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Introduction

Benthic foraminifera are heterotrophic protozoa that have the morphological characteristics of pseudopodia and a test with one or more chambers. Since the Cambrian era, they have been present in a wide range of environments, from shallow brackish waters to deepest oceans.

They are used as proxies for paleoecological studies because they are wide spread, numerous and well preserved. In recent times, foraminifera increasingly appeared as dominant members of benthic communities in both shallow and deep-sea environments [START_REF] Snider | The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area[END_REF][START_REF] Alongi | Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of outwelled mangrove detritus and physical disturbance[END_REF][START_REF] Gooday | The role of benthic foraminifera in deep-sea food webs and carbon cycling[END_REF][START_REF] Moodley | Benthic activity in sediments of the northwestern Adriatic Sea: sediment oxygen consumption, macro-and meiofauna dynamics[END_REF][START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF], suggesting that they may play an important role in food webs [START_REF] Altenbach | Short term processes and patterns in the foraminiferal response to organic flux rates[END_REF][START_REF] Linke | Responses of deep-sea benthic foraminifera to a simulated sedimentation event[END_REF].

Foraminifera exhibit a wide range of trophic behaviours: dissolved organic matter (DOM) uptake, herbivory, carnivory, suspension feeding and most commonly, deposit feeding [START_REF] Lipps | Biotic interactions in benthic foraminifera[END_REF]. Deposit feeders are omnivorous, using their pseudopodia to gather fine-grained sediment with associated bacteria, organic detritus and, if available, algal cells. As a large part of organic detritus is indigestible, it must be cycled by bacteria before becoming available to deposit feeders [START_REF] Levinton | Deposit feeding and coastal oceanography[END_REF]. Benthic bacteria are highly abundant and productive in benthic sediments. Due to their high nutritional value they are suspected to be an important resource for sediment dwelling fauna. Bacteria could play a major role or be an obligatory item in foraminiferal nutrition. Several littoral benthic foraminifera require bacteria to reproduce [START_REF] Muller | Apparent indispensability of bacteria in foraminiferan nutrition[END_REF] and have been shown to selectively ingest bacteria according to strain [START_REF] Lee | Tracer experiments in feeding littoral foraminifera[END_REF][START_REF] Lee | Trophic dynamics and niches of salt marsh foraminifera[END_REF]. Some epiphytic foraminifera show a farming strategy. They produce nutrient-rich substrate for bacteria and then ingest cultured bacteria [START_REF] Langer | Bacteria farming: a possible feeding strategy of some smaller, motile foraminifera[END_REF].

Foraminifera are also able to feed actively on bacterial biofilms [START_REF] Bernhard | Bacterial biofilms as a trophic resource for certain benthic foraminifera[END_REF].

Bacteria may also play a symbiotic role in bathial species of foraminifera [START_REF] Bernhard | Potential symbionts in bathyal foraminifera[END_REF].

Uptake of bacteria by Ammonia has been displayed using direct food vacuole observation [START_REF] Goldstein | Deposit feeding in selected deep-sea and shallow-water benthic foraminifera[END_REF] and bacteria labelled with fluorescent dyes [START_REF] Langezaal | Foraminiferal selectivity towards bacteria: an experimental approach using cell-permeant stain[END_REF]. Nevertheless, those studies do not give access to quantitative data concerning the uptake rate of bacteria, and the precise role that bacteria play in foraminiferal nutrition remains elusive. Assessing grazing rate on bacteria remains a major point that must be documented to determine the role that foraminifera play in benthic food webs.

Ammonia is one of the most common genera of benthic foraminifera with a worldwide distribution in inner shelf, estuarine, and salt marsh environments [START_REF] Murray | Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments[END_REF]. One remarkable characteristic of this genus is its ability to survive over a broad range of temperatures, salinities, and seasonal regimes [START_REF] Bradshaw | Laboratory experiment on the ecology of foraminifera[END_REF][START_REF] Walton | The genus Ammonia Brünnich, 1772: its geographic distribution and morphologic variability[END_REF].

The aim of this study is to assess experimentally in different controlled conditions uptake rates of bacteria by Ammonia from an intertidal mudflat habitat (Marennes-Oléron, France).

15 N enriched bacteria were used as tracers to determine uptake rate of bacteria [START_REF] Pascal | Bacterivory by benthic organism in sediment: quantification using-15 N enriched bacteria[END_REF]). This habitat is subject to large and quick changes in many environmental features.

Three relevant time scales drive these environmental variations: long-term (seasonal cycle), medium-term (lunar cycle) and short-term (solar and tidal cycles) [START_REF] Guarini | Modeling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity[END_REF]. Since these variations may influence foraminiferal feeding behaviour, grazing experiments were performed in order to evaluate effects of abiotic (temperature, salinity and irradiance) and biotic (bacterial and algal abundances) factors on uptake rates of bacteria.

Experimental procedure

Study site

The Brouage intertidal mudflat is located in the eastern part of the Marennes-Oléron Bay (Atlantic coast of France). Meteorological conditions exhibit a strong seasonality typical of a temperate climate. Temperature and salinity of emerged sediments are more extreme during summer tidal cycles [START_REF] Guarini | Modeling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity[END_REF]. Minimum and maximum mud temperatures are 5°C and 34°C respectively. The maximum daily range of mud temperature due to emersion and immersion cycle reaches 18°C [START_REF] Guarini | Modeling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity[END_REF]. Salinity of overlaying water is controlled by the river Charente freshwater input, ranging from 25 to 35‰ over the year [START_REF] Héral | Caractéristiques saisonnières de l'hydrologies du complexe estuarien de Marennes-Oléron (France)[END_REF]. Salinity of the upper layers of sediment may also decrease with rainfall. The sediment surface irradiance shifts from dark during submersion and night emersions to high levels of incident light during daytime emersions. This irradiance can reach 2000 µM of photons m -2 s -1 [START_REF] Underwood | Primary production by phytoplancton and microphytoplancton in estuaries[END_REF]. Details of numerous benthic organisms and processes are available concerning this intertidal zone (gathered in [START_REF] Leguerrier | Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France[END_REF][START_REF] Leguerrier | Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France)[END_REF][START_REF] Degré | Comparative analysis of the food webs of two intertidal mudflats during two seasons using inverse modelling: Aiguillon Cove and Brouage Mudflat, France[END_REF].

Preparation of 15 N enriched bacteria

Superficial sediment (1 cm depth) was collected on the Brouage mudflat (45,55,074 N; 1,06,086 W). One ml of the collected sediment was added to 20 ml of bacterial liquid culture medium and kept in darkness during 24 hours at 13°C. The composition of this culture medium were previously described in [START_REF] Pascal | Bacterivory by benthic organism in sediment: quantification using-15 N enriched bacteria[END_REF]. This primary culture was then subcultured during 24 hours under the same conditions to get approximately 2 ! 10 9 cells ml - 1 . Finally, bacteria were collected in 0.2 !m filtered seawater after 3 centrifugations (3500 g, 10 mn, 20°C), frozen in liquid nitrogen and kept frozen at -80°C until grazing experiments.

Preparation of 13 C enriched algae

An axenic clone of the diatom Navicula phyllepta (CCY 9804, Netherlands Institute of Ecology NIOO-KNAW, Yerseke, The Netherlands), the most abundant diatom species in the study area [START_REF] Haubois | Spatio-temporal structure of the epipelic diatom assemblage from an intertidal mudflat in Marennes-Oléron Bay, France[END_REF], was cultured in medium described by [START_REF] Antia | The survival of axenic cultures of marine phytoplankton algae from prolonged exposure to darkness at 20°C[END_REF] and containing NaH 13 CO 3 (4 mM). Diatoms were concentrated by centrifugation (1500 g, 10 mn, 20 °C), washed three times to remove the 13 C-bicarbonate, and freeze-dried.

Quantification of bacteria and algae abundance

In order to determine the ratio between enriched and non-enriched preys in microcosms, abundances of bacteria and algae were assessed. To separate bacteria from sediment particles, incubation in pyrophosphate (0.01M during at least 30 min) and sonication (60 W) were performed. Bacteria from both sediment and culture were labelled using 4.6-diamidino-2phenylindole dihydrochloride (DAPI) (2500 !g l -1 ), filtered onto 0.2 !m Nucleopore black filter [START_REF] Porter | The use of DAPI for identifying and counting aquatic microflora[END_REF] and then counted by microscopy. We check the absence of ciliate and flagellate in bacterial culture during this microscope observation step. Abundance of diatom in sediment was assessed using Chl a as a proxy, measured using fluorometry [START_REF] Lorenzen | A method for the continuous measurement of in vivo chlorophyll concentration[END_REF].

Grazing experiments

Incubation of enriched bacteria and algae with foraminifera were performed in Petri dishes (4.5 cm diameter). Experiments were done in standardized condition similar to field ones: temperature (20°C), irradiance (darkness), salinity (31‰), bacterial abundance (10.5 ! 10 8 cells ml wt sed -1 ) and algal abundance (15 !gChla g dry sed -1 ). For each type of experiment, one environmental incubation factor was modified in order to determine its impact on foraminifera grazing activity. Each experiment was carried out in triplicate, along with triplicate controls. Control samples were frozen (-80°C) in order to kill foraminifera.

During the ebb tide of 13 th of March 2006, one sample of the first centimetre of sediment was collected from the Brouage intertidal mudflat (France). First, the sediment was sieved on a 500 !m mesh in order to remove macrofauna. Then, it was sieved on a 200 !m mesh to extract large foraminifera. One ml of the sediment remaining on the mesh was put in each microcosm. Sediment that passed through the 200 !m mesh was sieved through a 50 !m mesh. Fraction passing through the mesh was mixed with 15 N enriched bacteria. This slurry contained 10.5 ! 10 8 cells ml of wet sediment -1 with a ratio of total and enriched bacteria of 1.5. Four ml of this slurry were put in each microcosm.

First, for the calculation of grazing rates, a kinetic study was realised to validate the linear or hyperbolic uptake kinetics. Incubations for this kinetic study were run during variable times (1 to 12 hours). As all other experiments were run for 5 hours, this first step is necessary to check the linear uptake during the first five hours of incubation.

For each type of experiment one environmental incubation factor was modified. Light effect was tested with one irradiance (83 µM of photons m -2 s -1 ). In order to decrease salinity, cultured bacteria were rinsed with 0.2 !m filtered sea-water diluted with 0.2 !m filtered fresh water (final salinity of 18‰). Bacterial abundance was modified adding various quantities of bacteria enriched in 15 N. Bacterial abundances (total enriched and non-enriched) tested were 4, 7 and 17 cells ml wt sed -1 with respectively the following ratio between abundance of total and enriched bacteria: 6.1, 2.0 and 1.3. Algal abundance was modified adding various quantities of cultured N. phyllepta enriched in 13 C while bacterial abundances (total enriched and non-enriched) were kept constant at 10 ! 10 8 cell ml -1 . Algal abundance (total enriched and non-enriched) were 26, 64 and 114 !gChla g dry sed -1 with respectively the following ratio between abundance of total and enriched algae: 2.4, 1.3 and 1.2.

Incubations were stopped by freezing the microcosms at -80°C. Samples were thawed and stained with rose Bengal in order to identify freshly dead foraminifera. For each sample, 150 specimens of the species A. tepida were picked up individually and cleaned of any adhering particles. Samples from experiments with 13 C enriched N. phyllepta were processed with HCl 0.1 M in silver boats to remove any inorganic carbon.

Isotope analysis and calculations

" 15 N and " 13 C of prey (bacteria and algae) and grazers (A. tepida) were measured using an EA-IRMS (Isoprime, Micromass, UK). Nitrogen isotope composition is expressed in the delta notation (" 15 N) relative to air N 2 : " 15 N = [( 15 N/ 14 N) sample / ( 15 N/ 14 N) reference )-1] ! 1000. Carbon isotope composition is expressed in the delta notation (" 13 C) relative to Vienna Pee Dee Belemnite (VPDB):

" 13 C = [( 13 C/ 12 C) sample / ( 13 C/ 12 C) reference )-1] ! 1000.
Incorporation of 15 N is defined as excess above background 15 N (control experiment) and is expressed in terms of specific uptake (I). I was calculated as the product of excess 15 N (E) and biomass of N per grazer. I was converted in bacterial carbon grazed using C/N ratio of bacteria. E is the difference between the background (F background ) and the sample (F sample ) 15 N fraction: E = F sample -F background , with F = 15 N / ( 15 N + 14 N) = R / (R + 2) and R = the nitrogen isotope ratio. For the F background , we used control values measured with killed grazers (frozen). R was derived from the measured " 15 N values as: R = ((" 15 N/1000)+1) ! RairN 2 where RairN 2 = 7.35293 ! 10 -3 [START_REF] Mariotti | Apports de la géochimie isotopique à la connaissance du cycle de l'azote[END_REF]. The uptake of bacteria was calculated as Uptake = (I ! (% C enriched bacteria / % N enriched bacteria ) / (F enriched bacteria ! incubation time). This uptake was multiplied by the ratio between the abundance of total and enriched bacteria determined by DAPI counts. Incorporation of 13 C was calculated analogously, with F = 13 C / ( 13 C + 12 C) = R / (R + 1), RairN 2 is replaced by R VPDB = 0.0112372 and Uptake = I / (F enriched bacteria ! incubation time).

The uptake measured was multiplied by the ratio between the abundance of total and enriched diatom, determined from fluorometrical measurements.

Enriched N. phyllepta carbon consisted of 22.95 ± 0.54% 13 C. The C/N ratio of enriched bacteria was 3.49 and bacterial nitrogen consisted of 2.88 ± 0.03% 15 N. The average weight of A. tepida used was 18.1 ± 3 µg DW (n = 115 samples of 150 specimens each). Decalcified specimens of A. tepida were composed on average of 1.03 ± 0.23 µg of C and 0.15 ± 0.03 µg of N. Uptake expressed as gC bacteria h -1 gC Ammonia -1 was obtained by dividing uptake of bacteria (gC ind -1 h -1 ) by A. tepida decalcified mean weight (gC ind -1 ).

Variations of uptake rates according to salinity and irradiance were tested using bilateral independent-samples t-tests. One-way analyses of variance (ANOVA) were used in order to test the impact of temperature and algal and bacterial abundance on uptake rates of bacteria and algae. The Tukey test was used for post-hoc comparisons.

Results

Foraminiferal isotopic compositions and rates of bacterial and algal uptakes rates are presented in Table 1.

During the kinetic experiment, uptake of bacteria by A. tepida increased linearly during the first eight hours of incubation and then levelled off (Fig. 1). The linear regression slope for the first eight hours suggested an uptake rate of 78 pgC ind -1 h -1 equivalent to 75 ! 10 -6 gC bacteria gC Ammonia -1 h -1 (r 2 = 0.99). The linear regression slope between eight and twelve hours was more than five times lower than for the first eight hours and suggested an uptake rate of

14 pgC ind -1 h -1 .
Temperature had a significant effect on Ammonia uptake rate of bacteria (F = 27; p<0.001). Temperatures tested fluctuated between 5 and 40°C and were in the range of those found in the study area [START_REF] Guarini | Modeling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity[END_REF]). Uptake of bacteria was almost null at 5°C, then increased with temperature. It reached an optimum at around 30°C and then decreased (Fig.

2). Uptake rates measured at 10, 20 and 40 °C were not significantly different. Maximum uptake rate of bacteria (30°C) reached 113 pgC ind -1 h -1 and was significantly different from others.

Uptake rate of bacteria by Ammonia decreased significantly from 67 to 32 pgC ind -1 h -1 when salinity dropped down from 31 to 18‰ (bilateral t-test; p<0.05) (Fig. 3). In the study area, salinity of overlaying water fluctuates between 25 to 35‰ [START_REF] Héral | Caractéristiques saisonnières de l'hydrologies du complexe estuarien de Marennes-Oléron (France)[END_REF]) but salinity of sediment can be reduced by rainfall.

The sediment surface irradiance shifts from dark during submersion and night emersions to high levels of incident light during daytime emersions. Irradiance tested (83 µM of photons m -2 s -1 ) corresponds to a low irradiance. Light did not affect foraminifera feeding activity:

uptake rates of bacteria were similar under light and darkness (bilateral t-test; p = 0.71) (Fig. 3).

Ingestion of bacteria was significantly linked with abundance of bacteria in microcosm (F = 32; p<0.001) (Fig. 4). Four different bacterial concentrations were tested: 4, 7, 10 and 17 ! 10 8 cells ml wt sed -1 . There was no uptake when the bacterial abundance was 4 ! 10 8 cells ml wt sed -1 (Fig. 5), uptake rate of bacteria remained constant around 67 pgC ind -1 h -1 when bacterial concentrations increased from 7 to 17 ! 10 8 cells ml wt sed -1 (Fig. 4).

When algal concentration increased from 15 to 114 µgChla g dry sed -1 with constant bacterial abundance (10.5 ! 10 8 cell ml -1 ), the uptake rate of bacteria remained constant (F = 1.4; p = 0.29) (Fig. 5). The uptake rate of algae increased from 329 to 971 pgC ind -1 h -1 linearly when algal abundance increased (r 2 = 0.99; p<0.001) (Fig. 7). When algal abundance increased, the fraction of algae in the diet of foraminifera increased. The fraction of bacteria decreased from 18.8 to 14.4 and 7.8% of microbes (algae plus bacteria) taken up when algal concentration was equal to 25.6, 64.3 and 113.7 µgChla g dry sed -1 respectively.

Discussion

Experimental procedure Like all various methods previously developed and applied to measure bacterivory, the method used in the present study presents methodological shortcomings that make interpretation of the resulting problematic. For instance, sieving the sediment changes the bacterial availability for foraminifera, bacteria being not attached to particle as in natural situation. Foraminifera are known to selectively graze different bacterial strains [START_REF] Lee | Tracer experiments in feeding littoral foraminifera[END_REF][START_REF] Bernhard | Bacterial biofilms as a trophic resource for certain benthic foraminifera[END_REF]. As grazing experiments are based on the hypothesis that grazers take up 15 N enriched bacteria and natural sediment bacteria at the same rate, the cultured bacteria community has to present characteristics roughly similar to the natural one.

Despite the fact that culture modified the specific composition of the natural bacterial community, characteristics of size, activity and diversity of the cultured bacterial consortium in our experiments would be more representative of the natural community than in most previous grazing experiments [START_REF] Pascal | Bacterivory by benthic organism in sediment: quantification using-15 N enriched bacteria[END_REF]. As enriched algae (monospecific and freeze-dried) may present characteristics different from natural algal community, bias due to selective ingestion of algae may exist. Control experiments were always performed in similar conditions to assess bias due to bacterial or algal cell adhesion on foraminiferal test. 13 C enriched freeze dried algae are potential source of enriched DOM and transfer to bacteria drive to formation of 13 C enriched bacteria but as incubations were short-term, we consider as negligible this bias due to recycling.

The kinetics of bacterial uptake

Foraminifera use pseudopodia in order to form a long and extensive network for trapping food particles [START_REF] Travis | The mobility of foraminifera[END_REF]. Actively feeding specimens are characterized by feeding cysts. Aggregates of particles are firmly attached around the test apertures and they may encompass the entire test. Collected material is partitioned into small fractions before ingestion. The possibility of extracellular digestion (Meyer-Reil and Köster 1991) and reticulopodial digestion (Lee et al. 1991) has been suggested. Food vacuoles contain large amounts of sediment, organic detritus, algal cells and bacteria [START_REF] Goldstein | Deposit feeding in selected deep-sea and shallow-water benthic foraminifera[END_REF].

Those vacuoles are most abundant in the terminal chamber, but occur throughout the last four chambers as well. The digestion of bacteria seems to occur in the terminal chamber of Ammonia [START_REF] Goldstein | Deposit feeding in selected deep-sea and shallow-water benthic foraminifera[END_REF][START_REF] Langezaal | Foraminiferal selectivity towards bacteria: an experimental approach using cell-permeant stain[END_REF]. This genus ingests bacteria and readily digests them, implying that bacteria are more probably used as food source than as symbionts [START_REF] Langezaal | Foraminiferal selectivity towards bacteria: an experimental approach using cell-permeant stain[END_REF]. [START_REF] Langezaal | Foraminiferal selectivity towards bacteria: an experimental approach using cell-permeant stain[END_REF] found that Ammonia beccarii grazed 90 bacteria during a 20 h period. Converting their uptake rate into bacterial biomass [START_REF] Norland | Light element analysis of individual bacteria by X-ray microanalysis[END_REF], gives a grazing rate of 1.7 pgC ind -1 h -1 . This rate is lower than the rate found in the present study (78 pgC ind -1 h -1 ). This may be linked to the bacterial concentration used by [START_REF] Langezaal | Foraminiferal selectivity towards bacteria: an experimental approach using cell-permeant stain[END_REF] in their microcosms (1.4 ! 10 3 cells ml -1 ), which was substantially lower than benthic bacterial abundance in natural environments (c.a. 10 9 cells ml -1 ) and in the present study.

In present experiments, uptake of bacteria by Ammonia was rapid and detectable after 2 hours of incubation (Fig. 1). This is in accordance with [START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF] who observed a detectable uptake of algal carbon by Ammonia after three hours of incubation. Uptake of bacteria increased linearly during the first eight hours and then levelled off (Fig. 1). A similar pattern was observed for uptake of algae by Ammonia [START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF]. This levelling off may reflect satiation or more likely excretion, effective after eight hours. Foraminifera have been reported to assimilate ingested algal carbon within 12 h [START_REF] Rivkin | Trophic dynamics in Antartic benthic communities. I. In situ ingestion of microalgae by foraminifera and metazoan meiofauna[END_REF] and Ammonia was found to assimilate carbon from phytodetritus in 12 h [START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF]. A simplified energy budget can be calculated with following parameters, C = A + FU (C = food uptake, A = assimilation of metabolisable energy, FU = loss by faeces and urinary wastes) [START_REF] Klekowski | A biogenic study of a benthic nematode, Plectrus palustris de Man 1880, throughout its life cycle[END_REF][START_REF] Schiemer | Food dependence and energetics of freeliving nematodes. I. Respiration, growth and reproduction of Caenorhabditis briggsae (Nematoda) at different levels of food supply[END_REF]. We suggest that during the first eight hours of incubation, Ammonia takes up and assimilates bacteria. Then, after eight hours, uptake and assimilation still occur but excretion begins. By assuming, that uptake is constant during all the grazing experiments, assimilation and excretion rates can be assessed. The first slope from the origin to eight hours would correspond to the uptake rate while the second slope would correspond to the assimilation rate. Ammonia retains five times more tracer during the first eight hours than after. As a result, 17% of ingested bacteria would be assimilated and 83% would be rejected. This result is disputable because the uptake rate constancy was not determined and the uptake rate after eight hours is determined from only two data points, however, this result fits well with assimilation rate of bacteria by nematodes (25%) [START_REF] Herman | Studies of the life history and energetics of marine and brackish water nematodes. II. Production, respiration and food-uptake by Monhystera disjuncta[END_REF] and polychaetes (26%) [START_REF] Clough | Potential carbon sources for the head down deposit-feeding polychaete Heteromastus filiformis[END_REF].

Effects of abiotic factors

Studies on the influence of environmental factors on Ammonia are limited. However, [START_REF] Bradshaw | Laboratory studies of the rate of growth of the foraminifera Streblus beccarii (Linné), var. tepida Cushman[END_REF][START_REF] Bradshaw | Laboratory experiment on the ecology of foraminifera[END_REF] determined the influence of temperature and salinity on Ammonia reproductive activity, growth rate and survival under experimental conditions.

In the present experiments, temperature had a similar effect on uptake rate of bacteria to the one shown by Bradshaw on growth and reproductive rates. We found no uptake of bacteria at 5°C (Fig. 2), in accordance with Bradshaw, showing that foraminifera metabolism is very low at low temperatures. Under a temperature less than 10°C, Ammonia fail to grow and reproduce and individuals appear to live an indefinitely long period [START_REF] Bradshaw | Laboratory studies of the rate of growth of the foraminifera Streblus beccarii (Linné), var. tepida Cushman[END_REF].

The optimal grazing temperature appeared at 30°C (Fig. 2) as in Bradshaw's experiments [START_REF] Bradshaw | Laboratory experiment on the ecology of foraminifera[END_REF]. When temperature exceeded 30°C in our microcosms, grazing rate decreased. Similarly, no growth was observed in Bradshaw's experiments, and specimens lived less than one day at 35°C [START_REF] Bradshaw | Laboratory studies of the rate of growth of the foraminifera Streblus beccarii (Linné), var. tepida Cushman[END_REF]. Those physiological characteristics have implications for foraminiferal abundances at the seasonal time scale. Limited activity during winter prevents reproduction and limits abundance, while in summer, high temperature can lead to mortality, in particular in the intertidal habitat subject to a wide range of rhythmically and rapidly varying temperature due to tidal cycles.

Uptake rate of bacteria declined when salinity was reduced to 18‰ (Fig. 3). This result is also in accordance with those of [START_REF] Bradshaw | Laboratory studies of the rate of growth of the foraminifera Streblus beccarii (Linné), var. tepida Cushman[END_REF][START_REF] Bradshaw | Laboratory experiment on the ecology of foraminifera[END_REF]. According to this author, normal growth and reproduction of Ammonia occur when salinity fluctuates between 20 and 40‰, and Ammonia failed to grow below 13‰. Ammonia is an euryhaline genus found from brackish [START_REF] Debenay | Ecological transitions indicated by foraminiferal assemblages in paralic environments[END_REF] to hypersaline environments [START_REF] Almogi-Labin | Living Ammonia from a hypersaline inland pool, Dead Sea area, Israël[END_REF]). However, conditions of brackish environments would not be optimal for Ammonia.

Foraminifera use a network of pseudopoda to gather and ingest food particles. Each pseudopoda contains an elongated cytoskeleton primarily composed of microtubules.

Modifications of salinity induce a decrease of the number of pseudopodal microtubules [START_REF] Koury | Ultrastructure changes during reticulopod withdrawal in the foraminiferan protozoan Allogromia sp[END_REF], that may lead to a lower pseudopodal efficiency. This could explain the lower uptake rate observed at low salinity, considering that sediment salinity is under control of tidal cycles and weather conditions, like rainfall, which induces a strong decrease of salinity during low tide.

Light did not affect uptake rate of Ammonia (Fig. 3). Although foraminifera frequently form symbiosis with algae, Ammonia is not known as an algal-bearing foraminifera [START_REF] Lee | Symbiosis in foraminifera[END_REF]. Consequently, irradiance would not influence feeding behaviour of Ammonia. This is confirmed by our grazing experiment results with a low irradiance rate.

Owing to this, Ammonia seems not influenced by nycthemeral cycles and seems able to graze in superficial sediment exposed to sun in the temperature range that allows grazing. This suggests that Ammonia is able to feed actively in environment affected by irradiance variations.

Effects of biotic factors

Sedimented organic carbon from the photic zone can represent a major food source for deep-sea benthic foraminifera [START_REF] Gooday | A response by benthic foraminifera to the deposition of phytodetritus in the deep-sea[END_REF]. Many studies report that the abundance of benthic foraminifera assemblages is strongly correlated with surface ocean productivity (e. g. [START_REF] Altenbach | Scaling percentages and distribution patterns of benthic foraminifera with flux rates of organic carbon[END_REF][START_REF] Fontanier | Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition and microhabitats[END_REF]. Quick uptake of phytodetritus was observed within the deep sea but also within shallow water dwellers [START_REF] Middelburg | The fate of intertidal microphytobenthos carbon. An in situ 13 C labelling study[END_REF][START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF][START_REF] Moodley | Bacteria and foraminifera: key players in a short-term deep sea benthic response to phytodetritus[END_REF][START_REF] Moodley | Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments[END_REF]Nomaki et al. 2005a;Nomaki et al. 2005b). This high reactivity to food pulses may imply that uptake rates are strongly linked with food abundance and type of food.

Theoretically, food uptake by a grazer increases with abundance of food. However, above a threshold value of prey concentration, uptake rate remains constant (Holling's preydependent type II functional response [START_REF] Holling | Some characteristics of simple types of predation and parasistism[END_REF]). Uptake of bacteria is not detectable at the lowest bacterial concentration of 4.2 ! 10 8 cells ml wt sed -1 (Fig. 4). This lack of uptake may occur for different reasons. One possibility could be that foraminifera does not feed at low bacterial concentrations. Most probably, the ratio between enriched and non-enriched bacteria used in our experiments was not high enough to allow uptake detection at low concentration. Above 7 ! 10 8 cells ml wt sed -1 , the rate of uptake of bacteria remained constant, despite the increased of bacterial abundance (Fig. 5). The threshold value of prey abundance may have been overshot, which would mean that uptake by Ammonia would seldom be higher than those measured. Bacterial abundance in superficial marine sediment is relatively constant around 10 9 cells ml wt sed -1 and seldom lower than 7 ! 10 8 cells ml wt sed - 1 [START_REF] Schmidt | Constancy of bacterial abundance in surficial marine sediments[END_REF]). According to these data, bacterial abundance in natural environment would always satisfy the Ammonia optimal uptake rate and would never be limiting factor for uptake.

Algal uptake rate increased linearly with algal abundance reaching 971 pgC ind -1 h -1 without levelling off for the tested values (Fig. 5). Algal abundances used during this experiment (15 to 114 !gChla g dry sed -1 ) are not high enough to reach the maximum algal uptake rate; indeed Ammonia was found to graze at a higher rate on Chlorella (2180 pgC ind -1 h -1 ) [START_REF] Moodley | Ecological significance of benthic foraminifera: 13 C labelling experiments[END_REF]. In natural conditions, chlorophyll a content of the first centimetre of sediment varies between 0 and 50 !gChla g dry sed -1 (review in [START_REF] Macintyre | Microphytobenthos: the ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production[END_REF].

However, through vertical migration, benthic microalgae concentrate near the surface during diurnal low tides producing a biofilm. In this algal mat, concentration of chlorophyll a can reach 150 !gChla g dry sed -1 [START_REF] Serôdio | Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence[END_REF]) and even 300 !gChla g dry sed -1 [START_REF] Kelly | Microscale analysis of chlorophyll-a in cohesive intertidal sediments: the implications of microphytobenthos distribution[END_REF]. Ammonia feeding on the algal biofilm would then present a higher uptake rate than in the present study.

The use of differential labelling of bacterial food ( 15 N) and algal food ( 13 C) allows to access simultaneous uptake rates of bacteria and algae, thus permitting to determine the preferred item according to their availability. While algal uptake increased with algal abundance, uptake of bacteria remained constant (Fig. 5). Ammonia still ingested bacteria when other food resources were available. Bacteria might be a source of essential compounds for deposit feeders [START_REF] Lopez | Ecology of deposit-feeding animals in marine sediments[END_REF]. This assumption is in accordance with [START_REF] Muller | Apparent indispensability of bacteria in foraminiferan nutrition[END_REF] who suggested that some foraminifera reproduce only when bacteria are present as food source. Then, uptake of bacteria would be essential for Ammonia.

Uptake of bacteria by Ammonia never represented more than 19% of microbial biomass (bacteria plus algae) taken up. This low contribution of bacteria to food uptake was also observed with algal concentrations comparable with sediment natural conditions of 25 !g Chla g dry sed -1 [START_REF] Macintyre | Microphytobenthos: the ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production[END_REF]. [START_REF] Muller | Competition for food and other niche-related studies of three species of salt-marsh Foraminifera[END_REF] suggest that shallow water dwelling species mainly depend on algal resources. In their study, [START_REF] Van Oevelen | The trophic significance of bacterial carbon in a marine intertidal sediment: Results of an in situ stable isotope labeling study[END_REF] found that bacterial carbon constitutes only 9% of total needs of hard-shelled foraminifera of an intertidal mudflat community.

In intertidal areas, algal abundances vary seasonally (e. g. [START_REF] Haubois | Spatio-temporal structure of the epipelic diatom assemblage from an intertidal mudflat in Marennes-Oléron Bay, France[END_REF]). In addition, benthic microalgae of intertidal sediments vertically migrate with rhythms associated with diurnal and tidal cycles [START_REF] Blanchard | Dynamic behaviour of benthic microalgal in intertidal mudflats[END_REF]. During day time, at low tide, algal cells concentrate near the surface of sediment and form a mat [START_REF] Herlory | Microstructure of microphytobenthic biofilm and its saptio-temporal dynamics in an intertidal mudflat (Aiguillon Bay, France)[END_REF]). According to our results, Ammonia seems to depend principally on algal feeding resource. For this reason, this species may feed on the mat of microphybenthos when it is formed in order to maximize its rate of energy gain. This feeding behaviour would imply that Ammonia dwells at the surface of the sediment during low tide. Thus, Ammonia would be subject to all of the fast and large environmental variations that are typical of the intertidal habitat, especially at the airsediment interface during low tide. Though Ammonia is considered as one of the most tolerant genus of foraminifera to temperature and salinity variations [START_REF] Bradshaw | Laboratory experiment on the ecology of foraminifera[END_REF][START_REF] Walton | The genus Ammonia Brünnich, 1772: its geographic distribution and morphologic variability[END_REF], we showed that variations of these parameters influence uptake of bacteria (Fig. 2 and3). Vertical migration from the food-rich surface into deeper layers is a possible mechanism for foraminifera to avoid unfavourable conditions [START_REF] Groß | Sediment interactions of foraminifera: implications for food degradation and bioturbation processes[END_REF]. In this deeper layer, bacteria would constitute a large part of the diet of Ammonia. When temperature and salinity allow Ammonia to migrate to the surface sediment, Ammonia would principally graze on the microphytobenthic mat.

In conclusion, bacteria appeared to be quantitatively of minor importance in the nutrition of foraminifera compared to algae. The present work demonstrates that, at the tidal scale, grazing rate of bacteria is affected by abiotic (temperature and salinity) whereas it would not be affected by biotic (algal and bacterial abundances) factors. A. tepida may further respond to environmental changes at a seasonal scale, by physiological adjustment and shifting of its optimum conditions. However, the present study does not permit to evaluate this acclimation capacity and more efforts need to be made to take it into account. 1. Foraminiferal isotopic compositions (# 15 N and # 13 C means ± SD, N = 3) and bacterial and algal uptake rates calculated. 
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 1 Figure 1. Bacteria uptake (mean ± SD, N = 3) as function of incubation time (h).
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 2 Figure 2. Bacteria uptake rate (mean ± SD, N = 3) as function of temperature (°C).
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 3a Figure 3a & 3b. Bacteria uptake rate (mean ± SD, N = 3) under low versus high salinity
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 4 Figure 4. Bacteria uptake rate (mean ± SD, N = 3) as function of bacteria abundance (10 8 cell ml wt sed -1 ). Different letters above bars indicate significant differences between
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 5 Figure5. Algae uptake rate ! (mean ± SD, N = 3) and bacteria uptake rate ! (mean ± SD, N = 3) as function of algal abundance (µgChla g dry wt sed -1 ) under constant bacteria abundance (10.5 " 10 8 cell ml wt sed -1 ).
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.82 Bacterial abundance (10 8 cells ml wt sed -1 ) 4.2 12.83 ± 0.10 12.82 ± 0.11 0.84 ± 7.78 7.0 14.10 ± 0.10 16.70 ± 0.57 69.00 ± 15.16 17.4 20.96 ± 1.67 24.86 ± 0.86 64.17 ± 14.20 Algal abundance (!g Chla g dry sed -1

  Table

		! 15 N	Bacteria uptake	! 13 C	Algae uptake
		Control	Normal	(pg C ind -1 h -1 )	Control	Normal	(pg C ind -1 h -1 )
	Kinetics (hours)						
	1	13.21 ± 0.33	13.40 ± 0.33	19.07 ± 33.03			
	2	13.27 ± 0.18	14.50 ± 1.06	61.29 ± 52.57			
	3	14.83 ± 0.12	17.02 ± 0.79	72.35 ± 26.24			
	5	16.70 ± 0.19	20.08 ± 0.66	66.96 ± 13.00			
	8	16.45 ± 0.21	22.33 ± 1.37	72.83 ± 16.97			
	12	17.23 ± 0.48	23.67 ± 1.91	53.20 ± 15.80			
	Temperature (°C)						
	5	15.89 ± 0.45	16.01 ± 0.23	2.44 ± 4.54			
	10	15.11 ± 0.34	16.68 ± 0.69	31.24 ± 13.63			
	30	16.71 ± 0.63	22.44 ± 1.15	113.44 ± 22.77			
	40	18.53 ± 0.24	21.28 ± 0.39	54.42 ± 7.65			
	Irradiance						
	Light	18.07 ± 0.19	21.69 ± 0.79	71.65 ± 15.73			
	Salinity						
	18	16.24 ± 0.48 32.22 ± 10) 17.87 ± 0.55			
	25.6	16.70 ± 0.19	20.55 ± 0.57	76.29 ± 11.35	-3.63 ± 1.99	9.86 ± 1.55	328,80 ± 37.77
	64.3	16.94 ± 0.08	22.03 ± 0.29	100.97 ± 5.73	-11.37 ± 0.27	36.31 ± 2.39	598,90 ± 30.05
	113.7	17.48 ± 0.60	21.63 ± 1.84	82.15 ± 36.55	-8.21 ± 0.50	75.73 ± 5.93	971.45 ± 68.58
	Tab. 1						
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