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INTRODUCTION

The validation of signals is a technique which integrates information from redundant and
from functionally diverse sensors to provide highly reliable information to operating crews
and to automatic controllers. Signal validation is generally performed by like-sensor
comparisons (direct redundancy). When the increase of sensors is impossible, we use in
preference analytical redundancy. Analytical redundancy refers to the physical relationships,
such as conservation of mass or conservation of energy, that exist among the many variables
being measured in a system. These validation techniques must be implemented to increase
systems reliability and to facilitate detection of failures. This paper presents two methods of
detection and location of measurement failures : the first is the standardized imbalance
residuals approach and the second is the approach based on standardized least square
residuals. These techniques are presented by using linear models that we extend to non-linear
models. We assume that all variables are measured (redundant system), that the measurement
errors are ruled by a zero mean normal distribution and known variances, and that the

process model is correct.

A - LINEAR SYSTEM
I - STANDARDIZED IMBALANCE RESIDUALS APPROACH
I.1 - Problem formulation
In practice the raw process data may also contains other types of errors which are caused
by non-random events. The presence of these errors invalidates the balance equations. It is

then necessary to examine the residuals of the imbalance. The R vector of imbalance is
generated according to the following equation :

R=MX (1)



where M is the incidence matrix of the system network with n nodes and v streams.

The measurement vector X and the measurement error vector € are connected with the true
values vector X* by the model :

X=X*+¢ (2)

Under the previous hypothesis relative to the measurement errors, one can demonstrate
[1] that R vector is normally distributed with zero mean and a variance matrix
Vr=MY MT. In order to compare the components of the R vector, let us define a
normalized imbalanced vector Ry with component Ry(i) defined by :
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Each component Ry(i) has a normal distribution with a zero mean and unity variance.
Then, a statistical test criterion of data inconsistency can be used. From a cumulative normal
distribution table the probability of Rn(i) being for example in the interval of - 1.96 to 1.96 is
read to be 0.95. Therefore, when IRy | > 1.96, we might say that the inconsistency is
significant with a probability of 0.05.

fori=1,..,n

Nodal imbalances result, if at least an adjacent stream is faulty. An error identification
scheme is the nodal aggregation procedure used by R.S.H. Mah [2]. The proposed algorithm
consists of three steps. In the first step our aim is to isolate the "bad" streams. We calculate
each normalized imbalanced vector component and for each component, we shall associate a
logical variable with each stream. Then a value of "1" will be assigned to a stream adjacent to
a "good" node, and a value of "0" to a stream adjacent to a "good" node. Otherwise no value
will be assigned for the other streams. The second step is the same as first for each
aggregated node generated from the "bad" nodes. Finally, the product of the logical variable
for each stream permits the detection of the faulty stream. Then a value of "0" represent a
"good" stream and a value of "1" a "bad" stream.

1.2 - Example

To illustrate the structure of the standardized imbalance residuals approach, we now
consider the simple example system shown in figure 1. For this example, the streams 3 and 7
are faulty. So in the first step, we find that all nodes are "bad". We can apply the test to the
balance around to the aggregated nodes, I + IL, I + III, II + III, IIT + IV, I + III + IV,
II+ I+ IV, I+1I+III+ IV (environment node).

Figure 1

The results of this fault detection are shown in table 1. The last line of table 1 gives the
final logical variable for each stream.

(3)



"bad" node 1 2 3 4 5 6 7 8 9
I yes 1 1 1 . .
I yes . . 1 1 1 . .
m yes . 1 . . 1 1 1 . .
v yes . . . . . . 1 1 1
I+1 no 0 0 . 0 0 . . .
I+1II yes 1 . 1 . 1 1 1 .
I+ III yes . 1 1 1 . 1 1 .
Im+1v no . 0 . . 0 0 . 0 0
I+III+1IV yes 1 . 1 . 1 1 1 1
I+ +1V yes . 1 1 1 . 1 1 1
Environment node no 0 0 0 0 0
Logical product 0 0 1 0 0 0 1 0 0

Table 1

In the present application, we find the "bad" streams 3 and 7. In other cases, the location
of faults is not so easy. Some of the streams can be identified as bad streams, but the
remaining streams cannot be so identified, and thus are potentially bad streams. For our
example, a fault on the stream 8 is also located to the stream 9 (symmetrical stream in respect
to node IV).

IT - STANDARDIZED LEAST SQUARE RESIDUALS ANALYSIS

I1.1 - Presentation of method

The location of the fault necessitates the generation of additional equations to obtain
information on the streams. This information can be given directly by the analysis of the least
square residual which gives an idea of the quality of the estimates.

I1.2 - Principle of method

In the absence of gross errors, we can use the model (2) which links the measurement

vector X with the true values vector X* and the measurement error vector €. The estimation
problem can be solved as :

min ¢ =% 1%-x II‘2,_1 subject to the constraint : MX =0 (4)
Applying the Lagrange multiplier technique, the least square estimate of X* is written as :

&= (1, - vMTMvM") M) X (5)
The least square residual vector E¢ of dimension v is :

Ec = X - 8 = vMTovvMT) ! MX (6)

The expected value of E is zero and the variance-covariance matrix Vg is :

Vg = vMTMvMD) ! Mv (7)



Also, E follows a normal distribution with zero mean and variance Vg. To compare the
different components of E¢, we define the Ey standardized least square vector which follows
a normal distribution with zero mean and unit variance :

 Ecl)
ENO= Vi

As for the residuals of the imbalance, each En(i) is compared with a critical test value

(defined by the overall probability a of error type I). If at least one component of Ey is out of
the confidence interval, this denotes the presence of a bad stream. Locating the failed sensor
one proves that it corresponds to the greatest standardized least square residual [1]. The
proposed method is an iterative method. At each stage, the measurement corresponding to the
largest normalized residual is deleted (by nodal aggregation) ; this measure is identified as
containing a gross error. The test takes into account the effect of modification of number of

stream. We choose the overall probability f instead of o [3], with B =1 - (1-)'™ where v'
is the number of tested measurements.

fori=1, ..V

B - NON-LINEAR SYSTEM

The two methods for detection and location of gross errors explained above are applied in
the same way to non-linear models. The additional hypothesis which we formulate is that the
algebraic constraint equations are continuously differentiable and monotonous in interval
where the measures are defined. In the general case, the process model can be written :

fX*)=0 (9)
where f is an n-vector of non-linear functions and X* is a set a true values.
I - STANDARDIZED IMBALANCE RESIDUALS ANALYSIS

1.1 - Presentation of method

As in the linear case, the measurement vector X does not satisfy the constraint equations.
The constraint residuals vector, or imbalance residuals vector, R is given by :

R = f(X) (10)

With the previous hypothesis, one shows that the vector R follows a normal distribution
with zero mean and covariance VR (VR = g(X) V g(X)T, where g(X) is the Jacobian of f

[4]).

One defines a normalized imbalanced vector Ry as in the linear case (3), if Ry(i) exceeds

the critical value, this denotes that node i is a bad node ; the location of the suspect stream
necessitates the fusion of not necessarily linear equations. Notice that these fusions, which
correspond to the elimination of one variable between two equations, are not easy from an
analytical point of view and, what is more, these fusions can not always be achieved, nor are
they unique.

If we note S; the set of variables index whose the ith equation explicitly depending and Sj‘\

=5;n Sj) the intersection of two sets of variables index of two equations, the fusion
between the ith equation and jth equation is possible only if S; ; # @. Then, for each equation

(8)



we seek to explain (if it is possible) the variables X(p) (p € Si,j) as a function of other
variables X(i) (i € S;,1# p).

Generally, the fusion of two equations induces the elimination of a single variable X(p),
on condition that one can interpret this variable as a function of other variables X(i) from at
least one equation. We observe that the fusion of two equations is possible by many
methods, depending on the variables that we eliminate. The resultant equation of the fusion
comes by the substitution of the relation in another equation.

To illustrate this method, we now consider the following example :

fi(X) =X()-log(X(2)) - X(3)X(2)?
f1 (X) =X@ - X(2)?X(5)

S1=1{1,2,3},S2=1(2,4,5}, 812 = {2}

By fusion of I and II, we suppress the variable 2. We seek to explain this variable X(2) as
a function of other variables. From the equation I, it is not possible to obtain this relation ;
but, from the equation II we get X(2) that we substitute in the equation L. So, the resultant
equation is :

fror (X) = X(1) - %log(.){%)_ X(3)§(<%_;

As in the linear case, the search for the faulty stream necessitates three stages (same in the
linear case). The first is the computation of the normalized imbalanced vector and the search
for components out of the confidence interval, this denotes the "bad" nodes. The next step is
the same as the first one for each fusion of "bad" equations. Finally, the last stage permits
the location of "bad" stream by the production of the logical variables (see A-I-1).

1.2 - Example

Consider the network, shown in figure 2, related by :

fi (X) =0.0045 X(1) X(2)2 - X(3)

fir (X) = X(3) - 280.86 %%

fim (X) = X(4) - 1og(X(6)) - X(6)2X(5)
fiv (X) =X(6)% - X(6)X(7) - X(8)

1 3 4 6 8
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Figure 2

For this simulation example, the true values vector X* (which satisfies the constraint
equations) and the measurements vector X are :

X* =[7.29 58.39 111.85 146.62 0.037 62.18 60.71 91.40]T



X =[7.18 60.31 173.13 141.49 0.039 77.46 58.04 95.57 |T

We define the measurement covariance matrix as a diagonal matrix (the measurements are
independent), where the ith termis :

V(i,i) = (0.05 X(i))? (11)
Stage 1 : Computation of residuals vector _

R =f(X)=[-5561 53.41 -96.86 1409.48 |T
Stage 2 : Computation of the standardized imbalance residuals

Ry=[-3.53 441 -3.57 3.22]T
Stage 3 : Search for "bad" nodes

For the overall probability o = 0.05, we have a confidence interval [ - 1.96, 1.96 ]. We
look for the component out of the confidence interval and we find all nodes are "bad".

Stage 4 : Aggregation procedure
We compute the following fusions :

(I + II),, where the subcript refer the variable deleted by fusion
A+1D;, T+ 0L I+ IV, T+ 1D + OL I+ T + IV
A+ID+TI+IV, I+ D)3 + I+ IV

The search for the fault is summarized in table 2. The method used is the same as the
linear case.

"bad" node 1 2 3 4 5 6 7 8
I yes 1 1 1 .
I yes . 1 1 1 . .
m yes . . . 1 1 1 . .
v yes . . . . . 1 1 1
(I+10), yes 1 . 1 1 . .
(I+1)3 no 0 0 . 0o . .
II+1II yes . 1 1 . 1 1 .
I +1v no . . . 0 0 . 0 0
A+1D)+ 110 yes 1 . 1 1 1
M+1I+1V yes . 1 1 1 1 1
I+ +HI+1V yes 1 . 1 1 1 1
(I+ID3+1I+1IV no 0 0 0 0 0
Logical product 0 0 1 0 0 1 0 0

Table 2

The streams 3 and 6 are identified as "bad" streams. We must notice that the location of
the failures can be more difficult. Besides the problem of symmetry in the linear case, the
problem of the fusion of non-linear equations is not very easy and is generally difficult to



automate. The utilization of formal language should permit, to a certain extent, the resolution
of this problem.

II - STANDARDIZED LEAST SQUARE RESIDUALS ANALYSIS
IL1 - Presentation of method

Besides the problem of fusions of non-linear equations, the supplementary problem that
we meet in this method is the computation of the estimate of true values vector. Newton -
Raphson type iteration coupled with numerical elimination of n variables as a function of the
v' - n other variables, is found to be an effective solution strategy [5] [6]. Notice that in the
linear case, we have an exact solution by matrix resolution.

The different iterations are :

- compute the estimate vector &,
- compute the least square residuals vector Ec = X - %
- compute the covariance matrix : VE=V g(ﬁk)T [g(&) \% g(&)'r]'l g(&) Vv,

- compute the standardized least square residuals as in the linear case (8)
- detect and locate the failed measurement.
I1.2 - Example
Consider the network in figure 2 :
Step 1 : Compute the estimate vector
X =[7.11 63.49 128.95 138.27 0.04 60.96 59.39 95.63 T
Step 2 : Compute the standardized least square residuals vector

Eyn=[0.32 - 1.40 7.10 0.56 2.71 4.60 - 0.55 - 0.52]T

Step 3 : Location of the failed stream

For o = 0.05 and v' = 8, we have B equals 0.0064 and a confidence interval [ - 2.72 ,
2.72 ]. One observes that the 3th measurement corresponding to the largest value of [En(i)l
out of the confidence interval, denotes that stream 3 is a "bad" stream.

Step 4 : Elimination of the faulty measure
By fusion of equations I and II : (I + II)3;, we delete the variable 3.

Step 5 : Compute the estimate vector

X =[7.08 62.07 142.10 0.04 61.57 60.02 95.64 |T
Step 6 : Compute the standardized least square residuals vector

En=[047 -0.73 -0.10 2.41 443 -0.80 - 0.64 T



Step 7 : Location of the failed stream

For o = 0.05 and v' = 7, we have B equals 0.0073 and a confidence interval [ - 2.68 ,
2.68 ]. One observes that the 6th measure corresponding to the largest value of [Ex(i)l out of
the confidence interval, denotes that stream 6 is a "bad" stream.

Step 8 : Elimination of the faulty measure
By fusion of equations III and IV, we delete the variable 6.

Step 9 : Compute the estimate vector

X =[7.19 61.15 141.82 0.04 58.20 95.57 1T

Step 10 : Compute the standardized least square residuals vector

En=[-0.07 -0.34 -0.05 0.45 -0.07 -0.04]T

Step 11 : Location of the failed stream

For o = 0.05 and v' = 6, we have B equals 0.0085 and a confidence interval [ - 2.63 ,
2.63 ]. One observes that all measures are "good".

We find again, as in the standardized imbalance method, that the streams 3 and 6 are at

fault.

CONCLUSION

This paper seeks to stress the problem of the detection and location of errors in a non-

linear system. From the techniques applied to a linear system [7], we present, with an
example, an extension of these methods applied to a non-linear system. If in a linear case,
these methods are easy to apply, in a non-linear case the most important problem remains the
fusion of equations.
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