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Relevant Representations for the Inference of Rational Stochastic Tree Languages ?

Recently, an algorithm -DEESwas proposed for learning rational stochastic tree languages. Given a sample of trees independently and identically drawn according to a distribution dened by a rational stochastic language, DEES outputs a linear representation of a rational series which converges to the target. DEES can then be used to identify in the limit with probability one rational stochastic tree languages.

However, when DEES deals with nite samples, it often outputs a rational tree series which does not dene a stochastic language. Moreover, the linear representation can not be directly used as a generative model. In this paper, we show that any representation of a rational stochastic tree language can be transformed in a reduced normalised representation that can be used to generate trees from the underlying distribution. We also study some properties of consistency for rational stochastic tree languages and discuss their implication for the inference. We nally consider the applicability of DEES to trees built over an unranked alphabet.

Introduction

In this paper, we consider the problem of learning probability distribution over trees from a sample of trees independently and identically distributed (i.i.d.), in a a given class of models. In this context, the learning process has two main objectives: Finding the correct structure of the representation and estimating precisely the parameters of the model. Because we adopt a machine learning standpoint, we restrict ourselves to classes of probabilistic languages that can be somehow nitely presented. Probabilistic tree automata (pta) are a usual representations for rational stochastic tree languages (rstl). In a pta, each rule is equipped with a weight in [0Y 1] and a per state normalisation is imposed. Nonetheless, a rst drawback is that it may be not decidable to know whether a pta is consistent i.e. whether it represents a probability distribution on trees. c This work was partially supported by the Atash project ANR-05-RNTL00102 and the Marmota project ANR-05-MMSA-0016.

One diculty comes from the fact that a rstl may be such that the average size of trees may be undened. A second drawback of pta is that they admit no canonical representation. Thus, most of learning algorithms approaches based on grammatical inference fail for the class of pta.

Recent approaches have proposed to work in a larger class of representation: The class of rational stochastic tree languages that can be represented under a linear form of a tree series. The models of this class can be equivalently representing by weighted tree automata with parameters in R (hence with weights that can be negative and without any per state normalisation condition). This class has two interesting properties: It has a high level of expressiveness since it strictly includes the class of rstl and it admits a canonical form with a minimal number of parameters. Based on these properties, linear representations of rstl are a good candidate from a grammatical inference standpoint. A recent algorithm, DEES, able to identify in the limit with probability one the class of rational stochastic tree languages rstl was proposed in [START_REF] Denis | Learning rational stochastic tree languages[END_REF]. However, this algorithm has two main drawbacks when working with nite samples. It often outputs a rational tree series that does not dene a stochastic language, and the representation of the series can not be directly used as a generative model. This comes from the fact that the canonical representation is more adapted for nding the structure of the model and estimating the parameters. We do not obtain a representation of a probability distribution that factorises into a product of probabilities associated with each state. When we need a generative model, we claim that we have to use another representation. Our rst contribution is to show that any canonical representation of a rational stochastic tree language admits a normalised reduced representation of the same size which can be easily used in a generative process. Then, we examine some conditions of consistency for rational stochastic languages. Indeed, as for probabilistic context-free grammars [START_REF] Thompson | Applying probabilistic measures to abstract languages[END_REF][START_REF] Wetherell | Probabilistic languages: A review and some open questions[END_REF], the consistency can not be ensured only with syntactical properties. We discuss then the inuence of these conditions to the problem of inferring rational stochastic tree languages. We nish by studying the applicability of our approach to trees that are built from an unranked alphabet. Actually, a bijection can be made between the unranked representation and a ranked one, allowing us to apply our algorithm to the unranked case.

The paper is organized as follows. Denitions and notations are presented in Section 2. Section 3 deals with the normalised reduced representation of rational stochastic tree language. The consistency conditions are evoked in Section 4. The paper terminates by Section 5 on unranked trees.

Preliminaries

In this section, we recall denitions of trees, (rational) tree series, weighted automata and (rational) stochastic tree languages. We mainly follow notations and denitions from [START_REF] Comon | Tree automata techniques and applications[END_REF] about trees and tree automata. Formal power tree series have been introduced in [START_REF] Berstel | Recognizable formal power series on trees[END_REF] where the main results appear.

Trees and Contexts Let p = p 0 p 1 ¡ ¡ ¡ p p be a ranked alphabet where the elements in p m are the function symbols of rank m. Let be a countable set of variables. The set (pY ) is the smallest set satisfying: p 0 (pY ), for f P p m Y m ! 1, and t 1 Y XX X Yt m P (pY ), f(t 1 Y XX X Yt m ) P (pY ).

We call trees, elements in (pY Y) = (p). For any tree t, let us denote by jtj f the number of occurrences of the symbol f P p in t and by jtj, the size fPp jtj f of t. The height of a tree t is dened by: height(t) = 0 if t P p 0 and height(t) = 1 + maxfheight(t i )ji = 1XXmg if t = f(t 1 Y XX X Yt m ). We suppose given a total order on (p) which satises height(t) `height(s) A t `s.

Contexts are elements of g n (p) & (pY ) where n distinct variables $ 1 Y XX X $ n appears exactly once in . Let be a context in g n (p) and t 1 Y XX X Yt n be trees. In the following, the notation [$ 1 2 t 1 Y XX X Y$ n 2 t n ] or simply [t 1 Y XX X Yt m ] represents the tree that results from substituting the $ i 's by the t i 's in . g 1 (p) is simply denoted by g(p). We say that a set e is prexial whenever for any P g(p) and any t P (p), [t] P e A t P e.

Formal Power Tree Series A (formal power) tree series on (p) is a mapping r : (p) 3 RX The vector space of all tree series on (p) is denoted by Rhhpii.

Let be a nite dimensional vector space over R. We denote by v( m ; ) the set of m-linear mappings from m to . Let v = m!0 v( m ; ). We denote by £ the dual space of , i.e. the vector space composed of all the linear forms dened on .

A linear representation of (p) is a couple (Y "), where is a nite dimensional vector space over R, and where " : p 3 v maps p m into v( m ; ) for each m ! 0. Thus for each f P p m Y "(f) : m 3 is m-linear. Function " extends uniquely to a morphism " : (p) 3 by: "(f(t 1 Y XX X Yt m )) = "(f)("(t 1 )Y XX X Y"(t m )). Let (p) be the vector subspace of spanned by "((p)): ( (p) Y ") is a linear representation of (p).

Let r be a tree series over (p), r is said to be recognizable if there exists a triple (Y "Y !), where (Y ") is a linear representation of (p), and ! : 3 R is a linear form, such that r(t) = !("(t)) for all t in (p). The triple (Y "Y !) is called a linear representation for r.

In [START_REF] Berstel | Recognizable formal power series on trees[END_REF][START_REF] Kuich | Formal power series over trees[END_REF][START_REF] Kuich | Linear systems of equations and automata on distributive multioperator monoids[END_REF][START_REF] Droste | A Kleene theorem for weighted tree automata[END_REF], it has been shown that the notions of recognizable tree series and rational tree series coincide. From now on, we shall refer to them by using the term of rational tree series.

A formal power tree series r is convergent if the series I n=0 2 jtj=n r(t) 3 is convergent. The series r is absolutely convergent if the series I n=0 2 jtj=n jr(t)j 3 is convergent. If r is absolutely convergent to a limit l, for any bijection ' : N 3 (p), the series n r('(n)) converge to the same limit l. In that case, we shall denote tP(p) r(t) = l. The Cauchy product two series ( n ) and ( n ) is the series ( n ) dened by n = n k=0 k n k . If ( n ) and ( n ) are absolutely convergent, then ( n ) is also absolutely convergent (while ( n ) can be divergent if ( n ) and ( n ) are simply convergent) and the limit of ( n ) is equal to the product of the limits of ( n ) and ( n ). Hence, if r and s are two absolutely convergent formal tree series, the sum t1Yt2P(p) r(t 1 )s(t 2 ) is dened without ambiguity and is equal to the product tP(p) r(t) t2P(p) s(t). Denition 1. A stochastic tree language over (p) is a tree series r P Rhhpii such that for any t P (p), 0 r(t) 1 and tP(p) r(t) = 1. The set of stochastic tree languages is denoted by (p). Let p be a stochastic language, let P g(p) be such that there exists a tree t such that p([t]) T = 0. We dene the stochastic language 1 p by 1 p(t) = p([t]) P t 0 2T (F) p([t 0 ]) .

A rational stochastic tree language (rstl) is a stochastic tree language which admits a linear representation. The set of rational stochastic tree languages is denoted by rt (p).

Weighted Tree Automata A weighted tree automaton 3 (wta) over p is a tuple e = (Y pY (Y ) where is a set of states, ( is a mapping from to R and is a mapping from m!0 p m ¢ m ¢ to R. The mapping can be interpreted as a set ¡ of rules which can be written in a bottom-up or a top-down way:

f(q 1 Y XX X Yq m ) w 3 q P ¡ (or q w 3 f(q 1 Y XX X Yq m ) P ¡) i (fY q 1 Y XX X Yq m Y q) = w and w T = 0X The weight w of a rule r is denoted by w(r). For any q P , we denote by ¡ q the subset of composed of the (top-down) rules whose lhs is q and by ¡ fYq the subset of ¡ q composed of rules containing the symbol f P p in the rhs. A series r q can be associated with any state q by: r q (f (t 1 Y XX X Yt m )) = rP¡q w(r) m i=1 r qi (t i )X Then the wta e computes the series r dened by: r(t) = qP ((q)r q (t)X wta and linear representations are two equivalent ways to represent rational series. For example, let (Y "Y !) be a linear representation of the tree series r P Rhhpii and let f = (e 1 Y XX X Ye n ) be a basis of . A wta e = (Y pY !Y) can be associated with (Y "Y !Y f) where = fe 1 Y XX X Ye n g, and (fY e i1 Y XX X Ye im Y e j ) = w j for any f P p m where "(f)(e i1 Y XX X Ye im ) = j w j e j X It can be shown that e computes r. Conversely, an equivalent linear representation can be associated with any weighted tree automaton (see Example 1 below). 3 These automata are also referred to as multiplicity tree automata in the literature.

A probabilistic tree automaton (pta) is a specic case of wta e = (Y pY (Y ) satisfying the following conditions: (i) and ( take their values in [0Y 1], (ii) qP ((q) = 1, (iii) for any q P , rP¡q w(r) = 1X It can be shown that any pta computes a rational tree series r that satises r(t) ! 0 for any tree t and t r(t) 1.

It can be shown that there exist rational stochastic tree languages that cannot be computed by any probabilistic automaton (see [START_REF] Denis | Rational stochastic languages[END_REF] for an example in the case of word stochastic languages).

Example 1. A wta representing a rational stochastic tree language. Let e = (Y pY (Y ) be the wta dened by = fq 1 Y q 2 g, p = fY f(¡Y ¡)g, ((q 1 ) = 2Y ((q 2 ) = 1 and ¡ = fq 1 2a3 3 Y q 1 1a3 3 f(q 1 Y q 1 )Y q 2 3a4 3 Y q 2 1a4 3 f(q 2 Y q 2 )g.

It can be shown that p q1 and p q2 are rstl and that the series p = 2p q1 p q2

computed by e takes only positive values. Therefore, since t p(t) = 1, p is an rstl. It admits the following linear representation: (R 2 Y "Y!) where e 1 = (1Y 0) and e 2 = (0Y 1) is a basis of R 2 , !(e 1 ) = 2Y !(e 2 ) = 1, "() = 2e 1 a3 + 3e 2 a4, "(f)(e 1 Y e 1 ) = e 1 a3Y "(f)(e 2 Y e 2 ) = e 2 a4 and "(f)(e i Y e j ) = 0 if i T = j.

Canonical Linear Representation of Rational Tree Series

We now dene the canonical representation of a rational tree series [START_REF] Denis | Learning rational stochastic tree languages[END_REF].

Let P g(p). We dene the linear mapping _ : Rhhpii 3 Rhhpii by _ (r)(t) = r([t]) X Let r P Rhhpii. Let us denote by r the vector subspace of Rhhpii spanned by f_ rj P g(p)g. It can be shown that r is rational if and only if the dimension of r is nite [1]. Let £ r be the dual space of r , i.e. the set of all linear forms on r . For any t P (p), let t P £ r be dened by: Vs P r Y t(s) = s(t)X It can be shown that there exist trees t 1 Y XX X Yt n such that (t 1 Y XX X Yt n ) forms a basis of £ r . Let us dene the linear representation ( £ r Y "Y!) as follows: for any f P p m , dene "(f

)(t i1 Y XX X Yt im ) = f(t i1 Y XX X Yt im )X ! P ( £ r ) £ = r by !(t) = r(t). Theorem 1. [1] ( £ r Y #Y (
) is a linear representation of r which is called the canonical linear representation of r. It can be embedded into any linear representation of r; in particular, its dimension is minimal. Example 2. Consider the rational stochastic tree language p dened in Example 1. It can easily be shown that p

1 (t) = 2 jtj f +1 3 2jtj f +1 Y p 2 (t) = 3 jtj f +1 4 2jtj f +1 and p(t) = 2 5jtj f +4 3 3jtj f +2 3 2jtj f +1 ¢4 2jtj f +1
. Thus, for any context and any tree t:

t(_ p) = p([t]) = 2 5jtj f +5jj f +4 3 3jtj f +3jj f +2 3 2jtj f +2jj f +1 ¢ 4 2jtj f +2jj f +1 X
Since p has a 2-dimensional linear representation, the dimension of £ r is 2. Let 0 = $ and 1 = f(Y$), we have:

(_ 0 p) = 7 3 ¢ 2 2 Y (_ 1 p) = f(Y )( 0 ) = 269 3 3 ¢ 2 6 Y and f(Y )(_ 1 p) = 9823 3 5 ¢ 2 10 X Since (_ 0 p) ¢ f(Y )(_ 1 p) T = (_ 1 p) ¢ f(Y )(_ 0 p)Y and f(Y ) are linearly independent. Then, (Y f(Y )) is a basis of £
r . We dene ! and " by: !

() = p() = 7 3¢2 2 and !(f(Y )) = p(f(Y )) = 269 3 3 ¢2 6 and "() = Y "(f)(Y) = f(Y )Y "(f)(Yf(Y )) = "(f)(f(Y )Y ) = 54 2 4 ¢3 4 + 59 2 4 ¢3 2 f(Y )Y "(f)(f(Y )Y f(Y )) = 3186 2 8 ¢3 6 + 2617 2 8 ¢3 4 f(Y )X
The canonical form of a stochastic language p may not be relevant for generating trees according to p. Indeed, one can remark here that "(f

(Y f(Y ))) = "(f)(Yf(Y )) = 54 2 4 ¢3 4 + 59 2 4 ¢3 2 f(Y )
. Thus, if we consider the weights of trees according to , f(Y f(Y )) has a negative weight and then does not dene by itself a stochastic language. As a consequence, the canonical form does not have a relevant structure if one aims at using it according to a generative model.

DEES

DEES is an inference algorithm which identies any rational stochastic language in the limit with probability one (see [START_REF] Denis | Learning rational stochastic tree languages[END_REF]). Let us show how DEES works on the previous example. Let be a sample of trees independently drawn according to p and let p be the empirical distribution dened on (p): p (t) is the frequence of t in . For any condence parameter , there exists b 0 such that with probability at least 1 , jp(t) p (t)j for any tree t. Statistical tests, based on this property, are used to accept or reject hypotheses of the form: t is a linear combination of t 1 Y XX X Yt n . Parameters and can be chosen, depending on the size of the sample , such that with probability one, the correct hypothesis will always be chosen from some sample size.

In order to nd the basis of the canonical representation, the algorithm rst tests whether and f(Y ) are linearly independent. With probability one, this will be detected from some step: and f(Y ) are elements of the canonical basis. Then, the algorithm tests whether f(Y f(Y )) is a linear combination of and f(Y ). As this is true, this will be detected with probability one from some step. Therefore, f(Y f(Y )) will not be added to the basis. And so on.

The algorithm terminates when it has checked that no more elements can be added to the basis.

It can be proved that with probability one, there exists an integer x such that for any sample containing more than x examples, a basis of £ p will be identied from . DEES will compute a linear representation ( £ p Y " Y ! ), such that " and ! converge respectively to " and ! when the cardinal of tends to innity.

Hence, DEES identies in the limit the canonical linear representation of any rational tree stochastic language with probability one. However: Given the canonical linear representation of a stochastic language p does not help to generate trees according to p. The series output by DEES from some sample can be not a stochastic language. The possibility to transform it in a stochastic language is then an important issue.

The series output by DEES converges to the target p as the size of increases, but what is the rate of convergence?

We propose to adress all of these questions in the present paper.

3 Normalised Linear Representation for Rational Stochastic Tree Languages

Normalised Representation

Let p be a rational stochastic tree language. We show in this section that p can be computed by a WTA (Y pY (Y ) such that all tree series p q associated with states q are stochastic tree languages.

More precisely, let ( £ p Y "Y!) be the canonical linear representation of p and let f = fe 1 Y XX X Ye n g be a basis of £ p . For any 1 i n, let ! i be the linear form on £ p dened by ! i (e j ) = ij , where ij is the Kronecker symbol dened by ij = 1 if i = j and 0 otherwise.Let p i be the rational series represented by ( £ p Y "Y! i ). The next theorem proves that f can be chosen in such a way that each p i is a stochastic language. Theorem 2. Let p be an rstl over (p) and let ( £ p Y "Y!) be the canonical linear representation of p. Then, £ p admits a basis f = fe 1 Y XX X Ye n g such that each series p i dened by ( £ p Y "Y! i ), where ! i (e j ) = ij , is stochastic. Proof. Let 1 Y XX X Y n P g(p) such that f 1 1 pY XX X Y 1 n pg is a basis of p . Let f = fe 1 Y XX X Ye n g be the dual basis of £ p dened by e i ( 1 j p) = ij for 1 iY j n and let r 1 Y XX X Yr n be the series associated with each element of the basis.

Each 1 i p can be interpreted as a linear form on £ p , by dening 1 i p(f) = f( 1 i p) for any f P £ p . Since 1 i p(e j ) = e j ( 1 i p) = ij , ( £ p Y "Y 1 i p) is a linear representation of p i .

Moreover, for any t P (p), p i (t) = 1 i p("(t)) = "(t)( 1 i p) = t( 1 i p) = 1 i p(t)X Therefore, every series p i is equal to the stochastic language 1 i p.

u t

Let (Y pY (Y ) be the wta associated with ( £ p Y "Y!Y f): for any q P , r q is a stochastic language. Moreover, we have:

1.

q ((q) = 1. Indeed, 1 = p((p)) = q ((q)p q ( (p)) = q ((q).

2. For any q P , rP¡q w(r) = 1. Indeed, 1 = p q ( (p)) = r:q3f(q1YXXXYqm)P¡q w(r)p q1 ( (p)) X XX p qm ( (p)) = rP¡q w(r)X 3. For any q P and any f P p, rP¡ q;f w(r) P [0Y 1]X Indeed, p q (ff (t 1 Y XX X Yt m )jt 1 Y XX X Yt m P (p)g) = rP¡ q;f w(r)X Denition 2. Let e = (Y pY (Y ) be a wta. We say that e is in normalised form if (i) qP ((q) = 1, (ii) for any q P , rP¡q w(r) = 1 and (iii) for any q P and any f P p, rP¡ q;f w(r) P [0Y 1]X Moreover, we say that e is in reduced normalised form if the series r q are linearly independent.

Therefore, any rational stochastic tree language can be represented by a normalised reduced wta e = (Y pY (Y ), with the additional property that each r q denes a stochastic language. Note also that any pta is in normalised form (but not necessarily in reduced normalised form).

Example 3. Let us consider the rational stochastic tree language p presented in the previous examples, we show how to compute a normalized wta that computes it. Let 0 = $, 1 = f($Y ) and let s 0 = 0 + 0 f(Y ) and s 1 = 

s 0 7a12 3 Y s 0 269a50 3 f(s 0 Y s 0 )Y s 0 259a50 3 f(s 0 Y s 1 )Y s 0 259a50 3 f(s 1 Y s 0 )Y s 0 1369a300 3 f(s 1 Y s 1 )Y s 1 269a444 3 Y s 1 3024a925 3 f(s 0 Y s 0 )Y s 1 2664a925 3 f(s 0 Y s 1 )Y s 1 2664a925 3 f(s 1 Y s 0 )Y s 1 23273a11100 3 f(s 1 Y s 1 )X
Let !(s 0 ) = 1 and !(s 1 ) = 0. It is easy to verify that this representation is in normalised form.

A Generation Process

A generation process of trees can be associated with normalized wta, as described by Algorithm 1. Each tree is built top-down. At step i, a linear context [$ 1 Y XX X Y$ n ] is built, where the depth of each variable $ i is equal to i. At the next step, all variables are proceeded in parallel. The process is dierent from the classical approach with pta since instead of drawing a transition rule to apply at each step, a symbol is drawn according to the distributions of the symbols dened by the rules. Let ¡gen = fqt ((q) 3 qjq P g [START_REF] Denis | Learning rational stochastic tree languages[END_REF]; while the rhs of some rule of ¡gen contains states do

Let n be the number of rules in ¡gen and m be the (constant) number of states in the rhs of each rule;

for 1 j m do for any f P p, let fYj = n P i=1 wi P r2¡ q i j ;f w(r) (2); draw randomly fj P p according to fYj (3); let nj be the rank of fj; let 0 = (f1($ 1 1 YX XXY$ n 1 1 )Y X XXYfm($ 1 m YX XXY $ nm m )) a linear context; in ¡gen, replace each rule qt w i 3 [q i 1 YX XXYq i m ] by the rules qt w i wr 1 XXXwr m 3 [f1(q 1 r 1 YX XXYq n 1 r 1 )Y X XXYfm(q 1 rm YX XXYq nm rm )] ;

where rj : qj wr j 3 fj(q 1 r j YX XXYq n 1 r j ) P ¡ q i j Yf j , 1 j m, 1 i n; Output the tree of ¡gen (4); end Algorithm 1: Drawing a tree according to a rstl Comments of the steps numbered by (1), ( 2), ( 3) and (4) in Algorithm 1:

(1) ¡ gen contains n rules r 1 Y XX X Yr n of the form r i : q t wi 3 [q i 1 Y XX X Yq i m ] where is a linear context over m variables.

(2) It can be proved that fPp fYj = 1 for any 1 j m. (3) The numbers fYj dene a probability distribution over p j .

(4) There exists a unique tree t such that all the rules of ¡ gen are of the form q t wi 3 t; t is the output of the algorithm.

Learning Rational Stochastic Tree Languages

We consider the question of learning a rational stochastic tree language (rstl) p from an i.i.d. sample of trees drawn according to p. An rstl can be such that the average size of trees generated from p is unbounded, i.e. t p(t)jtj = I. For example, this is the case for the rstl dened by the pta whose rules are: fq 1a2 Y q 1a2 3 f(qY q)g. To our knowledge, no algorithm is known to decide whether a pta denes a rstl. It is much better to deal with the stronger notion of strongly consistent stochastic language: A rstl p is strongly consistent if t jtjp(t) `I. Next section investigates some properties of strongly consistent rstl.

Strongly Consistent Rational Stochastic Languages

Let e = ( = fq 1 Y XX X Yq n gY pY (Y ) be a wta. We denote by p i the rational series dened from state q i . Let e = ( ij ) 1 iYj n be the matrix dened by ij = rP¡q i n r (j)w(r) [START_REF] Denis | Learning rational stochastic tree languages[END_REF] where n r (j) is the number of occurrences of q j in the rhs of r. Let f = (1Y XX X Y1) 

rP¡q i w(r) = 1. Let i = tP(p) p i (t)jtj and = ( 1 Y XX X Y n ). Then = n!0 e n fX
Proof. Let 1 i 1 Y XX X Yi l n. One can check, by induction on l that t1YXXXYt l p i1 (t 1 ) X XX p i l (t l ) = 1 and t1YXXXYt l p i1 (t 1 ) X XX p i l (t l )(jt 1 j+X XX+jt l j) = i1 +X XX+ i l using the fact that the Cauchy product of two absolutely convergent series converges to the product of the limits. Then,

i = tP(p) p i (t)jtj = r=f(qi 1 YXXXYqi l )3qiP¡q i w(r) t1YXXXYt l p i1 (t 1 ) X XX p i l (t l )(jt 1 j + X XX + jt l j + 1) = r=f(qi 1 YXXXYqi l )3qiP¡q i w(r) 2 t1YXXXYt l p i1 (t 1 ) X XX p i l (t l )(jt 1 j + X XX + jt l j) + 1 3 = rP¡q i w(r)( i1 + X XX + i l + 1) = 1 + rP¡q i n j=1 w(r)n r (j) j = 1 + n j=1 ij j Therefore, = e + f = n!0 e n fX u t
The sum n!0 e n f converges i e n f converges to 0, which can be decided within polynomial time.

Example 4. Consider the PTA dened by the rules fq 1 3 Y q 3 f(qY q)g and ((q) = 1: e = ( 2) and e n f converges i `1a2. The average size of trees generated from these PTA is 1a(1 2). When = 1a3 (resp. 1a4), the PTA computes the stochastic language p q1 (resp. p q2 ) as previously dened in exam- ple 1. Then, the average size of trees 1 (resp. 2 ) generated from p q1 (resp. p q2 ) is 3 (resp. 2). One can deduce the average size of the stochastic language p = 2p q1 p q2 , = 2 ¢ 1 2 = 4. Consider now the normalized form of p as presented in example 3.

The matrix e is 2a5 37a30 144a185 47a30 .

It is easy to verify that (s e) is invertible and (s e) 1 = 17a5 37a5 864a185 42a5 . Thus (s e) 1 f =4 690a185 ¡ . Following Prop. 1, the average size 0 of trees generated by 1 0 p is 4 and the average size of trees generated by 1 0 p is 690a185. Since p = 1 0 p the average tree size of p is 4.

We show below that when e is a reduced normalised representation of a strongly consistent rational stochastic language, the spectral radius 4 &(e) of e is `1. We need the following lemma : Lemma 1. Let p 1 Y XX X Yp n be n independent stochastic languages. Then £

= f( 1 Y XX X Y n ) P R n : n i=1 i p i is a stochastic languageg is a compact convex subset of R n .
Proof. See [START_REF] Denis | Learning rational stochastic languages[END_REF] for a similar proof in the case of words.

Proposition 2. Let e = ( = fq 1 Y XX X Yq n gY pY (Y ), a reduced normalised representation of a strongly consistent rstl p such that each p qi is a stochastic language and let e = ( ij ) 1 iYj n be the matrix dened by Formula 1. Then the spectral radius of e satises &(e) `1.

Proof. For any integer k, let e k = ( (k) ij ) 1 iYj n and for any index i, let

p (k) qi = n j=1 (k) ij p qj a iYk
where is a normalising coecient dened such that t p (k) qj (t) = 1.

Clearly,

iYk = n j=1 (k) ij = (e k f) i the i-th coordinate of e k f.
The rules of e, called the rules of order one, can be unfolded by independently and simultaneously applying a rule to each state in the rhs and by multiplying the weights. The rules of order k + 1 of e are obtained from rules of order k by independently and simultaneously applying a rule of order one to the states in the rhs.

Let e be the wta dened in example 4. The rules of order 2 of e are:

fq 1 3 Y q (1 ) 2 3 f(Y )Y q 2 (1 ) 3 f(f(qY q)Y )Y q 2 (1 )
3 f(Y f(qY q))Y q 3 3 f(f(qY q)Y f(qY q))g. Let ¡ (k) qi be the set of rules of order k of the form q i w(r) 3 [q i1 Y XX X Yq i l ] where is a linear context with l variables, each of which being at depth k from the root. And let ¡ (k) qiY be the set of rules of ¡ (k) qi build on context .

We have (k) q i ;c n j=1 n r (j)w(r)p qj = r:qi w(r) 3 [qi 1 YXXXYqi l ]P¡ (k) q i ;c w(r) l j=1 p ij Now, for any linear context [$ 1 Y XX X Y$ l ] and for any term t, we can rst check that l i=1 p([$ i 2 tY$ j 2 (¦) for j T = i]) ! 0 and that:

(k) ij = rP¡ (k) q i n r (j)w(r) = rP¡ (k) q i ;c n r (j)w(r)X Therefore, iYk p (k) qi = n j=1 (k) ij p qj = rP¡
l i=1 p([$ i 2 tY$ j 2 (¦) for j T = i]) = r:qi w(r) 3 [qi 1 YXXXYqi l ]P¡ (k) q i ;c w(r) l j=1 p ij (t)X
Hence, for any tree t and any index i, iYk p (k) qi (t) ! 0 and therefore, either p (k) qi or p (k) qi is a stochastic language, depending on the sign of iYk .

From Lemma 1, there exists a constant that only depends on p 1 Y XX X Yp n such that j (k) ij a iYk j , i.e. j (k) ij j j iYk j = j(e k f) i j and from Prop. 1, (k) ij 3 0 when k tends to innity. Let v be a non zero eigen vector of e and let ! be the associated eigen value: ! k v = e k v 3 0 when k tends to innity. Hence, &(e) `1. &(e) = 2 3 `1.

Eective Normalisation

Let p be a strongly consistent rstl and let f = ft 1 Y XX X Yt n g be the smallest (for the order on (p)) basis of the canonical linear representation ( £ p Y "Y!) of p. The main result in [START_REF] Denis | Learning rational stochastic tree languages[END_REF] proves that with probability one, there exists a sample size from which DEES outputs a linear representation ( £ p Y " Y ! ) whose basis is f and such that " and ! are arbitrarily close to " and !.

Theorem 2 states that there exists a normalised wta e given its canonical linear representation ( £ p Y "Y!). In this section we explain how to eectively compute e . Choosing a basis written as f_ 1 pY XX X Y _ n pg is easily done by recursively enumerating every context, the main technical key point relies in the ability to compute the sums tP(p) p( i [t]) for a given rational series. Let s be the vector dened by s = tP(p) "(t) = tP(p) t. The ith component of s is tP(p) p i (t) = tP(p) p( i [t]). Moreover, s is a solution of the polynomial system: v = p(v) where p(v) = m fPpm "(f)(vY XX X Yv). This system is not analytically soluble in general. As a consequence, we approximate s using with a direct propagative method.

Let i and i k be the endomorphisms dened by: i

(v) = m m l=1 fPpm "(f)(sY XX X Ys | {z } l 1 Y vYsY X XX Y s | {z } m l ) i k (v) = m m l=1 fPpm "(f)(s k Y XX X Ys k | {z } l 1 Y vYsY X XX Y s | {z } m l )X
A propagative method is proposed by Stolcke [START_REF] Stolcke | An ecient probabilistic context-free parsing algorithm that computes prex probabilities[END_REF] in the case of probabilistic context-free languages. Let `k(p) be the set of trees of height lower than k.

The idea is to recursively compute the sequence s k = tP <k (p ) t using the recursion: s 0 = 0 and s k+1 = p(s k )X Obviously, (s k ) converges towards s. Let us study the convergence rate.

By applying the multi-linearity of "(f), s s k+1 can be decomposed in s s k+1 = p(s) p(s k ) = i k (s s k ). Taking into account that for every tree t, the ith component of t is p( i [t]) ! 0, it is easily shown that for every k: ks s k = k k q=0 i q (s s 0 )k ki k kk(s s 0 )k X By Gerland's formula, we have ki k k $ &(i) k and thus: ks s k k = y(&(i) k ks s 0 k) X

Let e be the matrix of i in the basis f 1 1 pY XX X Y 1 n pg. It can be proved that e is the same matrix as dened in Section 4.1. Thanks to Proposition 2 and because we made the assumption the series is strongly consistent, we know that &(i) = &(e) `1.

When tested on the previous example, the propagative method achieved precision of 10 6 in approximately 30 iterations. In near future, we intend to study the use of Newton's method, which could at least theoretically achieve faster convergence.

Learning a Strongly Consistent Rational Stochastic Language:

The Road Map

The normalised wta e obtained at the end of the previous section computes an rstl p such that the spectral radius & of the matrix e associated with e satises & `1 which is a strong property. We have still some results to prove in order to complete the learning process. We present them below as conjectures. Conjecture 1: It is possible to modify Algorithm 1 in order to be used to generate trees from a normalised wta. The modied algorithm stops (and outputs a tree) with probability one, as soon as is suciently large. Hence, it denes a stochastic language p.

Conjecture 2: with probability one, t jp(t) p(t)j ¡ jtj converges to 0 with the size of .

These two conjectures generalize results proved in the word case. Note that the convergence type described in Conjecture 2 is stronger than v 1 -convergence.

Unranked Trees

In this section we consider trees where the rank constraint has been dropped: Every symbol in unranked trees may have from 0 to an unbounded but nite number of (ordered) children. Unranked trees are the common abstract representation of semi-structured data like XML.

Let ¦ be a nite set of symbols. The set (¦) of unranked trees is the smallest set such that ¦ (¦), and f(t 1 Y XX X Yt m ) P (¦) provided f P ¦ and t 1 Y XX X Yt m P (¦). An algebraic denition of unranked trees can be given by means of the extension operator @ ([4]). Basically, @ adds a new child at the of the list of children of an unranked tree: f @ t = f(t), f(t 1 Y XX X Yt n 1 ) @ t n = f(t 1 Y XX X Yt n ) .

The extension operator provides a unique recursive denition of any unranked tree. It can be syntactically represented by a binary (ranked) tree over p = p 0 p 2 where p 0 = ¦ and p 2 = f@g. Let us now dene the mapping ext from (¦) to (p) by ext(f ) = f and ext

(f (t 1 Y XX X Yt n )) = @(ext(f (t 1 Y XX X Yt n 1 ))Y ext(t n )).
One can show that the mapping ext is a bijection. Hedge automata [START_REF] Brüggemann-Klein | Regular tree and regular hedge languages over unranked alphabets[END_REF] directly act on unranked trees in (¦). Briey, hedge automata rules are of the form f(v) 3 q where v is a word language on the alphabet of states. It has be shown that hedge automata and ordinary tree automata on (p) dene the same class of recognizable languages [START_REF] Carme | Querying unranked trees with stepwise tree automata[END_REF]. Extension from hedge automata to weighted hedge automata (there referred to as unranked wta) is proposed in [START_REF] Droste | Weighted logics for XML[END_REF]. In unranked wta rules are of the form f(v) w 3 q where v is a weighted word language on the alphabet of states. Thanks to the ext mapping, each result presented in this paper can be interpreted in the case of unranked trees. Tree series on (¦) are simply dened via tree series on (p). This mapping also suggests a notion of rational unranked tree series and stochastic languages.

Proposition 3. The class of rational unranked tree series represented via the mapping ext coincide with the class of unranked tree series dened by unranked wta.

More precisely, let be an unranked wta which represents a rational unranked tree series r u . One can build in linear time a (ranked) wta which represents a rational tree series r r such that Vt P (¦) r u (t) = r r (ext(t)). The converse is also true but to compute the corresponding unranked wta, one needs to normalise rules following the method given in Section 4.2.

The following example illustrates how one can build a weighted automaton for unranked trees. Let us consider trees that represent nested lists built with the commonly used symbols ul and li. Let us consider rst a stochastic hedge automaton with two states q ul and q li . Final weights are given by p(q ul ) = 1 and p(q li ) = 0. Rules are li(v 1 ) 1 3 q li and ul(v 2 ) 1 3 q ul where L 1 :

q li 1 1 2/3 q li 2 1/3 q ul :1 L 2 : q ul 3 1 q ul 4 1
q li :1/3 q li :2/3

The weight of a tree li(ul(li))) is 2 3 a3 6 .

The corresponding automaton on the expression with the @ operator has 4 states fq li 1 Y q li 2 Y q ul 3 Y q ul 4 g, ((q ul 4 ) = 1 and the set of rules: Y ul 1 3 q ul 3 Y @(q li 1 Y q ul 4 ) w1

3 q li 2 Y @(q ul 3 Y q li 1 ) w2

3 q ul 4 Y @(q ul 3 Y q li

2 ) w3

3 q ul 4 Y @(q ul 4 Y q li 1 ) w4

3 q ul 4 Y @(q ul 4 Y q li

2 ) w5

3 q ul The weight w 2 is the weight of adjoining a subtree in state q li 1 to a tree in state q ul 3 . The results gives a tree in state q ul 4 . It corresponds to the following computation in the hedge automaton: exit from v 1 with state q li 1 , then apply the rule li(v 1 ) 1 3 q li and nally follow the transition from q ul 3 to q ul 4 in v 2 . Hence w 2 2a3¢1¢1a3. Similarly w 3 = 1a3¢1¢1a3, w 4 = 2a3¢1¢2a3, w 5 = 1a3¢1¢2a3 and w 1 = 1 ¢ 1 ¢ 1. The binary tree associated with ul(liY li(ul(li))) is @(@(ulY li)Y @(liY @(ulY li))). One can verify that its weight is also 2 3 a3 6 .

Hence, to learn rational unranked tree series, one can simply proceed in the following way: apply ext to input trees and then apply DEES. Eventually, a representation of an unranked wta where weights are estimated can possibly be returned.

Conclusion

In this paper, we studied the problem of learning a rational stochastic tree language p from an i.i.d. sample of trees drawn from p. An inference algorithm, DEES, was previously proposed for this problem. Using this algorithm leads to two main drawbacks: It often outputs linear representations that do not dene stochastic languages and these representations can not be directly used to generate trees from the underlying distribution. We adressed this problem by showing that any rational stochastic tree language admits a normalised reduced representation that can be used as a generative model. We have studied the notion of strongly consistent rational stochastic languages which corresponds to the fact that the average size of trees generated from a rstl p is bounded. We showed the relationship between this notion and the normalised reduced representation of a rstl. We nally justied that the methods presented in this paper can be directly applied to unranked trees.

The next step of this work is to prove the conjectures that was presented for learning strongly consistent rational stochastic languages: First, a probability distribution p can be extracted in order to generate trees from a normalised WTA. Second, that t jp(t) p(t)j ¡ jtj convergences to zero with the size of the learning sample. Note here that this condition is stronger than the v 1 -convergence.

Data:

  An wta e = (Y pY (Y) in normalised form Result : A tree t P (p) begin Let qt be a new state ;

u t Example 5 .

 5 The matrix e of Example 4 admits two eigen values:

  t . Proposition 1. Let us suppose that for any index i, the series

	tP(p)	p i (t)jtj are absolutely convergent, that	tP(p)	p i (t) = 1 and	tP(p)	p i (t) and

The spectral radius of a matrix is the maximum of the norms of its complex eigenvalues.