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Abstract. Recently, an algorithm, DEES, was proposed for learning
rational stochastic tree languages. Given an i.i.d. sample of trees drawn
according to a rational stochastic language, DEES outputs a linear rep-
resentation of a rational series which converges to the target. DEES can
then be used to identify in the limit with probability one rational stochas-
tic tree languages. However, when DEES deals with finite samples, it
often outputs a rational tree series which does not define a stochastic
language. Moreover, the linear representation can not be directly used
as a generative model. In this paper, we show that any representation
of a rational stochastic tree language can be transformed in a reduced
normalised representation that can be used to generate trees from the
underlying distribution. We also study some properties of consistency for
rational stochastic tree languages and discuss their implication for the
inference. We finally consider the applicability of DEES to trees built
over an unranked alphabet.

1 Introduction

In this paper, we consider the problem of learning probability distribution on
trees from a i.i.d sample of trees, in a a given class of models. In this context,
the learning process has two main objectives: finding the correct structure of the
representation and estimating precisely the parameters of the model. Because we
are interested in machine learning, we restrict ourselves to classes of probabilistic
languages that can be somehow finitely presented. Probabilistic tree automata
(PTA) is a usual representation for rational stochastic tree language (RSTL). In a
PTA, each rule is equipped with a weight in [0, 1] and a per state normalisation
is imposed. Nonetheless, a first drawback is that is not know whether a PTA
is consistent i.e. whether it represents a probability distribution on trees. One
difficulty comes from the fact that a RSTL may be such that the average size
of trees may be undefined. A second drawback of PTA is that it admits no

* This work was fund by the ARA Marmota Project
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canonical representation. Thus, most of learning algorithms approaches based
on grammatical inference fail for the class of PTA.

Recent approaches have proposed to work in a larger class of representation:
the class of rational stochastic tree languages that can be represented under a
linear form of a tree series. The models of this class can be equivalently repre-
senting by weighted tree automata with parameters in R (hence with weights
that can be negative and without any per state normalisation condition). This
class has two interesting properties: it has a high level of expressiveness since it
strictly includes the class of RSTL and it admits a canonical form with a mini-
mal number of parameters. Based on these properties, linear representations of
RSTL are a good candidate from a grammatical inference standpoint. A recent
algorithm, DEES, able to identify in the limit with probability one the class
of rational stochastic tree languages RSTL was proposed in [1]. However, this
algorithm has two main drawbacks when working with finite samples. It often
outputs a rational tree series that does not define a stochastic language, and
the representation of the series can not be directly used as a generative model.
This comes from the fact that the canonical representation is more adapted for
finding the structure of the model and estimating the parameters. We do not ob-
tain a representation of a probability distribution that factorises into a product
of probabilities associated with each state. When we need a generative model,
we claim that we have to use another representation. OQur first contribution is
to show that any canonical representation of a rational stochastic tree language
admits a normalised reduced representation of the same size which can be easily
used in a generative process. Then, we examine some conditions of consistency
for rational stochastic languages. Indeed, as for probabilistic context-free gram-
mars, the consistency can not be ensured only with syntactical properties. We
discuss then the influence of these conditions to the problem of inferring rational
stochastic tree languages. We finish by studying the applicability of our approach
to trees that are built from an unranked alphabet. Actually, a bijection can be
made between the unranked representation and a ranked one, allowing us to
apply our algorithm to the unranked case.

The paper is organized as follows. Definitions and notations are presented in
Section 2. Section 3 deals with the normalised reduced representation of rational
stochastic tree language. The consistency conditions are evoked in Section 4.
The paper terminates by Section 5 on unranked trees.

2 Preliminaries

In this section, we recall definitions of trees, (rational) tree series, weighted
automata and (rational) stochastic tree languages. We mainly follow notations
and definitions from [2] about trees and tree automata. Formal power tree series
have been introduced in [3] were the main results appear.

Trees and contexts Let 7 = FyUF U---UF, be aranked alphabet where the
elements in JF,, are the function symbols of rank m. Let X be a countable set of



Inference of Rational Stochastic Tree Languages 3

variables. The set T'(F,X) is the smallest set satisfying: Fo UX C T(F,X), for
f€Fm, m>1,and t1,...,ty, € T(F,X), f(t1,...,tm) € T(F,X).

We call trees, elements in T'(F,0) = T'(F). For any tree t, let us denote by
[t|; the number of occurrences of the symbol f € F in t and by |t|, the size
> rer|tly of t. The height of a tree ¢ is defined by: height(¢) = 0if ¢ € Fy and
height(¢) = 1 + max{height(¢;)|i = 1.m} if t = f(t1,...,tm). We suppose given
a total order < on T'(F) which satisfies height(t) < height(s) = t < s.

Contexts are elements ¢ of Cp(F) C T(F,X) where n distinct variables
$1,...9%, appears exactly once in ¢. Let ¢ be a context in Cp,(F) and t,#1,...,t,
be trees. In the following, the notation ¢[$; « t1,...,$, < t,] or simply
c[t1,...,tn] represents the tree that results from substituting the $;’s by the
t;’s in ¢. C1(F) is simply denoted by C(F). We say that a set A is prefizial
whenever for any ¢ € C(F) and any t € T(F), c[t] € A=t € A.

Formal power tree series A (formal power) tree series on T'(F) is a mapping
r: T(F) — R. The vector space of all tree series on T'(F) is denoted by K(({F)).

Let V be a finite dimensional vector space over R. We denote by L(VP; V)
the set of p-linear mappings from V? to V. Let £ = Up>oL(V?; V). We denote
by V* the dual space of V', i.e. the vector space composed of all the linear forms
defined on V.

A linear representation of T(F) is a couple (V, 1), where V is a finite dimen-
sional vector space over R, and where p : F — £ maps F, into L(VP; V) for
each p > 0.

Thus for each f € Fp, u(f) : VP — V is p-linear. Function p extends uniquely
to a morphism p : T(F) = V by: u(f(t1,-...tp)) = pu(f)(p(t1),. .., p(tp)). Let
Vr(F) be the vector subspace of V' spanned by u(T(F)): (Vr(r), i) is a linear
representation of T'(F).

Let r be a tree series over T'(F), r is said to be recognizable if there exists a
triple (V, p, A), where (V, u) is a linear representation of T(F), and A : V. — R
is a linear form, such that r(t) = A(u(t)) for all t in T'(F). The triple (V, i, A) is
called a linear representation for r.

It has been shown in [3] that the notions of recognizable tree series and ratio-
nal tree series coincide. From now on, we shall refer to them by using the term
of rational tree series.

Definition 1. A stochastic tree language over T(F) is a tree series v € R{{F))

such that for anyt € T(F),0<r(t) <land > r(t)=1. Letp be a stochastic
teT(F)

language, let ¢ € C(F) be such that there exists a tree t such that p(c[t]) # 0.

We define the stochastic language ¢~ 'p by ¢~ 'p(t) = %.

t'eT(F)
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A rational stochastic tree language (RSTL) is a stochastic tree language which
admits a linear representation. The set of rational stochastic tree languages is
denoted by S"(F).

Weighted Tree Automata A weighted tree automaton' (WTA) over F is a
tuple A = (Q, F,7,0) where @Q is a set of states, 7 is a mapping from @ to R and
0 is a mapping from Up,>0Fm X @™ X @ to R. The mapping § can be interpreted
as a set A of rules which can be written in a bottom-up or a top-down way:

f(qla"'aqm) g q € A(Ol" q ﬂ) f(qlavqm) € A) iff 5(f7q17"'7qm7q) =
wAw #0.

The weight w of a rule r is denoted by w(r). For any ¢ € (}, we denote by A,
the subset of § composed of the (top-down) rules whose lhs is ¢. A series r, can
be associated with any state g by: ro(f(t1,...,t,)) = > w(r) [, re ().

reEAq
Then the WTA A computes the series r defined by: r(t) = > 7(q)r.(?).
a€Q

WTA and linear representations are two equivalent ways to represent rational
series. For example, let (V, u, A) be a linear representation of the tree series r €
R{{F)) and let B = (e1,...,e,) be abasis of V. A wra A = (Q,F, \,d) can be
associated with (V, u, A, B) where @ = {e1,...,e,}, and 6(f,e;,,...,€:,,€;) =
w; for any f € F,, where u(f)(ei,,....€:,) = Zj wje;. Conversely, an equiva-
lent linear representation can be associated with any weighted tree automaton
(see Example 1 below).

Note here that a probabilistic tree automaton (PTA) is a specific case of WTA
A= (Q,F,t,9) satisfying the following conditions: (i) 6 and 7 take their values
in [0,1], (ii) > 7(g) =1, (iii) for any g € Q, > w(r) =1.

qeQ rely

It can be shown that any PTA computes a rational tree series r that satisfies
r(t) > 0 for any tree t and ) ,r(t) < 1. It can be shown that there exist
rational stochastic tree languages that cannot be computed by any probabilistic
automaton (see [4] for an example in the case of word stochastic languages).

Example 1. A WTA representing a rational stochastic tree language. Let A
(Q,F,1,6) be the wra defined by @ = {q1,¢}, F = {a,f(-,")}, 7(q1)

2,7(q) = —land A = {1 B a,q0 B Flar,01),0 5 a,0 B far, )}

Dq, and p,, are RSTL, that the series p = 2p,, —p,, computed by A takes only
positive values. And since ), p(t) = 1, pis an RSTL. It admits the following linear
representation: (R?, u, \) where e; = (1,0),es = (0,1), Ae1) = 2, Aez) = —1,
u(a) = 2e1 /3+3ea/4, w(f)er, 1) = e1/3, w(f) (€2, €2) = ea/4 and p(f)(eive;) =
0if i # .

2.1 Canonical Linear Representation of Rational Tree Series
We now define the canonical representation of a rational tree series.

! These automata are also referred to as multiplicity tree automata in the literature.
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Let ¢ € C(F). We define the linear mapping ¢ : R((F)) — R{({F)) by

é(r) (@) = r(ct]) -

Let r € R({(F)). Let us denote by W, the vector subspace of R{(F)) spanned
by {¢ér|c € C(F)}. It can be shown that r is rational if and only if the dimension
of W, is finite [1]. Let W be the dual space of W, i.e. the set of all linear forms
on W,. For any ¢t € T(F), let ¢ € W} be defined by: Vs € W,., i(s) = s(t). It
can be shown that there exist trees tq,...,t, such that (¢1,...,%,) forms a basis

of W}. Let us define the linear representation (W}, u, A) as follows:

o for any f € F,,,, define pu(f)(tiy,-. - b, ) = f(tiys- -3 ti,).
o M (WH* =W, by A(f) = r(¢).

Theorem 1. [1] (W},v,T) is a linear representation of r which is called the
canonical linear representation of r. It can be embedded in any linear represen-
tation of r; in particular, its dimension is minimal.

Ezxample 2. Consider the rational stochastic tree language p defined in example 1. It
. oltlg+1 gltlp+1 oBltlp+4a _ 5316l p+2
can easﬂy be ShOWn that pP1 (t) = W, pz(t) = Tf“ and p( ) = W
. o5ltlp+5lelp+4 _ g3|tlp+3lclp+2
Thus, for any context ¢ and any tree t: t(¢p) = p(c[t]) = ST PRIl ST, 2T P2l 3T

Since p has a 2-dimensional linear representation, the dimension of W, is < 2. Let
co =% and c¢; = f(a,$), we have:

7 . 269 _—,. 9823
2270(0110 = f(a,a)(co) = 35 267 and f(a,a)(¢i1p) = 35 x 210"

E(éop) =

w
X

Since a(cop) x f(a,a)(¢1p) # a(cip) X f(a,a)(¢op), @ and f(a,a) are linearly indepen-
dent. Then, (@, f(a,a)) is a basis of W,". We define X\ and p by:

@) = pla) = BX% and A(f(a,a)) = p(f(a,a)) = % and
w(a) = a, p(f)(@ a) = f(a,a)

1(f)(f(a,a),a) = 5250 + 55z f(a,a)

N(f)(f(av a)7 f(a7 a)) = ;ssigga'f' 236;1;4 (a’a)'

We can justify here why the canonical form of a stochastic language p may not
be relevant for generating trees according to p Indeed, one can remark here that
u(f(a, f(a,a))) = u(f)(a, f(a,a)) = 24534a + 51z f(a,a). Thus, if we consider the
weights of trees according to a, f(a, f(a,a)) has a negative weight and then @ does not
define by itself a stochastic language. As a consequence, the canonical form does not
have a relevant structure if one aims at using it according to a generative model.

=
—
%
~
—~
£
%
—~
e
)
=
=
I

2.2 DEES

DEES is an inference algorithm which identifies any rational stochastic language
in the limit with probability one (see [1]). Let us show how DEES works on the
previous example. Let S be a sample of trees independently drawn according to p
and let pg be the empirical distribution defined on T(F): ps(t) is the frequence
of t in S. For any confidence parameter ¢, there exists ¢ > 0 such that with
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probability at least 1 —4, [p(t) — ps(t)| < e for any tree t. Statistical tests, based
on this property, are used to accept or reject hypotheses of the form: ¢ is a linear
combination of t1,...,t,. Parameters ¢ and d can be chosen, depending on the
size of the sample S, such that with probability one, the correct hypothesis will
always be chosen from some sample size.

In order to find the basis of the canonical representation, the algorithm first
tests whether @ and f(a,a) are linearly independent. With probability one, this
will be detected from some step: @ and f(a,a) are elements of the canonical
basis. Then, the algorithm tests whether f(a, f(a,a)) is a linear combination of
a and f(a,a). As this is true, this will be detected with probability one from
some step. Therefore, f(a, f(a,a)) will not be added to the basis. And so on.
The algorithm terminates when it has checked that no more elements can be
added to the basis.

It can be proved that with probability one, there exists an integer N such
that for any sample S containing more than N examples, a basis of W, will
be identified from S. DEES will compute a linear representation (W, us, As),
such that pug and Ag converge respectively to p and A when S tends to infinity.

Hence, DEES identifies in the limit the canonical linear representation of
any rational tree stochastic language with probability one. However:

— Given the canonical linear representation of a stochastic language p does not
help to generate trees according to p.

— Moreover, the series output by DEES from some sample S can be not a
stochastic language. The possibility to transform it in a stochastic language
is then an important issue.

— The series output by DEES converges to the target p as the size of S in-
creases, but what is the rate of convergence?

We propose to adress of all of these questions in the present paper.

3 Normalised linear representation for rational stochastic
tree languages

Given a rational tree series r, a linear representation (V,u, A) of » and a basis
B ={e1,...,en} of V, we can consider the n rational tree series r; fori = 1,...,n
defined by the linear representation (V, p, A;), where A;(e;) = d;; where 6;; =1
if i = j and 0 otherwise. Remark that the series r; directly correspond to the
series r, defined from the WTA associated with (V, u, A, B)

Now, when r is a stochastic language, it can be asked whether there exists a
linear representation (V, u, A) of r and a basis B = {e1,...,e,} of V such that
each r; is also a stochastic language.

Proposition 1. Let p be an RSTL over T'(F) and let (W, u, A) be the canonical
linear representation of p. Then, W, admits a basis B = {e1,...,e,} such that
each series r; is stochastic.

Proof. See Appendix 7.1.
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Definition 2. Let A = (Q,F,7,0) be a WTA. We say that A is in normalised
form if and only if (1) 3,0 7(q) =1, (i) for any q € Q, ZreAq w(r) =1 and
(iit) for any g € Q and any f € F, ZreA w(r) € [0,1]. Moreover, we say that
A is in reduced normalised form if the series r, are linearly independent.

Any rational stochastic tree language can be represented by a normalised
reduced wrA A = (Q, F,7,0) such that each r, defines a stochastic language.
Note also that any PTA is in normalised form (but not necessarily in reduced
normalised form).

Ezxample 3. Let us consider the rational stochastic tree language p presented in the

previous examples and show how to compute a normalized wTAa that computes it.

Let co = 8, c1 = f($,a) and let so = aoa + Bof(a,a) and s1 = aia + B1f(a,a)

where s; (ci1 ) = di;. Remarking that 3, cop(t) = 1 and 3, cip(t) = >, p(f(t,a)) =

2th1( ( )) — >, p2(f(t,a)) = 37/144 one can check that ap = P22,y =
—3108

25 %, Bo = 300
Now, by expressing, @ and f(a,a) in the basis so, s1, we get the following set of
rules:

25

S0 7/—15 a, S1 26%44 a,

S0 2—/> (So, So), S1 73%925 f(So, 50),
S0 2%0 (50, 51), S1 26%25 f(So, 81),
So 2%0 (Sl7 So), S1 26%25 f(Sl7 So),
50 —1369/300 (Sl,sl), 1 —232&)11100 f(sl,sl),

It is easy to verify that this representation is in normalised form.

A generation process of trees can be done using normalized WTA as given
in Algorithm 1. Each tree is built top-down. The process is different from the
classical approach with PTA since instead of drawing a transition rule to apply at
each step, we rather draw a symbol according to the distributions of the symbols
defined by the rules.

Comments:

(1) A,en contains n rules of the form ¢ % c[gi,...,q’,] where c is a linear
context over m variables and where 1 <14 < n;

(2) it can be proved that 3, raj ;=1forany 1 <j<m

(3) the numbers a} ; define a probability distribution on F;

(4) There exists a unique tree ¢ such that all the rules of Agen are of the form

¢ =X t; t is the output of the algorithm

4 Learning rational stochastic tree languages

We consider the question of learning a rational stochastic tree language (RSTL)
p from an i.i.d. sample of trees drawn according to p. An RSTL can be such that
the average size of trees generated from p is unbounded, i.e. >, p(t)[t| =
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Data : An wta A = (Q, F, 7, ) in normalised form
Result : A treet € T(F)
begin

Let ¢q: be a new state ;

Let Agen = {00 ¥ qlg € Q} (1);
while the rhs of some rule of Agen contains states do
Let m be the number of rules in Age,, and n be the number of states in
each the rules;
for 1 <j<mdo
n
for any f € F,let af; = > w; ETEAqi , w(r) (2);
i=1 5

draw randomly f; € F according to af ; (3);
let n; be the rank of f;;
let ¢ =c(fi(81,...,87"), ..., fm(8h,...,$%")) a linear context;

in Agen, replace each rule g el cdt, ..., q.] by the rules
Wi Wiy« Wagy,

qt — c[fl(q%p"'aq;l}ll)a"'7fm(Q7%m7"':q;L¢T)];
where 1 1 q; = fi(@), - @) € Ay 1< j<m, 1<i<m;

Outputs the tree of Agep, (4);

end

Algorithm 1: Drawing a tree according to a RSTL

For example, this is the case for the RSTL defined by the prA whose rules are:
1/2 1/2

{q i a,q s f(g,q)}. To our knowledge, it is still unknown whether a PTA

defines a RSTL and it is much better to deal with the stronger notion of strongly

consistent stochastic language: a RSTL p is strongly consistent if >, |¢|p(t) < oo.

Next section investigates some properties of strongly consistent RSTL.

4.1 Strongly consistent rational stochastic languages

Let A=(Q ={q1,---,qn},F,7,0) be an WrA and let A = (a;;)1<i j<n be the
matrix defined by a;; = > n,(j)w(r) where n,(j) is the number of occurrences
r€Ay,
of g; in the rhs of r.
We denote by p; the rational series defined from state g; and we let v, =

> pi(t)|t| (y; may be undefined if the sum diverges), v = (m,...,7n) and
teT(F)
B=(1,..., 1)

Proposition 2. Let us suppose that for any indexi, Y, pi(t)=1and > w(r)=
teT(F) redgy;
1. Theny= Y, A™B.

n>0

Proof. See Appendix 7.2.
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The sum ), A™B converges iff A”B converges to 0, which can be decided
n>0
within polynomial time.

Ezample 4. Consider the PTA defined by the rules {q a0 flg,9)} and 7(q) =
1: A = (2a) and A™B converges iff & < 1/2. The average size of trees generated from
these PTA is 1/(1 — 2a). When o = 1/3 (resp. 1/4), the PTA computes the stochastic
language pq, (resp. pg,) as previously defined in example 1. Then, the average size of
trees 71 (resp. y2) generated from pg, (resp. pg,) is 3 (resp. 2). One can deduce the
average size of the stochastic language p = 2pg;, —pgs, Y =2 X 71 — 72 = 4.

Consider now the normlized form of p as presented in example 3.

. . —-2/5 37/30
The matrix A is (—144/185 47/30).

It is easy to verify that (I — A) is invertible and (I — A)™! = (—8_6147//1585 ZZ?)
Thus (I — A)™'B = (4690/185). Following Prop. 2, the average size yo of trees
generated by cglp is 4 and the average size of trees generated by cglp is 690/185.
Since p = cglp the average tree size of p is 4.

We show below that when A is a reduced normalised representation of a
strongly consistent rational stochastic language, the spectral radius p(A) of A
is < 1. We need the following lemma (See [5] for a similar result in the case of
words.)

Lemma 1. Let py,...,p, be n independent stochastic languages. Then A =
n

{{a1,...,an) € R™ © > aup; is a stochastic language} is a compact convex
i=1

subset of R™.

Proposition 3. Let A= (Q ={q1,---,qn},F,7,0), a reduced normalised rep-
resentation of a strongly consistent RSTL p such that each py, is a stochastic
language and let A = (a;5)1<i,j<n be the matriz defined as previously. Then the
spectral radius of A satisfies p(A) < 1.

Proof. See Appendix 7.3.

Ezxample 5. The matrix A of Example 4 admits two eigen values: % and %, then
p(A) =2 < 1.

4.2 Effective normalisation

Let p be a strongly consistent RSTL and let B = (#1,...,%,) be the smallest (for
the order < on T'(F)) basis of the canonical linear representation (W, u, A) of
p. The main result in [1] proves that with probability one, there exists a sample
size from which DEES will output a linear representation (W, us, As) whose
basis is B and such that ug and Ag are arbitrarily close to p and A.

According to Prop. 1, a normalised WTA As can be computed from (W, ps, As).
But this proposition only state an existence property and we now we wish to
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compute Ag. Choosing a basis written as (¢;) is easily done by recursively enu-
merating every context, the main technical key point relies in the ability to
compute the sums ), r(c;[t]) for a given rational series.

Let s be the vector defined by s = 3, ) 1(t) = 32, t.Thens; =), 74 (t) =
>t r(cilt]). Moreover, s is a solution of the relation: s = 37 > ¢z pys(s,..., ).
This is a polynomial system of degree m, which happens not to be analytically
soluble. As a consequence, we will try and approximate these sums, using either

a direct propagative method or Newton’s method.
Let M and M, be the endomorphisms defined by

ZZZ‘” Sy...,8)

m =1 fEFm l 1 el

ZZ Z /’l’f SP: <y Spy U, S, ..,5).

m =1 fEFn, l f el
The propagative method, proposed by Stolcke[6] in the case of probabilistic

context-free languages. The idea is to recursively the sequence s, = >, er<e(F)t

using the recursion: sg = 0 spy1 = F(s,).Obviously, (s,) converges towards

s. Let’s study the rate of convergence.

By applying the multi-linearity of pf, s — s,41 can be decomposed in s —
sp+1 = F(s)—F(sp) = M,(s—sp).Taking into account that (t); = r(¢;[t]) > 0 for
every tree t it’s easily shown that for every p [|s — sp11]] = || HZ:O M,(s —s0)|| <
|MP][||(s — s0)||. By Gerland’s formula, we have || M*|| ~ p(M)* and thus ||s — s,|| =
O(p(M)*||s = sol[)-

If A is the matrix of M in the basis (c;!), then it can be proved that it’s
the same matrix as defined in Section 4.1. Thanks to proposition 3 and because
we made the assumption the series is strongly consistent, we know that p(M) =
p(4) < 1.

When tested on the previous example, the propagative method achieved pre-
cision of 10% in approximately 30 iterations. In near future, we intend to study
the use of Newton’s method, which could at least theoretically achieve faster
convergence.

4.3 Learning a strongly consistent rational stochastic language: the
road map

The normalised WTA Ag obtained at the end of the previous section computes
an RSTL pg such that the spectral radius pg of the matrix Ag associated with Ag
satisfies pg < 1 which is a strong property. We have still some results to prove in
order to complete the learning process. We present them below as conjectures.

Conjecture 1: It is possible to modify Algorithm 1 in order to be used
to generate trees from a normalised WTA. The modified algorithm stops (and
output a tree) with probability one, as soon as S is sufficiently large. Hence, it
defines a stochastic language p.
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Conjecture 2: with probability one, ), [p(t) — p(t)| - |t| converges to 0 with
the size of S.

These two conjectures generalize results proved in the word case. Note that
the convergence type described in Conjecture 2 is stronger that [;-convergence.

5 Unranked trees

In this section we consider trees where the rank constraint has been dropped:
every symbol in unranked trees may have from 0 to an unbounded but finite
number of (ordered) children. Unranked trees are the common abstract repre-
sentation of semi-structured data like XML.

Let X' be a finite set of symbols. The set T(X) of unranked trees is the
smallest set such that ¥ C T(X), and f(t1,...,tn) € T(X) provided f € ¥
and t1,...,t, € T(X). An algebraic definition of unranked trees can be given
by means of the extension operator @ ([2]). Basically, @ adds a new child at the
end of the list of children of an unranked tree: fQt = f(¢), f(t1,...,tn—1) Qt, =
Fltse o tn) -

The extension operator provides a unique recursive definition of any unranked
tree. It can be syntactically represented by a binary (ranked) tree over F = FyU
F, where Fy = X and F» = {@}. Let us now define the mapping ext from T'(X)
to T(F) by ext(f) = f and ext(f(t1,...,tn)) = @ext(f(t1,- .-, tn=1)), ext(tn))-
One can show that the mapping ext is a bijection. Hedge automata [7] directly
act on unranked trees in T'(X). Briefly, hedge automata rules are of the form
f(L) — q where L is a word language on the alphabet of states. It has be shown
that hedge automata and ordinary tree automata on T(F) define the same class
of recognizable languages [8]. Extension from hedge automata to weighted hedge
automata (there referred to as unranked wTA) is proposed in [9]. In unranked
WTA rules are of the form f(L) % g where L is a weighted word language on the
alphabet of states.

Thanks to the ext mapping, each result presented in this paper can be inter-
preted in the case of unranked trees. Tree series on T'(X) are simply defined via
tree series on T'(F). This mapping also suggests a notion of rational unranked
tree series and stochastic languages.

Proposition 4. The class of rational unranked tree series represented via the
mapping ext coincide with the class of unranked tree series defined by unranked
WTA.

More precisely, let be an unranked WTA which represents a rational unranked
tree series r¥. One can build in linear time a (ranked) wTA which represents a
rational tree series r" such that V¢ € T(X)r*(t) = r"(ext(t)). The converse is also
true but to compute the corresponding unranked WTA, one needs to normalise
rules following the method given in Section 4.2.

The following example illustrates how one can build a weighted automaton
for unranked trees. Let us consider trees that represent nested lists built with
the commonly used symbols ul and 1i. Let us consider first a stochastic hedge
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automaton with two states qu1 and ¢q1;- Final weights are given by F(gy) = 1
and F(q;) = 0. Rules are 1i(L,) —> qu; and ul(Ls) —> ¢a Where

qu qui: 1/3
Ly: 1—> 1 , 2;19‘—> G1i:2/3

1/3
The Welght of a tree ul(li, 1i(ul(1i)) is 2%/36.

The corresponding automaton on the expression with the @ operator has 4
states {q*, g3, q5* ,q4 1, 7(g8t) = 1 and the set of rules:

1 . .
1ibg , ulbe L algh el B gl
3 w 3 w,
algst, ) =S¢t ., a(ghah) =g
u. iy W u. u iy W u
a(gitat) =@t . algt et S at

The weight w- is the weight of adjoining a subtree in state ¢i to a tree in
state ¢3'. The results gives a tree in state ¢j*. It corresponds to the following
computatlon in the hedge automaton: exit from L; with state g} then apply the

rule 1i(Ly) N q1: and finally follow the transition from ¢5* to ¢ in Lo. Hence
wy =2/3 x1x1/3. Similarly wy = 1/3 x1x1/3, wy =2/3 x1x2/3, ws =
1/3x1x2/3 and wy = 1x1x1. The binary tree associated with ul(1i, 1i(ul(1i))
is @(@(ul,1i), @(1i,@(ul,1i))). One can verify that its weight is also 23/3%.

Hence, to learn rational unranked tree series, one can simply proceed in the
following way: apply ext to input trees and then apply DEES. Eventually, a
representation of an unranked wWTA where weights are estimated can possibly be
returned.

6 Conclusion

In this paper, we studied the problem of learning a rational stochastic tree lan-
guage p from an i.i.d. sample of trees drawn from p. An inference algorithm,
DEES, was previously proposed for this problem. Using this algorithm leads to
two main drawbacks: It often outputs linear representations that do not define
stochastic languages and these representation can not be directly used to gener-
ate trees from the underlying distribution. We adressed this problem by showing
that any rational stochastic tree language admits a normalised reduced repre-
sentation that can be used as a generative model. We have studied the notion of
strongly consistent rational stochastic languages which corresponds to the fact
that the average size of trees generated from a RSTL p is bounded. We showed
the relationship between this notion and the normalised reduced representation
of a RSTL. We finally justified that the methods presented in this paper can be
directly applied to unranked trees.

The next step of this work is to prove the conjectures that was presented for
learning strongly consistent rational stochastic languages: First a probability dis-
tribution p can be extracted in order to generate trees from a normalised WTA.
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Second, that 3, |p(t) —p(t)|-|t| convergences to zero with the size of the learning
sample. Note here that this condition is stronger than the 11-convergence.

References

1. Denis, F., Habrard, A.: Learning rational stochastic tree languages. In: Algorithmic
learning theory. Volume 4754 of LNAIL, 18th International Conference, ALT 2007,
Springer-Verlag (2007) 242-256

2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Lioding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://tata.gforge.inria.fr/ (2007) release October, 12th 2007.

3. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical
Computer Science 18 (1982) 115-148

4. Denis, F., Esposito, Y.: Rational stochastic languages. Technical report, LIF -
Université de Provence, http://hal.ccsd.cnrs.fr/ccsd-00019728 (2006)

5. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In
Lugosi, G., Simon, H.U., eds.: Learning theory. Lecture Notes in Computer Science,
Springer-Verlag (2006) 274-288

6. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computional Linguistics 21(2) (1995) 165-201

7. Briiggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets. Technical report, Honk-Kong University The-
oretical Computer Science Center (2001) Version 1.

8. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. Rewriting Techniques and Applications 3091 (2004) 105-118

9. Droste, M., Vogler, H.: Weighted logics for xml. manuscript (2007)

7 Appendix

7.1 Proof of Proposition 1

Proposition 1. Letp be an RSTL over T(F) and let (W}, i, A) be the canonical
linear representation of p. Then, W, admils a basis B = {e1,..., ey} such that
each series r; is stochastic.

Proof. Let c1,...,c, € C(F) such that {¢;'p,...,c;'p} is a basis of W,. Let
{€1,...,€,} be a basis of W such that éi(cj_lp) =4d;; for 1 <i,j <n.

We show below that {¢1,...,¢,} is a normalised basis of W*. Let Ay,..., A,
be the linear forms defined on W* by A;(¢;) = d;;. Let us show that for any
t € T(F) and any 1 <i < n, \i(p(t)) = ¢; 'p(t).

n .
Let {f1,...,%,} be a basis of W and let #; = ) v/£; for any 1 <i < n. We
j=1

have

file;'p) = D le(ci'p) = D vfony = . (1)
k=1 k=1
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n
Let t € T(F) and t = Y B;t;. We have
=1

1=

t=

n n
1=

Bid At | = Z (Zﬂﬂf) & - (2)

1 j=1 i=1

Because (W, i, A) is the canonical representation of p, we have u(t) = ¢ by
definition. Hence,

X)) =20 S 8 Y 8iT(e; ')
=1 =1

n
= f(cj_lp) since t = Z Bit;
=1
-1
=€ p(t)
Hence, (W, u, A;) represents a stochastic language for 1 <i <n. O

7.2 Proof of Proposition 2

Proposition 2. Let us suppose that for any indexi, Y. pi(t)=1and >, w(r)=
teT(F) re€Ag,
1. Then

v = ZA”B.

n>0

Proof. Let 1 <11,...,4 < n. One can check, by induction on / that

> opi(t).pit) =Tand > pi (b)) (8 (4 0] = i+
t1,...,t t1,...,t
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Then,

= Z w(r) Z pil(t1)~-~pil(tl)(|t1|+-~-+|tl|+1)

r=f(qiy,-,qi;) >0 €A, t1,..5t

Yl ( 5
r=f(qiy i, ) qi €A, th,...,t
> w7 + 1)
rEAql.

=1+ Z Zw(r)nr(j)yj

T‘EAqi j=1

n
=1+ Z Qij7Yj
=1

pi, (t1) ooy GO ([T + -+ 8] + 1)

Therefore,
vy=Ay+ B = ZA”B.

n>0

7.3 Proof of Proposition 3

Proposition 3. Let A= (Q = {q1,...,q,},F,7,9), a reduced normalised rep-
resentation of a strongly consistent RSTL p such that each p,, is a stochastic
language and let A = (a;j)1<i,j<n be the matriz defined as previously. Then the
spectral radius of A satisfies p(A) < 1.

Proof. For any integer k, let A¥ = (aygf))lgingn and for any index i, let

pﬁk) = Z aﬁf)pj/Zi,k

=1

where Z; i, is a normalising coefficient defined such that ), p§k)(t) =1.
Clearly,

n
Zik = Zaz(-f) = (A*B);
j=1
the i-th coordinate of A*B.

The rules of A, called the rules of order one, can be unfolded by independently
and simultaneously applying a rule to each state in the rhs and by multiplying
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the weights. The rules of order k£ + 1 of A are obtained from rules of order &k by
independently and simultaneously applying a rule of order one to the states in
the rhs.

Let A be the wTA defined in example 4. The rules of order 2 of A are:

1—a a(l—a)? a?(1—a) a?(1—a) o’
{¢ = a,q =" fla,a),g =7 f(flg0),a),a = fla,f(g,0),q =
VICRNICRIE

Let Ag’f) be the set of rules of order k of the form g; ) elgiys - -, qi,] where
¢ is a linear context with [ variables, each of which being at depth & from the
root. And let A;kc) be the set of rules of Ag’f) build on context c.

We have W _
a;) = Y neHwlr) =Y Y neGuw(r)
real® ¢ real®
Therefore,
z kpl Z a” p]
=33 > n(w(r)p
¢ el j=1
1
5 S SR 3
¢ r:qiwg)c[qil7...,qil]€A§{? J=1
Now, for any linear context c[$1,...,9;] and for any term ¢, we can first check
that l
Zp(c[& —t,8$; < T(X) for j #4i]) >0
i=1
and that

l

[
S p(elss — 1,8, « T(E) for j#i) = 3 ) w(r) > pi, 1

i=1 ¢ w(r) k
riq; = clgi; 7""qil}eA1('.c)

Hence, either pgk) or —pgk) is a stochastic language, depending on the sign of
Z; k-

From Lemma 1, there exists a constant R that only depends on py,...,pn
such that |a )1Zi x| < R, ie. |a )| < R|Z; 1| = R|(A*B);| and from Prop. 2,

(I”) — 0 when k tends to infinity. Let v be a non zero eigen vector of A and let

)\ be the associated eigen value: A*v = A¥v — 0 when k tends to infinity. Hence,
p(4) < 1. |

VARS

(k)

(t).



