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ABSTRACT : The problem of data validation in large scale
steady state linear system is addressed. The system is described by
algebraic cquations. The conditions for observability and redundancy
are defined and a procedure is presented for classifying the system
variables into observable, unobservable, redundant and no redundant
variables. Reconciliation of the redundant process measurements is
developed using a recurrent estimation technique which is well suited
in real time data processing. An application of the method to material
balances is presented. '

INTRODUCTION

Data reliability is of fundamental importance for process
diagnosis, identification and control. Measurements having undetected
large, random or biased errors result in false control of process. Data
validation is therefore situated between the process measurements
acquisition and the decision to be taken.

This validation poses several problems amongst which are the
following :
- Process models are non linear and inexact
- Measurements are subject to errors
- Not all variables are measured.

This study is limited to the case of linear steady state systems.
Moreover the process models are exact as they are based on material
balances. However, measurements and data available are subject to
errors which may be divided into two types :

- random errors are generally taken to be independent,
gaussian with a zero mean vaiue,

- gross errors are caused by non-random events such as
instrument biases, incomplete or imprecise process
models.

For reasons of cost, inconvenience or technical unfeasibility, not
all of the variables are measured. But we may want to determine if
possible, the unmeasured process variables in term of measured ones.

Correct data validation can only be carried out if the variables
have been classified. This allows us to determine the redundant and no-
redundant measurements, the determinable and no-determinable
unmeasured variables.

Once this classification has been made it is possible to :

- detect and locate gross errors
- diagnose errors
- vahdate measurements.

The complete data validation strategy can be schematised by the
block diagram of figure 1.

Before presenting a strategy for data validation we first present
some definitions and concepts for linear systems under steady state
conditions.

recurrent estimation technique.

S Al ON;
A linear system under stcady statc conditions is defined by :

- A set of constraints
A={xe R¥/Ax-b=0} m

where A is an - v matrix (n < v), b is a n column-vector, x is the
state vector.

- Asetof m measurement equations
Z=Hx + ¢ (2)

where Hisa m - v matrix

€ 1s an additive vector of measurement errors.

Observahility

The system described by (1) and (2) is said to be globally
observable if the state x is uniquely determined by the observations Z
(equations 2) and the constraints (1).

The condition of global observability can be summarized by the
following theorem [1], [2], [3].

Theorem :

The system described by (1), (2) is completely or globally
observable if and only if :

r= rank (E )=ch‘mx=v

If r < v the system described by (1), (2) is not globally
observable. In this case it can be decomposed on the basis of the
observability concept. In fact, if r < v there exist a non singular matrix

T such that :
H Hl 0
()-(%0) e

H1 . Hl
where Al is a (m+n)-r matrix and rank Al =T



This means that in the new coordinates y (x = T y) the subsystem

b
Z =

A
H iy +¢€ @

(where y; € Rrare the firstr components of y)

is observable and the remaining subsystem of dimension (v-1) is
unobservable.

This result can be shown by orthogonal transformation or
decomposition into singular values [5].

Redundancy (1], (2], (3] .

The system described by (1) and (2) is said to be redundant when
the available data exceed the minimum necessary for unique
determination of the system state. This definition indicates that
measurements are redundant if their deletion causes no loss of
observability.

The result for the decomposition by observability can be
extended to that of measurements redundancy.

In this case we say that :

the system described by (1), (2) suchthatn+m>vandr<v

(globally unobservable) has a redundancy a =n + m - r and can be
decomposed into an observable and an unobservable part. The
observable part can itself be decomposed into redundant and no-
redundant parts. These results will be used later in the procedure for
classifying the system variables in data validation by mass balances
equilibration.

DATA VALIDATION
Estimati

Let us consider a steady state linear system described by (1), (2),
for which we want to estimate the state x.

We make use of the following hypothesis :

1 - The system is globally observable :r=v

2- RankA=n

3 - The errors € are normally distributed with a zero mean and
known covariance matrix V.

Now, with these hypothesis the maximum likelihood estimator
reduces to the least squares estimator subject to the constraint (1), that
is:

min ®=[|Z-HxI2 ®)
. . A
subject to the constraint A x=b 6)
Forming the lagrangian :

L=®+AT(AX-b)

where the A is lagrangian multiplier associated with (6), the first
order necessary conditions yield the (n+v) simultaneous equations :

(HT V-1 H)x+ ATA=HT V-1Z %)
A
Ax =b 8)

In general (HT V-1 H)-1 does not exist ; however as the system is
observable:

Rl = HTV-IH+ ATA

is invertible and by multiplying (8) by AT and by adding the
result to (7), we obtain :

X=RMHTV1Z+ATh-ATA) ©)
substituting (9) in (8) yields :
A=(ARAT)}L ARHTV-1Z + (I- (ARAT)1)b  (10)

(note that (ARAT) is regular since rank A = n, hypothesis 2).

Finally we obtain: '

x=P,RHTV-1Z + R AT (ARATY1b an
with P,=I-RAT(ARAT)! A 12)
Statistical ies of the esti
Under the hypothesis (3), we have the following results :
E(X) =P,RHT V-l Hx +R AT (ARATY! b (13)
Var (X) =P, RHT V' HR P,
After some reductions we obtain:
Var (x) = £=P,R 14
. From (11) and (14) we can express Qas :
X=ZHTV-1Z+RAT (ARATY!b as)

Suppl i .

In the present section we consider the estimation of the state
variables in linear steady state system subject to additional linear
constraints. From the knowledge of the estimate without the
constraints, we establish a recurrence formula which gives a new
estimation of the state variables. :

Consider the globally observable linear system :

z

Al x (16)

Sy {

Hx + ¢
by

with A; € Rol¥ and b; € Rol,
The estimate Ql is given by (15) :

X =T HTV-1Z+ R AT (ARAT)1 by an
where Zl = Pﬂ Rl

R, = (HT V-H + A|TA)"L

Py =1-R; AT (ARAT)IA

with additional linear constraints, the system S, becomes :

Z
(S2) Al x
A2 X

with A, € R92¥ and b, € R2

Hx +¢
b, (18)
b,



Then the state estimation problem can be formulated as :

min @ =||Z-Hxy |12 9
subject to the constraints :
(20)
A
Az Xq = b2
Forming the lagrangian:
L=® +AT (A% by) + uT (Ag X3 - by) @n

where the A's and  W's are lagrangian multipliers associated with
(20) ; the first order necessary conditions yield the (ny + ny + v)
simultaneous equations:

HT V- H) %+ ATA+ AT =HTV-1Z @2)
A
Al iz = bl (23)
Ay x =b, (24)
using expression (17) we obtain :
%=L HTVIZ iR ATARATYIb -, AT (29

From (25) and (24) we have:

A
R = @-Z) AT (A2 Ty AT AQ X + Z; AgT (A5,AT );g)z
(

Statistical properties of the estimate .\? PH

We have:
A
E(X) = (- Z; AT (AZ,AT)1 AP E (X))

+ I, AT (AyZ,A,T )1 b,y @n

Var (%) = Z; = I, - Z; AT (A, A,T) 1A, X, (28)

Generalization

. A . . . .
More generally, if we call x, the estimation and X, its variance in

. A . A .
presence of the constraint Ay X = by, the new estimation Xy, and its
variance can be established in terms of the additional constraint

A
Ap X =Dy,
where :

A A
Xeor = - T ATy A T AT ) A X

+ Zg ATy (A T AT ) by 29

and

Zeor =T I ATy A DAT ) A Xy

This recurrence is especially useful if the matrix Ay, reduces to
A

a row vector. In this case, calculations of X,; and consequently Xy,
only requires the inversion of a scalar.

APPLICATION TO MASS BALANCES

The described procedure was applied to validate measurements
using mass balances equations. In this case the system is represented
by directed graph. Its arcs represent the process streams and its nodes
represent the units (tanks, reactors flotation cells, etc.)

(30)

The system can be represented by :

- Overall mass balances equations
Ax =0 31)

where A is the incidence matrix

x is the vector of total flow rate

- Measurement equations

Z=Hx+e=[I;|0] x+¢€ 32)

where I denotes the identity m - m matrix.

According to the above partition of the matrix H, the matrix A
and the vector x are partitioned as well,

A=(Ag | Ag)

~(22)

With these partitions the balance equation (32) becomes :

and

Az xz+Apxn=0 (33)
The observability of the system (31), (32) reduces to that of
system (33). The procedure (3) used previously can be applied to {33).
However the structure of the incidence matrix is sparse and only
contains + 1's and -1's ; an echelon form transformation is more
suitable [4]. Thus if rank Ag = r, a permutation of the rows and

columns of Ag allows the regular part Ag;, to be isolated.

After these transformations, the matrix A can be expressed as {5]:

-1 -1
Az Aﬁlz A:‘nll I
A= (34)
-1
Amz - Aazz Au‘uz Aml 0 o

The analysis of this matrix point out the observability conditions
and the redundancy of all the variables :

- Block 4 (sccénd row, first column) concerns the equations
of redundancy as it only includes measured variables. The
corresponding incidence matrix is :

_ R -1
Ar - A1'1:2 AEZZ AE|12 A 35)

ml

- If the block 2 (first row, second column) contains Tows of
zeros then the rows of the same rank in block 3 (ident_ity
matrix) give the indices of the unmeasured variables which
can be determined.

- The measured variables, which can not be estimated
correspond to the columns of block 4 composed of all zero
elements.

- The decision variables of the global observability are the no
zero elements of block 2.

The procedure using these results to validate data by mass
balances can be schematized by figure 2.

This diagram shows the decomposition of the initial problem
(31), (32) into two smaller sub-problems which can be solved
sequentially.



First sub-problem
. A
min ® = | Z - X134
subject to A,:’Em =0

is solved by using the previous recurrent estimation technique
(29), (30). Taking into account that H =  and b = 0, we obtain :

xp=VoV1Z €p)
with

Vo=Var(xp) =V-VATAVATIAY (38)
in practice A, is partitioned in the fo;'m :

Aj

A (A i+1 )
the state estimate for the system described by A; is :

=0 v1z 39)

Adding the constraint corresponding to the matrix A;,;, we
obtain the new estimate :

A
Xip1 = Vi V1 Z (40)

with

om = Oi - Oi ATy, (Aidoi AT D AL Oi 41)

When the partitioning is performed according to the nodes of the

system, each block A; becomes a row vector. Matrix V, can be

calculated in n iterations, each of which only requires the inversion of a
scalar.

We apply (41) fori =0, n-1 with 00 =Vand Om = C’n

Second sub-problem

Once the level 1 of validation has been achievied, the estimation
of the observable part of the unmeasured variables can be made by
direct deduction from the estimate variables of the first level and the
relationships corresponding to the rows of the elements in the matrix

-1
AExIZ AEH‘

CONCLUSION

The method of data validation presented here takes into account
the topology of a process (its structure) and the data which are available
(the measurements, their location and their precision). It involves
decomposing the problem of validation into two smaller sub-probiems.
In the case of large scale systems a recurrence formula provides an
estimation of the redundant variables.

There are a great number of practical applications of this method.
Particular mention may be made of the diagnosis of industrial systems
in which the process configuration and the location of the measurement
points change with time. The extension to the case of bi-linear systems
will be treated in a later study.
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Result
T Description of the process :
Data - Process structure
Adjustement - Measuremeat location
- Measured values
Decormpositon of the process
on the basis of the observability
and redundancy of the variables.
Redundant No-redundant Determinable Unobservable
variables variables variables variables
' |

Figure 1 : General strategy for data adjustement

Estimation of the redundant quantities by solving :

: 1
min ¢ = _i_,'l Z- im II‘ZJ_I
Am

subjectto ArXgm = O

y

Deduction of the observable unmeasured variables
corresponding to the rows composed
of zeros elements in the matrix :

-1
Aziz Aan

Figure 2 : Schematic diagram of the procedure for
data validation by linear mass balances.



Numerical example : Mass balance of flotation circuit.

The circuit considered in this example is described by the
flowsheet of figure 3, it consists of 22 nodes and 32 streams. The
measurements location of the flow rates are indicated by x. The results
of the data validation are sumarized in tables 1 and 2.

-1 6
l—].
— 9 422 32
= I
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12 13
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Figure 3 : Flotation circuit
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Table 1 : Result of variables classification.

Standard Estimated
Stream Measurement Estimation deviation standard
deviation
i 4,633 4,555 0,234 0,056
6 2,242 0322
8 0,531 0,531 0,027 0,027
2 7,368 0310
3 6,166 6,166 0,308 0,308
S 1,202 0,036
4 4,000 3,924 0,200 0,094
10 0,300 0,295 0,015 0,014
7 1,497 0,037
9 0,917 0,966 0.046 0,026
13 0,264 0271 0,013 0,013
33 1,237 0,028
12 1,050 0,942 0,053 0,026
14 0,652 0,671 0,033 0,024
35
20
17 1,115 0,042
19 0,756 0,756 0,038 0,038
34 0,359 0,359 0,018 0,018
18
39 0,550 0,550 0,028 0,028
21
36
37
22 3,700 3,924 0,185 0,094
27
29
23
24
26 .
28 3,000 2,932 0,150 0,097
32 1,000 0,992 0,050 0,048

Table 2 : Flotation mass balance results.




