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Abstract . This communication suggests a method for the hierarchical treatment of measurement balances of
static systems through homogeneous multilinear equations. Due to errors caused by sensors, the
measurements taken from a physical system are generally noisy and do not verify these balunce equations
(total or partial flows).

The problem consists in obtaining an estimation of the exact values, which verify the balance equations. The
solution is classically obtained by minimizing a quadratic criterion of the error terms, taking into account the
balance constraints. A large scale system of nonlinear equations must the be solved. Several forms of
hierarchical treatment may be used and also suboptimal solutions have been proposed.

The proposed algorithm is based on the mathematical decomposition of the whole system into serial sub-
systems. This decomposition is systematic in all cases and allows a direct iteration calculus. The main
numerical difficulty is to take into account the coordination factors between each level : after some algebraic
manipulations it is possible to eliminate all the Lagrange multipliers of the problem and to express on a very
convenient form the coordination factors. Each level of calculus is reduced to a simple projection of the
measurements on the constraints space and moreover the same parametrized routine can be used for each
level.

An example is given with measurements on a mineralurgical process with quadrilinear models using volumic
flowrate, density, granulometric distribution, and chemical analysis. The method has also been tested for
processes described by more than one thousand variables.

Keywords. Balance equilibration, error compensation, state estimation, data handling, multivariable system,

nonlinear equations, hierarchical calculus.

INTRODUCTION

Data reliability is of fundamental importance for process
diagnosis, identification and control. Measurements having
large, random or biased errors which go undetected lead to
poor control of processes. Detection of such errors is therefore
very important, but can only carried out on the basis of a
certain knowledge of the process, of the structure, of the
location of the data, and a certain degree of redundancy.

The calculation of the steady-state mass balances in the streams
of a mineralurgical process is a basic tool (Hodouin 1986,
Laguitton 1980). To calculate these balances, one collects as
many measures as practicable of flowrates (volumic or massic),
density, concentrations, size distributions in the process
streams. These raw measured data are in fact subject to random
and possibly gross errors so that they may be inconsistent with
the conservation of mass. The data must then be adjusted so
that the reconciled values obey the conservation law and some
criterion of the weighted measures is minimized.

This reconciliation problem is very classic and illustrate a
particular application of the estimation problem. In this work
we are interested with steady-state processes described by
multilinear mass balance equations ; the measurement errors are
taken as realization of random variables with normal and zero
mean distributions (the case of non zero-mean distribution can
be used when the sensors have biased values ; in these
conditions the bias must be estimated as all other parameters).

The estimation of the true data use the likelihood function
maximization in the case where the variance-covariance matrix
of the measurement errors is known. This was accomplished
originally by Madansky (1959) and Linnik (1963) on a general
point of view and by Rosen (1962) and Vaclavek (1969) on a
practical point on view.

The approach here is to define a suitable algorithm for the large
scale processes when they are described by d-linear
constraints.

PROBLEM FORMULATION

The class of d-linear systems is commonly used to describe
knowledge models of physical processes under steady state
conditions in which it is required to take into account total and
partial material flows. The models are said to be structurally
exact which is a necessary condition to allow the detection of
errors ; the general form of model is then :

j =
f,= MII X; j=1,..d M
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where d is the maximal order of the model,

the incidence matrix of the process flowsheet,
*

X; the vector of the true data corresponding to the
variable number i,

IT the operator which associate to two vectors a third
one such as its components are given by the
product of the components of the two vectors (we
also note * this product).

By example :
*
fi=M Q=0 V2]
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can be used to represent the conservation equations for the total
volumic flowrate (Q;) and the conservation in terms of total



massic flowrate (Q; p;). Common applications use quadrilinear
forms when we want to take into account volumic flowrate,
densities, concentrations and size distribution. However, we
consider the general case of d-linear representation.

Let us assume that each flowrate measurement is independent
and normally distributed with unknown mean and known
variance ; the data validation problem is then reduced to a

minimum search problem. The vector & of the estimated data
X is obtained from the measurements X, by minimizing the

criterion J:
d

I= 7 'zl(kj-xj)TV'j'(ﬁj-xj) @
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where Vj is the variance-covariance of the measurements
errors.

Using Lagrange multipliers, we can solve problem (4) by
finding a stationary point (X, A) of the Lagrangian :
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This gives the two equations :
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It is clear that the dimension of this system can be very
important and moreover the different equations are non-linear ;
however, its formulation point out the advantages of a
resolution using the principles of decomposition and
coordination of the calculus. Other principles of resolution can
be applied, in particular the complete linearization of the
equations of constraint ; in fact, in the case of d-linear
equations it seems that the principles of hierarchical calculus are
more powerful and take more advantage of the structure of the
equations. :

HIERARCHICAL RESOLUTION

In order to point out the principle of this solution we formulate
the problem about quadrilinear models which is enough to see
the generalization to d-linear systems .

The Lagrangian is defined by :
14 . i
L-7% [(kj‘x,-)ij‘ (ﬁj-xj)+xfmq£i1 ®)
J= 1=
For simplicity, we define :
M * X; * Xj = My ©)
Finding the stationary point of L gives :
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The solution of this strongly nonlinear system can be achieved

by decomposition-coordination algorithm. For the ith level, we

obtain the estimation of X;.

We premultiply the equation (10) by MV, ; the system can be
A

solved for A, and then gives the estimation X as:

&, = 0- viMT MV;MT) M)
[X; - ViIME Ay + Mgs A3 + Maly Ag)] (18)

We simplify this form with the help of the diagonal matrix A;
which the diagonal elements are the components of same order

of ki . The expression (9) can be written :
Mij=M A; A (19)
and the estimator ﬁl :
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Similarly, with notation (19), the equation (12) is written :
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Putting (21) into (20) gives :
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Similarly, we can obtain :
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In the general case, for the level i, we have :
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Then each level of calculus use a projection matrix (Crowe
1983), progressively modified by the estimations of the
preceding levels. The equations (22) to (25) are directly solved
with the measurements as initial choice of the estimations ; the
convergence of the calculus is always obtained by a proper
choice of a relaxation filter between the different levels. The
iterations are stopped when, between two iterations, the
numerical values of the estimated do not significantly vary.

SENSITIVITY AND VARIANCE

As the balances equations are nonlinear, it is quite impossible
to express an exact formulation of the sensitivity and of the
precision of the estimators. In the following section we suggest
to use a suboptimal solution obtained by a linearization of the
balance equations.



Residues of Balance Equati

The validity of the estimation method depends on the
hypothesis about the distribution of the error measurements ; if
they are not respected, the validated data have no longer
signification. The main fact which can oblige to reject these
hypothesis is the presence of faulty data. The detection of
faulty data can be done a priori by examination of the residues
of balance equations.

The residues of the balance equations, the imbalance vector R;,
are defined as :

: j
Rj= MIT X; j= 1,..d @7

We note that measurements are given by :

»
Xi= Xi+¢& (28)
then :
j  ox
i=1

To express the statistical properties of the imbalance vector, we
use the linearized form :

j j .
R: = M X. )* 30
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The mathematical expectation of the measurement errors is
taken as zero so that we obtain :

ERj) =0 (31)
and
j j * j .
VR)= $M( T X)Ve( [1_Xi) M 32)
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This expression can be reduced in the case where the variance
of the measurements is proportional to their square values :

Vk=a Ax Ak (33)

Then, if in expression (32) we replace the true values
(unknown) by their measurements, we obtain as expression of
the variance of the imbalance terms :

VR)=aiM([T A)?MT 34
i=1 -

Finally, we define the residues under a normalized form which
allows their relative comparison :

i
MII Xi
R = i1 35)

1
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Each component of this vector is distributed under a normal
distribution (zero mean and unity variance). With the
knowledge of the distribution of the residues it is possible to
determine, for each of them, the probability to obtain a value
less than the observed value. This probability, compared to a
critical probability, allows to accept or to reject the hypothesis
of fault on the balance residue of node i. The streams connected
to this node are suspicious.

Approached Estimator of the True Data

In order to suppress the nonlinear relation between the balance
equations we suggest the following variable transformation :

» j =
Y; = II Xi (36)

i=l

which put the balance equations under the form :

*
MY; =0 j=1,..d 37

*
As the Yj variables are not measured we define pseudo-
measurements Y; from the measurements Xi:

Yj = ﬁ Xi (38)
i=1
and pseudo-variances Wj of the pseudo-measurements Y; from
the variances Vj of the measurements X; :
j-1
Wj=Wij1AjAj+ Vj l]'[l Aj Aj 39)
The Lagrangian (5) is then replaced by :

14 1 vy dATMY:
L=7j§l[(\?j-yj)ij - Yp + 1] MYj) (40)
which appears to be an additive-separable form with respect to
the j subscript.

The solution can be expressed by :
9 = 1- W,MTMW;MD'M] Y, @1

The equations (39) et (41) give the complete solution of the
data reconciliation problem when using the decoupling
hypothesis. The reader can consult Fayolle (1987) which gives
other techniques of linearization.

Sensitivity and Vari

Taking a variation AY;for the pseudo-measurements, the
corresponding variation of the estimations is given by :

A9j=[1-ijT(M ijT)-'M] AYj, j=1..d (42)

This equation gives the sensitivity of the variation of a
measurement on the estimation of all other variables. It can be
used to locate the more sensitive measurements to the
reconciliation.

The equation (42) allows also to express the variance ( V() ) of
the estimations as :

W, =val)-Eat; afh)
= [I-WMTMW;MD)'M ] W, j=1,...d 43)

To express the variances of 5‘(; we use equation (39) written for
the estimated data :
j-1
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—

from which we can deduce the variance of the estimations \')j .

NUMERICAL EXAMPLES

Let us consider (Figure 1) a simple example in the
mineralurgical field which can illustrate a group of flotation
cells with five nodes (flotation cells) and ten streams.

For each stream we consider the measurements of volumic
flowrate Qj, of density p;, of the proportion tj of particles
belonging interval of size i and of the chemical concentration cj
for mineral specie in this granulometric class. .



Figure 1. A simple network

For each stream we consider the measurements of volumic

flowrate Qj, of density p;, of the proportion tj of particles
belonging interval of size 1 and of the chemical concentration cj
for mineral specie in this granulometric class.

The table 1 gives the measurements of these variables.
The precisions are expressed by variances of the
measurements, which are taken proportional to the square of
their magnitude (with 0.1 as proportional factor).

Stream| Volumic Massic Size Concentration
flowrate flowrate distribution
1 21.0 1.52 0.61 0.31
2 5.1 141 0.59 0.06
3 5.1 1.64 0.82 0.59
4 20.1 1.49 0.59 0.45
5 10.0 1.40 0.72 0.59
6 5.1 1.17 0.50 0.66
7 10.0 1.60 0.50 0.25
8 15.0 1.56 0.51 0.18
9 1.0 1.50 093 0.37
10 4.0 1.65 0.84 0.62
TABLE 1 Raw Data

We can appreciate the magnitude of errors and the global
incoherence of raw data, by calculating the unbalance terms for
each node of the process. In order to compare their relative
importance they have been reduced through their respective
standard deviation.

Residue Normalized

residue
ni 0.90 0.30
2 0.10 0.05
n3 0.10 0.04
ri4 -0.20 -0.16
r1s 0.10 0.15
1y 0.40 0.06
9] -0.20 -0.04
n3 0.10 0.01
74 -0.40 -0.16
s 0.30 0.19
31 0.10 0.02
32 0.30 0.11
33 -0.10 -0.02
134 -0.20 0.09
135 -0.10 -0.06
141 -0.21 -0.10
142 0.10 0.16
143 0.11 0.05
T44 -0.10 -0.06
145 0.08 0.07

{tiout bi :

The residues examination (table 2) don't allow to suspect a
balance equation ; the imbalance terms can be considered as
normal. To illustrate the necessity of this examination let us
consider the data of table 3 ; they have been obtained from
table 1 with a bias on stream 3 and variable 3. As its appears in
the column of normalized residues, the magnitudes of rs4, 35,
T44, T45 are suspicious and we must try to locate the faulty
measurements. In this simple example, a examination of the
occurrences of the variables in the different balance equations

enables the localization of the bias.
Residue Normalized

residue
ni 0.90 0.30
2 0.10 0.05
r13 0.10 0.04
r14 -0.20 -0.16
r1s 0.10 0.15
1”1 0.40 0.06
[77) -0.20 -0.04
23 0.10 0.01
4 -0.40 -0.16
s 0.30 0.19
3] 0.10 0.02
3 0.30 0.11
r33 -0.10 -0.02
r34 -3.25 -1.27
r3s 3.35 1.63
ta1 -0.10 -0.10
42 0.10 0.16
143 0.11 0.05
144 215 121
45 2.13 1.50

i 1 m ment is bi

The proposed procedure has been applied in order to reconciled
the whole data sheet. The table 4 give the obtained estimations.

Stream| Volumic Massic Size Concentration
flowrate flowrate distribution
1 20.24 1.55 0.61 0.32
2 5.08 1.42 0.59 0.06
3 5.06 1.61 0.85 0.57
4 20.19 1.49 0.59 0.44
5 10.10 1.40 0.70 0.60
6 5.03 1.18 0.50 0.66
7 10.09 1.59 0.49 0.24
8 15.17 1.53 0.52 0.18
9 1.00 1.50 092 0.37
10 4.06 1.64 0.83 0.62

T E 4 Reconciled D:

CONCLUSION

A numerical approach has been presented for solving the
problem of reconciling flow measurement data in streams of a
mineralurgical process. The main idea is to construct a
hierarchical algorithm taking into account all the constraints but
without keeping into memory the Lagrange parameters. A class
of statistic tests has been used to detect gross errors in
measurements before the data equilibration ; another statistics
are useful to appreciate the sensitivity and the variance of the
estimators.




The proposed algorithm, using direct iteration procedure,
presents some attractive aspects :

- it gives an optimal solution,
- it is well adapted to large scale problems,
- it only uses simple calculus at each level,

- the coupling between the different constraints do not use
auxiliary variables.

In a more general situation, it would be interesting to examine -
the problem of observability in order to include unmeasured
quantities ; actually we have a solution for the bilinear case
(Magquin 1989) but we try to extend this result in the case of d-
linear system.
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