
HAL Id: hal-00293555
https://hal.science/hal-00293555v1

Preprint submitted on 6 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random XML sampling the Boltzmann way
Alexis Darrasse

To cite this version:

Alexis Darrasse. Random XML sampling the Boltzmann way. 2008. �hal-00293555�

https://hal.science/hal-00293555v1
https://hal.archives-ouvertes.fr

Random XML sampling the Boltzmann way

Alexis Darrasse

July 6, 2008

In this article we present the prototype of a framework capable of produc-
ing, with linear complexity, uniformly random XML documents with respect
to a given RELAX NG grammar. The generation relies on powerful combina-
torial methods together with numerical and symbolic resolution of polynomial
systems.

1 Introduction

The Extensible Markup Language (XML) is extensively used today, either to
encode documents (like in XHTML) or to serialize structured data. The XML
standard[4] only defines some basic syntax rules followed by well-formed docu-
ments. However applications often define a set of higher order syntactic1 rules
that an XML document must respect to be considered as valid for the given ap-
plication. A set of such rules is called a schema and is defined in one of several
languages, like DTD, XML Schema, RELAX NG and others. We chose to deal
with RELAX NG for its simplicity and solid theoretical basis.

Our work is based on the observation that RELAX NG[2] has essentially the
same expressive power as the specifications of combinatorial structures using
only union, product, sequence and allowing for recursive definitions. This means
that valid XML documents are just trees and can be efficiently generated using
a Boltzmann sampler[1].

In Boltzmann sampling we can easily derive a generator from the description
of a combinatorial class. This generator has the following characteristics:

• it needs a precalculation that must be done once and involves finding a
particular solution of a polynomial system,

• the sampling itself involves only basic mathematic operations and has a
linear complexity in the size of the generated object and

• the size of the generated object is a random variable following a power
law distribution.

We go from a RELAX NG grammar to a random XML document in three
steps:

1often called semantic

1

1. translating the grammar to a system of equations,

2. solving the system of equations and

3. sampling XML documents.

The first two steps need to be executed only once for a given grammar and
their cost is only dependant on the complexity of the grammar. The final step
has a complexity that is linear in the size of the result.

The current prototype includes a ruby program executing the first and last
step and a maple program dealing with the second step. Future versions could
consist of a single program not depending on a computer algebra system.

Even in its current form, our framework is capable of generating documents
for all RELAX NG grammars that we were able to find, include XHTML,
MathML, SVG, DocBook, OpenDocument and RELAX NG itself.

2 Translating the RELAX NG

We parse the RELAX NG document to get a combinatorial description of the
grammar in the form of an Abstract Syntax Tree (AST). Every RELAX NG
element is matched to a combinatorial construction, for example choice to
union, group to product, oneOrMore to sequence etc.

The mapping from RELAX NG to combinatorial constructions is not unique,
we thus have to make a few arbitrary decisions. First of all, we must decide of a
way to count the size of an XML document, while satisfying the constraint that
there must be a finite number of XML documents for a given size. Our choice
is to count the number of elements plus the number of attributes.

Some facts on the AST: at the root we have the definition of start which
is our entry point to the grammar and the definition of every element of the
grammar. We can thus represent the AST as a forest, with every root being
the definition of an element. ref elements found in different parts of the AST
point to one of these definitions, which can lead us to see the AST also as a
graph.

Note on data

Our framework concentrates on the tree-form structure of the XML document
and treats data elements as simple leaves. These elements however repre-
sent data respecting arbitrarily complex datatypes which cannot be reasonably
treated by a generic framework. We thus provide the possibility to call an arbi-
trary (written in Ruby since performed at step 3) function when the generator
needs a value of a data element.

Even though the RELAX NG language does not provide a collection of
basic datatypes, the XML Schema Datatypes[5] are used as such. We thus
provide default samplers for each of the datatypes contained in this library,
while preserving the possibility for the users to overload them.

2

Note on uniformity

One of the main advantages of using Boltzmann sampling is that it guarantees
the uniformity of the distribution inside each size class. The simplifications
made in our prototype break this uniformity in two ways:

• sets of attributes are considered as sequences, so

and count as two different XML documents, while
they are the same (but two attributes of the same element will always have
different names) and

• the interleave element, which calls for the interleaving of it’s arguments,
is not taken into account, so all the interleavings count as a single element.

3 Solving the system of equations

The AST is fed to a Maple program that solves the set of equations defining the
grammar and provides us with the constants needed for sampling. The calcu-
lation time needed for this operation depends heavily on the size and structure
of the grammar. The user can use this Maple program as a black box, as it is
not interactive. But for the purpose of explanation we now describe it a little
more precisely.

A RELAX NG grammar defines, in our point of view, a (combinatorial)
family of trees. As for every other combinatorial class, a generating function
C(x) =

∑
∞

n=0 tnxn is assocatied to this family, with tn being the number of
different trees of size n. An important parameter is the radius of convergence ρ

of the generating function C(x). The Boltzmann sampler uses the value of C(x)
and some related generating functions for a given parameter x. In the case of
trees, ρ is an excellent choice for x[1].

The AST of the grammar can be directly translated into an algebraic system
(that can itself be simplified to a polynomial one) defining the generating func-
tion C(x). To be able to sample we need to solve two problems: evaluate the
radius of convergence of the system and find its only solution that corresponds
to C.

A major difficulty comes from the fact that simply solving the system for
a given x gives us a set of solutions with no simple way of finding the good
one. Thankfully, a combinatorial interpretation of Newton’s method[3] gives us
a very efficient and guaranteed numerical algorithm for evaluating C(x).

As for the radius of convergence, for the time being, using a dichotomy
approach and Newton algorithm we obtain an estimation. We can also (see
section 5) take advantage of the particularities of the generating functions aris-
ing from grammars defining trees, in which the radius of convergence can be
automatically calculated, as explained in [1].

To experiment the solving algorithm, we tried it on different RELAX NG
grammars (found for most of them on the internet). Table 1 shows some mea-
sures on the grammars related to their complexity, together with the time needed

3

grammar file sing. # el. s.c.c. newton # eq. # mon. # sol.

ternary trees 1024 0.52912 2 1 0.260s 3 10 3
RSS 9.5K 0.44721 10 1 0.320s 16 79 2

PNML 23K 0.22526 22 1 0.322s 36 193 4

ILP 1 21K 0.23696 20 6 0.416s 27 211 9
ILP 6 99K 0.13951 51 31 0.828s 72 948 6

RELAX NG 124K 0.04127 33 18 0.696s 114 3725 32
XSLT 168K 0.05283 40 17 0.469s 122 1503 10

XHTML 289K 0.02456 47 32 0.932s 134 2077 26

XML Schema 237K 0.08615 59 9 0.528s 188 143465
XHTML basic 284K 0.03039 53 38 1.080s 96 2073 13

XHTML strict 1.2M 0.01991 80 58 2.414s 151 6445 32
XHTML 1.5M 0.01609 93 66 3.798s 172 8449 56

SVG tiny 1.6M 0.03542 49 7 0.371s 101 4390 34
SVG full 6.3M 0.01834 118 27 0.718s 232 13831
MathML 2.2M 0.00318 182 48 2.432s 265 265159 18

OpenDocument 2.8M 0.01757 500 101 6.544s 814 8890517
DocBook 11M 0.01627 407 295 143.411s 977 183051

Table 1: Evaluating the generating functions of different RELAX NG grammars.
Measures made on a 3.2GHz Xeon with 6GB of RAM, using Maple 10 in a 64bit
environment.

to evaluate the corresponding generating functions. The size of the correspond-
ing polynomial systems is also mentioned, showing that solving them with a
symbolic approach is a challenge. Here is a precise description of the column
headers:

sing. Lower bound on the singularity of the system of equations.

file. Size of the file containing the grammar in Simple RELAX NG.

el. Number of element definitions.

s.c.c. Size of the biggest strongly connected component of the grammar.

newton Time needed to evaluate the values of the generating functions using the

newton algorithm.

eq. Number of equations defining the polynomial system.

mon. Number of monomials in the polynomial system.

sol. Number of solutions of the zero-dimensional system, given a parameter smaller

than the singularity.

These results show that with the numerical method we were able to deal
with all the grammars in a very reasonable time.

4 Generating XML documents

To generate the XML documents the Boltzmann way, we explore the AST,
starting from the start element of the grammar and treating the different
elements the following way:

• for a union we choose randomly between the two siblings,
• for a product we take both children,
• for a sequence we take the child a random number of times,
• for a ref we continue at the corresponding element,
• for a leaf produce the corresponding value.

4

Thus the cost to produce an XML document is proportional to the size of the
document and the constant factor depends on the grammar. That size however
is random and actually follows a power law distribution. This means that we
generate a very large number of very small documents and from time to time a
huge document, eventually bigger than we can handle.

For this reason we include a mechanism for rejecting documents whose
size falls outside a given window. The cost of the rejection can be precisely
estimated[1]: generating a document of size n(1 ± ǫ), for a fixed tolerance ǫ,
costs O(n), while generating a document of size exactly n costs O(n2) (costs are
average, in the worst case the generator never returns a valid document, but
this happens with probability zero).

5 Work in progress

The current state of our work shows what can be achieved by applying the
Boltzmann sampling techniques in the problem of sampling random XML doc-
uments. We are in the process of completing and extending our framework in
order to create tools useful as-is in a large number of use cases.

Efficient implementation and integration of the framework. The cur-
rent implementation of our framework is a prototype with a design targeting
flexibility and ease of development. Consequently it lacks in efficiency and ease
of deployment, which will be the goals of future versions.

Progressive serialisation of the generated document. To be able to
sample documents of millions of elements, or more, we can no longer keep the
whole document in memory. The solution is to write the data on disk as soon
as we know its position in the resulting document. This should be trivial for
grammars not containing interleave constructions and could be reasonably
treated even in that case.

Conserve the entropy, guarantee the precision. By implementing the
non-deterministic parts of the samplers using bitwise comparisons, we can make
sure not to use more entropy bits than necessary. At the same time we can
check that the precision used for calculating the constants is sufficient, and if
not, get more precision from the solver.

Assure uniformity in all cases. The bias introduced in the sampling by
the simplified treatment of the interleave element and the attributes could be
dealt with, if necessary. The set construction is already treated in the Boltzmann
sampling, but leads to systems that are no longer polynomial. The treatment
of the interleave construction is work in progress.

5

References

[1] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer.
Boltzmann samplers for the random generation of combinatorial structures.
Combinatorics, Probability and Computing, 13(4-5):577–625, 2004.

[2] OASIS. RELAX NG Specification.

[3] Carine Pivoteau, Bruno Salvy, and Michèle Soria. Boltzmann oracle for
combinatorial systems. In Fifth Colloquium on Mathematics and Computer

Science Algorithms, Trees, Combinatorics and Probabilities, DMTCS Pro-
ceedings. Discrete Mathematics and Theoretical Computer Science, 2008.

[4] W3C. Extensible Markup Language (XML) 1.1 (Second Edition).

[5] W3C. XML Schema Part 2: Datatypes Second Edition.

6

