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p-SPECTRUM AND COLLAPSING OF CONNECTED SUMS

(P -SPECTRE ET EFFONDREMENT DE SOMMES CONNEXES)

COLETTE ANNÉ AND JUNYA TAKAHASHI

Abstract. The goal of the present paper is to calculate the limit of spectrum

of the Hodge-de Rham operator under the perturbation of collapse of one part

of a connected sum. It takes place in the general problem of blowing up conical

singularities introduced in [Maz06] and [Row08].

Le but de ce travail est de calculer la limite du spectre de l’opéateur de Hodge-

de Rham dans la perturbation obtenue par effondrement d’une moitié d’une somme

connexe. Ce problème rentre dans le cadre de l’éclatement des singularités coniques

introduites dans [Maz06] et [Row08].

1. Introduction

It is a common problem in differential geometry to study the limit of spectrum

of Laplace type operators under singular perturbations of the metrics, especially for

the Hodge-de Rham operator acting on differential forms. The first reason is the

topological meaning of this operator and the fact that by singular perturbations

of the metric one can change the topology of the manifold. Among a lot of works

on this subject we must recall the study of the adiabatic limit, started by Mazzeo

and Melrose in [MM90] and developped by many authors, we can mention also the

collapse of thin handles started in [AC95] and accomplished in [ACP07].

The singular perturbation we study here takes place in the general framework of

resolution blowups presented in [Maz06], our situation is the collapse of one part in

a connected sum, which is explained by the following figure.
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ε → 0

Figure 1. collapsing of Mε

More precisely, if the manifold M , of dimension m, is the connected sum of M1

andM2 around the common point p0, endowed with Riemannian metrics g1, g2, then,

for the collapse of one part of the connected sum we study the dependence on ε→ 0

for the manifold

Mε := (M1 − B(p0, ε)) ∪ ε.(M2 − B(p0, 1)),

where ε.(M2 −B(p0, 1)) means (M2 − B(p0, 1), ε2g2).

To make this construction clear, we can suppose that the two metrics are flat

around the point p0, then the boundaries of (M1−B(p0, ε), g1) and (M2−B(p0, 1), ε2g2)

are isometric, and can be identified. One can then define geometrically Mε as a Rie-

mannian manifold C∞ by part.

In the terminology of [Maz06], Mε is the resolution blowup of the (singular) space

M1 with S
n as link and M̃2 as asymptotically conical manifold, if M̃2 is the complete

manifold obtained by gluing of the exterior of a ball in the Euclidean space to the

boundary of M2 −B(p0, 1). In fact, Rowlett studies, in [Row08], the convergence of

the spectrum of generalized Laplacian on such a situation of blowup of one isolated

conical singularity (Mazzeo presents more genral sinbularities in [Maz06]). Her

result gives the convergence of the spectrum to the spectrum of an operator on M1,

it requires an hypothesis on M̃2. Our result is less general, applied only to the case

of the Hodge-de Rham operator, but it does not require this hypothesis and the

limit spectrum takes care of M̃2, see Theorem C below.

Maybe, the more important interest of our study is that we introduce new tech-

niques: to solve this kind of problems, we have to identify a good elliptic limit

problem, this means for the M2 part a good boundary problem on M2 − B(p0, 1)

at the limit. It appears that, on difference with the problem of thin handles in

[AC95] or the connected sum problem studied in [T02] for functions, this boundary

problem is not a kind of local but ‘global’: we have to introduce a condition of the

Atiyah-Patodi-Singer (APS) type, as defined in [APS75].

Indeed, these APS boundary conditions are related to the Fredholm theory on the

link M̃2, as explained by Carron in [C01], details are given below.

We shall study the more general blowup of conical spaces in the future.
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1.1. The results. As mentioned above, the manifold M , of dimension m ≥ 3 (there

is no problem in dimension 2), is the connected sum of two Riemannian manifolds

(M1, g1) and (M2, g2) around the common point p0, and we suppose that the metrics

are such that the boundaries of (M1 − B(p0, ε), g1) and (M2 − B(p0, 1), ε2g2) are

isometric for all ε small enough. As a consequence, (M1, g1) is flat in a neighborhood

of p0 and ∂(M2 − B(p0, 1)) is the standard sphere. Indeed one can write g1 =

dr2 + r2h(r) in the polar coordinates around p0 ∈ M1 and the metric h(r) on the

sphere converges, as r → 0, to the standard metric. But if the boundaries of

(M1 − B(p0, ε), g1) and (M2 − B(p0, 1), ε2g2) are isometric for all ε small enough,

then h(r) is constant for r small enough, the conclusion follows.

One can then define geometrically Mε := (M1 − B(p0, ε)) ∪ ε.(M2 − B(p0, 1)) as

the connected sum obtained by the collapse of M2 (the question of the metric on

Mε is discussed below). On such a manifold, the Gauß-Bonnet operator Dε, Sobolev

spaces and also the Hodge-de Rham operator ∆ε can be defined as follows (the

details are given in [AC95]): on a manifold X = X1 ∪X2, which is the union of two

Riemannian manifolds with isometric boundaries, ifD1 andD2 are the Gauß-Bonnet

“d+ d∗” operators acting on the differential forms of each part, the quadratic form

q(ϕ) =

∫

X1

|D1(ϕ ↾X1
)|2 dµX1

+

∫

X2

|D2(ϕ ↾X2
)|2 dµX2

is well-defined and closed on the domain

Dom(q) := {ϕ = (ϕ1, ϕ2) ∈ H1(ΛT ∗X1) ×H1(ΛT ∗X2) |ϕ1 ↾∂X1

L2= ϕ2 ↾∂X2
},

where the boundary values ϕi ↾∂Xi
are considered in the sense of the trace oper-

ator, and on this space the total Gauß-Bonnet operator D(ϕ) = (D1(ϕ1), D2(ϕ2))

is defined and selfadjoint. For this definition, we have, in particular, to identify

(ΛT ∗X1) ↾∂X1
and (ΛT ∗X2) ↾∂X2

. This can be done by decomposing the forms in

tangential and normal parts (with inner normal), the equality above means then

that the tangential parts are equal and the normal parts opposite. This definition

generalizes the definition in the smooth case.

The Hodge-de Rham operator (d + d∗)2 of X is then defined as the operator

obtained by the polarization of the quadratic form q. This gives compatibility

conditions between ϕ1 and ϕ2 on the common boundary. We do not give details

on these facts because, as remarked in the next section, it is sufficient to work with

smooth metrics on M.

The multiplicity of 0 in the spectrum of ∆ε is given by the cohomology, it is then

independent of ε and can be related to the cohomology of each part by the Mayer-

Vietoris argument. The point is to study the convergence of the other eigenvalues,

the so-called positive spectrum, as ε → 0. The second author has shown in [T03],

Theorem 4.4, p.21, a result of boundedness
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Proposition A (Takahashi). The superior limit of the k-th positive eigenvalue on

p-forms of Mε is bounded, as ε → 0, by the k-th positive eigenvalue on p-forms of

M1.

We show here that it is also true for the lower bound. Let ϕε be a family of

eigenforms on Mε of degree p for the Hodge-de Rham operator:

∆εϕε = λp(Mε)ϕε ; lim
ε→0

λp(Mε) = λp < +∞.

Proposition B. If λp(Mε) 6= 0, then λp 6= 0 and λp belongs to the spectrum of the

Hodge-de Rham operator on (M1, g1).

The first point is a consequence of the application of the so-called McGowan’s

lemma; indeed Mε has no small eigenvalues as is shown in Proposition 1 below. To

prove the convergent part of the proposition, we shall decompose the eigenforms

using the good control of the APS-boundary term. More precisely, there exists an

elliptic extension D2 of the Gauß-Bonnet operator D2 on M2(1) = M2 − B(p0, 1)

and a family ψε bounded in H1(M1) × Dom(D2) such that ‖ϕε − ψε‖ → 0 with ε.

This extension is defined by global boundary conditions, the conditions of APS

type, in relation with the works of Carron about operators non parabolic at infinity

developped in [C01], see proposition 5.

If we make this construction for an orthonormal family of the k first eigenforms,

we obtain, with the help of Proposition A, our main theorem

Theorem C. Let Mε = (M1 − B(p0, ε)) ∪ ε.(M2 − B(p0, 1)) be the connected sum

of the two Riemannian manifolds M1 and ε.M2 of dimension m = n + 1. For p ∈
{1, . . . , n}, let 0 < λp

1(M1) ≤ λp
2(M1), . . . be the positive spectrum of the Hodge-de

Rham operator on the p-forms of M1 and 0 < λp
1(Mε) ≤ λp

2(Mε), . . . the positive

spectrum of the Hodge-de Rham operator on the p-forms of Mε. Then, for all k ≥ 1

we obtain

lim
ε→0

λp
k(Mε) = λp

k(M1).

Moreover, the multiplicity of 0 is given by the cohomology and

Hp(Mε; R) ∼= Hp(M1; R) ⊕Hp(M2; R).

Remark 1. A. The result of convergence of the positive spectrum is also true for

p = 0 and has been shown in [T02]. Naturally H0(Mε; R) ∼= H0(M1; R) = R. By the

Hodge duality this solves also the case p = m.

1.2. Applications. Results on spectral convergence in singular situations can be

used to give examples or counter examples, concerning possible links between spec-

tral and geometric properties. For instance, Colbois and El Soufi have introduced

in [CE03] the notion of conformal spectrum as the supremum, for each integer k, of

the value of the k-th eigenvalue on a conformal class of metrics with fixed volume.
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Using the result of [T02], they could show that the conformal spectrum of a compact

manifold is always bounded from below by the conformal spectrum of the standard

sphere of the same dimension.

In the same way, applying the Theorem C to the case M1 = S
m and M2 = M, we

obtain

Corollary D. Let (M, g) be a compact Riemannian manifold of dimension m, for

any degree p, any integer N ≥ 1 and any ε > 0, there exists on M a metric g

conformal to g such that the N first positive eigenvalues on the p-forms are ε-close

to the N first positive eigenvalues on the p-forms of the standard sphere with the

same dimension and the same volume as (M, g).

Remark 1.B. For the completion of the panorama on this subject, let us recall that

Jammes has shown, in [J07], that in dimension m ≥ 4 the infimum of the p-spectrum

in a conformal class, with fixed volume, is 0 for 2 ≤ p ≤ m − 2 and p 6= m
2

but has

a positive lower bound for p = m
2
.

Another example is the Prescription of the spectrum. This question was intro-

duced by Colin de Verdière in [CdV86, CdV87] where he shows that he can impose

any finite part of the spectrum of the Laplace-Beltrami operator on certain mani-

folds. To this goal, he introduced a very powerful technique of transversality, and

shows that this hypothesis is satisfied on certain graphs and on certain manifolds

[CdV88]. The other necessary argument is a theorem of convergence. The solution

of the problem of prescription, with limitation concerning multiplicity, has been

given by Guerini in [G04] for the Hodge-de Rham operator, and Jammes has proved

a result of prescription, without multiplicity, in a conformal class of the metric in

[J08a], for certain degrees of the differential forms, what is compatible with the

retricted result mentioned above. In this context, our result gives, for example,

Corollary E. Let g0 be a metric on the sphere of dimension m. If g0 satisfies the

Strong Arnol’d Hypothesis, following the terminology of [CdV86], for the eigenvalue

λ 6= 0 on differential forms of degree p on the sphere, then for any closed manifold

M, there exists a metric such that λ belongs to the spectrum of the Hodge-de Rham

operator on p-forms with the same multiplicity.

Indeed, we take a metric g2 on M , and for any metric g1 close to g0, the positive

spectrum of Mε = S
m#ε.M converges, as ε → 0 to the spectrum of S

m. Then, the

Strong Arnol’d Hypothesis assures that the map which associates to g1 the spectral

quadratic form relative to a small interval I around λ has also, for ε small enough,

the matrix λ · Id in its image.

Here, by spectral quadratic form, we mean the quadratic form defined by the

Hodge-de Rham operator, restricted to the eigenspace of eigenforms with eigenvalues

in I. To consider this space as a space of matrix, we have to construct small

isometries between the different eigenspaces, the details are in [CdV88].
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This result could be used to prescribe high multiplicity for the spectrum of the

Hodge-de Rham operator. Recall that Jammes had obtained partial results on this

subject in [J08b], his work is based on a convergence theorem (theorem 2.8) where

the limit is the Hodge-de Rham operator with absolute boundary condition on a

domain, he uses also the fact that the Strong Arnol’d Hypothesis is satisfied on

spheres of dimension 2, as proved in [CdV88]. It would be interesting to obtain such

a result on spheres of bigger dimension, the result of [CdV88] uses the conformal

invariance specific to this dimension.

Acknoledgement. This work started with a visit of the second author at the Labo-

ratory Jean Leray in Nantes. He is grateful to the Laboratory and the University of

Nantes for hospitality.

We now proceed to prove the theorems. Let us first describe the metrics precisely.

2. Choice of the metric

From now on, we denote

M2(1) := M2 −B(p0, 1).

It is supposed here that the ball B(p0, 1) can really be embedded in the manifold

M2, this can always be satisfied by a scaling of the metric g2 on M2.

Recall that Dodziuk has proved in [D82, Prop. 3.3] that if two metrics g, g on

the same compact manifold satisfy

e−ηg ≤ g ≤ eηg. (2.1)

Then, the corresponding eigenvalues of the Hodge-de Rham operator acting on p-

forms satisfy

e−(n+2p)ηλp
k(g) ≤ λp

k(g) ≤ e(n+2p)ηλp
k(g).

This result is based on the fact that the multiplicity of 0 is given by the cohomology

and the positive spectrum by exact forms, hence the min-max formula does not

involve derivatives of the metric; it stays valid if one of the two metrics is only

smooth by part, because in the last case the Hodge decomposition still holds true.

Then, for a metric g1 on M1 there exists, for each η > 0 a metric g1 on M1 which

is flat on a ball Bη centered at p0 and such that

e−ηg1 ≤ g1 ≤ eηg1.

Then our result can be extended to any other construction which does not suppose

that the metric g1 is flat in a neighborhood of p0.

Now, we regard Mε as the union of M1 −B(p0, 3ε) and ε.M 2(1), where M 2(1) =(
BRm(0, 3)−BRm(0, 1)

)
∪M2(1) is endowed with a metric only smooth by part: the

Euclidean metric on the first part and the restriction of g2 on the second part. But

this metric can be approached, as close as we want, by a smooth metric which is still
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flat on BRm(0, 3) − BRm(0, 3
2
) and these two metrics will satisfy the estimate (2.1).

Thus, replacing 3ε by ε for simplicity, we can suppose, without loss of generality,

that we are in the following situation:

The manifold M2(1) is endowed with a metric which is conical (flat) near the

boundary, namely g2 = ds2 + (1 − s)2h, h being the canonical metric of the sphere

S
n = ∂(M2(1)), and s ∈ [0, 1

2
) being the distance from the boundary (M2(1) looks like

a trumpet ) and M1(ε) = M1 −B(p0, ε) with a conical metric g1 = dr2 + r2h around

the point p0. Thus, Mε = M1(ε) ∪ ε.M2(1) is a smooth Riemannian manifold.

M1(3ε)
ε.M2(1)

Figure 2. smoothing of (Mε, gε)

Let Ca,b be the cone (a, b) × S
n endowed with the (conical) metric dr2 + r2h.

3. Small eigenvalues

Let’s show that M(ε) has no small eigenvalues.

Proposition 1. If 1 ≤ p ≤ n, There is a constant λ0 > 0 such that, if 1 ≤ p ≤ n,

λε 6= 0 ⇒ λε ≥ λ0.

Proof. We shall use the McGowan’s lemma as enonciated in [GP95]. Recall that this

lemma, in the spirit of Mayer Vietoris theorem, gives control of positive eigenvalues

in terms of positive eigenvalues of certain covers with certain boundary conditions.

We use the cover Mε = M1(ε) ∪ ε.(M2(1) ∪ C1,2). Let

U1 = M1(ε) and U2 = ε.(M2(1) ∪ C1,2)

then U1,2 = U1 ∩ U2 = ε.C1,2 and Hp−1(U1 ∩ U2) = 0 for 1 < p ≤ n.

The lemma 1 of [GP95] asserts that, in this case and for these values of p, the

first positive eigenvalue of the Hodge-Laplace operator on exact p-forms of Mε is,

up to a power of 2, bounded from below by

λ0(ε) =
(
(

1

µp(U1)
+

1

µp(U2)
)(

ωp,mcρ
µp−1(U1,2)

+ 1)
)−1

where µk(U) is the first positive eigenvalue of the Laplacian acting on exact k-forms

of U and satisfying absolute boundary conditions, ωp,m is a combinatorial constant

and cρ is the square of an upper bound of the first derivative of a partition of 1

subordinate to the cover.

For us cρ, µ
p(U2) and µp−1(U1,2) are all of order ε−2, but µp(U1) is bounded for

p ≤ n as was shown in [AC93] (remark that the small eigenvalue exibited here in
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degree m− 1 is in the coexact spectrum). This give a uniform bound for the exact

spectrum of degree p with 1 < p ≤ n but the exact spectrum for 1-forms comes from

the spectrum on function which has been studied in [T02], thus the exact spectrum

is controled for 1 ≤ p ≤ n, by Hodge duality it gives a control for all the positive

spectrum in these degrees. Finally we can assert that there exists λ0 > 0 such that

∀ε, λ0(ε) > λ0. �

The proof of the main Proposition B needs some useful notations and estimates,

it is the goal of the following section.

4. Estimates and tools

As in [ACP07] we use the following change of variables : with

ϕε|M1(ε) = ϕ1,ε and ϕε|M2(1) = εp−m/2ϕ2,ε

we write on the cone

ϕ1,ε = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1) = U(ϕ1).

On the other part, it is more convenient to define r = 1 − s for s ∈ [0, 1/2] and

write ϕ2,ε = (dr ∧ r−(n/2−p+1)β2,ε + r−(n/2−p)α2,ε) near the boundary. Then we can

define, for r ∈ [1/2, 1] (the boundary of M2(1) corresponds to r = 1)

σ2(r) = (β2(r), α2(r)) = U(ϕ2).

The L2 norm, for a form supported on M1 in the cone Cε,1, has the expression

‖ϕ‖2 =

∫

M1

|σ1|2dr ∧ dvolSn +

∫

M2

|ϕ2|2dvolM2

and the quadratic form on study is

q(ϕ) =

∫

M(ε)

|(d+ d∗)ϕ|2 =

∫

M1(ε)

|UD1U
∗(σ1)|2 +

1

ε2

∫

M2(1)

|D2(ϕ2)|2 (4.1)

where D1, resp. D2, are the Gauß-Bonnet operator of M1, resp. M2, namely Dj =

d + d∗ acting on differential forms. In terms of σ1, which, a priori, belongs to

C∞([ε, 1[, C∞(Λp−1T ∗
S

n) ⊕ C∞(ΛpT ∗
S

n)) the operator has, on the cone of M1, the

expression

UD1U
∗ =

(
0 1

−1 0

)(
∂r +

1

r
A
)

with A =



n

2
− P −D0

−D0 P − n

2




where P is the operator of degree which multiplies by p a p-form, and D0 is the

Gauß-Bonnet operator of the sphere S
n.

While the Hodge-deRham operator has, in these coordinates, the expression

U∆1U
∗ = −∂2

r +
1

r2
A(A+ 1). (4.2)
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The same expressions are valid for UD2U
∗ and U∆2U

∗ near the boundary of

M2(1) but we shall not use them because we need global estimates on this part.

The compatibility condition is, for the quadratic form, ε1/2α1(ε) = α2(1) and

ε1/2β1 = β2(1) or

σ2(1) = ε1/2σ1(ε). (4.3)

The compatibility condition for the Hodge-deRham operator, of first order, is ob-

tained by expressing that Dϕ ∼ (UD1U
∗σ1,

1
ε
UD2U

∗σ2) belongs to the domain of

D. In terms of σ it gives

σ′
2(1) = ε3/2σ′

1(ε). (4.4)

Let ξ1 be a cut-off function on M1 around p0:

0 ≤ r ≤ 1/2 ⇒ ξ1(r) = 1 and r ≥ 1 ⇒ ξ1(r) = 0.

Proposition 2. For our given family ϕε satisfying ∆(ϕε) = λεϕε with λε bounded,

the family (1 − ξ1).ϕ1,ε is bounded in H1(M1).

Then it remains to study ξ1.ϕ1,ε which can be expressed with the polar coordinates,

this is the goal of the next section.

Remark 3. The same cannot be done with the componant on M2 or more precisely

this does not give what we want to prove, namely that this componant goes to 0 with

ε. To do so we have first to concider ϕ2,ε in the domain of an elliptic operator, this

is the main difficulty, in contrast with the case concerning functions. In fact we will

decompose ϕ2,ε in a part which clearly goes to 0 and an other part which belongs to

the domain of an elliptic operator, this operator is naturally D2 but the point is to

determine the boundary conditions.

4.1. Expression of the quadratic form. — For any ϕ such that the componant

ϕ1 is supported in the cone C1,ε, one has, with σ1 = Uϕ1 and by the same calculus

as in [ACP07] :

∫

Cε,1

|D1ϕ|2dvolgε =

∫ 1

ε

∣∣∣∣
(
∂r +

1

r
A
)
σ1

∣∣∣∣
2

dr

=

∫ 1

ε

[
|σ′

1|2 +
2

r
〈σ′

1, Aσ1〉 +
1

r2
|Aσ1|2

]
dr

=

∫ 1

ε

[
|σ′

1|2 + ∂r

(1

r
〈σ1, Aσ1〉

)
+

1

r2

(
〈σ1, Aσr〉 + |Aσ1|2

) ]
dr

=

∫ 1

ε

[
|σ′

1|2 +
1

r2
〈σ1, (A+ A2)σ1〉

]
dr − 1

ε

〈
σ1(ε), Aσ1(ε)

〉
.



10 COLETTE ANNÉ AND JUNYA TAKAHASHI

we then have

q(ϕ) =

∫ 1

ε

[
|σ′

1|2 +
1

r2
〈σ1, (A+ A2)σ1〉

]
dr − 1

ε

〈
σ1(ε), Aσ1(ε)

〉

+
1

ε2

∫

M2(1)

|D2ϕ2|2 (4.5)

On the other hand we have, as well,

∫

C1/2,1

|D2ϕ|2dvolgε =

∫ 1

1/2

∣∣∣∣
(
∂r +

1

r
A
)
σ2

∣∣∣∣
2

dr

=

∫ 1

1/2

[
|σ′

2|2 +
1

r2
〈σ2, (A+ A2)σ2〉

]
dr

+
〈
σ2(1), Aσ2(1)

〉
−
〈
σ2(1/2), Aσ2(1/2)

〉
.

Thus the first boundary terms annihilate, and one has also

q(ϕ) =

∫ 1

ε

[
|σ′

1|2 +
1

r2
〈σ1, (A+ A2)σ1〉

]
dr+

1

ε2

∫ 1

1/2

[
|σ′

2|2 +
1

r2
〈σ2, (A+ A2)σ2〉

]
dr − 1

ε2

〈
σ2(1/2), Aσ2(1/2)

〉
. (4.6)

We remark that the boundary term −
〈
σ2(1/2), Aσ2(1/2)

〉
is positif if σ2 belongs to

the eigenspace of A with negative eigenvalues. In fact we know the spectrum of A:

4.2. Spectrum of A. — It has been calculated in [BS88]. By their result, we have

that the spectrum of A is given by the values γ = ±1
2
±
√
µ2 + (n−1

2
− p)2 for µ2

covering the spectrum of ∆Sn acting on the coclosed p-forms.

Now the spectrum for the standard sphere has been calculated in [GM75] and as

a consequence one has µ2 ≥ (n − p)(p + 1) on coclosed p-forms, unless p = 0 for

which we have in fact µ2 ≥ (n − p)(p + 1) on coexact p-forms (ie. non constant

functions). As a consequence

µ2 + (
n− 1

2
− p)2 ≥ (n− p)(p+ 1) + (

n + 1

2
− (p+ 1))2 = (

n + 1

2
)2

and then

|γ| ≥ n

2
. (4.7)

For p = 0, the eigenvalues of A corresponding to the constant function are in fact

±n
2

as we can see with the expression of A, so the minoration (4.7) is allways valid

and, in particular, 0 /∈ Spec(A).

consequence. — The elliptic operator A(A + 1) is non negative (and positive if

n ≥ 3). Indeed A(A+ 1) = (A+ 1/2)2 − 1/4 and the values of the eigenvalues of A

give the conclusion.
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4.3. Equations satisfied. — On the cones, σ = (σ1, σ2) satisfies the equations

(
− ∂2

r +
1

r2
A(A + 1)

)
σ1 = λεσ1 (4.8)

∆2U
∗σ2 = ε2λεU

∗σ2 (4.9)

and the compatibility conditions have been given in (4.3) and (4.4):

σ2(1) = ε1/2σ1(ε), σ′
2(1) = ε3/2σ′

1(ε). (4.10)

We decompose σ1 along a base of eigenvectors of A : σ1 =
∑
σγ

1 and Aσγ
1 = γσγ

1 .

4.4. Boundary control. — We know that
∫ 1

ε
|(∂r + A

r
)σ1|2 ≤ λ + 1 for ε small

enough.This inequality stays valid for ξ1σ1 with a bigger constant: there exists Λ > 0

such that for any ε > 0

∑

γ∈Spec(A)

∫ 1

ε

|∂r(ξ1σ
γ
1 ) +

γ

r
(ξ1σ

γ
1 )|2 ≤ Λ.

Then, if we remark that ∂rσ+ γ
r
σ = r−γ∂r(r

γσ) we can write, for γ < 0 ⇒ γ ≤ −n
2
,

(εγσγ
1 (ε))2 =

(∫ 1

ε

∂r(r
γξ1σ

γ
1 )
)2

≤
∫ 1

ε

r2γ

∫ 1

ε

|∂r(ξ1σ
γ
1 ) +

γ

r
(ξ1σ

γ
1 )|2 (4.11)

So σγ
1 (ε) = O(ε1/2/

√
|2γ + 1|). This suggests that the limit σ is harmonic on M2(1)

with boundary condition Π<0σ2 = 0, if Π<0 denote the spectral projector of A on

the total eigenspace of negative eigenvalues. The limit problem appearing here has

a boundary condition of Atiyah-Patodi-Singer type [APS75]. Indeed we have

Proposition 4. There exists a constant C such that the boundary value satisfies,

for all ε > 0

‖Π<0

(
σ1,ε(ε)

)
‖2 ≤ Cε.

Proof. We know that q(ξ1ϕ1,ε, ϕ2,ε) is bounded by Λ, on the other hand the expres-

sion of the quadratic form (4.5) can be done with respect to the decomposition along
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Im Π>0 and Im Π<0. Namely:

q(ξ1ϕ1,ε, ϕ2,ε) =

∫ 1

ε

∣∣∣∣
(
∂r +

1

r
A
)
Π<0(ξ1σ1,ε)

∣∣∣∣
2

dr

+

∫ 1

ε

∣∣∣∣
(
∂r +

1

r
A
)
Π>0(ξ1σ1,ε)

∣∣∣∣
2

dr +
1

ε2

∫

M2(1)

|D2ϕ2|2

≥
∫ 1

ε

∣∣∣∣
(
∂r +

1

r
A
)
Π<0(ξ1σ1,ε)

∣∣∣∣
2

dr

≥
∫ 1

ε

[
|Π<0(ξ1σ1,ε)

′|2 +
1

r2
〈Π<0(ξ1σ1,ε), (A+ A2)Π<0(ξ1σ1,ε)〉

]
dr

− 1

ε

〈
Π<0σ1(ε), A ◦ Π<0σ1(ε)

〉

≥ n

2ε
‖Π<0σ1,ε(ε)‖2

because A(A+ 1) is non negative and −A ◦ Π<0 ≥ n
2
. �

4.5. Limit problem. — We study here good candidates for the limit Gauß-Bonnet

operator. On M1 the problem is clear, the question here is to identify the boundary

conditions on M2(1).

• On M1 the natural problem is the Friedrich extension of D1 on the cone, it is not

a real conical singularity and ∆1 = D∗
1 ◦D1 is the usual Hodge-de Rham operator

(we can see with the expression of ϕ1 using the Bessel functions, see appendix, that∑
γ |dε,γ̄|2ε−2γ̄+1/2γ̄ − 1 is bounded so limε→0

∑
γ |dε,γ̄|2 = 0 and the limit Uϕ has

only regular components, ie. in terms of fγ̄(r)).

• For n ≥ 2 the forms on M2(1) satisfying D2(ϕ) = 0 Π<0 ◦ U(ϕ) = 0 on the

boundary are precisely the L2 forms in Ker(D2) on the large manifold M̃2 obtained

from M2(1) by gluing a conic cylinder [1,∞[×S
n with metric dr2 + r2h, ie. the

exterior of the sphere in R
n+1.

Indeed, these L2 forms must satisfy (∂r + 1
r
A)σ = 0 or, ∀γ ∈ Spec(A), ∃σγ

0 ∈
ker(A− γ) such that σγ = r−γσγ

0 ∈ L2 which is possible only for γ > 1/2. This limit

problem is of the category non parabolic at infinity in the terminology of Carron

[C01], see particularly the theorem 2.1 there, then as a consequence of theorem 0.4

of the same paper we know that its kernel is finite dimensional, more precisely it

gives:

Proposition 5. The operator D2 acting on the forms of M2(1), with the boundary

condition Π<0 ◦ U = 0, is elliptic in the sens that the H1 norm of elements of the

domain is controled by the norm of the graph. Let’s D2 denote this operator.

Corollary 6. The kernel of D2 is of finite dimension and can be identify with a

subspace of the total space
∑

pH
p(M2(1)) of absolute cohomology.

We shall see in Corollary 15 below that this kernel is in fact the total space∑
p H

p(M2).
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Proof. We show that there exists a constant C > 0 such that for each ϕ ∈ H1(ΛT ∗M2(1))

satisfying Π<0 ◦ U(ϕ) = 0, then

‖ϕ‖H1 ≤ C(‖ϕ‖L2
+ ‖D2(ϕ)‖L2

).

Thus D2 is closable.

Denote, for such a ϕ, by ϕ̃ its harmonic prolongation on M̃2. Then ϕ̃ is in the

domain of the Dirac operator on M̃2 which is elliptic, it means that for each smooth

function f with compact support there exists a constant Cf > 0 such that

∀ψ ∈ dom(D2) ‖f.ψ‖H1 ≤ Cf(‖ψ‖L2
+ ‖D2(ψ)‖L2

)

(it is the fact that an operator ’non parabolic at infinity’ is continue from its domain

to H1
loc, Theorem 1.2 of Carron)

If we apply this inequality for some f = 1 on M2(1) and ψ = ϕ̃ we obtain in

particular that

‖ϕ‖H1(M2(1)) ≤ C(‖ϕ̃‖L2
+ ‖D2(ϕ̃)‖L2

)

with C = Cf . We remark first that

‖D2(ϕ̃)‖L2(fM2) = ‖D2(ϕ)‖L2(M2(1)).

Now we can write, by the use of cut-off functions, ϕ = ϕ0 + ϕ̄ with ϕ0 null near

the boundary and ϕ̄ supported in 1/2 ≤ r ≤ 1. Then ϕ̃0 = 0 so, for the control

of ‖ϕ̃‖L2
, we can suppose that ϕ = ϕ̄. We write Uϕ = σ and σ =

∑
γ σ

γ on the

eigenspaces of A. We have

‖ϕ̃‖2
L2(Rm−B(0,1)) =

∑

γ>0

1

2γ − 1
|σγ(1)|2,

now γ ≥ 1 and σγ(1/2) = 0, so one has σγ(1) =
∫ 1

1/2
∂r(r

γσγ) and by Cauchy-Schwarz

inequality

|σγ(1)|2 ≤
∫ 1

1/2

(r−γ∂r(r
γσγ))2

∫ 1

1/2

r2γ

or

|σγ(1)|2 ≤ ‖(∂r +
1

r
A)(σγ)‖2 1

2γ + 1

as a consequence

∑

γ>0

1

2γ − 1
|σγ(1)|2 ≤

∑

γ>0

‖(∂r +
1

r
A)(σγ)‖2 1

4γ2 − 1
≤ ‖D2(ϕ)‖2

then, changing the constant, we have also

‖ϕ‖H1(M2(1)) ≤ C(‖ϕ‖L2(M2(1) + ‖D2(ϕ)‖L2(M2(1)).

�
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alternative proof of the proposition, in the spirit of [APS75]. — To study this

boundary condition it is better to write again the p-form near the boundary as

ϕ2 = dr ∧ r−(n/2−p+1)β2 + r−(n/2−p)α2 with, as before, U(ϕ2) = σ2 = (β2, α2) .

On the cone r ∈ [1/2, 1], UD2U
∗ = ∂r + 1

r
A and we can construct, as in [APS75]

a parametrix of D2 by gluing an interior parametrix with one constructed on the

’long’ cone r ∈]0, 1] as follows :

Given a form ψ on M2(1), if we look for a form ϕ such that D2ϕ = ψ, we write

ψ as the sum of two terms, the first one with support in the neighborood of the

boundary and the second one nul near the boundary. On the second term we apply

an interior parametrix Q0 of the elliptic operator D2. Let’s now supposes that ϕ

is supported in the cone r ∈ [1/2, 1]. We decompose Uψ along the eigenspaces of

A : Uψ =
∑

γ ψ
γ and if also Uϕ =

∑
γ ϕ

γ , then ϕγ must satisfy

∂rϕ
γ +

γ

r
ϕγ = r−γ∂r(r

γϕγ) = ψγ .

We take the solution

ϕγ = r−γ

∫ r

1

ργψγ(ρ)dρ if γ < 0 (4.12)

ϕγ = r−γ

∫ r

0

ργψγ(ρ)dρ if γ > 0 (4.13)

Thus γ < 0 ⇒ ϕγ(1) = 0. It is now easy to verify that D2 satisfies the property (SE)

of [L97] p. 54 (with ρ(x) =
√
x).

This fact and the vacuity of Spec(A)∩] − 1,+1[ assure the construction of the

parametrix on the cone, see [L97] and also [BS88] who make this construction. In

fact the parametrix on the cone gives only H1 regularity with weight function, but

we will cut the singular point for M2(1), these results are in [L97] Proposition 1.3.12

and following.

4.6. Boundedness. — Recall that A(A + 1) is non negative.

Proposition 7. Let χ be a cut-off function supported in [3/4, 1[ equal to 1 on [7/8, 1[

and σ2,ε = U(ϕ2,ε). The family ψ2,ε = ϕ2,ε − U∗
(
Π<0(χσ2,ε)

)
belongs to the domain

of D2, is bounded in H1(M2) and satisfies limε→0 ‖ψ2,ε − ϕ2,ε‖ = 0 and

lim
ε→0

‖D2(ψ2,ε − ϕ2,ε)‖ = O(
√
ε) (4.14)

As a consequence of this result, there exists a subsequence of ϕ2,ε, which converge

in L2 to an harmonic form satisfying the boundary conditions of D2.

Proof. We write in the following σ2,ε = σ2. It is clear that ψ2,ε belongs to the domain

of D2, and is a bounded family for the operator norm. Thus, by ellipticity it is also

a bounded family in H1(M2). Now

‖ψ2,ε − ϕ2,ε‖2 ≤
∫ 1

3/4

|Π<0σ2(r)|2dr
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but as a consequence of (4.6)

|Π<0σ2(r)|2 = 2

∫ r

1/2

〈Π<0σ
′
2(t),Π<0σ2(t)〉dt+ |Π<0σ2(1/2)|2 ≤ 2εΛ + ε2 2

n
Λ (4.15)

using the inequality of Cauchy-Schwarz, the fact that the L2-norm of ϕε is 1 and

that (−A ◦ Π<0) ≥ n
2
. For the second estimate:

D2(ϕ2,ε − ψ2,ε) = D2U
∗
(
Π<0(χσ2,ε)

)
= χ′U∗Π<0(σ2,ε) + χD2U

∗Π<0(σ2,ε)

and the norm of the first term is controled by
∫ 1

3/4
|Π<0σ2(r)|2dr which is O(ε) by the

estimate(4.15) and the norm of the second term by ‖D2(ϕ2)‖ which is O(ε) because

qε(ϕε) is uniformly bounded (remark thatD2 preserves the orthogonal decomposition

following Π<0 and Π>0 on the cone). �

Corollary 8. The family Π>0σ2(1) is bounded in H1/2(Sn) as the boundary value of

ψ2,ε.

We now define a better prolongation of Π>0σ2(1) on M1(ε). More generally let

Pε : Π>0

(
H1/2(Sn)

)
→ H1(Cε,1) (4.16)

σ =
∑

γ∈Spec(A),γ>0

σγ 7→ Pε(σ) =
∑

γ∈Spec(A),γ>0

εγ−1/2r−γσγ . (4.17)

We remark that there exists a constant C such that

‖Pε(σ)‖2
L2(M1(ε)) ≤ C

∑
|σγ|2 = C‖Π>0σ2(1)‖2

L2(Sn) (4.18)

and also that, if ψ2 ∈ DomD2 and with the same cut-off function ξ1, which has

value 1 for 0 ≤ r ≤ 1/2 and 0 for r ≥ 1, then
(
ξ1Pε(ψ2|Sn), ψ2

)
defines through the

isometries U an element of H1(Mε). Let

ψ̃1 := ξ1Pε(ψ2|Sn).

We now decompose ϕ1,ε as follows. Let

ξ1ϕ1,ε = ξ1(ϕ
+
ε + ϕ−

ε )

according to the decomposition of σ1 along the positive or negative spectrum of A on

the cone. Then ψ̃1 and ϕ+
ε have the same values on the boundary so the difference

ξ1ϕ
+
ε − ψ̃1 can be viewed in H1(M1) by a prolongation by 0 on the ball, while the

boundary value of ϕ−
ε is small. We introduce for this term the cut-off function taken

in [ACP07]

ξε(r) =





1 if r ≥ 2
√
ε,

log(2ε) − log r

log(
√
ε)

if r ∈ [2ε, 2
√
ε],

0 if r ≤ 2ε.

Lemma 9. limε→0 ‖(1 − ξε)ξ1ϕ
−
ε ‖L2

= 0.
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This is a consequence of the estimate of the Proposition 4.

Proposition 10. The forms ψ1,ε = (1 − ξ1)ϕ1,ε + (ξ1ϕ
+
ε − ψ̃1) + ξεξ1ϕ

−
ε belong to

H1(M1) and define a bounded family.

Proof. We will show that each term is bounded. For the first one it is already done

in Proposition 1. For the second one, we remark that

(∂r +
A

r
)(ϕ+

ε − ψ̃1) = (∂r +
A

r
)(ϕ+

ε ) + ∂r(ξ1)Pε(ψ2|Sn) := fε (4.19)

and fε is uniformly bounded in L2(M1) because of (4.18). This estimate (4.18)

shows also that the L2-norm of (ϕ+
ε − ψ̃1) is bounded. Thus the family (ξ1ϕ

+
ε − ψ̃1)

is bounded for the q-norm in H1(M1) which is equivalent to the H1-norm.

For the third one we use the estimate due to the expression of the quadratic form.

Expriming that
∫
Cr,1

|D1(ξ1ϕ
−)|2 is bounded by Λ gives that

1

r

〈
σ−

1 (r), |A|σ−
1 (r)

〉
≤ Λ (4.20)

by the same argument as used for the Proposition 4. Now

‖D1(ξεξ1ϕ
−
ε )‖ ≤ ‖ξεD1(ξ1ϕ

−
ε )‖ + ‖|dξε|ξ1ϕ−

ε ‖ ≤ ‖D1(ξ1ϕ
−
ε )‖ + ‖|dξε|ξ1ϕ−

ε ‖

the first term is bounded and, with |A| ≥ n
2

and the estimate (4.20), we have

‖|dξε|ξ1ϕ−
ε ‖2 ≤ 8Λ

n log2 ε

∫ √
ε

ε

dr

r

≤ 4Λ

n| log ε| .

This complete the proof. �

In fact the decomposition used here is almost orthogonal:

Lemma 11.

< (ϕ+
ε − ψ̃1), ψ̃1 >== O(

√
ε).

proof of lemma 11. — If we decompose the terms under the eigenspaces of A we

see that only the positive eigenvalues are involved and, with fε =
∑

γ>0 f
γ and

(ϕ+
ε − ψ̃1) =

∑
γ>0 ϕ

γ
0 , the equation (4.19) and the fact that (ϕ+

ε − ψ̃1)(ε) = 0 give

ϕγ
0(r) = r−γ

∫ r

ε

ργfγ(ρ)dρ.
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Then for each positive eigenvalue γ of A

< (ϕγ
0 , ψ̃

γ
1 > = εγ−1/2

∫ 1

ε

r−2γ

∫ r

ε

ργ < σγ , f
γ(ρ) >L2(Sn) dρ

= εγ−1/2

∫ 1

ε

r−2γ+1

2γ − 1
rγ < σγ, f

γ(r) >L2(Sn) dr+

εγ−1/2

2γ − 1

∫ 1

ε

ργ < σγ , f
γ(ρ) >L2(Sn) dρ

≤ εγ−1/2

∫ 1

ε

r−γ+1

2γ − 1
< σγ , f

γ(r) >L2(Sn) dr+

εγ−1/2

(2γ − 1)
√

2γ + 1
‖σγ‖‖fγ‖L2(Cε,1)

≤ Cεγ−1/2‖σγ‖
ε(−2γ+3)/2

(2γ − 1)(2γ − 1)
√

2γ − 3
‖fγ‖L2(Cε,1)+

εγ−1/2

(2γ − 1)
√

2γ + 1
‖σγ‖‖fγ‖L2(Cε,1)

≤ C
√
ε‖σγ‖‖fγ‖L2(Cε,1).

This estimate gives the lemma.

Remark: For γ > 1, and so for n > 2, this estimate is better.

5. proof of theorem B

Lemma 12. If λ 6= 0, then λε 6= 0 for all ε and

lim
ε→0

(L2)ψ̃1,ε = 0

and also

lim
ε→0

(L2)ψ2,ε = 0

as well as in q-norm.

Proof. We know, by the Proposition 1, that there is a universal lower bound for

positive eigenvalues on M(ε), so if λ = limλε is positive, it means that all the λε

are also positive! We know that ψ2,ε is in the domain of D2, we decompose

ψ2,ε = ψ0
2,ε + ψ̄2,ε

along KerD2 and its orthogonal. Each part is bounded in H1(M2(1)) and can be

prolongated on the cone using Pε.

Let ψ̃0
1,ε = ξ1Pε(ψ

0
2 |Sn), ψ̄1,ε = ξ1Pε(ψ̄2|Sn) and

ψε = (ψ̃0
1,ε + ψ̄1,ε, ψ2,ε).

Now

ψ0
ε = (ψ̃0

1,ε, ψ
0
2,ε) ∈ dom(q).
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The L2-norm of ψ0
ε is bounded and

q(ψ0
ε) =

∫ 1

ε

|ξ′1(r)Pε(σ
0
2)|2

≤ C

∫ 1

1/2

|Pε(ψ
0
2 |Sn)|2

≤ O(εn−1)

due to the expression of Pε the fact that spec(|A|) ≥ n
2

and the uniform boundedness

of Pε. Because n ≥ 2 and Proposition 1 is true, we conclude that the distance of

ψ0
ε to Ker ∆ε is O(ε). But we know that λε 6= 0, so ϕε is orthogonal to Ker ∆ε and,

with the previous result

< ϕε, ψ
0
ε >= O(

√
ε).

On the other hand we have that∫
|D2ψ̄2,ε|2 = O(ε) ⇒ ‖ψ̄2,ε‖L2(M2(1)) = O(

√
ε)

and finally ‖ψ̄2,ε‖H1(M2(1)) = O(
√
ε) by ellipticity so ‖ψ̄1,ε‖L2(M1(ε)) = O(

√
ε) by

uniform continuity of Pε. and we have also

< ϕε, ψε >= O(
√
ε).

Now we use Proposition 7 and Lemma 11, the conclusion is

lim
ε→0

‖ψ̃1,ε‖2 + ‖ψ2,ε‖2 = 0.

�

As a consequence of this result and Proposition 7, we obtain

Corollary 13. limε→0(L2)ϕ2,ε = 0.

Recall now that ψ1,ε = ϕ1,ε − ψ̃1,ε − (1 − ξε)ξ1ϕ
−
ε and that we know, by the last

Lemma and Lemma 9, that the two last terms converge to 0.

Corollary 14. We can extract from ψ1,ε a subsequence which converge in L2 and

weakly in H1, and any such subsequence defines at the limit a form ϕ ∈ H1(M1)

such that

‖ϕ‖L2
= 1 and ∆ϕ = λϕ weakly.

6. proof of theorem C

6.1. multiplicity of 0. The dimension of the kernel of ∆ε is given by the co-

homology of M which can be calculated with the Mayer-Vietoris sequence asso-

ciated to the covering U1, U2 introduced at the beginning, see Proposition 1. If

we remember also that Hp(Mj − B,R) ∼ Hp(Mj ,R) for p < m, we obtain that

Hp(M,R) ∼ Hp(M1,R) ⊕ Hp(M2,R) for 1 ≤ p ≤ (m − 1) while H0,m(M,R) ∼
H0,m(M1,R) ∼ H0,m(M2,R).
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The transplantation of the harmonic forms of M1 in M has been described in

[AC93]. With the previous calculation, we have good candidates for transplantation

of the cohomology of M2: for each σ2 ∈ KerD2 with L2-norm equal to 1, let

ψ̃ε = (ψ̃1, ψ2) = U∗
(
ξ1Pε(σ2|Sn), σ2

)
.

Now let ϕε ∈ Ker ∆ε. We apply to ϕε the preceding estimates: there exists a subse-

quence which gives at the limit ψ1 ∈ Ker ∆1 and ψ2 ∈ KerD2; and only one of these

two terms can be zero. The conclusion is that all the harmonic forms of Mε can be

approched by forms like ψ̃ε or χεϕ1, with ϕ1 ∈ Ker∆1. As a consequence on has

Corollary 15. For 1 ≤ p ≤ (m − 1) the two spaces Hp(M2,R) and KerD2 are

isomorphic.

6.2. convergence of the positive spectrum. The proof is made by induction.

We show first that limλ1(ε) = λ1:

Proof. We know by the Proposition A that lim supλ1(ε) ≤ λ1 and by Proposi-

tion B that lim inf λ1(ε) is in the positive spectrum of ∆1, and as a consequence

lim inf λ1(ε) ≥ λ1. �

Now suppose that for all j, 1 ≤ j ≤ k one has limλj(ε) = λj, we have to show that

limλk+1(ε) = λk+1.

Proof. We know by Proposition A that lim sup λk+1(ε) ≤ λk+1; let ϕ
(1)
ε , . . . , ϕ

(k+1)
ε

be an orthonormal family of eigenforms on M(ε):

∆εϕ
(j)
ε = λj(ε)ϕ

(j)
ε

and choose a sequence εl → 0 such that

lim
l→∞

λk+1(εl) = lim inf λk+1(ε).

We apply to each ϕ
(j)
ε the same decomposition as in Proposition 10, this gives a

family ψ
(1)
ε , . . . , ψ

(k+1)
ε bounded in H1(M1) and such that for each indice j

lim
ε→0

‖ϕ(j)
1,ε − ψ(j)

ε ‖ = 0

while, as in Corollary 13

lim
ε→0

(L2)ϕ
(j)
2,ε = 0.

So, by extraction of a subsequence,we can suppose that ψ
(1)
εl , . . . , ψ

(k+1)
εl converge in

L2(M1) and weakly in H1(M1), the limit ϕ(1), . . . , ϕ(k+1) is orthonormal and satisfies

∀j, 1 ≤ j ≤ k∆1ϕ
(j) = λjϕ

(j) and ∆1ϕ
(k+1) = lim inf λk+1(ε)ϕ

(k+1).

This shows that lim inf λk+1(ε) ≥ λk+1 and finishes the proof. �
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