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54501 Vandoeuvre Cédex - FRANCE 54400 Longwy - FRANCE

Abstract . This paper is devoted to data reconciliation by mass balance equilibration of systems described by
bilinear equations. It proposes a new approach for their resolution. We particularly insist on a decomposition
algorithm which enables the problem of unmeasured variables to be treated. It allows the classification of
variables into observable and unobservable, redundant and non redundant, and gives the relations necessary
for their determination. Finally, the results of this algorithm are applied to the mass balance equilibration with
the use of an iterative method based on hierarchical calculus.

Keywords . Observability; balance equilibration; non-linear systems; error compensation, least squares

approximation; hierarchical calculus.

INTRODUCTION

Most processes can be described by material and/or energy
balance equations. Generally, available data are conflicting in
the sense that they don't verify the mass balance equations. It is
then necessary to reconcile these data. One of the principal
difficulties in data reconciliation, is the presence of the
unmeasured variables. The concepts of observability and
redundancy enable the problem to be solved. A steady-state
system is said to be observable if its state is uniquely
determined from the measurements and the model. A variable is
said to be redundant if no loss of observability results from the
deletion of its measurement. For linear systems, these notions
are now perfectly well known and appropriated procedure have
been developed by Vaclavek (1969), Mah (1976) or Darouach
(1988). Partial solutions have been found for bilinear systems.
The work of Vaclavek and Loucka (1976), who have proposed
a structural decomposition method for non-linear systems can
notably be cited ; this topic has been also studied by Romagnoli
and Stephanopoulos (1980). Based on graph theoretical,
Stanley and Mah (1981) have developed an algorithm for non-
linear systems which allows the classification of variables, but
without giving the equations which lead to their determination.
More recently, Crowe (1986) proposes a classification
algorithm using projection matrices. Darouach (1986) has
formalized the problem of observability of bilinear systems and
proposes a decomposition method which reduces the problem
of bilinear observability to a sequence of studies of linear
systems observability. Finally, Kretsovalis and Mah (1987 and
1988) take into account overall and component mass balances,
energy balances, reactions, heat exchanges and stream
splitting. The latter method which uses the properties of graph-
theoretic proves complex in the case of overall and component
mass balance. In that case, we propose, in this paper, a method
allowing the classification of the different variables into
observable, non observable, redundant and non redundant
variables, as well as the equations necessary for their
determination. In practice, this problem is often encountered in
chemical processes, if only distillation operations are taken into
account, or in minerallurgical processes where the separation of
different mineral species is proceed. )

PROBLEM FORMULATION

Consider the steady state system described by :

- its model :
AX + BX*Y = C 1)

where A and B are (n.v) matrices, C a (n.1) vector, and X*Y
represent the Hadamard product of X and Y.

If we consider the systems represented by direct graph, which
is the case of balances, the model equations are partially
decoupled and can be written as :

MX =0 @
MX*Y = 0 3

where M is the incidence matrix of the associated direct graph.

- its measurement equation :
Z=HiX+HY+e (C]

where Hj and Hj are (m.v) matrices, € a (m.1) measurement
errors vector and Z, a (m.1) measurement vector.

In practice, sensors measuring X and Y are different. In fact,
the bilinear system class corresponds to systems described by
total flowrates and partial flowrates balances ; X is the variable
used in total flowrates (massic or volumic) while Y is the
variable taken into account in partial flowrates.

Then, the measurement equation (4) reduces to :

Hi X + g
H)Y + g

Z ®)
Z ©)

with rank(H;) = mj and rank(Hp) = mj.

For simplicity, we will consider that the variables X and Y are
measured directly. In that case, H; and Hy are identity
matrices.

Following these hypothesis and in the case where the
measurement errors can be considered as zero mean random
variables, the data reconciliation problem consists of
determining the estimates X and ¥ of the true values X* and
Y*, from the measurements X and Y which minimize the
criterion :



1 2 1 2
® = 7 IR-Xligy + FI¥-Yigy

)
subject to M&X=0
M&*¢ = 0

where Vx and Vy represent the covariance matrices of X and
Y.

Notice that the second constraint can be written as :
MX* = Mo X) ¥ ®)
from the properties of the ® product.

The Lagrangian associated to this problem is :
L=® +ATMX + p\TMeX) ¢ ©)

In order to minimize L, it is necessary that :

%:V;}(X-XHMTM(M@?)W =0 (102
%:vg}d?-yn(M@&)Tx =0  (10b)
%I#Mg : =0  (10c)
%:(M@k)? =0 (10d)
HIERARCHICAL SOLUTION

The non-linear system of equations (10) has no analytical
solution because the equations are coupled by the X variables

(presence of bilinear terms (M ® k) ?) ; however the model
structure can be used.

From (10a) and (10c) we have :
_ Ty-1 T
A= MYM)TMX-MV, M an

R=a-yM My M)im X-V,MIw (12)

with M, = Mo ¥. (13)
Likewise, from (10b) and (10d) we obtain :
po= M VMM Y (14)
¢ = a-v,MIo v, MM Y (as)
with M, = Mo X. (16)

Thus, the solution ﬁ, ? of the system of equations (10) can be
obtained iteratively by a two levels hierarchical structure

calculus. The first level calculates A and X from u initialized to
zero, while the second one calculates p and ¥ from the estimate

bl given by the first level. Then, the scheme of the calculus is
the following :

i
level Estimation of
Fi
irst level A and X
Estimation of
Second level W and Y

Figure 1 : hierarchical calculus

NECESSITY OF OBSERVABILITY

Generally, all the variable measurements are not available. So it
is necessary, in a first step, to classify the different variables by
observability and redundancy concepts.

For an illustration, consider the trivial example in figure 2 :

)

x 3

!

Figure 2 : elementary node
If the streams 1, 2 and 3 are considered completely measured,
Xj and Yj, (i = 1,3) can be reconciled by balance equilibration
based on the presented procedure.

If we suppress measurements X2 and X3, balance equations
are rewritten as :

X1 -X2-X3=0
X1Y1 - X2Y2-X3Y3=0
where the underlining variables are unmeasured.

Solving for kz and X3, we find :

Y3-Y

with the condition Y3 # Yj.

Yi-Y
Rs = Xiy37v5

This result is very important because it shows that, for bilinear
system, observability is a local property which depends upon
the values of the measurements.

Let us consider now that X3, X3and Yy, Y2 and Y3 are
known. Xj can be eliminated from the two mass balance
equations ; this operation leads to :

Lt -)+ -9 =0

Then balance equilibration needs to minimize a quadratic
criterion subject to a non-linear equation. Next, the variable ﬁ]
will be directly deduced from X1 = X2 + 3.

Through this elementary example, one can see the difficulties to

solve the problem of balance equilibration when all the
variables are not measured.

BILINEAR SYSTEMS OBSERVABILITY
Let us consider the bilinear system described by :

MX =0 (17a)
MX*Y =0 (17b)

The two measurement vectors X and Y can be partitioned into
measured and unmeasured parts :

Xm Ym
[ el e
X Ym

These decompositions allow the classification of the variables
into four distinct groups. According to the above partition (18),
the incidence matrix M is partitionable as well :

M=[M M M3 M] 19)
Then, the system (17) can be written as :
Mi X1 + M2 X2 = - (M3 Xm1 + M4 Xm2 ) = dy (202)

Mj Xm1*Ym1 + M2 Xm2* Y2 + M3 Xm1*Ymi1
=-Mg Xm2*Ym2 = d2 (20b)



or in matrix notation :

Xm2
Xm1 [dl ]
= 21
Xma+ Yma |~ Lda @1
Ym1

OXpn, Ym)

with

0 I: Mj M, 0 ] 2
KmYm =] ¢ Mi®Ym1 M2 M3i®Xm1 @2)

The system will be observable if :

m

X —_
rank O¢x,, Y = dim I: " ] (23)

If the system is not globally observable, a decomposition is
necessary. We will demonstrate that the study of observability
of bilinear systems can be reduced to a sequential study of
observability of linear systems.
For the study of the observability of X1, let us introduce two
matrices Q and R which allow the elimination of the
unmeasured terms X2 and Yimo in equation (20).
Let us consider Q, an orthogonal matrix such that :

QM2 =0 (24)
If we multiply system (20) by Q, we obtain :

QM1 Xm1 = Qdp (252)

QM18Ym1) Xm1 + (QM38Xm1) Ym1 =Qd2  (25b)
With R, a regular matrix defined by :

RQM3 =0 (26)
the system (25) may be transformed to :

QM1 Xm1 = Qdi ©(27a)

RQM1®Ym1) X1 = RQd2 (27b)

Four steps are then necessary to study the observability :
a) System (27) enables to extract the observable part of Xmi.

b) Using the already known observable part of Xg1, equation
(25) allows to determine the observable part of Yim1.

c) Observable part of X2 is obtained from the knowledge of
observable parts of X1 and Y1, and equation (20a).

d) Similarly, equation (20b) is used to extract the observable
part of Yimo.

These sequential operations can be applied directly on the
observability matrix. If Mpj is the biggest regular part of Mp,
the system (21) can be rewritten as :

Xm21
Xm22 di
Xm1 di2
(6] = 28
U X1+ Ymon d21 28)
Xm22 * Y22 d22
Ym1
with
My Mnp My 0 0 0
Mz My Mi2 0o 0 0

Or=f o o M11®Ym1 M21 M2 M318Xmi1

0 0 Mp®Ymi M2z My M320Xmi1

Let us define the regular matrix Ty by :

[ My 0 0 0
B S |

-M:_,AM22 I 0 0

T = 29

! o o Ml o @

Ay p-1
0 0 MyMy I |

Multiply equation (28) by T ; we obtain :

Xm21
Xm22 bi
Xm1 b2
= 30
Xm21 * Y21 b3 G0
Xm22 * Ym22 ba
Ym1
with
A 1 Az 0 0 0
0| 00 A 00 0
B 0 0 A®Ym A I Bi®Xm
0 0 A3®Ym 0 0 B2®Xpg

A1=M512M21 rAz=Mi;M11’A3=M12'M24Mi;M11
B, =Mj; My, , By =My, - My My My,

b, =Milzdn ’bz=d12'M24Mi;d11

b3=Mi;d21 'b4=d22'M24M2;d21

Finally, adequate permutations of rows and columns in matrix
O3 express the system (30) as :

Xm1
Y1 b2
Xm21 by
0s ngz 1 by Gn
Xm21 * Ym21 b3
Xm22 * Y22
with
A3 0 0 0 0 O
o A3®Ym1 B®Xmi O 0 O O
3= Ay 0 A 100
A2®Ym1 Bi®Xmi 0 0 Ap 1

At this step, it is clear that the first two "rows" of system (31)
are the same as those of system described by (25).

As previously, the biggest regular part, B3 can be extracted
from Bj. Then the system (31) can be rewritten as follow:

Xm1
Ym1 b2
Y12 b4y
O4 Xm21 =] b4z 32)
Xm22 by
Xm21 * Ym21 b3
Xm22 * Ym22



with
A3 0 0 0000
A31®Ym1 B21®Xm1 B22®Xm1 0 0 0 O
O4={ A32®Ym1 B23®Xm1 B24®Xm1 0 0 0 0
Ay 0 0 A; 100
A20Ym1 B11®Xm1 B12®Xm1 0 0 Ay I
The final form (33)
Xm1
Ymi1 b2
Ym12 c2
Os Xm21 = c1 33)
Xm22 b
Xm21 * Y21 b3
Xm22 * Ym22

is obtained by multiplying (32) by the regular matrix T, and
the permutation of "rows" 2 and 3 of the result matrix :

— 1 0 000
0 By 000
T2=| 0 -BjyBj5 1 0 0 (34)
0 0 010
— 0 0 001
with
- A3 0 0 0000
C2®Ym1 0 0 0000O0
Os=| C1®Y¥m1 C3®Xm1 I®Xm1 0 0 0 O
Ay 0 0 A1 1 00
- A2®Ym1 B119Xm1 B12®Xm1 0 0 A1 I

A1 -1 1
Ci=BpAs;, G=Ayn-By Bpiy, G =By By

-1 -1
¢ =Bpcyys G=byy-Byy By by

Notice that the first two "rows" of this system correspond to
equation (27), thus they allow the study of the observability of
X1 which leads to the classification into observable and non
observable parts, redundant and non redundant parts. The other
"rows" of system (34) can be only used to deduce unmeasured
variables.

ESTIMATION OF REDUNDANT VARIABLES

Generally speaking, the balance equations for the redundant
variables, can always be written as :

AX =0
B®Y)SX =0

with A, of dimension na.vy, such as :

(0] I C

A=
B |o

Category  Xmi¥Ymi XmpYmz  XmiYmi
B, of dimension np.vp,
and S, a selection matrix partitioned as :

S=[1 | 0]

The least squares estimation problem of true values is reduced
to find the minimum with regard to Ket ¥ of the criterion :

@ = g IHR-XIGy + 7I9-Yiy

335)
Ak=0
B®Y)SX =0

subject to

where H is the matrix of measurement function partitioned as
H=[0]1],

X and Y are the measurement vectors of respective dimensions
m and vp,

Ret 9, the estimation vectors of dimensions v and vy,

The associated Lagrangian is :
L=0®+ATAX + uT(Be¥)S & (36)

The stationary conditions of first order required that :

%: HTV] (H&X-X) + ATA + STBY)Tp =0 (37a)

%: V'; @-Y)+BeSX)TA =0 (37b)
g_;q AR =0 (37c)
g—t= Be?) s & -0 (37d)

In order to simplify the notations, let :

Nx = BeSX (38)
Ny =Be? (39)

The following calculus allow to determine the estimation X ;
multiply equation (37c) by AT :

ATAX =0 (40)
then (37d) by STNT :

STNT NY¥ =0 @1
Substituting (38) and (39) in (41), we get :

STND Ny s& =0 42)
By adding equations (40), (41) et (37a), we obtain :

G'R =H'vix-ATa-sTNTp 43)
with G' = HTVIH+ATA+STNI NS @4)

Notice that G matrix is always regular because of the global
observability of the system.

Thus, the estimation X can be written as :

% =(1-cgaT(acaT)'A)GX
with X = H' v X-STNT (45)

i

Therefore, from equations (37b) et (37d) we have :
¢
o= (N Vg NR)T N Y )

In order to simplify the numerical calculus, we use the diagonal
matrices Asy and Ay formed with S X and ¥ vectors.

(1- V,NE (N Ve NI NO) Y (46)

1]



From (37b) we have :

BTy = A VI(?-Y) “8)
Then X vector can be written as a function of X, Y et Ve

X = H' vix-sTayag vi(2-v) “9)
Then the estimation ¥ becomes :

¢

with T = Asy Vy Asy (50)

Asg[T-TBT(BrBTy!'Britagiviy

Finally, the solution is obtained through a direct iteration
algorithm :

A
Y=Y
—_— A
First level G, X, X
A Ay
X Y
Second level r ., v

Figure 3 : estimation algorithm

The first level estimates X after calculating G and X as a
function of the estimation ¥, initialized to Y.

The second level estimates ¥ after calculating I" as a function of
R which is produced by the upper level.

Notice that the calculus in each level are relatively reduced, due
to the particularly forms of equations (45) and (50). This
allows the usage of recurrence formula for matrix inversion
which degenerates into computing the reciprocal of scalars
(Maquin 1987).

The calculus is stopped when all the derivatives of the
Lagrangian are kept below a given threshold.

ILLUSTRATIVE EXAMPLE
As an example of the application of the algorithm, let us
consider the simplified flow sheet of a grinding-classification

process.

- A network representation of the system consisting of 6 nodes
and 12 streams is shown in figure 4.

Figure 4 : flow sheet of a grinding-classification process

The measurements location of massic flow rates are indicated
by x ; those of concentration of the three different components
are indicated by «.We consider here, that when the composition
of certains streams is measured, it is measured for all
components.

System (33) can be described by the following matrix :

b2
c2
Os | c1 51
b
b3

According to the measurements location of our example, this
matrix is expressed as :

3 8 9 |7|5 105 10 7 1 4 11 2 6 12
1 .-l -1 -1 -1
. T -1 1 1

1 -1 ) B 1
1 -1 -1 -1 -1 -1
1 . -1-1 -1l
1 -1 1 . 1
. 1 -1 -1 -1 -1 -1
-1 1] . 1
-1 1 . 1
-1 1] . 1
-1 1 . 1
-1 1 1

Remarks : To simplify the notation, only the structural matrices
have been written (Cp for C2 ® Y1 as example). Notice that,
for this example, C3 and Aj matrices doesn't exist.

Aﬁer examination of this matrix, we conclude that this network
is globally observable.

The system of redundancy equations can be written as :

X1 -X2- X4 - X - X7

X3 - X4 - X¢ - X11 - X12
X3Y3 - X4Y4 - XeY6 - X11Y11 - X12Y12

X1 - X2 - X4 - X6 - X11 - X12
X1Y1 - X2Y2 - XaYq - X6Ys - X11Y11 - X12Y12

Xg - X9 + X11 + Xj2
XgYs - XoYg + X11Y11 + X12Y12

o

SC OO oo o

[}

The table 5 gives the different raw measured data and their
accuracy.

Massic flownats Ce 1 Ci 2 C 3
Strear] Measure | Accuracy | Measure | Accuracy | Measure | Accuracy | Measure | Accurscy
1 2219 15 % 0,62 5% 2,02 5% 28,69 S %
2 221 5% 0,54 2% 2,16 2% 23,30 2%
3 - - 0,61 5% 1,98 5% 29,33 5%
4 557 5% 1,69 2% 4,63 2% 37,62 2%
s - - - - - - - -
6 170 5% 0,61 2% 3,93 2 % 35,01 2%
7 1170 5% - - - - - -
8 - - 0,20 2% 0,74 3% 41,36 2%
9 - 0,14 2 % 0,58 3% 29,06 2%
10 - - - - - - - -
11 617 20 % 0,08 2% 0,28 3% 5,53 2%
12 490 5% 0,18 2% 0,93 2% 50,51 1%

Table 5 : the measurements

Table 6 summarizes the results obtained after the reconciliation.
For each estimation, an adjustment ratio has been computed
such that :

estimation - measurement

adjustment ratio =
measurement

The comparison of this adjustment ratio with the accuracy (in
per cent) allows to appreciate the quality of the measurements.



Massic flowrate C ion 1 C ion 2 C ion 3
Stream| E Adjust. | Estimation| Adjust. imation| Adjust. |Estimation]| Adjust.
ratio ratio ratio ratio

2106 -51 % 0,65 42 % 2,14 6,1 % 29,75 37 %
220 -04 % 0,54 0,0 % 2,16 -0,1 % 23,29 -01 %
1885 - 0,66 80 % 2,14 81 % 30,51 40 %
600 7,7 % 1,66 1,7 % 4,56 -1,6 % 37,44 -05 %

1286 0,19 - 1,01 - 27,27 -
171 05 % 0,61 02 % 3,92 04 % 34,97 0,1 %
1115 47 % 0,13 - 0,57 - 26,09 -
250 - 0,20 0,0 % 0,73 -08 % 41,42 01 %
1364 - 0,14 00 % 0,60 36 % 28,89 -06 %
759 0,19 0,86 - 47,51

BoSoemNouaswn~

605 |-106 % 008 | 00 % 028 | -11% 553 | 00 %
510 | 41 % 018 | -06 % 092 | -12% | 5049 | 00 %

Table 6 : the estimations

CONCLUSION

Observability and redundancy are basic information in
designing process performance monitoring systems. The
principal objective of this investigation is to provide a
computational tool to obtain the classification of all variables
and the system of equations which allows their determination.
The matricial operations used are very simple and a computer
code can be implemented very easily. Then a direct iteration
algorithm is proposed to solve the problem of equilibration.
The usage of recurrence formula for matrix inversion also
allows the estimation algorithm to be computationaly efficient.
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