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Abstract. Recently, an algorithm - DEES- was proposed for learning
rational stochastic tree languages. Given a sample of trees independently
and identically drawn according to a distribution de�ned by a rational
stochastic language, DEES outputs a linear representation of a rational
series which converges to the target. DEES can then be used to iden-
tify in the limit with probability one rational stochastic tree languages.
However, when DEES deals with �nite samples, it often outputs a ra-
tional tree series which does not de�ne a stochastic language. Moreover,
the linear representation can not be directly used as a generative model.
In this paper, we show that any representation of a rational stochastic
tree language can be transformed in a reduced normalised representation
that can be used to generate trees from the underlying distribution. We
also study some properties of consistency for rational stochastic tree lan-
guages and discuss their implication for the inference. We �nally consider
the applicability of DEES to trees built over an unranked alphabet.

1 Introduction

In this paper, we consider the problem of learning probability distribution over
trees from a sample of trees independently and identically distributed (i.i.d.),
in a a given class of models. In this context, the learning process has two main
objectives: Finding the correct structure of the representation and estimating
precisely the parameters of the model. Because we adopt a machine learning
standpoint, we restrict ourselves to classes of probabilistic languages that can
be somehow �nitely presented. Probabilistic tree automata (pta) are a usual
representations for rational stochastic tree languages (rstl). In a pta, each rule
is equipped with a weight in [0; 1] and a per state normalisation is imposed.
Nonetheless, a �rst drawback is that it may be not decidable to know whether
a pta is consistent i.e. whether it represents a probability distribution on trees.

? This work was partially supported by the Atash project ANR-05-RNTL00102 and
the Marmota project ANR-05-MMSA-0016.
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One di�culty comes from the fact that a rstl may be such that the average
size of trees may be unde�ned. A second drawback of pta is that they admit no
canonical representation. Thus, most of learning algorithms approaches based
on grammatical inference fail for the class of pta.

Recent approaches have proposed to work in a larger class of representation:
The class of rational stochastic tree languages that can be represented under a
linear form of a tree series. The models of this class can be equivalently repre-
senting by weighted tree automata with parameters in R (hence with weights
that can be negative and without any per state normalisation condition). This
class has two interesting properties: It has a high level of expressiveness since it
strictly includes the class of rstl and it admits a canonical form with a mini-
mal number of parameters. Based on these properties, linear representations of
rstl are a good candidate from a grammatical inference standpoint. A recent
algorithm, DEES, able to identify in the limit with probability one the class
of rational stochastic tree languages rstl was proposed in [1]. However, this
algorithm has two main drawbacks when working with �nite samples. It often
outputs a rational tree series that does not de�ne a stochastic language, and
the representation of the series can not be directly used as a generative model.
This comes from the fact that the canonical representation is more adapted for
�nding the structure of the model and estimating the parameters. We do not ob-
tain a representation of a probability distribution that factorises into a product
of probabilities associated with each state. When we need a generative model,
we claim that we have to use another representation. Our �rst contribution is
to show that any canonical representation of a rational stochastic tree language
admits a normalised reduced representation of the same size which can be easily
used in a generative process. Then, we examine some conditions of consistency
for rational stochastic languages. Indeed, as for probabilistic context-free gram-
mars [2,3], the consistency can not be ensured only with syntactical properties.
We discuss then the in�uence of these conditions to the problem of inferring
rational stochastic tree languages. We �nish by studying the applicability of our
approach to trees that are built from an unranked alphabet. Actually, a bijection
can be made between the unranked representation and a ranked one, allowing
us to apply our algorithm to the unranked case.

The paper is organized as follows. De�nitions and notations are presented in
Section 2. Section 3 deals with the normalised reduced representation of rational
stochastic tree language. The consistency conditions are evoked in Section 4.
The paper terminates by Section 5 on unranked trees.

2 Preliminaries

In this section, we recall de�nitions of trees, (rational) tree series, weighted
automata and (rational) stochastic tree languages. We mainly follow notations
and de�nitions from [4] about trees and tree automata. Formal power tree series
have been introduced in [5] where the main results appear.
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Trees and Contexts Let F = F0 [ F1 [ � � � [ Fp be a ranked alphabet where
the elements in Fm are the function symbols of rank m. Let X be a countable set
of variables. The set T (F ;X ) is the smallest set satisfying: F0 [ X � T (F ;X ),
for f 2 Fm; m � 1, and t1; : : : ; tm 2 T (F ;X ), f(t1; : : : ; tm) 2 T (F ;X ).

We call trees, elements in T (F ; ;) = T (F). For any tree t, let us denote by
jtjf the number of occurrences of the symbol f 2 F in t and by jtj, the sizeP

f2F jtjf of t. The height of a tree t is de�ned by: height(t) = 0 if t 2 F0 and
height(t) = 1 + maxfheight(ti)ji = 1::mg if t = f(t1; : : : ; tm). We suppose given
a total order � on T (F) which satis�es height(t) < height(s)) t < s.

Contexts are elements c of Cn(F) � T (F ;X ) where n distinct variables
$1; : : : $n appears exactly once in c. Let c be a context in Cn(F) and t1; : : : ; tn
be trees. In the following, the notation c[$1  t1; : : : ; $n  tn] or simply
c[t1; : : : ; tm] represents the tree that results from substituting the $i's by the
ti's in c. C1(F) is simply denoted by C(F). We say that a set A is pre�xial
whenever for any c 2 C(F) and any t 2 T (F), c[t] 2 A) t 2 A.

Formal Power Tree Series A (formal power) tree series on T (F) is a mapping
r : T (F)! R: The vector space of all tree series on T (F) is denoted by RhhFii.

Let V be a �nite dimensional vector space over R. We denote by L(V m;V )
the set ofm-linear mappings from V m to V . Let L = [m�0L(V

m;V ). We denote
by V � the dual space of V , i.e. the vector space composed of all the linear forms
de�ned on V .

A linear representation of T (F) is a couple (V; �), where V is a �nite di-
mensional vector space over R, and where � : F ! L maps Fm into L(V m;V )
for each m � 0. Thus for each f 2 Fm; �(f) : V m ! V is m-linear. Func-
tion � extends uniquely to a morphism � : T (F) ! V by: �(f(t1; : : : ; tm)) =
�(f)(�(t1); : : : ; �(tm)). Let VT (F) be the vector subspace of V spanned by �(T (F)):
(VT (F); �) is a linear representation of T (F).

Let r be a tree series over T (F), r is said to be recognizable if there exists a
triple (V; �; �), where (V; �) is a linear representation of T (F), and � : V ! R

is a linear form, such that r(t) = �(�(t)) for all t in T (F). The triple (V; �; �) is
called a linear representation for r.

In [5,6,7,8], it has been shown that the notions of recognizable tree series and
rational tree series coincide. From now on, we shall refer to them by using the
term of rational tree series.

A formal power tree series r is convergent if the series
1P
n=0

 P
jtj=n

r(t)

!
is

convergent. The series r is absolutely convergent if the series
1P
n=0

 P
jtj=n

jr(t)j

!
is convergent. If r is absolutely convergent to a limit l, for any bijection � : N!
T (F), the series

P
n
r(�(n)) converge to the same limit l. In that case, we shall
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denote
P

t2T (F)

r(t) = l. The Cauchy product two series (an) and (bn) is the series

(cn) de�ned by cn =
Pn

k=0 akbn�k. If (an) and (bn) are absolutely convergent,
then (cn) is also absolutely convergent (while (cn) can be divergent if (an) and
(bn) are simply convergent) and the limit of (cn) is equal to the product of the
limits of (an) and (bn). Hence, if r and s are two absolutely convergent formal
tree series, the sum

P
t1;t22T (F)

r(t1)s(t2) is de�ned without ambiguity and is equal

to the product
P

t2T (F)

r(t)
P

t22T (F)

s(t).

De�nition 1. A stochastic tree language over T (F) is a tree series r 2 RhhFii
such that for any t 2 T (F), 0 � r(t) � 1 and

P
t2T (F)

r(t) = 1. The set of

stochastic tree languages is denoted by S(F). Let p be a stochastic language, let
c 2 C(F) be such that there exists a tree t such that p(c[t]) 6= 0. We de�ne the

stochastic language c�1p by c�1p(t) = p(c[t])P

t02T (F)

p(c[t0]) .

A rational stochastic tree language (rstl) is a stochastic tree language which
admits a linear representation. The set of rational stochastic tree languages is
denoted by Srat(F).

Weighted Tree Automata A weighted tree automaton3(wta) over F is a
tuple A = (Q;F ; �; �) where Q is a set of states, � is a mapping from Q to R and
� is a mapping from [m�0Fm�Qm�Q to R. The mapping � can be interpreted
as a set � of rules which can be written in a bottom-up or a top-down way:

f(q1; : : : ; qm)
w
! q 2 � (or q

w
! f(q1; : : : ; qm) 2 �)

i�

�(f; q1; : : : ; qm; q) = w and w 6= 0:

The weight w of a rule r is denoted by w(r). For any q 2 Q, we denote
by �q the subset of � composed of the (top-down) rules whose lhs is q and
by �f;q the subset of �q composed of rules containing the symbol f 2 F in
the rhs. A series rq can be associated with any state q by: rq(f(t1; : : : ; tm)) =P

r2�q
w(r)

Qm
i=1 rqi(ti): Then the wta A computes the series r de�ned by:

r(t) =
P

q2Q �(q)rq(t):
wta and linear representations are two equivalent ways to represent rational

series. For example, let (V; �; �) be a linear representation of the tree series r 2
RhhFii and let B = (e1; : : : ; en) be a basis of V . A wta A = (Q;F ; �; �) can be
associated with (V; �; �;B) where Q = fe1; : : : ; eng, and �(f; ei1 ; : : : ; eim ; ej) =
wj for any f 2 Fm where �(f)(ei1 ; : : : ; eim) =

P
j wjej : It can be shown that

A computes r. Conversely, an equivalent linear representation can be associated
with any weighted tree automaton (see Example 1 below).

3 These automata are also referred to as multiplicity tree automata in the literature.
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A probabilistic tree automaton (pta) is a speci�c case of wta A = (Q;F ; �; �)
satisfying the following conditions: (i) � and � take their values in [0; 1], (ii)P

q2Q �(q) = 1, (iii) for any q 2 Q,
P

r2�q
w(r) = 1:

It can be shown that any pta computes a rational tree series r that satis�es
r(t) � 0 for any tree t and

P
t r(t) � 1.

It can be shown that there exist rational stochastic tree languages that cannot
be computed by any probabilistic automaton (see [9] for an example in the case
of word stochastic languages).

Example 1. A wta representing a rational stochastic tree language. Let A =
(Q;F ; �; �) be the wta de�ned by Q = fq1; q2g, F = fa; f(�; �)g, �(q1) =

2; �(q2) = �1 and � = fq1
2=3
! a; q1

1=3
! f(q1; q1); q2

3=4
! a; q2

1=4
! f(q2; q2)g.

It can be shown that pq1 and pq2 are rstl and that the series p = 2pq1 � pq2
computed by A takes only positive values. Therefore, since

P
t p(t) = 1, p is an

rstl. It admits the following linear representation: (R2; �; �) where e1 = (1; 0)
and e2 = (0; 1) is a basis of R2, �(e1) = 2; �(e2) = �1, �(a) = 2e1=3 + 3e2=4,
�(f)(e1; e1) = e1=3; �(f)(e2; e2) = e2=4 and �(f)(ei; ej) = 0 if i 6= j.

2.1 Canonical Linear Representation of Rational Tree Series

We now de�ne the canonical representation of a rational tree series [1].
Let c 2 C(F). We de�ne the linear mapping _c : RhhFii ! RhhFii by

_c(r)(t) = r(c[t]) :

Let r 2 RhhFii. Let us denote by Wr the vector subspace of RhhFii spanned
by f _crjc 2 C(F)g. It can be shown that r is rational if and only if the dimension
of Wr is �nite [1]. Let W �

r be the dual space of Wr, i.e. the set of all linear forms
on Wr. For any t 2 T (F), let t 2 W �

r be de�ned by: 8s 2 Wr; t(s) = s(t): It
can be shown that there exist trees t1; : : : ; tn such that (t1; : : : ; tn) forms a basis
of W �

r . Let us de�ne the linear representation (W �
r ; �; �) as follows:

� for any f 2 Fm, de�ne �(f)(ti1 ; : : : ; tim) = f(ti1 ; : : : ; tim):
� � 2 (W �

r )
� = Wr by �(t) = r(t).

Theorem 1. [1] (W �
r ; �; �) is a linear representation of r which is called the

canonical linear representation of r. It can be embedded into any linear repre-
sentation of r; in particular, its dimension is minimal.

Example 2. Consider the rational stochastic tree language p de�ned in Exam-

ple 1. It can easily be shown that p1(t) = 2jtjf+1

32jtjf+1
; p2(t) = 3jtjf+1

42jtjf+1
and p(t) =

25jtjf+4�33jtjf+2

32jtjf+1�42jtjf+1
. Thus, for any context c and any tree t:

t( _cp) = p(c[t]) =
25jtjf+5jcjf+4 � 33jtjf+3jcjf+2

32jtjf+2jcjf+1 � 42jtjf+2jcjf+1
:
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Since p has a 2-dimensional linear representation, the dimension of W �
r is

� 2. Let c0 = $ and c1 = f(a; $), we have:

a( _c0p) =
7

3� 22
; a( _c1p) = f(a; a)(c0) =

269

33 � 26
; and f(a; a)( _c1p) =

9823

35 � 210
:

Since a( _c0p) � f(a; a)( _c1p) 6= a( _c1p) � f(a; a)( _c0p); a and f(a; a) are linearly
independent. Then, (a; f(a; a)) is a basis of W �

r . We de�ne � and � by:

�(a) = p(a) = 7
3�22 and �(f(a; a)) = p(f(a; a)) = 269

33�26 and
�(a) = a; �(f)(a; a) = f(a; a);

�(f)(a; f(a; a)) = �(f)(f(a; a); a) = �54
24�34 a+ 59

24�32 f(a; a);

�(f)(f(a; a); f(a; a)) = �3186
28�36 a+ 2617

28�34 f(a; a):

The canonical form of a stochastic language p may not be relevant for gener-
ating trees according to p. Indeed, one can remark here that �(f(a; f(a; a))) =
�(f)(a; f(a; a)) = �54

24�34 a+
59

24�32 f(a; a). Thus, if we consider the weights of trees
according to a, f(a; f(a; a)) has a negative weight and then a does not de�ne by
itself a stochastic language. As a consequence, the canonical form does not have
a relevant structure if one aims at using it according to a generative model.

2.2 DEES

DEES is an inference algorithm which identi�es any rational stochastic language
in the limit with probability one (see [1]). Let us show how DEES works on the
previous example. Let S be a sample of trees independently drawn according to p
and let pS be the empirical distribution de�ned on T (F): pS(t) is the frequence
of t in S. For any con�dence parameter �, there exists � > 0 such that with
probability at least 1� �, jp(t)�pS(t)j � � for any tree t. Statistical tests, based
on this property, are used to accept or reject hypotheses of the form: t is a linear
combination of t1; : : : ; tn. Parameters � and � can be chosen, depending on the
size of the sample S, such that with probability one, the correct hypothesis will
always be chosen from some sample size.

In order to �nd the basis of the canonical representation, the algorithm �rst
tests whether a and f(a; a) are linearly independent. With probability one, this
will be detected from some step: a and f(a; a) are elements of the canonical
basis. Then, the algorithm tests whether f(a; f(a; a)) is a linear combination of
a and f(a; a). As this is true, this will be detected with probability one from
some step. Therefore, f(a; f(a; a)) will not be added to the basis. And so on.
The algorithm terminates when it has checked that no more elements can be
added to the basis.

It can be proved that with probability one, there exists an integer N such
that for any sample S containing more than N examples, a basis of W �

p will
be identi�ed from S. DEES will compute a linear representation (W �

p ; �S ; �S),
such that �S and �S converge respectively to � and � when the cardinal of S
tends to in�nity.
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Hence, DEES identi�es in the limit the canonical linear representation of
any rational tree stochastic language with probability one. However:

� Given the canonical linear representation of a stochastic language p does not
help to generate trees according to p.

� The series output by DEES from some sample S can be not a stochastic
language. The possibility to transform it in a stochastic language is then an
important issue.

� The series output by DEES converges to the target p as the size of S in-
creases, but what is the rate of convergence?

We propose to adress all of these questions in the present paper.

3 Normalised Linear Representation for Rational

Stochastic Tree Languages

3.1 Normalised Representation

Let p be a rational stochastic tree language. We show in this section that p can
be computed by a WTA (Q;F ; �; �) such that all tree series pq associated with
states q are stochastic tree languages.

More precisely, let (W �
p ; �; �) be the canonical linear representation of p and

let B = fe1; : : : ; eng be a basis of W �
p . For any 1 � i � n, let �i be the linear

form on W �
p de�ned by �i(ej) = �ij , where �ij is the Kronecker symbol de�ned

by �ij = 1 if i = j and 0 otherwise.Let pi be the rational series represented by
(W �

p ; �; �i). The next theorem proves that B can be chosen in such a way that
each pi is a stochastic language.

Theorem 2. Let p be an rstl over T (F) and let (W �
p ; �; �) be the canonical

linear representation of p. Then, W �
p admits a basis B = fe1; : : : ; eng such that

each series pi de�ned by (W �
p ; �; �i), where �i(ej) = �ij, is stochastic.

Proof. Let c1; : : : ; cn 2 C(F) such that fc�11 p; : : : ; c�1n pg is a basis of Wp. Let
B = fe1; : : : ; eng be the dual basis ofW �

p de�ned by ei(c
�1
j p) = �ij for 1 � i; j �

n and let r1; : : : ; rn be the series associated with each element of the basis.
Each c�1i p can be interpreted as a linear form on W �

p , by de�ning c�1i p(f) =

f(c�1i p) for any f 2 W �
p . Since c�1i p(ej) = ej(c

�1
i p) = �ij , (W �

p ; �; c
�1
i p) is a

linear representation of pi.
Moreover, for any t 2 T (F),

pi(t) = c�1i p(�(t)) = �(t)(c�1i p) = t(c�1i p) = c�1i p(t):

Therefore, every series pi is equal to the stochastic language c�1i p. ut

Let (Q;F ; �; �) be the wta associated with (W �
p ; �; �;B): for any q 2 Q, rq

is a stochastic language. Moreover, we have:

1.
P

q �(q) = 1. Indeed, 1 = p(T (F)) =
P

q �(q)pq(T (F)) =
P

q �(q).
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2. For any q 2 Q,
P

r2�q
w(r) = 1. Indeed,

1 = pq(T (F)) =
X

r:q!f(q1;:::;qm)2�q

w(r)pq1(T (F)) : : : pqm(T (F)) =
X
r2�q

w(r):

3. For any q 2 Q and any f 2 F ,
P

r2�q;f
w(r) 2 [0; 1]: Indeed,

pq(ff(t1; : : : ; tm)jt1; : : : ; tm 2 T (F)g) =
X

r2�q;f

w(r):

De�nition 2. Let A = (Q;F ; �; �) be a wta. We say that A is in normalised
form if (i)

P
q2Q �(q) = 1, (ii) for any q 2 Q,

P
r2�q

w(r) = 1 and (iii) for

any q 2 Q and any f 2 F ,
P

r2�q;f
w(r) 2 [0; 1]: Moreover, we say that A is in

reduced normalised form if the series rq are linearly independent.

Therefore, any rational stochastic tree language can be represented by a
normalised reduced wta A = (Q;F ; �; �), with the additional property that
each rq de�nes a stochastic language. Note also that any pta is in normalised
form (but not necessarily in reduced normalised form).

Example 3. Let us consider the rational stochastic tree language p presented
in the previous examples, we show how to compute a normalized wta that
computes it. Let c0 = $, c1 = f($; a) and let s0 = �0a+�0f(a; a) and s1 = �1a+
�1f(a; a) where si(c

�1
j p) = �ij . Remarking that

P
t _c0p(t) = 1 and

P
t _c1p(t) =P

t p(f(t; a)) = 2
P

t p1(f(t; a))�
P

t p2(f(t; a)) = 37=144 one can check that

�0 =
�9823

300
; �1 =

3228

25
; �0 =

9953

300
and �1 =

�3108

25
:

Now, by expressing, a and f(a; a) in the basis s0; s1, we get the following set
of rules:

s0
7=12
�! a;

s0
�269=50
�! f(s0; s0);

s0
259=50
�! f(s0; s1);

s0
259=50
�! f(s1; s0);

s0
�1369=300
�! f(s1; s1);

s1
269=444
�! a;

s1
�3024=925
�! f(s0; s0);

s1
2664=925
�! f(s0; s1);

s1
2664=925
�! f(s1; s0);

s1
�23273=11100
�! f(s1; s1):

Let �(s0) = 1 and �(s1) = 0. It is easy to verify that this representation is in
normalised form.

3.2 A Generation Process

A generation process of trees can be associated with normalized wta, as de-
scribed by Algorithm 1. Each tree is built top-down. At step i, a linear context
c[$1; : : : ; $n] is built, where the depth of each variable $i is equal to i. At the



Relevant Representations for the Inference of RSTL 9

next step, all variables are proceeded in parallel. The process is di�erent from the
classical approach with pta since instead of drawing a transition rule to apply
at each step, a symbol is drawn according to the distributions of the symbols
de�ned by the rules.

Data : An wta A = (Q;F ; �; �) in normalised form

Result : A tree t 2 T (F)

begin
Let qt be a new state ;

Let �gen = fqt
�(q)
! qjq 2 Qg (1);

while the rhs of some rule of �gen contains states do
Let n be the number of rules in �gen and m be the (constant) number
of states in the rhs of each rule;
for 1 � j � m do

for any f 2 F , let �c
f;j =

nP

i=1

wi

P
r2�

qi
j
;f

w(r) (2);

draw randomly fj 2 F according to �c
f;j (3);

let nj be the rank of fj ;
let c0 = c(f1($

1
1; : : : ; $

n1
1 ); : : : ; fm($1m; : : : ; $nmm )) a linear context;

in �gen, replace each rule qt
wi! c[qi1; : : : ; q

i
m] by the rules

qt
wiwr1 :::wrm�! c[f1(q

1
r1 ; : : : ; q

n1
r1 ); : : : ; fm(q1rm ; : : : ; qnmrm )] ;

where rj : qj
wrj
! fj(q

1
rj
; : : : ; qn1rj ) 2 �qi

j
;fj
, 1 � j � m, 1 � i � n;

Output the tree of �gen (4);

end

Algorithm 1: Drawing a tree according to a rstl

Comments of the steps numbered by (1), (2), (3) and (4) in Algorithm 1:

(1) �gen contains n rules r1; : : : ; rn of the form ri : qt
wi! c[qi1; : : : ; q

i
m] where c

is a linear context over m variables.
(2) It can be proved that

P
f2F �

c
f;j = 1 for any 1 � j � m.

(3) The numbers �cf;j de�ne a probability distribution over Fj .
(4) There exists a unique tree t such that all the rules of �gen are of the form

qt
wi! t; t is the output of the algorithm.

4 Learning Rational Stochastic Tree Languages

We consider the question of learning a rational stochastic tree language (rstl)
p from an i.i.d. sample of trees drawn according to p. An rstl can be such that
the average size of trees generated from p is unbounded, i.e.

P
t p(t)jtj = 1.

For example, this is the case for the rstl de�ned by the pta whose rules are:
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fq
1=2
! a; q

1=2
! f(q; q)g. To our knowledge, no algorithm is known to decide

whether a pta de�nes a rstl. It is much better to deal with the stronger notion
of strongly consistent stochastic language: A rstl p is strongly consistent ifP

t jtjp(t) <1. Next section investigates some properties of strongly consistent
rstl.

4.1 Strongly Consistent Rational Stochastic Languages

Let A = (Q = fq1; : : : ; qng;F ; �; �) be a wta. We denote by pi the rational series
de�ned from state qi.

Let A = (aij)1�i;j�n be the matrix de�ned by

aij =
X
r2�qi

nr(j)w(r) (1)

where nr(j) is the number of occurrences of qj in the rhs of r. Let B =
(1; : : : ; 1)t.

Proposition 1. Let us suppose that for any index i, the series
P

t2T (F)

pi(t) andP
t2T (F)

pi(t)jtj are absolutely convergent, that
P

t2T (F)

pi(t) = 1 and
P

r2�qi

w(r) = 1.

Let 
i =
P

t2T (F)

pi(t)jtj and 
 = (
1; : : : ; 
n). Then 
 =
P
n�0

AnB:

Proof. Let 1 � i1; : : : ; il � n. One can check, by induction on l thatX
t1;:::;tl

pi1(t1) : : : pil(tl) = 1 and
X

t1;:::;tl

pi1(t1) : : : pil(tl)(jt1j+: : :+jtlj) = 
i1+: : :+
il

using the fact that the Cauchy product of two absolutely convergent series con-
verges to the product of the limits. Then,


i =
X

t2T (F)

pi(t)jtj

=
X

r=f(qi1 ;:::;qil )!qi2�qi

w(r)
X

t1;:::;tl

pi1(t1) : : : pil(tl)(jt1j+ : : :+ jtlj+ 1)

=
X

r=f(qi1 ;:::;qil )!qi2�qi

w(r)

 X
t1;:::;tl

pi1(t1) : : : pil(tl)(jt1j+ : : :+ jtlj) + 1

!

=
X
r2�qi

w(r)(
i1 + : : :+ 
il + 1)

= 1 +
X
r2�qi

nX
j=1

w(r)nr(j)
j

= 1 +
nX

j=1

aij
j
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Therefore,

 = A
 +B =

X
n�0

AnB:

ut

The sum
P
n�0

AnB converges i� AnB converges to 0, which can be decided

within polynomial time.

Example 4. Consider the PTA de�ned by the rules fq
1��
! a; q

�
! f(q; q)g and

�(q) = 1: A = (2�) and AnB converges i� � < 1=2. The average size of trees
generated from these PTA is 1=(1 � 2�). When � = 1=3 (resp. 1=4), the PTA
computes the stochastic language pq1 (resp. pq2) as previously de�ned in exam-
ple 1. Then, the average size of trees 
1 (resp. 
2) generated from pq1 (resp.
pq2) is 3 (resp. 2). One can deduce the average size of the stochastic language
p = 2pq1 � pq2 , 
 = 2� 
1 � 
2 = 4.
Consider now the normalized form of p as presented in example 3.

The matrix A is

�
�2=5 37=30
�144=185 47=30

�
.

It is easy to verify that (I�A) is invertible and (I�A)�1 =

�
�17=5 37=5
�864=185 42=5

�
.

Thus (I �A)�1B =
�
4 690=185

�
. Following Prop. 1, the average size 
0 of trees

generated by c�10 p is 4 and the average size of trees generated by c�10 p is 690=185.
Since p = c�10 p the average tree size of p is 4.

We show below that when A is a reduced normalised representation of a
strongly consistent rational stochastic language, the spectral radius4 �(A) of A
is < 1. We need the following lemma :

Lemma 1. Let p1; : : : ; pn be n independent stochastic languages. Then � =

f(�1; : : : ; �n) 2 R
n :

nP
i=1

�ipi is a stochastic languageg is a compact convex

subset of Rn.

Proof. See [10] for a similar proof in the case of words.

Proposition 2. Let A = (Q = fq1; : : : ; qng;F ; �; �), a reduced normalised rep-
resentation of a strongly consistent rstl p such that each pqi is a stochastic
language and let A = (aij)1�i;j�n be the matrix de�ned by Formula 1. Then the
spectral radius of A satis�es �(A) < 1.

Proof. For any integer k, let Ak = (a
(k)
ij )1�i;j�n and for any index i, let

p(k)qi =
nX

j=1

a
(k)
ij pqj=Zi;k

4 The spectral radius of a matrix is the maximum of the norms of its complex eigen-
values.
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where Zi;k is a normalising coe�cient de�ned such that
P

t p
(k)
qj (t) = 1.

Clearly,

Zi;k =
nX

j=1

a
(k)
ij = (AkB)i

the i-th coordinate of AkB.
The rules ofA, called the rules of order one, can be unfolded by independently

and simultaneously applying a rule to each state in the rhs and by multiplying
the weights. The rules of order k + 1 of A are obtained from rules of order k by
independently and simultaneously applying a rule of order one to the states in
the rhs.

Let A be the wta de�ned in example 4. The rules of order 2 of A are:

fq
1��
! a; q

�(1��)2

! f(a; a); q
�2(1��)
! f(f(q; q); a); q

�2(1��)
! f(a; f(q; q)); q

�3
!

f(f(q; q); f(q; q))g.

Let �(k)
qi be the set of rules of order k of the form qi

w(r)
! c[qi1 ; : : : ; qil ] where

c is a linear context with l variables, each of which being at depth k from the
root. And let �(k)

qi;c be the set of rules of �
(k)
qi build on context c.

We have

a
(k)
ij =

X
r2�

(k)
qi

nr(j)w(r) =
X
c

X
r2�

(k)
qi;c

nr(j)w(r):

Therefore,

Zi;kp
(k)
qi =

nX
j=1

a
(k)
ij pqj

=
X
c

X
r2�

(k)
qi;c

nX
j=1

nr(j)w(r)pqj

=
X
c

X
r:qi

w(r)
! c[qi1 ;:::;qil ]2�

(k)
qi;c

w(r)
lX

j=1

pij

Now, for any linear context c[$1; : : : ; $l] and for any term t, we can �rst check
that

lX
i=1

p(c[$i  t; $j  T (�) for j 6= i]) � 0

and that:

lX
i=1

p(c[$i  t; $j  T (�) for j 6= i]) =
X

r:qi
w(r)
! c[qi1 ;:::;qil ]2�

(k)
qi;c

w(r)
lX

j=1

pij (t):
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Hence, for any tree t and any index i, Zi;kp
(k)
qi (t) � 0 and therefore, either p(k)qi

or �p(k)qi is a stochastic language, depending on the sign of Zi;k.
From Lemma 1, there exists a constant R that only depends on p1; : : : ; pn

such that ja(k)ij =Zi;kj � R, i.e. ja(k)ij j � RjZi;kj = Rj(AkB)ij and from Prop. 1,

a
(k)
ij ! 0 when k tends to in�nity. Let v be a non zero eigen vector of A and let
� be the associated eigen value: �kv = Akv ! 0 when k tends to in�nity. Hence,
�(A) < 1. ut

Example 5. The matrix A of Example 4 admits two eigen values: 1
2 and 2

3 , then
�(A) = 2

3 < 1.

4.2 E�ective Normalisation

Let p be a strongly consistent rstl and let B = ft1; : : : ; tng be the smallest (for
the order � on T (F)) basis of the canonical linear representation (W �

p ; �; �) of
p. The main result in [1] proves that with probability one, there exists a sample
size from which DEES outputs a linear representation (W �

p ; �S ; �S) whose basis
is B and such that �S and �S are arbitrarily close to � and �.

Theorem 2 states that there exists a normalised wta AS given its canoni-
cal linear representation (W �

p ; �; �). In this section we explain how to e�ectively
compute AS . Choosing a basis written as f _c1p; : : : ; _cnpg is easily done by re-
cursively enumerating every context, the main technical key point relies in the
ability to compute the sums

P
t2T (F) p(ci[t]) for a given rational series.

Let s be the vector de�ned by s =
P

t2T (F) �(t) =
P

t2T (F) t. The ith
component of s is

P
t2T (F) pi(t) =

P
t2T (F) p(ci[t]). Moreover, s is a solution of

the polynomial system: v = F (v) where F (v) =
P

m

P
f2Fm

�(f)(v; : : : ; v). This
system is not analytically soluble in general. As a consequence, we approximate
s using with a direct propagative method.

Let E and Ek be the endomorphisms de�ned by:

E(v) =
X
m

mX
l=1

X
f2Fm

�(f)(s; : : : ; s| {z }
l�1

; v; s; : : : ; s| {z }
m�l

)

Ek(v) =
X
m

mX
l=1

X
f2Fm

�(f)(sk; : : : ; sk| {z }
l�1

; v; s; : : : ; s| {z }
m�l

):

A propagative method is proposed by Stolcke[11] in the case of probabilistic
context-free languages. Let T<k(F) be the set of trees of height lower than k.
The idea is to recursively compute the sequence sk =

P
t2T<k(F) t using the

recursion: s0 = 0 and sk+1 = F (sk): Obviously, (sk) converges towards s. Let us
study the convergence rate.

By applying the multi-linearity of �(f), s� sk+1 can be decomposed in s�
sk+1 = F (s) � F (sk) = Ek(s � sk). Taking into account that for every tree t,
the ith component of t is p(ci[t]) � 0, it is easily shown that for every k:
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ks� sk+1k = k
kY

q=0

Eq(s� s0)k � kE
kkk(s� s0)k :

By Gerland's formula, we have kEkk � �(E)k and thus:

ks� skk = O(�(E)kks� s0k) :

Let A be the matrix of E in the basis fc�11 p; : : : ; c�1n pg. It can be proved
that A is the same matrix as de�ned in Section 4.1. Thanks to Proposition 2
and because we made the assumption the series is strongly consistent, we know
that �(E) = �(A) < 1.

When tested on the previous example, the propagative method achieved pre-
cision of 10�6 in approximately 30 iterations. In near future, we intend to study
the use of Newton's method, which could at least theoretically achieve faster
convergence.

4.3 Learning a Strongly Consistent Rational Stochastic Language:
The Road Map

The normalised wta AS obtained at the end of the previous section computes
an rstl pS such that the spectral radius �S of the matrix AS associated with AS

satis�es �S < 1 which is a strong property. We have still some results to prove in
order to complete the learning process. We present them below as conjectures.

Conjecture 1: It is possible to modify Algorithm 1 in order to be used to
generate trees from a normalised wta. The modi�ed algorithm stops (and out-
puts a tree) with probability one, as soon as S is su�ciently large. Hence, it
de�nes a stochastic language p̂.

Conjecture 2: with probability one,
P

t jp(t)� p̂(t)j � jtj converges to 0 with
the size of S.

These two conjectures generalize results proved in the word case. Note that
the convergence type described in Conjecture 2 is stronger than L1-convergence.

5 Unranked Trees

In this section we consider trees where the rank constraint has been dropped:
Every symbol in unranked trees may have from 0 to an unbounded but �nite
number of (ordered) children. Unranked trees are the common abstract repre-
sentation of semi-structured data like XML.

Let � be a �nite set of symbols. The set T (�) of unranked trees is the
smallest set such that � � T (�), and f(t1; : : : ; tm) 2 T (�) provided f 2 �
and t1; : : : ; tm 2 T (�). An algebraic de�nition of unranked trees can be given
by means of the extension operator @ ([4]). Basically, @ adds a new child at the
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end of the list of children of an unranked tree: f @ t = f(t), f(t1; : : : ; tn�1)@ tn =
f(t1; : : : ; tn) .

The extension operator provides a unique recursive de�nition of any unranked
tree. It can be syntactically represented by a binary (ranked) tree over F = F0[
F2 where F0 = � and F2 = f@g. Let us now de�ne the mapping ext from T (�)
to T (F) by ext(f) = f and ext(f(t1; : : : ; tn)) = @(ext(f(t1; : : : ; tn�1)); ext(tn)).
One can show that the mapping ext is a bijection. Hedge automata [12] directly
act on unranked trees in T (�). Brie�y, hedge automata rules are of the form
f(L)! q where L is a word language on the alphabet of states. It has be shown
that hedge automata and ordinary tree automata on T (F) de�ne the same class
of recognizable languages [13]. Extension from hedge automata to weighted hedge
automata (there referred to as unranked wta) is proposed in [14]. In unranked
wta rules are of the form f(L)

w
! q where L is a weighted word language on the

alphabet of states.

Thanks to the ext mapping, each result presented in this paper can be inter-
preted in the case of unranked trees. Tree series on T (�) are simply de�ned via
tree series on T (F). This mapping also suggests a notion of rational unranked
tree series and stochastic languages.

Proposition 3. The class of rational unranked tree series represented via the
mapping ext coincide with the class of unranked tree series de�ned by unranked
wta.

More precisely, let be an unranked wta which represents a rational unranked
tree series ru. One can build in linear time a (ranked) wta which represents a
rational tree series rr such that 8t 2 T (�) ru(t) = rr(ext(t)). The converse is also
true but to compute the corresponding unranked wta, one needs to normalise
rules following the method given in Section 4.2.

The following example illustrates how one can build a weighted automaton
for unranked trees. Let us consider trees that represent nested lists built with
the commonly used symbols ul and li. Let us consider �rst a stochastic hedge
automaton with two states qul and qli. Final weights are given by F (qul) = 1

and F (qli) = 0. Rules are li(L1)
1
! qli and ul(L2)

1
! qul where

L1: qli11

2/3

qli2

1/3

qul:1
L2 : qul31 qul4

1

qli:1/3
qli:2/3

The weight of a tree ul(li; li(ul(li))) is 23=36.

The corresponding automaton on the expression with the @ operator has 4
states fqli1 ; qli2 ; qul3 ; qul4 g, �(q

ul

4 ) = 1 and the set of rules:
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8><
>:
li

1
! qli1 ; ul

1
! qul3 ; @(qli1 ; qul4 )

w1! qli2 ;

@(qul3 ; qli1 )
w2! qul4 ; @(qul3 ; qli2 )

w3! qul4 ;

@(qul4 ; qli1 )
w4! qul4 ; @(qul4 ; qli2 )

w5! qul4

9>=
>;

The weight w2 is the weight of adjoining a subtree in state qli1 to a tree in state
qul3 . The results gives a tree in state qul4 . It corresponds to the following compu-
tation in the hedge automaton: exit from L1 with state qli1 , then apply the rule

li(L1)
1
! qli and �nally follow the transition from qul3 to qul4 in L2. Hence w2 =

2=3�1�1=3. Similarly w3 = 1=3�1�1=3, w4 = 2=3�1�2=3, w5 = 1=3�1�2=3
and w1 = 1 � 1 � 1. The binary tree associated with ul(li; li(ul(li))) is
@(@(ul; li);@(li;@(ul; li))). One can verify that its weight is also 23=36.

Hence, to learn rational unranked tree series, one can simply proceed in the
following way: apply ext to input trees and then apply DEES. Eventually, a
representation of an unranked wta where weights are estimated can possibly be
returned.

6 Conclusion

In this paper, we studied the problem of learning a rational stochastic tree lan-
guage p from an i.i.d. sample of trees drawn from p. An inference algorithm,
DEES, was previously proposed for this problem. Using this algorithm leads to
two main drawbacks: It often outputs linear representations that do not de�ne
stochastic languages and these representations can not be directly used to gener-
ate trees from the underlying distribution. We adressed this problem by showing
that any rational stochastic tree language admits a normalised reduced repre-
sentation that can be used as a generative model. We have studied the notion of
strongly consistent rational stochastic languages which corresponds to the fact
that the average size of trees generated from a rstl p is bounded. We showed
the relationship between this notion and the normalised reduced representation
of a rstl. We �nally justi�ed that the methods presented in this paper can be
directly applied to unranked trees.

The next step of this work is to prove the conjectures that was presented
for learning strongly consistent rational stochastic languages: First, a proba-
bility distribution p̂ can be extracted in order to generate trees from a nor-
malised WTA. Second, that

P
t jp(t) � p̂(t)j � jtj convergences to zero with the

size of the learning sample. Note here that this condition is stronger than the
L1-convergence.
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