) and Ri is below Rj.

Similarly, define the relation ≺ (for convenience, we use the same symbol than for rows)
on the columns of T defined by Ci ≺ Cj if and only if

• ci < cj, or
• ci = cj, Ci ∈ Left(T ) and Cj ∈ Right(T ), or
• ci = cj, Ci, Cj ∈ Left(T ) and Ci is to the left of Cj, or
• ci = cj, Ci, Cj ∈ Right(T ) and Ci is to the right of Cj .

It is easy to check that the relation ≺ is a total order both on rows and columns of T . For
instance, if T is the moon polyomino in Figure 4 we have R8 ≺ R1 ≺ R7 ≺ R2 ≺ R6 ≺
R3 ≺ R4 ≺ R5 and C1 ≺ C2 ≺ C3 ≺ C4 ≺ C5 ≺ C10 ≺ C6 ≺ C9 ≺ C7 ≺ C8.

Let F be a 01-filling of T . A cell of F is said to be empty if it has been assigned
the value 0. We also say that a row (resp., column) of F is empty if all its cells are
empty. The indices of the empty rows and columns of F are denoted ER(F ) and EC(F ),
respectively. For instance if F is the 01-filling given in Figure 4, then ER(F ) = {3, 7}
and EC(F ) = {3, 10}.

Given a s-uple m = (m1, . . . , ms) of positive integers and A a subset of [t], we denote by
N c(T,m) the set of 01-fillings in N c(T ) with exactly mi 1’s in row Ri and by N c(T,m; A)
the set of fillings F in N c(T,m) such that EC(F ) = A. For instance, the filling F given
in Figure 4 belong to N c(T,m; A), with m = (1, 2, 0, 1, 2, 1, 0, 1) and A = {3, 10}.
Similarly, given a t-uple n = (n1, . . . , nt) of positive integers and a subset B of [s], we
denote by N r(T,n) the set of 01-fillings in N r(T ) with exactly ni 1’s in column Ci and
by N r(T,n; B) the set of fillings F in N r(T,n) such that ER(F ) = B. Also, for A, B two
subsets of [t] and [s] respectively, we denote by N (T ; A, B) the set of 01-fillings in N (T )
such that EC(F ) = A and ER(F ) = B.

For positive integers n and k, let
[

n

k

]

p,q
be the p, q-Gaussian coefficient defined by

[

n

k

]

p,q

=

{

[n]p,q!
[k]p,q! [n−k]p,q!

, if 0 ≤ k ≤ n;

0, otherwise.

where, as usual in p, q-theory, the p, q-integer [r]p,q is given by

[r]p,q :=
pi − qi

p − q
= (pi−1 + pi−2q + · · ·+ pjqi−j−1 + · · · + pqi−2 + qi−1),

and the p, q-factorial [r]p,q! by [r]p,q! :=
∏r

i=1[i]p,q.

Let T be a moon polyomino with s rows and t columns, m = (m1, . . . , ms) a s-uple of
positive integers, n = (n1, . . . , nt) a t-uple of positive integers, and A, B two subsets of [t]
and [s] respectively. Suppose Ri1 ≺ Ri2 ≺ · · · ≺ Ris and Cj1 ≺ Cj2 ≺ · · · ≺ Cjt

. Then for
u ∈ [s] and v ∈ [t], define hiu and h′

jv
by

hiu = riu − (mi1 + mi2 + · · ·+ miu−1) − aiu , (2.2)

h′
jv

= cjv
− (nj1 + nj2 + · · ·+ njv−1) − bjv

, (2.3)
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where riu is the length of the row Riu and aiu is the number of indices k ∈ A such that
the column Ck intersect the row Riu , and cjv

is the length of the column Cjv
and bjv

is
the number of indices k ∈ B such that the row Rk intersect the column Cjv

.
The following result gives the distributions of the joint statistic (ne2, se2) over N c(T,m; A)

and N r(T,n; B).

Theorem 2.2. For any moon polyomino T with s rows and t columns, the distributions
of the joint statistic (ne2, se2) over each N c(T,m; A) and N r(T,n; B) are given by

∑

F∈N c(T,m;A)

pne2(F )qse2(F ) =

s
∏

d=1

[

hd

md

]

p,q

, (2.4)

∑

F∈N r(T,n;B)

pne2(F )qse2(F ) =

t
∏

d=1

[

h′
d

nd

]

p,q

, (2.5)

where hd and h′
d are defined by (2.2) and (2.3).

As an immediate consequence (take m ∈ {0, 1}s or n ∈ {0, 1}t in Theorem 2.2), we
obtain the following result.

Corollary 2.3. For any moon polyomino T with s rows and t columns, the distribution
of the joint statistic (ne2, se2) over N (T ; A, B) is given by

∑

F∈N (T ;A,B)

pne2(F )qse2(F ) =
∏

d∈[s]\B

[hd]p,q =
∏

d∈[t]\A

[h′
d]p,q, (2.6)

where hd and h′
d are defined by (2.2) and (2.3).

It is not difficult to show that (2.4) and (2.5) are equivalent. Indeed, if T is a moon
polyomino with s rows and t columns, then the arrangement of cells T t obtained from T

by rotation about 90◦ is also a moon polyomino but with t rows and s columns. Moreover
it is obvious that the application F 7→ F t which associates to each filling F of T the filling
F t of T t obtained from F by rotation about 90◦ establishes a bijection from N c(T,m; A)
onto N r(T t,m; A) which sends the joint statistic (ne2, se2) onto (se2, ne2) for any m and A.
See Figure 5 for an illustration.

F =

1

1 1

1

1

-

= F t

1

1

1

1

1

Figure 5. Rotation about 90◦ for filling.

Since the p, q-integer [n]p,q is symmetric in the variables p and q for any positive integer n,
we have the following results.
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Corollary 2.4. For any moon polyomino T , the joint statistic (ne2, se2) is symmetri-
cally distributed over each N c(T,m; A), N r(T,n; B) and N (T ; A, B). In particular, it is
symmetrically distributed over each N c(T,m) and N r(T,n).

For any positive integer k denote by N c(T ; k), N r(T ; k) and N (T ; k) the set of 01-
fillings in N c(T ), N r(T ) and N (T ) with exactly k ones, respectively.

Corollary 2.5. For any moon polyomino T and positive integer k, the joint statistic
(ne2, se2) is symmetrically distributed over each N c(T ; k), N r(T ; k) and N (T ; k). Sum-
ming over all positive integers k, we recover Theorem 2.1.

The paper is organized as follows. In Section 3, we show briefly how the results on the
symmetry of the joint statistic (cros2, nest2) presented in the introduction can be obtained
from the above results. In section 4, we prove Theorem 2.1 and in Section 5, we present
a bijective proof of Corollary 2.4. Finally, we conclude this paper with some remarks and
problems.

We end this section by illustrating Theorem 2.2. Suppose T is the moon polyomino
given below and A = {2}.

Then we have:

• Ri1 ≺ Ri2 ≺ Ri3 ≺ Ri4 ≺ Ri5 with i1 = 1, i2 = 5, i3 = 4, i4 = 2, i5 = 3.
• The column labeled 2 intersect the rows labeled 2, 3, 4, 5, thus a1 = 0, a2 = a3 =

a4 = a5 = 1.

Suppose m = (1, 2, 1, 0, 1). We then have

hi1 = h1 = r1 − a1 = 2,

hi2 = h5 = r5 − m1 − a5 = 1,

hi3 = h4 = r4 − (m1 + m5) − a4 = 1,

hi4 = h2 = r2 − (m1 + m5 + m4) − a2 = 3,

hi5 = h3 = r3 − (m1 + m5 + m4 + m2) − a3 = 1.

It then follows from Theorem 2.2 that

∑

F∈N c(T,m;A)

pne2(F )qse2(F ) =

5
∏

j=1

[

hj

mj

]

p,q

=

[

2

1

]

p,q

[

3

2

]

p,q

[

1

1

]

p,q

[

1

0

]

p,q

[

1

1

]

p,q

= p3+2p2q+2pq2+q3.

On the other hand, the fillings in N c(T,m; A) and the corresponding values of ne2 and
se2 are listed below.
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1

1 1

1

1

ne2 = 0 , se2 = 3

1

1 1

1

1

ne2 = 1 , se2 = 2

1

1 1

1

1

ne2 = 2 , se2 = 1

1

1 1

1

1

ne2 = 1 , se2 = 2

1

1 1

1

1

ne2 = 2 , se2 = 1

1

1 1

1

1

ne2 = 3 , se2 = 0

Summing up we get
∑

F∈N c(T,m;A) p
ne2(F )qse2(F ) = p3 + 2p2q + 2pq2 + q3, as desired.

3. Symmetry of 2-crossings and 2-nestings in linked partitions,

set partitions and matchings

In this section we show briefly how results on the enumeration of 2-crossings and 2-
nestings can be recovered from the results obtained in this paper. Let G be a simple
graph on [n]. The multiset of lefthand (resp., righthand) endpoints of the arcs of G will
be denoted by left(G) (resp., right(G)). For instance, if G is the graph drawn in Figure 3,
we have left(G) = {1, 2, 2, 3, 5, 6, 6, 9} and right(G) = {3, 4, 6, 7, 9, 9, 10, 11}. For S and
T two multisubsets of [n], we will denote by Gn(S, T ) the set of simple graphs G on [n]
satisfying left(G) = S and right(G) = T.

Suppose F is the 01-filling of the triangular shape ∆n which corresponds to the graph G.
For convenience, we joined an empty column at the right and an empty row at the
top of ∆n, and columns are labeled from left to right and rows from top to bottom
by {1, 2, . . . , n}. It is obvious that the number of 1’s in the column (resp., row) labeled i

is equal to the multiplicity of i in left(G) (resp., right(G)). See Figure 3 for an illustration.
Taking the moon polyomino T := ∆n in Theorem 2.2, we obtain the following results.

Let (S, T ) be a pair of multisubsets of [n] and denote by mi the multiplicity of i in T

and by m′
i the multiplicity of i in S. Also for any i ∈ T set hi = |{j ∈ S | j < i}| − |{j ∈

T | j < i}| and for any i ∈ S set h′
i = |{j ∈ T | j > i}| − |{j ∈ S | j > i}|.

Corollary 3.1. Let (S, T ) be a pair of multisubsets of [n].

(1) If all elements of S have multiplicity 1, then

∑

G∈Gn(S,T )

pne2(F )qse2(F ) =
∑

G∈Gn(S,T )

pse2(F )qne2(F ) =
∏

i∈T

[

hi

mi

]

p,q

. (3.1)
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(2) If all elements of T have multiplicity 1, then

∑

G∈Gn(S,T )

pne2(F )qse2(F ) =
∑

G∈Gn(S,T )

pse2(F )qne2(F ) =
∏

i∈S

[

h′
i

m′
i

]

p,q

. (3.2)

In particular, the joint statistic (cros2, nest2) is symmetrically distributed over Gn(S, T ) if

• either all elements of S have multiplicity 1,
• either all elements of T have multiplicity 1.

Note that (3.2) is equivalent to a result of Chen et al. [2, Theorem 3.5] on the enumer-
ation of 2-crossings and 2-nestings in linked set partitions. Let E and F be two finite sets
of nonnegative integers. We say that E and F are nearly disjoint if for every i ∈ E ∩ F ,
one of the following holds:

(a) i = min(E), |E| > 1 and i 6= min(F ), or
(b) i = min(F ), |F | > 1 and i 6= min(E).

A linked partition (see [2]) of [n] is a collection of non-empty and pairwise nearly disjoint
subsets whose union is [n]. The set of all linked partitions of [n] will be denoted by LPn.
The linear representation Gπ of a linked partition π ∈ LPn is the graph on [n] where
i and j are connected by an arc if and only if j lies in a block B with i = Min(B).
An illustration is given in Figure 6. Clearly, the map π 7→ Gπ establishes a bijection

1 2 3 4 5 6 7 8 9 10 11

Figure 6. Linear representation of π = {1, 5}{2, 3, 4}{3, 7}{5, 6}{6, 9, 11}{8}{9, 10}

between linked set partitions and simple graphs G such that all elements of right(G) have
multiplicity one. For S, T ⊆ [n] two multisubsets of [n], denote by LPn(S, T ) the set
{π ∈ LPn : left(Gπ) = S , right(Gπ) = T}. Then (3.2) can be rewritten

∑

π∈LPn(S,T )

pcros2(Gπ)qnest2(Gπ) =
∑

π∈LPn(S,T )

pnest2(Gπ)qcros2(Gπ) =
∏

i∈S

[

h′
i

m′
i

]

p,q

, (3.3)

where h′
i and m′

i are defined as in Corollary (3.1), which is equivalent to a result of Chen
et al. [2, Theorem 3.5].

Now consider the map π 7→ Stπ which associates to each set partition its standard rep-
resentation (see Figure 2). Clearly, this map establishes a bijection between set partitions
and simple graphs G such that all elements of right(G) and left(G) have multiplicity one.
Applying Corollary 3.1 with mi = 1 (or (3.3) with m′

i = 1) we recover (1.6) and the
following identity which is implicit in [9, Section 4]

∑

π∈Pn(S,T )

pcros2(π)qnest2(π) =
∑

π∈Pn(S,T )

pnest2(π)qcros2(π) =
∏

i∈O

[hi]p,q =
∏

i∈T

[h′
i]p,q, (3.4)

where hi and h′
i are defined as in Corollary (3.1).
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4. Proof of Theorem 2.2

As explained in Section 2, it suffices to prove the first part of Theorem 2.2 that is
the identity (2.4). Throughout this section, T is a moon polyomino with s rows and
length-row sequence (r1, r2, . . . , rs), and m = (m1, . . . , ms) is a s-uple of positive integers.

4.1. Preliminaries. Let i, 1 ≤ i ≤ s, be an integer. The i-th rectangle of T , is the
greatest rectangle contained in T whose top (resp., bottom) row is Ri if Ri ∈ Up(T )
(resp., Ri ∈ Low(T )). An illustration is given in Figure 7.

Figure 7. left : the 2-th rectangle, right : the 6-th rectangle.

Let F be a 01-filling of T in N c(T,m). The coloring of F is the colored filling obtained
from F by:

• coloring the cells of the empty columns,
• for i = 1, . . . , s, coloring the cells which are both contained in the i-th rectangle

and
– if Ri ∈ Up(T ), below a 1 of Ri.
– if Ri ∈ Low(T ), above a 1 of Ri.

An illustration is given in Figure 8. Throughout this paper, we identify a filling with its
coloring. For instance, ”the cell c of the filling F is uncolored” means that ”the cell c is
uncolored in the coloring of F”,. . .

1

1

1

11

1

1 1

1

1

1

1

11

1

1 1

1

1

1

1

11

1

1 1

1

Figure 8. left : coloring induced by R2, center : coloring induced by R6,
right : full coloring.

The interest of coloring a 01-filling is in the following result. Let c be a cell of F . If c

contains a 1 denote by luc(c; F ) (resp., ruc(c; F )) the numbers of uncolored empty cells
11



which are both to the left (resp., right) and in the same row than the cell c in F . If c is
empty, set luc(c; F ) = ruc(c; F ) = 0.

Proposition 4.1. Let F ∈ N c(T ) and c be a cell of Ri containing a 1. Then luc(c; F )
(resp., ruc(c; F )) is equal to

• if Ri ∈ Up(T ): the number of ascents (resp., descents) contained in the i-th rec-
tangle of F whose North-east (resp., North-west) 1 is in c,

• if Ri ∈ Low(T ): the number of descents (resp. ascents) contained in the i-th
rectangle of F whose South-east (resp., South-west) 1 is in c.

Sketch of the proof of Proposition 4.1. Suppose Ri ∈ Up(T ) and let c be a cell of Ri

containing a 1.
Let c′ be an empty uncolored cell in Ri to the left (resp., right) of c. Suppose c′ belong to

the column Ck. By the definition of the coloring of polyominoes, the column Ck contains
a 1 (otherwise all the cells of Ck, in particular c′, would be colored). Moreover, the cell
c′′ of Ck containing a 1 must belong to a row Rj with Ri ≺ Rj (otherwise all the cells of
Ck in the i-th rectangle of T , in particular c′, would be colored), and thus c′′ belong to
the i-th rectangle. Since Ri ∈ Up(T ), the row Ri is the top row of the i-th rectangle of
T , and thus the cell c′′ is to the South-west (resp., South-east) of the cell c. Finally, the
sequence c′′c (resp., cc′′ ) is an ascent (resp., a descent) contained in the i-th rectangle
of F .

Reversely, let c′′ be a cell of F such that the pair c′′c (resp., cc′′) is an ascent (resp.,
descent) of F contained in the i-th rectangle of F . Suppose c′′ belong to Ck and let c′ be
the cell of F at the intersection of the column Ck and the row Ri. Clearly, Ck is empty
(there is at most one 1 in each column). It remains to show that the cell c′ is uncolored.
This follows from the fact that c′′ belong to a row Rj with Ri ≺ Rj (since c′′ is in the i-th
rectangle). We thus have proved the first part of Proposition 4.1.

The second part can be proved by a similar reasoning. Therefore, the details are left
to the reader.

�

Note that Proposition 4.1 lead to the following decompositions of ne2 and se2:

ne2(F ) =
∑

c∈Up(F )

luc(c; F ) +
∑

c∈Low(F )

ruc(c; F ), (4.1)

se2(F ) =
∑

c∈Up(F )

ruc(c; F ) +
∑

c∈Low(F )

luc(c; F ). (4.2)

4.2. A correspondence between 01-fillings and sequence of compositions. If n

and k are positive integers, we will denote by Ck(n) the set of compositions of n into k

positive parts. Recall that a element in Ck(n) is just a k-uple (b1, b2, . . . , bk) of positive
integers such that b1 + b2 + · · ·+ bk = n. The proof of Theorem 2.2 is based on a bijection

Ψ : N c(T,m; A) → Cm1+1(h1 − m1) × Cm2+1(h2 − m2) × · · · × Cms+1(hs − ms)

which keeps track of the statistics ne2 and se2.
12



Algorithm for Ψ. For F ∈ N c(T,m; A) associate the sequence of compositions Ψ(F ) :=
(c(1), c(2), . . . , c(s)), where for i = 1, . . . , s, the composition c(i) is defined by

• c(i) = (0) if mi = 0, otherwise

• c(i) = (c
(i)
1 , . . . , c

(i)
mi+1) where c

(i)
1 (resp., c

(i)
j for 2 ≤ j ≤ mi, c

(i)
mi+1) is the number

of uncolored cells in Ri to the left of the first 1 (resp., between the j-th 1 and the
(j + 1)-th 1, to the right of the last 1) of Ri in the coloring of F .

An illustration is given in Figure 9.

F

1

1

1

11

1

1 1

1 c(1) = (1, 1)
c(2) = (0, 1, 0)
c(3) = (0)
c(4) = (1, 1)
c(5) = (0, 0, 0)
c(6) = (1, 0)
c(7) = (2, 0)
c(8) = (0, 1)

−→
Ψ

Figure 9. The mapping Ψ

In order to show that Ψ is bijective, we describe its reverse. Let c = (c(1), c(2), . . . , c(s))
in Cm1+1(h1 − m1) × Cm2+1(h2 − m2) × · · · × Cms+1(hs − ms). Then define the 01-filling
Υ(c) of T by the following process.

(1) Color the columns indexed by the set A of the polyomino T . Denote by F0 the
colored polyomino obtained.

(2) Construct a sequence of colored fillings (Fj)j=1...s of T as follows. Suppose Ri1 ≺
Ri2 ≺ · · · ≺ Ris. Then for j from 1 to s, the (colored) filling Fj is obtained from Fj−1 as
follows:

• if mij = 0, do nothing,
• else, insert mij 1’s in the ij -th row of Fj−1 in such a way that the number of

uncolored cells strictly

– to the left of the first 1 is c
(ij)
1 ,

– between the u-th 1 and the (u + 1)-th 1, 1 ≤ u ≤ mij − 1, is c
(ij)
u+1,

– to the right of the last 1 is c
(ij )
mij

+1.

Next, color the cells which are both below (resp., above) the new 1’s inserted in
Rij and contained in the ij-th rectangle if Rij ∈ Up(T ) (resp., Rij ∈ Low(T )).

(3) Set Υ(c) = Fs.

For a better understanding, we give an example. Suppose T is the moon polyomino
given below, A = {2} and m = (1, 2, 1, 0, 1). Note that R1 ≺ R5 ≺ R4 ≺ R2 ≺ R3.
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Suppose c = (c(1), c(2), c(3), c(4), c(5)) with c(1) = (1, 0), c(2) = (1, 0, 1), c(3) = (0, 0, 0),
c(4) = (0) and c(5) = (0, 0). The step by step construction of Υ(c) is given in Fig-
ure 10. It is easily seen that Υ is the reverse of Ψ, and thus Ψ is bijective. Now let

F0 F1

1

c(1) = (1, 0)

F2

1

1

c(5) = (0, 0)

F3

1

1

c(4) = (0)

F4

1

1

1 1

c(2) = (1, 0, 1)

F5

1

1

1 1

1 1

c(3) = (0, 0, 0)

Figure 10. The step-by-step construction of Υ(c)

c = (c(1), c(2), . . . , c(s)) ∈ Cm1+1(h1 − m1) × Cm2+1(h2 − m2) × · · · × Cms+1(hs − ms) and
F = Υ(c) be the corresponding 01-filling. Let i be an integer in [s] and ce be the cell of
the i-th row Ri of F which contains the j-th 1 of Ri (from left to right as usual). It then
follows from the definition of Υ that

luc(ce; F ) = c
(i)
1 + c

(i)
2 + · · · + c

(i)
j and ruc(ce; F ) = c

(i)
j+1 + c

(i)
j+2 + · · ·+ c

(i)
mi+1.

We summarize the main properties of Ψ in Theorem 4.2.

Theorem 4.2. The map Ψ : N c(T,m; A) → Cm1+1(h1 − m1) × · · · × Cms+1(hs − ms)
is a bijection such that for any F ∈ N c(T,m; A) and any cell ce in F , if Ψ(F ) =
(c(1), c(2), · · · , c(s)), we have

luc(ce; F ) = c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
j

ruc(ce; F ) = c
(i)
j+1 + c

(i)
j+2 + · · · + c

(i)
mi+1.

4.3. Proof of (2.4). The proof is based on the correspondence Ψ and the following
identity, which can be easily proved (by induction for instance).

Lemma 4.3. For any integers n ≥ k ≥ 0,

∑

(c1,c2,...,ck+1)∈Ck+1(n)

k
∏

j=1

p
∑j

r=1 cr q
∑k+1

r=j+1 cr =

[

n + k

k

]

p,q

.

Suppose Up(T ) = {R1, R2, . . . , Ri0} and Low(T ) = {Ri0+1, . . . , Rs}. By (4.1) and (4.2)
we have
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∑

F∈N c(T,m;A)

pne2(F )qse2(F ) =
∑

F∈N c(T,m;A)

∏

ce∈Up(T )

pluc(ce;F )qruc(ce;F )
∏

ce∈Low(T )

pruc(ce;F )qluc(ce;F )

=
∑

F∈N c(T,m;A)

i0
∏

i=1

∏

ce∈Ri

pluc(ce;F )qruc(ce;F )
s
∏

i=i0+1

∏

ce∈Ri

pruc(ce;F )qluc(ce;F ).

Let C = Cm1+1(h1 − m1) × · · · × Cms+1(hs − ms). It follows from Theorem 4.2 that the
right-hand side of the last equality can be rewritten

∑

(c(1),c(2),...,c(s))∈C

i0
∏

i=1

(

mi
∏

j=1

p
∑j

r=1 c
(i)
r q

∑mi+1
r=j+1 c

(i)
r

)

s
∏

i=i0+1

(

mi
∏

j=1

p
∑mi+1

r=j+1 c
(i)
r q

∑j
r=1 c

(i)
r

)

=

i0
∏

i=1





∑

c(i)∈Cmi+1(hi−mi)

mi
∏

j=1

p
∑j

r=1 c
(i)
r q

∑mi+1
r=j+1 c

(i)
r





s
∏

i=i0+1





∑

c(i)∈Cmi+1(hi−mi)

mi
∏

j=1

p
∑mi+1

r=j+1 c
(i)
r q

∑j
r=1 c

(i)
r



 .

Applying Lemma 4.3 conclude the proof of (2.4) and thus of Theorem 2.2.

5. A bijective proof of Corollary 2.4

Let T be a moon polyomino with s rows and t columns. In this section, we present a
mapping Φ such that for any s-uple of positive integers m = (m1, m2, . . . , ms) and set A

of positive integers, the map Φ is a bijection Φ : N c(T,m; A) → N c(T,m; A) such that
for any F ∈ N c(T,m; A), we have

(ne2, se2)(Φ(F )) = (se2, ne2)(F ).

This gives a direct combinatorial proof of the symmetry of the joint distribution of
(ne2, se2) over each N c(T,m; A), N (T ; A, B) (set mi = 0 for i ∈ B and 1 otherwise),
and N r(T,n; B) (compose with the rotation about 90◦).

In fact, the map Φ is just a byproduct of the constructions given in the previous
section. It is also a generalization of an involution presented in [9] to prove the symmetry
of (cros2, nest2) over set partitions and matchings.

Let c = (c1, c2, . . . , ck) be a composition. Define the reverse rev(c) of c as the composi-
tion rev(c) = (ck, ck−1, . . . , c1). Given a sequence of compositions c = (c(1), c(2), . . . , c(s)),
we set Rev(c) = (rev(c(1)), rev(c(2)), . . . , rev(c(s))).

Let Φ : N c(T,m; A) 7→ N c(T,m; A) be the map defined by

Φ = Ψ−1 ◦ Rev ◦ Ψ = Υ ◦ Rev ◦ Ψ.

The following proposition is an immediate consequence of the properties of Ψ (see
Theorem 4.2).

Proposition 5.1. The map Φ is an involution on N c(T,m; A) such that for any F ∈
N c(T,m; A) and any cell c of T , we have

luc(c; Φ(F )) = ruc(c; F ) and ruc(c; Φ(F )) = luc(c; F ).
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In particular, we have (ne2, se2)(Φ(F )) = (se2, ne2)(F ).

It could be useful to give a direct description of Φ. Let F ∈ N c(T,m; A).
(1) Color the columns of polyomino T indexed by the set A. Denote by F ′

0 the colored
polyomino obtained.

(2) Contruct a sequence of colored fillings (F ′
j)j=1...s of T as follows. Suppose Ri1 ≺

Ri2 ≺ · · · ≺ Ris. Then for j from 1 to s, the (colored) filling F ′
j is obtained from F ′

j−1 as
follows:

• if mij = 0, do nothing,
• else, read the mij 1’s in the ij-th row of F from left to right and denote the number

of uncolored cells (in the coloring of F ) strictly
– to the left of the first 1 by t0,
– between the u-th 1 and the (u + 1)-th 1, 1 ≤ u ≤ mij − 1, by tu,
– to the right of the last 1 by tmij

.

Then insert mij 1’s in the ij -th row of F ′
j−1 in such a way that the number of

uncolored cells on this row strictly
– to the left of the first 1 is tmij

,

– between the u-th 1 and the (u + 1)-th 1, 1 ≤ u ≤ mij − 1, is tmij
−u,

– to the right of the last 1 is t0.
Next, color the cells which are both contained in the ij-th rectangle and below
(resp., above) the new 1’s inserted in Rij if Rij ∈ Up(T ) (resp., Rij ∈ Low(T )).

(3) Set Φ(F ) = F ′
s. For a better understanding, we give an illustration. Suppose F is

the filling given below.

F

1

1

1

11

1

1 1

1

Then the step-by-step construction of Φ(F ) goes as follows.

F ′
0 F ′

1

1

F ′
2

1

1
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F ′
3

1

1

1

F ′
4

1

1

1

1 1

F ′
5

1

1

1

1 1

1

F ′
6

1

1

1

1 1

1

F ′
7

1

1

1

1 1

1

1

F ′
8 = Φ(F )

1

1

1

1 1

1

1

1 1

Figure 11. The step-by-step construction of Φ(F )

6. Concluding remarks

It is natural, in view of the results obtained in this paper, to ask if the joint distribution
of the statistic (ne2, se2) is symmetric over arbitrary 01-fillings of moon polyominoes, i.e.,
there are no restrictions on the number of 1’s in columns and rows. The answer is no by
means of the following result. Given a moon polyomino T , recall that N 01(T ) is the set
of all 01-fillings of T .

Proposition 6.1. For any n ≥ 5 the numbers of arbitrary 01-fillings of ∆n

• with exactly
(

n

4

)

descents is equal to 2n,

• with exactly
(

n

4

)

ascents is equal to 16.

In particular, for any n ≥ 5, the statistics ne2 and se2 are not equidistributed over
N 01(∆n), and thus the joint distribution of (ne2, se2) over N 01(∆n) is not symmetric.

This also implies that the statistics cros2 and nest2 are not equidistributed over all
simple graphs of [n].

Proof. We give the proof for n = 5, 6 since the reasoning can be generalized for arbitrary n.
Suppose n = 5. Then one can check that the arbitrary 01-fillings of ∆5 with exactly 5
descents and those with exactly 5 ascents have respectively the following ”form”

1

1

1

1

10|1

0|1

0|1

0|1

0|1

1 2 3 4 5

5

4

3

2

1

1

1

1

1

1

1

0|1

0|1

0|1 0|1

1 2 3 4 5

5

4

3

2

1
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from which it is easy to obtain the result. Similarly, for n = 6, the arbitrary 01-fillings
of ∆6 with exactly 15 descents and those with exactly 15 ascents have respectively the
following ”form”

0|1

1

1

1

0|1

1

1

1

0|1

1

1

0|1

1

0|1

0|1

1 2 3 4 5 6

6

5

4

3

2

1

1

1

1

0|1

0|1

1

1

1

1

1

1

1

1

0|1 0|1

1 2 3 4 5 6

6

5

4

3

2

1

�

One can also ask if Theorem 2.1, or more generally Corollary 2.4 or Corollary 2.5, can
be extended to arbitrary larger classes of polyominoes. We note that the condition of
intersection free is necessary. Indeed, the polyomino T represented below is convex but
not intersection free,

and
∑

F∈N c(T,(1,1,1))

pne2(F )qse2(F ) =
∑

F∈N (T ;3)

pne2(F )qse2(F ) = p2 + 2q

is not symmetric. One can also check that
∑

F∈N c(T ) pne2(F )qse2(F ) and
∑

F∈N (T ) p
ne2(F )qse2(F )

are even not symmetric.

Let T be a moon polyomino and F be a 01-filling a T . Recall that ne(F ) (resp.,
se(F )) is the largest k for which F has a NE-chain (resp., SE-chain) of length k such that
the smallest rectangle containing the chain is contained in F . Rubey [13], answering a
conjecture of Jonsson [8], have proved that for any positive integers j and k, we have

|{F ∈ N 01(T ) : |F | = j , ne(F ) = k}| = |{F ∈ N 01(T ∗) : |F | = j , ne(F ) = k}| (6.1)

for any moon polyomino T ∗ obtained from T by permutating the columns (or equivalently
the rows) of T .

On the other hand, it is easy to derive from Theorem 2.2 the following result.

Proposition 6.2. Let T be a moon polyomino. For any moon polyomino T ∗ obtained
from T by permutating the rows of T and any positive integers j, k and ℓ, we have

|{F ∈ N c(T ) : |F | = j , ne2(F ) = k , se2(F ) = ℓ}|

=|{F ∈ N c(T ∗) : |F | = j , ne2(F ) = k , se2(F ) = ℓ}|

and

|{F ∈ N (T ) : |F | = j , ne2(F ) = k , se2(F ) = ℓ}|

=|{F ∈ N (T ∗) : |F | = j , ne2(F ) = k , se2(F ) = ℓ}|.
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Clearly the above proposition and Rubey’s result (6.1) bring us to the following problem:
Is it true that for any moon polyomino T and positive integers j and k we have that

|{F ∈ N 01(T ) : |F | = j , ne2(F ) = k}| = |{F ∈ N 01(T ∗) : |F | = j , ne2(F ) = k}|

for any moon polyomino T ∗ obtained from T by permutating the rows of T ? The answer is
no. Indeed, if such a result holds, then by reflecting each moon polyomino in a vertical line
and apply the result, we would obtain that the statistics ne2 and ne2 are equidistributed
over N 01(T ) for any moon polyomino T , which contradicts Proposition 6.1.
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