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Abstract. Constraint Programming (CP) offers a rich modeling language of con-
straints embedding efficient algorithms to handle complex and heterogeneous com-
binatorial problems. To solve hard combinatorial optimization problems using CP
alone or hybrid CP-ILP decomposition methods, costs also have to be taken into
account within the propagation process. Optimization constraints, with their cost-
based filtering algorithms, aim to apply inference based on optimality rather than
feasibility. This paper introduces a new optimization constraint, cost-regular. Its
filtering algorithm is based on the computation of shortest and longest paths in a
layered directed graph. The support information is also used to guide the search for
solutions. We believe this constraint to be particularly useful in modeling and solving
Column Generation subproblems and evaluate its behaviour on complex Employee
Timetabling Problems through a flexible CP-based column generation approach.
Computational results on generated benchmark sets and on a complex real-world
instance are given.

Keywords: optimization constraints, hybrid OR/CP methods, CP-based column
generation, branch and price, employee timetabling

1. Introduction

Constraint Programming based column generation is a decomposition
method that can model and solve very complex optimization problems.
The general framework was first introduced in [15]. It has since been
applied in areas such as airline crew scheduling [9, 23], vehicle routing
[22], cutting-stock [10], and employee timetabling [16].

All these optimization problems may be decomposed in a natural
way: They may be viewed as selecting a subset of individual patterns
within a huge pool of possible and weighted patterns. The selected

∗ A preliminary version of this paper appeared as [7]. This research was supported
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combination is the one with the lowest cost to fulfill some given global
requirements. The selection problem can be formulated as an integer
linear program with one column for each possible pattern and a corre-
sponding integer variable representing the number of times the pattern
should be selected. The design of the possible patterns is itself a hard
constrained satisfaction problem and its solution set may be too large
to be written out explicitly. Delayed column generation is then the only
way to address such a formulation (see, for example, [5] for details on
the approach). The LP-relaxation of the integer program, the master
problem, is solved iteratively on a restricted set of columns. At each
iteration, the pricing problem is to generate new entering columns, i.e.
new possible patterns, which may improve the current solution of the
master problem.

In this approach, the pattern design subproblem is then solved sev-
eral times. Each time, it is preferable to compute several solutions at
once to limit the number of iterations of the column generation process.
Also, an optimization variant of the problem should be considered since
the expected patterns (i.e. the most improving columns) are the ones
with the most negative reduced costs in the master problem.

In routing, crew scheduling or employee timetabling applications,
the rules defining the allowed individual patterns are often multiple and
complex. Traditionally, they have been handled by dynamic program-
ming techniques [8]. The use of a constraint programming solver instead
to tackle the pricing problem adds flexibility to the whole solution
procedure. For its modeling abilities, CP is more suited as rules are
often prone to change.

Hence, CP-based column generation is an easily adaptable solu-
tion method: the problem decomposition makes the pattern design
subproblem independent from the global optimization process, leaving
the CP component alone to handle variations within the definition of
the patterns. The recent introduction of both ergonomic and effective
optimization constraints in the CP component can have a great impact
on the success of this approach to solve various large-size optimization
problems.

In this paper, we address a general class of employee timetabling
problems with a CP-based column generation approach. The pattern
design subproblem is then to build legal schedules with lowest costs
for the employees. Legal schedules are defined as time-indexed activity
sequences complying with a number of ordering or cardinality rules.
We present the new optimization constraint cost-regular enclosing
both the cost and the feasibility specifications of a sequence. This
constraint, alone or supported by some side constraints, permits to
define efficient and flexible CP algorithms for such optimum-cost se-
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quence design problems: Firstly, it models together and in a handy
way various complex sequencing rules (all described by a single deter-
ministic automaton) and cost structures. Secondly, it simultaneously
filters on feasibility and optimality criteria, making use of an efficient
propagation (and back-propagation from the cost) algorithm. Last, its
underlying support information serves as a helpful cost-based guiding
heuristic for the search process. The contributions of this paper thus
lie in the extension of the regular constraint [18] to handle efficiently
cost information and in the hybrid column generation model it allows
to define.

The paper is organized as follows: the next section reviews the work
on optimization constraints while Section 3 presents cost-regular. In
Section 4 we present the Employee Timetabling Problem and describe
how hybrid column generation based on cost-regular can be used to
solve it. Finally, experimental results are presented in Section 5 on both
generated instances and a real world problem.

2. Optimization Constraints

Before discussing optimization constraints, let us first define the fol-
lowing notation. Let S be the set of feasible solutions of a satisfaction
problem. An instance of an optimization variant of this problem, at
least in the mono-objective case, is given by an objective function f

defined on a superset of S and taking its values in a totally ordered
set, say IR. The problem is to find the minimal value z∗ the function f

takes on S and an element v∗ in S where f takes this value: f(v∗) = z∗.
In Constraint Programming, the optimization criterion is generally

taken into account by adding to the initial satisfaction model a cost
variable z with interval domain. Additional constraints, modeling con-
dition z <= f(v)∀v ∈ S, link the cost variable to the decision variables
X. Constraint programming optimization algorithms solve a succession
of satisfaction problems. Each time a new best solution is found, the
upper bound of z’s domain is reduced to match its value.

Optimization constraints, by merging both feasibility and optimiza-
tion conditions, are more efficient. They aim to filter from the decision
variable domains, values appearing in no solution v ∈ S or whose
cost f(v) does not belong to the current domain of z. Hence, domain
reductions are also propagated from the bounds of the cost variable to
the decision variables.

Optimization constraints also reduce the domain of z by computing
a good evaluation of its lower bound. Constraint propagation can then
detect inconsistency on this variable in the same way a traditional OR
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branch-and-bound method does. Moreover, since it is often preferable
to guide the search towards regions which are likely to contain low cost
solutions, optimization constraints may compute additional informa-
tion that can act as good variable-value selection heuristics or as regret
notions (such as an optimal solution to a relaxation of the original prob-
lem). We refer to Focacci, Lodi and Milano [12] for a further discussion
about optimization-oriented global constraints. Several contributions
have been made to the domain of optimization constraints. In general,
the cost of an instantiation of the decision variables is computed as the
sum of the costs cij of each assignment Xi = j.

Existing contributions hold mainly on weighted assignment con-
straints such as the weighted all-different constraint [4, 11, 24], the
global-cardinality with costs constraint [21], the sum of weights of dis-
tinct values [3]. Among the other contributions, note the ones on the
shorter path constraint [15, 25] which bears some similarities with the
cost-regular constraint presented thereafter.

The cost-based filtering algorithms consist of propagating deduc-
tion rules [3] or applying OR solution techniques to the optimization
problem or to a relaxation. Notable works in this domain are based
on linearization and reduced-cost considerations [11, 17, 12, 26] or on
graph algorithms [15, 21]. Remark that it is possible to achieve gen-
eralized arc-consistency in polynomial time for some constraints (for
example, the weigthed all-different [21]) while for NP-hard problems
only relaxed consistency can be envisaged (see [10, 25]). In fact, opti-
mization constraints merely share for now, cost-based filtering of the
decision variable domains and one side-bounding of the cost variable
domain. Much of these constraints concentrate on computing a tight
lower bound of the cost to minimize but do not provide an upper
bound ([3, 21] are among the exceptions). One reason is that lower and
upper bounding are not always dual problems. Also only some of these
constraints (e.g. [4, 12]) return information about the relaxed optimal
solution computed during filtering (ie. the solution corresponding to
the lower bound). Such precomputed informations would yet be very
useful to guide the search towards minimal solutions in a backtracking
algorithm.

Note that cost-based filtering algorithms are also used in soft-con-
straints [1, 19, 27], where we wish to minimize a violation measure
captured by a violation variable.
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3. Cost-Regular

As the cost-variant of regular [18], constraint cost-regular(X,Π, z, C)
holds if the values taken by the sequence of finite domain variables X

spell out a word belonging to the regular language associated to the de-
terministic finite automaton Π, and if z, a bounded-domain continuous
variable, is equal to the sum of the variable-value assignment costs given
by cost matrix C.1 The filtering algorithm associated to this constraint
is based on the computation of paths in a directed weighted layered
graph. We show in this section how, by maintaining shortest and longest
paths, the filtering algorithm of cost-regular provides: pruning on the
lower and the upper bounds of the cost variable’s domain; cost-based
pruning on the decision variables’ domains; and information to guide
the search for solutions.

3.1. The Filtering Algorithm

A regular constraint is specified using a deterministic finite automaton
that describes the regular language to which the sequence must belong.
That automaton is then unfolded into a layered directed graph where
vertices of a layer correspond to states of the automaton and arcs
represent variable-value pairs. This graph has the property that paths
from the first layer to the last are in one-to-one correspondence with
solutions of the constraint. The existence of a path through a given arc
thus constitutes a support for the corresponding variable-value pair
[18].

Instead of simply maintaining paths, the filtering algorithm for cost-regular
must consider the length of these paths, defined as the sum of the costs
of individual arcs. Since an arc corresponds to a variable-value pair, its
cost is given by cost matrix C. Supports do not come from just any path
but rather from a path whose length falls within the domain of z. To
check this efficiently, it is sufficient to compute and maintain shortest
and longest paths from the first layer to every vertex and from every
vertex to the last layer: if the shortest way to build a path through a
given arc is larger than the upper limit of the interval for z, the arc
cannot participate in a solution and can thus be removed; if the longest
way to build a path through a given arc is smaller than the lower limit
of that interval, the arc can again be removed. In this way, domain
consistency is achieved for the variables of X. The domain of z can
also be trimmed using the shortest and longest paths from the first to
the last layer.

1 Note that we could refine the costs further by associating one to every
combination of variable, value, and state of the automaton.
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Figure 1. The layered directed graph built for a cost-regular constraint on five
variables. Arc labels represent costs.

Figure 1 gives a layered directed graph built for the constraint on
five variables. There are six layers, N1 to N6, and vertices within a
layer correspond to states of the automaton. An arc joining a vertex of
layer Ni to another of layer Ni+1 represents a feasible value for variable
xi: the arc’s color stands for the value and its label, the cost. If, for
example, the domain of z is [−12,−1], the topmost arc between layers
N4 and N5, among others, will be removed because the shortest path
through it has length 2. Similarly, the third arc from the top between
layers N1 and N2 will be removed because the longest path through it
has length −14 and furthermore since it is the only arc of this color for
x1, the corresponding value is removed from its domain. Suppose now
that the domain of z is ]−∞, 5]: that domain will be trimmed to [−14, 3]
since the shortest and longest paths in that graph are respectively of
length −14 and 3.

The time complexity for the initial computation of the shortest and
longest paths is linear in the size of X and in the number of transi-
tions appearing in the automaton, due to the special structure of the
graph. Subsequently these paths are updated incrementally, with a time
complexity which is linear in the number of changes to the graph.

3.2. Search Guiding Heuristic

The shortest and longest paths maintained by the filtering algorithm
are two constraint solutions with, respectively, minimal and maximal
costs. These internal informations of the cost-regular constraint pro-
vide a direct and efficient value ordering heuristic. When solving by
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branch-and-bound a minimization (resp. maximization) problem in-
cluding a cost-regular constraint, it makes sense to visit first the
region of the search space where such an optimal but partial or relaxed
solution is located.

To reach the constraint solution with minimal cost for example, the
heuristic selects for a variable Xt the value corresponding to the t-th
arc in the shortest path in the layered digraph. With the current data
structure underlying the filtering algorithm, such a value is accessible
in linear time by following the shortest path from layers 1 to t.

4. Employee Timetabling Problems

Employee Timetabling Problems (ETP) constitute a general class of
combinatorial problems widely encountered in industries and service
organizations. An ETP is the problem of designing employee schedules
over a given time horizon in order to cover the estimated workforce
requirements of the organization. The timetabling attempts to optimize
some performance criteria such as to minimize the overall labor cost
or, alternately, to maximize quality of service. See [13] and [14] for
extensive review on the subject.

In this paper, we address a general form of ETP. The main as-
sumptions are that the time horizon is discrete and that the costs are
additive along this horizon. The proposed solution method is applied
to timetabling problems where employees are interchangeable (i.e. they
may be assigned to any legal schedule). However, the method can easily
be adapted to problems within the non-anonymous, personalized ETP
class [7].

The following terminology and notation is used hereafter. The plan-
ning horizon (e.g. one day) is partitioned as a sequence of T consecutive
elementary time periods t ∈ {1, . . . , T}. We denote by W the set of work
activities to perform. The workforce requirements specify the minimal
number rat of workers required to achieve work activity a ∈ W at
period t ∈ {1, . . . , T}. A cost cat is associated to the assignment of one
worker to activity a at period t. Regulations often constrain the specific
periods during which an employee is not assigned any work activity. To
model these different constraints, additional activities (such as break,
lunch or rest) are considered. These activities are not subjected to costs
nor requirements (for notational convenience, we still define and set to
0 a cost cat for each non-work activity a and each period t). Let A

denote the entire set of work and non-work activities. A schedule is
an assignment s : [1..T ] −→ A where s(t) stands for the activity to
perform at period t. Alternatively, schedule s can be expressed by a
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8 Demassey S., Pesant G., Rousseau L.-M.

binary matrix ∆s = (δs
at)a∈A,t∈[1..T ] where δs

at = 1 if s(t) = a and
δs
at = 0 otherwise. Let S denote the set of legal schedules or shifts

which satisfy all the regulation constraints. Usual objectives in ETP are
the minimization of the overall cost or the maximization of employee
satisfaction. These criteria can be formulated by considering the cost
cs for the company of allocating schedule s to an employee. Such a
cost can also represent the degree of dissatisfaction for an employee
being assigned to schedule s. The objective is then to minimize the
sum of the costs of the schedules assigned to each employee. In the
latter, cs is computed as the sum of the costs of performing activity
s(t) at period t: cs =

∑T
t=1 cs(t)t. In some ETP formulations, the cost

of the staff timetabling may include penalties due to overcoverage or
undercoverage. For each activity a ∈ W and period t, let ĉat and čat be
the additional cost when the timetabling covers the workforce demand
rat with, respectively, one more employee and one less employee.

At the core of timetabling problems are various regulation con-
straints (e.g. restraining work duration to exactly 8 hours a day, impos-
ing a 15 minute break between two different work activities, permitting
a variable lunch time, changing work places) which arise in real world
instances. Their number and complexity quickly make the subproblem
of generating one legal schedule quite challenging.

4.1. CP-Based Column Generation for Timetabling

ETP are often solved in two steps. The first step consists of designing
the possible shifts according to the regulation constraints. The opti-
mization criterion is considered next by selecting the optimal subset of
shifts to assign to the employees. However in many cases, the whole
set of possible shifts is too huge to be processed at once. A column
generation approach offers a way to solve ETP without generating the
entire set of shifts. Following the same natural decomposition, shift
generation is handled as the pricing subproblem while the selection
problem is set as the master linear program. One legal shift corresponds
to one variable or column in the master program.

This section presents a generic CP-based column generation ap-
proach for Employee Timetabling Problems. We consider here the anony-
mous case of ETP with minimum workforce requirements and with
general work rules. The approach applies also to the personalized case
or if additional over- and under-coverage costs are specified (see [7]).
Since these variants hold on the selection subproblem alone, they re-
quire a slight modification of the master linear program but do not
change the pricing problem. On the other hand, work rules intervene
only for shift generation. Specific rules may then be added as new
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constraints within the pricing subproblem without changing the overall
procedure. Column generation ends as soon as reaching an optimal
fractional solution of the master program. We discuss in Section 4.3
about ways of finalizing the search to get either feasible or optimal
integer solutions.

4.2. LP model and Column Generation

The integer linear formulation (P ) of the considered ETP turns into a
generalized set-covering problem [6] with non-binary variables:

min
∑

s∈S

csxs (1)

s.t.
∑

s∈S

δs
atxs ≥ rat ∀ a ∈ W,∀ t ∈ {1, . . . , T}, (2)

xs ≥ 0 ∀ s ∈ S, (3)

xs ∈ ZZ ∀ s ∈ S. (4)

A non-negative integer variable xs is associated to each legal schedule
s ∈ S, standing for the number of employees assigned to schedule s.
Constraints 2 ensure to cover the minimum requirements for each work
activity, at each period. The objective 1 is to minimize the sum of the
costs for any working employees.

Being indexed by S, the set of variables of this linear formulation
has order of |A|T . It can then generally not be computed at once.
A way of getting around this, is to solve the LP-relaxation (P̄ ) of
(P ) (obtained by dropping constraints (4)) with the delayed column-
generation technique. Hence, only a subset of legal schedules in S is
produced and considered in (P̄ ). At each iteration of the procedure,
new schedules are generated and the corresponding variables are added
to the master linear program, only if they may improve its current
solution. Here, the pricing problem of generating entering columns is
to compute legal schedules s ∈ S with negative reduced cost rcs. If this
problem has no solution then the current solution of (P̄ ) is optimal.
Given dual values (λat)W×{1,...,T} associated to the cover constraints 2

of the master program (P̄ ) at the current iteration, the reduced cost
rcs of a schedule s equals to:

T
∑

t=1

c′s(t)t, (5)
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where c′at is defined for all activity a ∈ A and for all period t ∈
{1, . . . , T}, as:

c′at =

{

cat − λat if a ∈ W

0 otherwise.
(6)

4.3. Integer Solutions and Branch-and-Price

Column generation applies to the LP-relaxation of the original integer
program. The fractional solution returned at the end of the proce-
dure corresponds to the assignment of an optimal selection of shifts
to fractions of employees. Its cost gives a lower bound of the optimal
timetabling cost.

Rounding up the fractional optimal solution of (P̄ ) leads to a fea-
sible solution of the ETP but its cost is likely far from the integer
optimum. In the present application, (P ) may contain numerous cover
constraints. Moreover, each cover constraint involves a large number
(order of |A|T−1) of non-zero values xs. The high density of the LP
matrix makes the increased cost of this heuristic solution not negligible.

Another heuristic solution is given by solving at optimality the
integer program (P ) on the sole restricted set of generated columns.
However, set-covering remains an NP-hard problem. In our test cases,
even with only one working activity and few columns, such integer pro-
grams were mostly too dense to be solved by a basic branch-and-bound
(at least by the default procedure of Ilog Cplex).

Branch-and-price [2] is then the only alternative to compute an
optimal integer solution and to prove its optimality. At each node of
the tree search, a branching decision is added to the master program
and column generation is invoked again to generate “missing” shifts
and to evaluate the node.

It is known that associating a branching strategy with column gen-
eration is not straightforward. In the present case, the conventional
branching strategy for generalized set-covering models (separation on
the domains of the pattern variables xs) is mostly deficient: The search
tree is clearly unbalanced (decision xs ≤ k is much weaker than xs ≥
k + 1). The efficiency of the procedure depends heavily on the order of
selection of the variables. The model admits lots of symmetries and op-
timal solutions since many legal schedules are strongly similar. Lastly,
when branching on a decision xs∗ ≤ k, the pricing problem has to
be explicitly constrained not to generate schedule s∗ anymore. Indeed,
given µs∗ ≥ 0 a dual value of the branching constraint in the master
program, then the non-negativity of the reduced cost of the schedule
rcs + µs∗ ≥ 0 does not prevent rcs < 0.
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Robust branch-and-price procedures, where branching does not in-
crease the complexity of the pricing subproblem, have been proposed for
several related problems, such as the capacited vehicle routing problem
or the bin packing problem. These procedures, based on reformulations
of the master program as a flow model, consist of branching on ag-
gregated sum of variables. Such a reformulation applies to the master
program considered here:

min
∑

s∈S

csxs (7)

s.t.
∑

b∈W

f t
ab ≥ rat ∀ a ∈ W,∀ t ∈ {1, . . . , T}, (8)

f t
ab =

∑

s∈S

δs
atδ

s
b(t+1)xs ∀ a, b ∈ W,∀ t ∈ {1, . . . , T}, (9)

xs ≥ 0, xs ∈ ZZ ∀ s ∈ S, (10)

f t
ab ≥ 0, f t

ab ∈ ZZ ∀ a, b ∈ W,∀ t ∈ {1, . . . , T}. (11)

In this LP, flow variable f t
ab identifies the number of employees assigned

to activity a at period t and to activity b at period t + 1. Branching on
flow variables leads effectively to a more robust and balanced branch-
and-price. Nevertheless, the usual arguments proving the completeness
of such a branching scheme cannot be invoked here because of the
integrality of both variables (not binary) and demands (not unary).
Indeed, it is easy to find cases where all flow variables f are integer
but not variables x. Consider for example, T = 4 and four sched-
ules (a1, a3, a1, a3), (a1, a3, a2, a3), (a2, a3, a1, a3), (a2, a3, a2, a3) each
assigned to exactly 0.5 employee.

Even if the completeness is not guaranteed, this latter branching
scheme can advantageously be used on top of the search, then eventu-
ally completed by branching on a remaining fractional x variable each
time all f variables are integer.

4.4. Shift Scheduling: a General CP model

The pricing problem within the proposed approach can be referred to as
a Shift Scheduling Problem. The solutions of this problem are schedules
s : {1, . . . , T} −→ A satisfying to all the regulation constraints and
whose reduced cost rcs at the current iteration of the column generation
procedure is negative.

4.4.1. Regulation Constraints
The regulation constraints occurring in ETP usually fall into one of the
five following classes of constraints:
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12 Demassey S., Pesant G., Rousseau L.-M.

− Allowed/forbidden assignments: Only activities in At ⊆ A may
be performed at period t. Such constraint avoids, for example, to
schedule lunch before 1 pm.

− Cardinality rules: They specify the minimal µ̌A′ and the maximal
µ̂A′ numbers of periods assigned to activities in A′ ⊆ A. They may
constrain, for example, the work duration or the allowed number
of break periods.

− Stretch rules: They specify the minimal λ̌a and the maximal λ̂a

number of consecutive periods assigned to activity a ∈ A. They
may constrain, for example, the lunch duration or the minimal
duration of a work activity.

− Sequencing rules: They specify the allowed and forbidden activity
changes. They may force, for example, a break period between two
different work activities.

− Conditional rules: These are logical combinations of rules of the
four preceding classes. For example: a lunch of 1 hour is required
if the work duration is greater than 3 hours a day.

The Shift Scheduling Problem can be modeled as a Constraint Satis-
faction Problem based on a sequence of T decision variables s1, s2, . . . , sT

with finite discrete domains D1,D2, . . . ,DT , initialized to A. There is
an obvious one-to-one correspondence between complete instantiations
of these variables and schedules by setting s(t) = st for all periods t.
Assignment st = a means that activity a is performed at period t.

According to the first rule class, each domain Dt may initially be
restricted to At. The rules of the other classes need to be modelled
as constraints whose support includes all the decision variables. Fortu-
nately, several existing global constraints are dedicated to handle such
rules. Hence, having an overall viewpoint on the problem, the constraint
propagation within such global constraints is likely to be quite effective.

For the cardinality rules, a global cardinality (gcc) constraint [20]
can be used to constrain, for all the activities, their number of occur-
rences in the schedule. For each activity a ∈ A, a domain variable σa

with domain [µ̌a; µ̂a] is added to the model.

gcc(< s1, . . . , sT >,< σa|a ∈ A >). (12)

This constraint holds if each value a ∈ A is taken by exactly σa variables
among s1, . . . , sT . All other cardinality rules on subset A′ of activities
can be modeled using a domain variable σA′ with domain [µ̌A′ ; µ̂A′ ] and
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Cost-Regular based Hybrid Column Generation 13

an arithmetic constraint

σA′ ==
∑

a∈A′

σa. (13)

Note that usually, an ETP contains few rules of that kind.
Stretch and sequencing rules may be handled together with one

or several regular global constraints [18]. Indeed, such rules define
sequences of values which can be taken by the sequence of variables
(s1, s2, . . . , sT ). It is generally straightforward to represent all these
allowed patterns by a deterministic finite automaton Π whose transi-
tions are labeled by the values (examples are given in [18, 7] and in
Section 5.2). Note that, since the complexity of the filtering algorithm
of regular is dependent of both the number of variables and the size
of the automaton, one may envisage sometimes to have recourse to
conjunctions of regular, with small automata, in order to model all
the stretch and sequencing rules. Nevertheless, pruning is more efficient
if all the rules are handled by one constraint alone. Furthermore, the
complexity of the algorithm remains linear in those sizes and is able to
tackle large-size instances. In our experiments, we used then only one
such constraint (see Section 5):

regular(< s1, . . . , sT >,Π). (14)

Conditional rules can be formulated as logical constraints (and, or,
not) in the CP model. These side constraints are highly dependent of
the context of application. We considered various and complex ones in
our experiments (see Section 5). A particular attention should be given
to these constraints since they may considerably complicate the solution
procedure. Indeed generally, such constraints propagate poorly and it
can be advantageous to fix them in the first branches of the search tree.

4.4.2. Optimization Criterion
The constraints given above constitute a reasonable framework for a
CP formulation of the Shift Scheduling Problem. As we consider the
pricing problem of the column generation approach, costs have to be
incorporated in order to generate only legal schedules with reduced
costs. According to (5) and the correspondence between schedules and
complete instantiations of (s1, s2, . . . , sT ), the relation to model is

(s1 = a1, s2 = a2, . . . , sT = aT ) =⇒
T

∑

t=1

c′att < 0.

This relation can be inefficiently modeled using T global constraints
element. As discussed in Section 2, with such a formulation, cost
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pruning could mainly occur only once the feasibility part of the problem
is solved.

Our goal is to use the negative cost criterion to prune the solution
space earlier during the search. To achieve this, we propose to replace
in the model the regular constraint (14) by its cost variant:

cost-regular(< s1, . . . , sT >,Π, z, c′). (15)

with initial domain ] −∞, 0[ for z. By pruning both the lower bound
lb and the upper bound ub of the domain of z, this constraint ensures
that, at any current state of the search, there exist possible (according
to Π) instantiations of variables (s1, s2, . . . , sT ) whose cost

∑T
t=1 c′att

is
equal to lb or ub. Hence, if the instantiation is complete, z is equal to
its cost. Conversely, any instantiation of the decision variables to values
in their current domain is ensured to have a cost between lb and ub.

In the column generation procedure, this model of the pricing prob-
lem is solved with a backtracking algorithm. One solution corresponds
to one entering column in the master program. In fact, we aim to gener-
ate several solutions at once. In the backtracking algorithm, the search
is run until the expected number of solutions is found. Furthermore,
we aim to generate solutions with the most negative reduced costs.
Considering an optimization criterion within the model in order to find
such optimal solutions could be clearly time-consuming since the whole
search tree should be considered (implicitly though) before deciding
if a feasible solution found is optimal. It is known that, in column
generation procedures, looking systematically for the minimal reduced
cost solutions of the pricing problem is not necessarily beneficial (at
least when pricing is a hard problem).

Hence, rather than adding to the model a minimization criterion
on z, we keep solving the satisfaction model but we use the heuris-
tic returned by cost-regular to drive the search (Section 3.2). This
heuristic does not ensure that the first complete instantiation found
by the backtracking algorithm is optimal. Nevertheless, the principle
of the heuristic makes us expect to find near optimal solutions.

We have experimented this strategy on the benchmark instances
presented in an earlier paper [7]. A quick comparison of the computa-
tional results obtained leaves no doubt on the great efficiency of this
strategy, as shown in Section 5.1.

5. Case study

To evaluate the effectiveness of the proposed framework, we present
computational results on a set of generated ETPs as well as a real
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world problem taken from the data of a large bank. We present here
the problem details and discuss the results obtained on these instances.

The whole algorithm was implemented in C++ on top of libraries
Ilog Cplex 9.0 and Solver 6.0. Experiments were run on an Opteron
250 under Gnu/Linux 2.6 and g++ 3.3.

5.1. Generic Benchmark Data

We based our first experiments on the benchmark data sets described in
[7]. Although these instances are randomly generated, the benchmarks
are based on data and rules from a real-world timetabling problem as
the demand curves where obtained from a retail store.

5.1.1. Problem Details
10 sets (ETPn)n=1,...,10 of 10 instances each are available, parameter
n indicating the number of work activities (|W | = n). The planning
horizon is one day decomposed into periods of 15 minutes (T = 96),
and the work rules need the definitions of three non-work activities:

A = W ∪ {p (break), o (rest), l (lunch)}

1. Some activities a ∈ Ft are not allowed to be performed at some
periods t.

2. s covers between 3 hours and 8 hours of work activities.

3. If s is worked for at least 6 hours, then it includes exactly two breaks
and one lunch break of 1 hour. Else, it includes only 1 break and
no lunch is envisaged.

4. If performed, the duration of an activity a ∈ W is at least 1 hour.

5. A break (or lunch) is necessary between two different work activi-
ties.

6. Rest shifts have to be assigned only at the beginning and at the end
of the day.

7. Work activities must be inserted between breaks, lunch and rest
stretches.

8. The maximum duration of a break is 15 minutes.

The first condition simply consists of removing the forbidden activ-
ities Ft from the initial domain of each variable st: Dt = A \ Ft.
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The next two regulation constraints need the definition of additional
decision variables. They can then be modeled as explicit constraints as
well as, implicitly, by restricting the initial domain of the variables.
One way of modeling the second condition is to use one additional
variable σa for each work activity a ∈ W , with domain {0, 1, . . . , 32}
and representing the number of periods assigned to activity a, as well
as a variable σ with domain {12, . . . , 32}, standing for the total number
of working periods. Variables σa and st may be linked by the gcc. In
the same manner, we define cardinality variables σp, σo and σl for the
non-working activities (break, rest and lunch, respectively). To model
the third condition, the domains of σl and σp are initialized to {0, 4}
and {1, 2} respectively. We can also logically deduce from the whole set
of conditions that any valid schedules contain a number of rest periods
between 58 and 83. As redundant constraints, we can then reduce the
initial domain of σo to {58, . . . , 83}.

The last five constraints can be modeled with the help of only one
regular constraint. Indeed, the values permitted by these constraints
together for the sequence of variables (s1, . . . , sT ) can be described by
a single automaton Π. Figure 2 depicts such an automaton when W

contains two activities a and b.

a

p

l
a

o o

a aa
a

b bb
b

b

p
l

b

o

a

o

l ll

Figure 2. An automaton for two work activities a and b. The leftmost circle
represents the initial state and shaded circles correspond to accepting states.
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Given automata Π, the shift scheduling problem described above can
be formulated by the following Constraint Satisfaction Problem (CP ):

gcc(< σa|a ∈ A >,< a ∈ A >,< s1, . . . , sT >) (16)

σ ==
∑

a∈W

σa (17)

σ < 24 ⇒ (σl == 0 ∧ σp == 1) (18)

σ ≥ 24 ⇒ (σl == 4 ∧ σp == 2) (19)

regular(< s1, . . . , sT >,Π) (20)

st ∈ A \ Ft, ∀t = 1, . . . , T (21)

σa ∈ {0, . . . , 32}, ∀a ∈ W, σ ∈ {12, 32} (22)

σl ∈ {0, 4}, σp ∈ {1, 2}, σo ∈ {58, . . . , 83} (23)

5.1.2. Computational Results

Table I. Column generation algorithm results on the generated instances using
information from cost-regular to guide the search.

Group nb ∆LB/UB #iter. #col. CPU in sec.

av. (max) av. av. av. (max) CPav.

ETP1 10 2.5% (6.9%) 19 889 0.4 (1.2) 0.02

ETP2 10 2.8% (9.2%) 48 2340 3.7 (28.0) 0.03

ETP3 10 2.3% (6.4%) 52 2550 2.0 (2.9) 0.03

ETP4 10 3.3% (6.1%) 103 5063 12.5 (90.5) 0.04

ETP5 10 5.1% (10.4%) 86 4288 6.2 (11.3) 0.04

ETP6 10 4.7% (11.1%) 130 6493 13.8 (31.3) 0.05

ETP7 10 6.1% (8.4%) 137 6839 18.4 (30.6) 0.06

ETP8 10 6.0% (8.6%) 155 7736 25.4 (41.8) 0.07

ETP9 10 7.3% (10.9%) 155 7741 25.9 (31.9) 0.07

ETP10 10 8.7% (11.7%) 179 8974 42.0 (44.5) 0.09

Table I provides details of the CP-based column generation algo-
rithm execution on each problem set ETPn. The huge difference between
these results and the preliminary ones presented in [7] (and reported
in table II) is entirely due to the search heuristic used within the
CP backtracking algorithm. Indeed, no other changes were made nei-
ther in the algorithm’s implementation nor in the execution phase. In
the present experiments, we used the variable-value ordering heuristic
based on cost-regular (Section 3.2), while in [7], the heuristic used
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18 Demassey S., Pesant G., Rousseau L.-M.

Table II. Column generation algorithm results on the generated instances using
minimum reduced cost value to guide the search.

Group nb ∆LB/UB #iter #col CPU in sec.

av. (max) av. av. av. (max) CPav

ETP1 10 4.9% (16.6%) 20 914 1.9 (5.7) 0.1

ETP2 10 5.6% (15.6%) 51 2466 6.1 (12.0) 0.1

ETP3 10 5.5% (9.2%) 76 3749 16.7 (45.6) 0.2

ETP4 10 4.6% (8.7%) 137 6818 92.9 (452.4) 0.6

ETP5 10 5.4% (12.6%) 132 6558 108.4 (354.4) 0.7

ETP6 10 5.0% (11.0%) 203 10103 355.6 (884.6) 1.6

ETP7 9 5.6% (7.9%) 244 12186 793.6 (2115.1) 3.1

ETP8 9 5.4% (8.5%) 296 14776 950.3 (2531.2) 3.0

was the minimal reduced cost first (instantiate first st∗ = a∗ such that
(a∗, t∗) = arg min{ c′at | (a, t) ∈ A×{1, . . . , T} }). The goal was indeed
to compute solutions with low cost.

Hence, the major difference within these results intervene in the
computation time of the pricing subproblem solved by the CP back-
tracking algorithm. In Tables I and II, column (CPav) gives for each
set, the computation time of one pricing problem solution averaged
over the number of iterations and the 10 instances. The average time is
now lower than 0.1 second while it varied with the preceding heuristic
from 0.1 to 3 seconds on average for the instances. In Table II none of
the instances from group ETP9 and ETP10 were solved within the 1
hour time frame, we thus omitted these results.

In fact, with the former heuristic, CP backtracking was able to find
50 negative reduced cost solutions at almost every iteration (the CP
search stopped after 5 seconds if it found at least one solution). But at
the latest iterations, it was very slow to find the first (required) negative
solution or to prove that none existed (it took up to 2500 seconds for
ETP8 instances).

Choosing first the lowest cost assignments is indeed a clearly bad
heuristic when no more negative solution exists. Conversely, the cost-regular
based heuristic is effective at each iteration of the column genera-
tion procedure: both when numerous negative solutions exist (in the
first iterations), or to prove that no such solution exists (in the last
iteration).

Another interesting conclusion coming from the comparison of these
results is about the quality of the generated solutions. Indeed the aver-
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age number of iterations (column (#iter.) in Table I) is lower with the
new heuristic than with the former one in II. This has an impact on
the number of columns required by the master program to reach the
optimality (column (#col.) gives the average number on each instance
set). This has also an impact on the total computation time (columns
(CPU av.) et (CPU max.)).

Since the pricing problem returned about the same number of solu-
tions, whatever the chosen heuristic (50 solutions an iteration, less in
the very last iterations), the explanation of this difference is the higher
quality of the solutions returned by the new heuristic.

The two first columns of Tables I and II give the average and
maximum deviation of the lower bound LB computed by the column
generation procedure (i.e the fractional optimum) to an upper bound
UB. We computed UB by running the default branch-and-bound of
Cplex on the sole generated columns. UB is the value of the best
integer solution found after 1 hour. As previously said, the density
of the LP-matrix makes difficult the IP processing. Even for instances
in ETP1, where the average number of the IP variables is 889, the
Cplex branch-and-bound cannot complete the search in 1 hour except
for two instances. For these 2 instances, the integrality gap is not closed
(LB < UB). This indicates that either the lower bound is not tight or
columns entering in an optimal integer solution are missing.

We ran the branch-and-price approach described in Section 4.3 on
the instance sets. Nevertheless, in 2 hours, the method was only able
to solve instances with less than 3 activities: 8 instances in ETP1 and
ETP2 and 4 instances in ETP3 (respectively in 144 seconds, 394 sec-
onds, and 1592 seconds, in average). These results lead to an interesting
question since for these 20 instances, the branch-and-price proved in
fact that the LB is also the integer optimum.

5.2. A Real-World Case

The approach was also evaluated on a real-life employee timetabling in-
stance submitted by a Canadian bank. The local company’s subsidiary,
considered here, consists of one central establishment, including front
desk and back office, and 3 branches. In a same day, employees may
be allocated to several places. Each of these 5 places is then viewed as
a work activity. Rules are also defined on 4 non-work activities: rest,
lunch, dinner and transfer (from a branch to the central desk).

The contractual regulations may differ for employees working full-
time (35 hours a week) or part-time (between 20 and 30 hours a week).
Since there is an additional cost for the company due to part-time
workers, the timetabling must be set up on a weekly basis.
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An estimation of the required number of employees is given on a
15 minutes basis for each activity. Overcoverage and undercoverage are
allowed, but at least one employee must be present (mat = 1) at all
time but without exceeding the available space Mat).

The linear model (P ) has to be modified to take these additional
costs into account but, since the new constraints (26) and (27) do not
hold on the pattern variables xs, the pricing problem remains the same.

min
∑

s∈S

csxs +
∑

a∈W

T
∑

t=1

(ĉatx̂at + čatx̌at) (24)

s.t.
∑

s∈S

δs
atxs + x̌at − x̂at = rat ∀ a ∈ W,∀ t ∈ [1..T ], (25)

x̂at ≤ Mat − rat ∀ a ∈ W,∀ t ∈ [1..T ], (26)

x̌at ≤ rat − mat ∀ a ∈ W,∀ t ∈ [1..T ], (27)

xs ∈ ZZ+ ∀ s ∈ S, (28)

x̂at ∈ ZZ+, x̌at ∈ ZZ+ ∀ a ∈ W,∀ t ∈ [1..T ]. (29)

Note that the cost of a schedule s is no longer the sum of the costs of
the activity-period assignments since it also depends on work duration:
cs =

∑T
t=1 cs(t)t + γs, where γs can take one of two distinct values

depending on whether s is a full-time work schedule or not.
The work rules in this problem are quite complex. Allowed sequenc-

ing and stretch patterns are given on a daily basis, but may be altered
depending on the type of schedule. For example, lunch and dinner dura-
tions differ for full-time and partial-time schedules. More complicated
still: no employee may work after 5 pm more than one day in a week,
and a part-time employee who works between 5 and 6 hours a day has
to take a non-paid break of 15 minutes in the day. Another difficulty
comes from the location considerations: a worker cannot do more than
one transfer a day, and always from a branch to the center. In the center,
no more than one activity change (between front desk and back office)
is allowed per day. The automaton used to model this problem (shown
in figure 3) gives an idea of difficulties presented by this application.

Furthermore, since we are constructing a weekly schedule, we need
to introduce 5 cost-regular constraints in the model each modeling a
day. This unfortunately reduces the effectiveness of the cost-regular

constraint (both for filtering and guiding) but defining an automaton
covering the whole week made the resolution intractable.

Since the column generation process does not converge in reason-
able time, we need to interrupt it at some point in order to get a
feasible solution to this complex instance. In this case however, Cplex
is always able to solve the integer problem associated with the available
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Figure 3. An automaton for the work and rest activities in a complex industrial
timetabling problem.

columns very rapidly. The solutions obtained were comparable to those
generated manually by the bank administration.

6. Conclusion

This paper presented a generic CP-based column-generation approach
for Employee Timetabling Problems. In this approach, pricing is pro-
cessed by solving a flexible CP formulation of the Minimal Cost Shift
Scheduling Problem based on the new optimization constraint cost-regular.
As other optimization constraints, cost-regular provides cost-based
filtering of the decision variable domains as well as a tight lower bound
of the problem. In a backtracking algorithm, the relaxed solution as-
sociated to this lower bound gives effective and direct information to
drive the search towards near optimal solutions. The filtering algorithm
associated to cost-regular also computes an upper bound which acts
as a heuristic value computed at each node of the search tree, and
then improves the pruning of the search space. The design of opti-
mization constraints is rather recent. Such constraints could be very
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effective in solving optimization problems, if they provide together:
cost-based filtering on the decision variables, filtering of both the lower
and the upper bound of the cost variable domain, and the internal
information computed by the filtering algorithm to be reused as search
heuristic. Optimization constraints would be then entirely combinable,
making the propagation more effective via the cost variable as it does
on the decision variables, and improving search by selecting the most
promising branching decision according to the heuristics returned by
the constraints.
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