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DETECTION OF CELLULAR AGING IN A GALTON-WATSON PROCESS

JEAN-FRANÇOIS DELMAS AND LAURENCE MARSALLE

Abstract. We consider the bifurcating Markov chain model introduced by Guyon to detect
cellular aging from cell lineage. To take into account the possibility for a cell to die, we use
an underlying Galton-Watson process to describe the evolution of the cell lineage. We give
in this more general framework a weak law of large number, an invariance principle and thus
fluctuation results for the average over one generation or up to one generation. We also
prove the fluctuations over each generation are independent. Then we present the natural
modifications of the tests given by Guyon in cellular aging detection within the particular
case of the auto-regressive model.

1. Introduction

This work is motivated by experiments done by biologists on Escherichia coli, see Stewart
and al. [16]. E. coli is a rod-shaped single celled organism which reproduces by dividing in
the middle. It produces a new end per progeny cell. We shall call this new end the new pole
whereas the other end will be called the old pole. The age of a cell is given by the age of
its old pole (i.e. the number of generations in the past of the cell before the old pole was
produced). Notice that at each generation a cell gives birth to 2 cells which have a new pole
and one of the two cells has an old pole of age 1 (which corresponds to the new pole of its
mother), while the other has an old pole with age larger than one (which corresponds to the
old pole of its mother). The former is called the new pole daughter and the latter the old pole
daughter. Experimental data, see [16], suggest strongly that the growth rate of the new pole
daughter is significantly larger than the growth rate of the old pole daughter. For asymmetric
aging see also Ackermann [2] for an other case of asymmetric division, and Lindner and al.
[12] or Ackermann and al. [1] on asymmetric damage repartition.

Guyon [9] studied a mathematical model, called bifurcation Markov chain (BMC), of an
asymmetric Markov chain on a regular binary tree. This model allows to represent an asym-
metric repartition for example of the growth rate of a cell between new pole and old pole
daughters. Using this model, Guyon provides tests to detect a difference of the growth rate
between new pole and old pole on a single experimental data set, whereas in [16] averages over
many experimental data sets have to be done to detect this difference. In the BMC model,
cells are assumed to never die (a death corresponds to no more division). Indeed few death
appear in normal nutriment saturated conditions. However, under stress condition, dead cells
can represent a significant part of the population. It is therefore natural to take this random
effect into account by using a Galton-Watson (GW) process. Our purpose is to study a model
of bifurcating Markov chains on a Galton Watson tree instead of a regular tree. Notice that
inferences on symmetric bifurcating processes on regular trees have been studied, see the sur-
vey of Hwang, Basawa and Yea [11] and the seminal work of Cowan and Staudte [7]. We also
learned of a recent independent work on inferences for asymmetric auto-regressive models by
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Bercu, De Saporta and Gégout-Petit [6]. Other models on cell lineage with differentiation
have been investigated, see for example Bansaye [5, 4] on parasite infection and Evans and
Steinsaltz [8] on asymptotic models relying on super-Brownian motion.

1.1. The statistical model. In order to study the behavior of the growth rate of cells
in [16], we set some notations: we index the genealogical tree by the regular binary tree
T = {∅}∪⋃

k∈N∗{0, 1}k ; ∅ is the label of the ancestor and if i denotes a cell, let i0 denote the
new pole progeny cell, and i1 the old pole progeny cell. The growth rate of cell i is Xi. When
the mother gives birth to two cells among which a unique one divides, we consider that the
cell which doesn’t divide doesn’t grow. We work with the following model (see Section 1.2
for a more general model of BMC on GW tree):

• With probability p1,0, i gives birth to two cells i0 and i1 which will both divide. The
growth rates of the daughters Xi0 and Xi1 are then linked to the mother’s one Xi

through the following auto-regressive equations

(1)

{

Xi0 = α0Xi + β0 + εi0
Xi1 = α1Xi + β1 + εi1,

where α0, α1 ∈ (−1, 1), β0, β1 ∈ R and ((εi0, εi1), i ∈ T) is a sequence of independent
centered bi-variate Gaussian random variables, with covariance matrix

σ2

(

1 ρ
ρ 1

)

, σ2 > 0, ρ ∈ (−1, 1).

• With probability p0, only the new pole i0 divides. Its growth rate Xi0 is linked to its
mother’s one Xi through the relation

(2) Xi0 = α′
0Xi + β′0 + ε′i0,

where α′
0 ∈ (−1, 1), β′0 ∈ R and (ε′i0, i ∈ T) is a sequence of independent centered

Gaussian random variables with variance σ2
0 > 0.

• With probability p1, only the old pole i1 divides. Its growth rate Xi1 is linked to it’s
mother’s one through the relation

(3) Xi1 = α′
1Xi + β′1 + ε′i1,

where α′
1 ∈ (−1, 1), β′1 ∈ R and (ε′i1, i ∈ T) is a sequence of independent centered

Gaussian random variables with variance σ2
1 > 0.

• The sequences ((εi0, εi1), i ∈ T), (ε′i0, i ∈ T) and (ε′i1, i ∈ T) are independent.

In Section 6, we first compute the maximum likelihood estimator (MLE) of the parameter

(4) θ = (α0, β0, α1, β1, α
′
0, β

′
0, α

′
1, β

′
1, p1,0, p0, p1)

and of κ = (σ, ρ, σ0, σ1). Then, we prove that they are strongly consistent and that the MLE
of θ is asymptotically normal, see Proposition 6.3 and Remark 6.4. Notice that the MLE
of (p1,0, p0, p1), which is computed only on the underlying GW tree, was already known, see
for example [13]. Eventually, we explicit a test for aging detection, for instance the null
hypothesis {(α0, β0) = (α1, β1)} against its alternative{(α0 , β0) 6= (α1, β1)}, see Proposition
6.7. It appears that, for those hypothesis, using the test statistic from [9] with incomplete
data due to death cells instead of the test statistic from Proposition 6.7 is not conservative,
see Remark 6.8.

To prove those results, we shall consider a more general framework of BMC which is
described in Section 1.2. An important tool is the auxiliary Markov chain which is defined in
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Section 1.3. Eventually easy to read version of our main general results are given in Section
1.4.

1.2. The mathematical model of bifurcating Markov chain (BMC). We first intro-
duce some notations related to the regular binary tree. Let G0 = {∅}, Gk = {0, 1}k for

k ∈ N
∗, Tr =

⋃

0≤k≤r

Gk. The new (resp. old) pole daughter of a cell i ∈ T is denoted by i0

(resp. i1) and 0 (resp. 1) if i = ∅ is the initial cell or root of the tree. The set Gk corresponds
to all possible cells in the k-th generation. We denote by |i| the generation of i (|i| = k if and
only if i ∈ Gk).

For a cell i ∈ T, let Xi denote a quantity of interest (for example its growth rate). We
assume that the quantity of interest of the daughters of a cell i, conditionally on the gen-
erations previous to i, depends only on Xi. This property is stated using the formalism of
BMC. More precisely, let (E, E) be a measurable space, P a probability kernel on E × E2

with values in [0, 1]: P (·, A) is measurable for all A ∈ E2 and P (x, ·) is a probability measure
on (E2, E2), and for any measurable real-valued bounded function g defined on E3 we set

Pg(x) =

∫

E2

g(x, y, z) P (x, dy, dz).

Definition 1.1. We say a stochastic process indexed by T, X = (Xi, i ∈ T), is a bifurcating
Markov chain on a measurable space (E, E) with initial distribution ν and probability kernel
P , a P -BMC in short, if:

• X∅ is distributed as ν.
• For any measurable real-valued bounded functions (gi, i ∈ T) defined on E3, we have

for all k ≥ 0,

E

[

∏

i∈Gk

gi(Xi,Xi0,Xi1)|σ(Xj ; j ∈ Tk)
]

=
∏

i∈Gk

Pgi(Xi).

We consider a metric measurable space (S,S) and add a cemetery point to S, ∂. Let
S̄ = S ∪ {∂} and S̄ be the σ-field generated by S and {∂}. (In the biological framework of
the previous Section, S corresponds to the state space of the quantities of interest and ∂ is
the default value for dead cells.) Let P ∗ be a probability kernel defined on S̄ × S̄2 such that

(5) P ∗(∂, {(∂, ∂)}) = 1.

Notice that this condition means that ∂ is an absorbing state. (In the biological framework
of the previous Section, condition (5) states that no dead cell can give birth to a living cell.)

Definition 1.2. Let X = (Xi, i ∈ T) be a P ∗-BMC on (S̄, S̄), with P ∗ satisfying (5). We
call (Xi, i ∈ T

∗), with T
∗ = {i ∈ T,Xi 6= ∂}, a bifurcating Markov chain on a Galton-Watson

tree. The P ∗-BMC is said spatially homogeneous if p1,0 = P ∗(x, S ×S), p0 = P ∗(x, S ×{∂})
and p1 = P ∗(x, {∂} × S) do not depend on x ∈ S. A spatially homogeneous P ∗-BMC is said
super-critical if m > 1 where m = 2p1,0 + p1 + p0.

Notice that condition (5) and the spatially homogeneity property implies that T
∗ is a GW

tree. This justify the name of BMC on a Galton-Watson tree. The GW tree is super-critical if
and only if m > 1. From now on, we shall only consider super-critical spatially homogeneous
P ∗-BMC on a Galton-Watson tree. (In the biological framework of the previous Section, T

∗

denotes the sub-tree of living cells and the notations p1,0, p0 and p1 are consistent since, for
instance, P ∗(x, S × S) represents the probability that a living cell with growing rate x gives
birth to two living cells.)
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We now consider the Galton-Watson sub-tree T
∗. For any subset J ⊂ T, let

(6) J∗ = J ∩ T
∗ = {j ∈ J ;Xj 6= ∂}

be the subset of J of living cells and |J | be the cardinal of J . The process Z = (Zk, k ∈ N),
where Zk = |G∗

k|, is a GW process with reproduction generating function

ψ(z) = (1 − p0 − p1 − p1,0) + (p0 + p1)z + p1,0z
2.

Notice the average number of daughters alive is m. We have, for k ≥ 0,

(7) E[|G∗
k|] = mk and E[|T∗

r|] =

r
∑

q=0

E[|G∗
q|] =

r
∑

q=0

mq =
mr+1 − 1

m− 1
.

Let us recall some well-known facts on super-critical GW, see e.g. [10] or [3]. The extinction

probability of the GW process Z is η = P(|T∗| < ∞) = 1 − m− 1

p1,0
. There exists a random

variable W s.t.

(8) W = lim
q→∞

m−q|G∗
q| a.s. and in L2,

P(W = 0) = η and whose Laplace transform, ϕ(λ) = E[e−λW ], satisfies ϕ(λ) = ψ(ϕ(λ/m)) for
λ ≥ 0. Notice the distribution of W is completely characterized by this functional equation
and E[W ] = 1.

For i ∈ T, we set ∆i = (Xi,Xi0,Xi1), the mother-daughters quantities of interest. For a
finite subset J ⊂ T, we set

(9) MJ(f) =

{

∑

i∈J f(Xi) for f ∈ B(S̄),
∑

i∈J f(∆i) for f ∈ B(S̄3),

with the convention that M∅(f) = 0, and the following two averages of f over J

(10) M̄J(f) =
1

|J |MJ(f) if |J | > 0 and M̃J(f) =
1

E[|J |] MJ(f) if E[|J |] > 0.

We shall study the asymptotic limit of the averages of a function f for the BMC over the
n-th generation, M̄G∗

n
(f) and M̃G∗

n
(f), or over all the generations up to the n-th, M̄T∗

n
(f) and

M̃T∗
n
(f), as n goes to infinity. Notice the no death case studied in [9] corresponds to p1,0 = 1

that is m = 2.

1.3. The auxiliary Markov chain. We define the sub-probability kernel on S×S2 P (·, ·) =
P ∗(·, ·⋂S2) and two sub-probability kernels on S × S:

P ∗
0 = P ∗(·, (·

⋂

S) × S̄) and P ∗
1 = P (·, S̄ × (·

⋂

S)).

Notice that P ∗
0 (resp. P ∗

1 ) is the restriction of the first (resp. second) marginal of P ∗ to S.
From spatial homogeneity, we have for all x ∈ S, P (x, S2) = p1,0 and, for δ ∈ {0, 1},

P ∗
δ (x, {∂}) = 0 and P ∗

δ (x, S) = pδ + p1,0.

We introduce an auxiliary Markov chain (see Guyon [9] for the case m = 2). Let Y = (Yn, n ∈
N) be a Markov chain on S with Y0 distributed as X∅ and transition kernel

Q =
1

m
(P ∗

0 + P ∗
1 ).
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The distribution of Yn corresponds intuitively to the distribution of XI conditionally on
I ∈ T

∗, where I is chosen at random in Gn, see Lemma 2.1 for a precise statement. We shall
write Ex when X∅ = x (i.e. ν is the Dirac mass at x ∈ S).

Last, we need some more notations : if (E, E) is a metric measurable space, then Bb(E)
(resp. B+(E)) denotes the set of bounded (resp. non-negative) real-valued measurable func-
tions defined on E. The set Cb(E) (resp. C+(E)) denotes the set of bounded (resp. non-
negative) real-valued continuous functions defined on E. For a finite measure λ on (E, E)
and f ∈ Bb(E) ∪ B+(E) we shall write 〈λ, f〉 for

∫

f(x)dλ(x).

We consider the following hypothesis (H):
The Markov chain Y is ergodic, that is there exists a probability measure µ on (S,S) s.t., for
all f ∈ Cb(S) and all x ∈ S, lim

k→∞
Ex[f(Yk)] = 〈µ, f〉.

Notice that under (H), the probability measure µ is the unique stationary distribution of
Y and (Yn, n ∈ N) converges in distribution to µ.

1.4. The main results. We can now state our principal results on the weak law of large
numbers and fluctuations for the averages over a generation or up to a generation. Those
results are a particular case of the more general statements given in Theorem 3.4 and Theorem
5.2, using Remark 2.2.

Theorem 1.3. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree and W be defined by (8). We assume that (H) holds and that x 7→ P ∗g(x) ∈ Cb(S̄) for
all g ∈ Cb(S̄

3). Let f ∈ Cb(S̄
3).

• Weak law of large numbers. We have the following convergence in probability:

1{|G∗
r |>0}

1

|G∗
r |

∑

i∈G∗
r

f(∆i)
P−−−→

r→∞
〈µ,P ∗f〉1{W 6=0},

1{|G∗
r |>0}

1

|T∗
r|

∑

i∈T∗
r

f(∆i)
P−−−→

r→∞
〈µ,P ∗f〉1{W 6=0}.

• Fluctuations. We have the following convergence in distribution:

1{|G∗
r |>0}

1
√

|T∗
r|

∑

i∈T∗
r

(

f(∆i) − P ∗f(Xi)
)

(d)−−−→
r→∞

1{W 6=0}σG,

where σ2 = 〈µ,P ∗(f2) − (P ∗f)2〉 and G is a Gaussian random variable with mean
zero, variance 1, and independent of W .

One can get the strong law of large numbers under stronger hypothesis on Y (such as geo-
metric ergodicity) using similar arguments as in [9]. We also can prove that the fluctuations
over each generation are asymptotically independent.

Theorem 1.4. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree. We assume that (H) holds and that x 7→ P ∗g(x) ∈ Cb(S̄) for all g ∈ Cb(S̄
3). Let d ≥ 1,

and for ℓ ∈ {1, . . . , d}, fℓ ∈ Cb(S̄
3) and σ2

ℓ = 〈µ,P ∗(f2
ℓ ) − (P ∗fℓ)

2〉. We set for f ∈ Cb(S̄
3)

Nn(f) =
1

√

|G∗
n|

∑

i∈G∗
n

(

f(∆i) − P ∗f(Xi)
)

.
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Then we have the following convergence in distribution:

(Nn(f1), . . . , Nn−d+1(fd))1{|G∗
n|>0}

(d)−−−→
n→∞

1{W 6=0}(σ1G1, . . . , σdGd),

where G1, . . . , Gd are independent Gaussian random variables with mean zero and variance 1
and are independent of W given by (8).

Even if the results on fluctuations in Theorem 1.3 are not complete, see the Remark 1.5
below, they are still sufficient to study the statistical model we gave in Section 1.1 for the
detection of cellular aging from cell lineage when death of cells can occur.

Remark 1.5. Let V = (Vr, r ≥ 0) be a Markov chain on a finite state space. We assume V
is irreducible, with transition matrix R and unique invariant probability µ. Then it is well
known, see [14], that 1

r

∑r
i=1 h(Vi) converges a.s. to 〈µ, h〉 and that, to prove the fluctuations

result, one solves the Poisson equation H −RH = h− 〈µ, h〉, writes

(11)
1√
r

r
∑

i=1

(

h(Vi) − 〈µ, h〉
)

=
1√
r

r
∑

i=1

(

H(Vi) −RH(Vi−1)
)

+
1√
r
RH(V0) −

1√
r
RH(Vr),

and then uses martingale theory (we use similar techniques to prove the fluctuations in
Theorem 1.3) to obtain the asymptotic normality of 1√

r

∑r
i=1H(Vi) − RH(Vi−1). It then

only remains to say that 1√
r
RH(V0) and 1√

r
RH(Vr) converge to 0 to conclude.

Assume that hypothesis of Theorem 1.3 hold and that x 7→ P ∗(x,A) is continuous for all
A ∈ B(S̄2). Let h ∈ Cb(S̄). Theorem 1.3 implies that 1{|G∗

r |>0}
1

|T∗
r |

∑

i∈T∗
r
h(Xi) converges in

probability to 〈µ, h〉1{W 6=0}. To get the fluctuations, that is the limit of

1{|G∗
r |>0}

1
√

|T∗
r|

∑

i∈T∗
r

(

h(Xi) − 〈µ, h〉
)

as r goes to infinity, using martingale theory, one can think of using the same kind of approach
in order to use the result on fluctuations of Theorem 1.3. But then notice that what will
correspond to the boundary term in (11) at time r, 1√

r
RH(Vr), will now be a boundary term

over the last generation G∗
r whose cardinal is of the same order as |T∗

r |. Thus the order of
the boundary term is not negligible, which unable us to conclude.

The fluctuations for
∑

i∈T∗
r
h(Xi) are still an open question.

1.5. Organization of the paper. We quickly study the auxiliary chain in Section 2. We
state the first result on the weak law of large number in Section 3. Section 4 is devoted to
some preparatory results in order to apply results on fluctuations for martingale. Our main
result, Theorem 5.2, is stated and proved in Section 5. The biological model of Section 1.1 is
analyzed in Section 6.

2. Preliminary result and notations

Recall the Markov chain Y defined in Section 1.3.

Lemma 2.1. We have, for f ∈ Bb(S) ∪ B+(S),

(12) E[f(Yn)] = m−n
∑

i∈Gn

E[f(Xi)1{i∈T∗}] =

∑

i∈Gn
E[f(Xi)1{i∈T∗}]

∑

i∈Gn
P(i ∈ T∗)

= E[f(XI)|I ∈ T
∗],

where I is a uniform random variable on Gn independent of X.
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Proof. We consider the first equality. Recall that Y0 has distribution ν. For i = i1 . . . in ∈ Gn,
we have, thanks to (5) and the definition of P ∗,

E[f(Xi)1{i∈T∗}] = E[f(Xi)1{Xi 6=∂}] = 〈ν,
(

P ∗
i1 . . . P

∗
in

)

f〉,

so that
∑

i∈Gn

E[f(Xi)1{i∈T∗}] =
∑

i1,...,in∈{0,1}
〈ν,

(

P ∗
i1 . . . P

∗
in

)

f〉

= 〈ν, (P ∗
0 + P ∗

1 )n f〉 = mn〈ν,Qnf〉 = mn
E[f(Yn)].

This gives the first equality. Then take f = 1 in the previous equality to get mn =
∑

i∈Gn
P(i ∈ T

∗) and the second equality of (12). The last equality of (12) is obvious.
�

We recall that ν denotes the distribution of X∅. Any function f defined on S is extended
to S̄ by setting f(∂) = 0. Let F be a vector subspace of B(S) s.t.

(i) F contains the constants;
(ii) F 2 := {f2; f ∈ F} ⊂ F ;

(iii) – F ⊗ F ⊂ L1(P (x, ·)) for all x ∈ S and P (f0 ⊗ f1) ∈ F for all f0, f1 ∈ F ;
– For δ ∈ {0, 1}, F ⊂ L1(P ∗

δ (x, ·)) for all x ∈ S and P ∗
δ (f) ∈ F for all f ∈ F ;

(iv) There exists a probability measure µ on (S,S) s.t. F ⊂ L1(µ) and lim
n→∞

Ex[f(Yn)] =

〈µ, f〉 for all x ∈ S and f ∈ F ;
(v) For all f ∈ F , there exists g ∈ F s.t. for all r ∈ N, |Qrf | ≤ g;

(vi) F ⊂ L1(ν).

By convention a function defined on S̄ is said to belong to F if its restriction to S belongs to
F .

Remark 2.2. Notice that if (H) is satisfied and if x 7→ P ∗g(x) is continuous on S for all
g ∈ Cb(S̄

3) then the set Cb(S) fulfills (i) − (vi).

3. Weak law of large numbers

We give the first result of this section. Recall notations (6) and (9).

Theorem 3.1. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree. Let F satisfy (i)-(vi) and f ∈ F . The sequence (M̃G∗
q
(f), q ∈ N) converges to 〈µ, f〉W

in L2, where W is defined by (8). We also have that the sequence (M̄G∗
q
(f)1{|G∗

q |>0}, q ∈ N)

converges to 〈µ, f〉1{W 6=0} in probability.

Proof. We first assume that 〈µ, f〉 = 0. We have,

‖
∑

i∈G∗
q

f(Xi)‖2
L2 = E

[

(
∑

i∈Gq

f(Xi)1{i∈T∗})
2
]

=
∑

i∈Gq

E[f2(Xi)1{i∈T∗}] +Bq = mq
E[f2(Yq)] +Bq,

with Bq =
∑

(i,j)∈G2
q,i6=j

E[f(Xi)f(Xj)1{(i,j)∈T∗2}], where we used (12) for the last equality.

Since the sum in Bq concerns all pairs of distinct elements of Gq, we have that i ∧ j, the
most recent common ancestor of i and j, does not belong to Gq. We shall compute Bq by
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decomposing according to the generation of k = i ∧ j: Bq =

q−1
∑

r=0

∑

k∈Gr

Ck with

Ck =
∑

(i,j)∈G2
q,i∧j=k

E[f(Xi)f(Xj)1{(i,j)∈T∗2}].

If |k| = q− 1, using the Markov property of X and of the GW process at generation q− 1,
we get

Ck =
∑

(i,j)∈G2
1,i∧j=∅

E[EXk
[f(Xi)f(Xj)1{(i,j)∈T∗2}]1{k∈T∗}]

= 2E[P (f ⊗ f)(Xk)1{k∈T∗}].

If |k| < q − 1, we have, with r = |k|,

Ck = 2
∑

(i,j)∈G2
q−r−1

E[EXk0
[f(Xi)1{i∈T∗}]EXk1

[f(Xj)1{j∈T∗}]1{k0∈T∗,k1∈T∗}]

= 2E[
∑

i∈Gq−r−1

EXk0
[f(Xi)1{i∈T∗}]

∑

j∈Gq−r−1

EXk1
[f(Xj)1{j∈T∗}]1{k0∈T∗,k1∈T∗}]

= 2m2(q−r−1)
E[EXk0

[f(Yq−r−1)]EXk1
[f(Yq−r−1)]1{k0∈T∗,k1∈T∗}]

= 2m2(q−r−1)
E[P (Qq−r−1f ⊗Qq−r−1f)(Xk)1{k∈T∗}],

where we used the Markov property of X and of the GW process at generation r+ 1 for the
first equality, (12) for the third equality and the Markov property at generation r for the last
equality.

In particular, we get that Ck = 2m2(q−r−1)
E[P (Qq−r−1f ⊗Qq−r−1f)(Xk)1{k∈T∗}] for all k

s.t. |k| ≤ q − 1. Using (12), we deduce that

Bq = 2

q−1
∑

r=0

m2(q−r−1)
∑

k∈Gr

E[P (Qq−r−1f ⊗Qq−r−1f)(Xk)1{k∈T∗}]

= 2

q−1
∑

r=0

m2q−r−2〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉.

Therefore, we get

‖M̃G∗
q
(f)‖2

L2 = m−2q‖
∑

i∈G∗
q

f(Xi)‖2
L2

= m−q
E[f2(Yq)] + 2m−2

q−1
∑

r=0

m−r〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉.(13)

As f ∈ F , properties (ii), (iv), (v) and (vi) imply that lim
q→∞

m−q
E[f2(Yq)] = 0. Properties

(iii), (iv) and (v) with 〈µ, f〉 = 0 implies that P (Qq−r−1f ⊗ Qq−r−1f) converges to 0 as q
goes to infinity (with r fixed) and is bounded uniformly in q > r by a function of F . Thus,
properties (v) and (vi) imply that 〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉 converges to 0 as q goes to
infinity (with r fixed) and is bounded uniformly in q > r by a finite constant, say K. For
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any ε > 0, we can choose r0 s.t.
∑

r>r0
m−rK ≤ ε and q0 > r0 s.t. for q ≥ q0 and r ≤ r0, we

have |〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉| ≤ ε/r0. We then get that for all q ≥ q0

q−1
∑

r=0

m−r|〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉| ≤
r0

∑

r=0

r−1
0 ε+

q−1
∑

r=r0+1

m−rK ≤ 2ε.

This gives that lim
q→∞

q−1
∑

r=0

m−r〈ν,QrP (Qq−r−1f ⊗Qq−r−1f)〉 = 0. Eventually, we get from (13)

that if 〈µ, f〉 = 0, then lim
q→∞

‖M̃G∗
q
(f)‖L2 = 0.

For any function f ∈ F , we have, with g = f − 〈µ, f〉,
M̃G∗

q
(f) = M̃G∗

q
(g) + 〈µ, f〉m−q|G∗

q|.

As g ∈ F and 〈µ, g〉 = 0, the previous computations yield that lim
q→∞

‖M̃G∗
q
(g)‖L2 = 0. As

(m−q|G∗
q|, q ≥ 1) converges in L2 (and a.s.) to W , we get that M̃G∗

q
(f) converges to 〈µ, f〉W

in L2.
Then use that m−q|G∗

q | converges a.s. to W to get the second part of the Theorem. �

We now prove a similar result for the average over the r-th first generations. We set
tr = E[|T∗

r |], see (7). We first state en elementary Lemma whose proof is left to the reader.

Lemma 3.2. Let (vr, r ∈ N) be a sequence of non negative real numbers converging to a ∈ R+,
and m a real such that m > 1. Let

wr =
r

∑

q=0

mq−r−1vq.

Then the sequence (wr, r ∈ N) converges to a/(m− 1).

Recall notations (6) and (9).

Theorem 3.3. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree. Let F satisfy (i)-(vi) and f ∈ F . The sequence (M̃T∗
r
(f), r ∈ N) converges to 〈µ, f〉W

in L2, where W is defined by (8). We also have that the sequence (M̄T∗
r
(f)1{|T∗

r |>0}, r ∈ N)
converges to 〈µ, f〉1{W 6=0} in probability.

Proof. We have
∥

∥

∥

∥

∥

∥

1

tr

∑

i∈T∗
r

f(Xi) − 〈µ, f〉W

∥

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

∥

r
∑

q=0

mq

tr

(

M̃G∗
q
(f) − 〈µ, f〉W

)

∥

∥

∥

∥

∥

∥

L2

≤
r

∑

q=0

mq

tr

∥

∥

∥
M̃G∗

q
(f) − 〈µ, f〉W

∥

∥

∥

L2

=
m− 1

1 −m−r−1

r
∑

q=0

mq−r−1
∥

∥

∥M̃G∗
q
(f) − 〈µ, f〉W

∥

∥

∥

L2
.

The first part of the Theorem follows from Theorem 3.1 and Lemma 3.2.
Use that m−q|G∗

q| converges a.s. to W to deduce that t−1
r |T∗

r | converges a.s. to W , and
thus get the second part of the Theorem. �
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We end this section, with an extension of the results to functions defined on the mother-
daughters quantities of interest ∆i = (Xi,Xi0,Xi1) ∈ S̄3. Recall notations (6) and (9).

Theorem 3.4. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a

GW tree. Let F satisfy (i)-(vi) and f ∈ B(S̄3). We assume that P ∗f and P ∗(f2) exist

and belong to F . Then the sequences (M̃G∗
q
(f), q ∈ N) and (M̃T∗

r
(f), r ∈ N) converge to

〈µ,P ∗f〉W in L2, where W is defined by (8); and the sequences (M̄G∗
q
(f)1{|G∗

q |>0}, q ∈ N) and

(M̄T∗
r
(f)1{|G∗

r |>0}, r ∈ N) converge to 〈µ,P ∗f〉1{W 6=0} in probability.

Proof. Recall that MG∗
q
(f) =

∑

i∈G∗
q
f(∆i). The Markov property for BMC gives

‖MG∗
q
(f)‖2

L2 = ‖MG∗
q
(P ∗f)‖2

L2 + E[MG∗
q
(P ∗(f2) − (P ∗f)2)].

Since (m−qMG∗
q
(P ∗(f2) − (P ∗f)2), q ∈ N) converges to 〈µ,P ∗(f2) − (P ∗f)2〉 in L2 and thus

in L1, we have that m−2q
E[MG∗

q
(P ∗(f2)− (P ∗f)2)] converges to 0 as q goes to infinity. Then,

we deduce the convergence of (M̃G∗
q
(f), q ∈ N) and (M̄G∗

q
(f)1{|G∗

r |>0}, q ∈ N) from Theorem
3.1.

The proof for the convergence of (M̃T∗
r
(f), r ∈ N) and (M̄T∗

r
(f)1{|G∗

r |>0}, r ∈ N) mimics
then the proof of Theorem 3.3. �

4. Technical results about the weak law of large numbers

The technical Propositions of this section deal with the average of a function f when
going through T

∗ via timescales (τn(t), t ∈ [0, 1]) preserving the genealogical order. Roughly
speaking, these timescales allow to visit the sub-tree T

∗. In order to define (τn(t), t ∈ [0, 1])
we need to define I∗n, set of the n “first” cells of T

∗. Let (Xi, i ∈ T
∗) be a super-critical

spatially homogeneous P ∗-BMC on a GW tree and G be the σ-field generated by (Xi, i ∈ T).

• We consider random variables (Π∗
q , q ∈ N

∗) which are conditionally on G, independent
and s.t. Π∗

q is distributed as a uniform random permutation on G
∗
q . In particular,

given |G∗
q | = k, (Π∗

q(1), . . . ,Π
∗
q(k)) can be viewed as a random drawing of all the

elements of G
∗
q , without replacement.

• For each integer n ∈ N
∗, we define the random variable ρn = inf{k;n ≤ |T∗

k|}, with
the convention inf ∅ = ∞. Loosely speaking, ρn is the number of the generation to
which belongs the n-th element of T

∗. Notice that ρ1 = 0.
• Let Π̃ be the application from N

∗ to T
∗ ∪ {∂T}, where ∂T is a cemetery point added

to T
∗, given by Π̃(1) = ∅ and for k ≥ 2 :

Π̃(k) =

{

Π∗
ρk

(k − |T∗
ρk−1|) if ρk < +∞

∂T if ρk = +∞.

Notice that Π̃ defines a random order on T
∗ which preserves the genealogical order: if

k ≤ n then |Π̃(k)| ≤ |Π̃(n)|, with the convention |∂T| = ∞. We thus define the set of the n
“first” elements of T

∗ (when |T∗| ≥ n):

(14) I∗n = {Π̃(k), 1 ≤ k ≤ n ∧ |T∗|}.
We can now introduce the timescales: for n ≥ 1, we consider the subdivision of [0, 1]

given by {0, sn, . . . , s0}, with sk = m−k. We define the continuous random time change
(τn(t), t ∈ [0, 1]) by

(15) τn(t) =

{

mnt, t ∈ [0,m−n],

|T∗
n−k| + (mkt− 1)(m − 1)−1|G∗

n−k+1|, t ∈ [m−k,m−k+1], 1 ≤ k ≤ n.
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Notice that τn(t) ≤ |T∗|. The set I∗⌊τn(t)⌋, with t ∈ [0, 1], corresponds to the elements of

T
∗
n−k, with k = ⌊− log(t)

log(m)⌋ + 1, and the “first” fraction (mkt− 1)/(m − 1) of the elements of

generation G
∗
n−k+1.

Recall (9). For the sake of simplicity, for any real x ≥ 0, we will write M∗
x(f) instead of

MI∗
⌊x⌋

(f), with the convention that M∗
0 (f) = 0.

Proposition 4.1. Let F satisfy (i)-(vi), f ∈ F and t ∈ [0, 1]. The sequence (m−nM∗
τn(t)(f),

n ∈ N
∗) converges to 〈µ, f〉m(m− 1)−1Wt in L2.

Proof. We first consider the case 〈µ, f〉 = 0. If t = 0, then τn(t) = 0 and M∗
0 (f) = 0 by

convention. Let t ∈ (0, 1]. There exists a unique k ≥ 1 such that m−k < t ≤ m−k+1. For

n ≥ k, we have, using (15) and that Π̃ preserves the order on T
∗,

M∗
τn(t)(f) =

∑

i∈I∗
⌊τn(t)⌋

f(Xi) =

⌊τn(t)⌋
∑

i=1

f(XΠ̃(i)) = MT∗
n−k

(f) +MJn(f),

where Jn = {Π̃(i), |T∗
n−k| < i ≤ ⌊τn(t)⌋}. Notice that Jn = ∅ if |T∗

n−k+1| = 0 and that, by

convention, we then have MJn(f) = 0. Theorem 3.3 implies that m−nMT∗
n−k

(f) converges to

0 in L2 as n goes to ∞. Recall G is the σ-field generated by (Xi, i ∈ T). Since Jn ⊂ G
∗
n−k+1,

we have

E[MJn(f)2|G] =
∑

i,j∈G∗
n−k+1

f(Xi)f(Xj)E[1{i,j∈Jn}|T∗].

Thanks to the definition of Π̃, we have for i, j ∈ Gn−k+1

1{i,j∈G∗
n−k+1}E[1{i,j∈Jn}|T∗] = 1{i,j∈G∗

n−k+1}(1{i6=j}χ2 + 1{i=j}χ1),

where, with a = ⌊(mkt− 1)(m− 1)−1|G∗
n−k+1|⌋,

χ1 =
a

|G∗
n−k+1|

and χ2 =
a(a− 1)

|G∗
n−k+1|(|G∗

n−k+1| − 1)
.

Thus, we get

E[MJn(f)2|G] = χ2

∑

i,j∈G∗
n−k+1

f(Xi)f(Xj) + (χ1 − χ2)
∑

i∈G∗
n−k+1

f2(Xi)

= χ2MG∗
n−k+1

(f)2 + (χ1 − χ2)MG∗
n−k+1

(f2)

≤MG∗
n−k+1

(f)2 +MG∗
n−k+1

(f2),

as 0 ≤ χ2 ≤ χ1 ≤ 1. We have

(16) ‖m−nMJn(f)2‖2
L2 ≤ ‖m−nMG∗

n−k+1
(f)‖2

L2 +m−n‖m−nMG∗
n−k+1

(f2)‖L1 .

The first term of the right hand-side of (16) converges to 〈µ, f〉W = 0 as n goes to infinity,
thanks to Theorem 3.1. The same Theorem entails that ‖m−nMG∗

n−k+1
(f2)‖L1 converges to

E[〈µ, f2〉W ], and consequently the second term of the right hand-side of (16) also converges
to 0 as n goes to infinity. We deduce that the sequence (m−nMJn(f)2,m ∈ N

∗) converges to
0 in L2.

Since m−nM∗
τn(t)(f) = m−nMT∗

n−k
(f)+m−nMJn(f), the sequence (m−nM∗

τn(t)(f), n ∈ N
∗)

converges to 0 in L2.
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Next, we consider the case 〈µ, f〉 6= 0. We set g = f − 〈µ, f〉. Since m−nM∗
τn(t)(f) =

m−nM∗
τn(t)(g) + 〈µ, f〉m−n⌊τn(t)⌋, the Proposition will be proved as soon as we check that

(m−n⌊τn(t)⌋, n ∈ N
∗) converges to m(m− 1)−1tW in L2.

The case t = 0 is obvious. For t ∈ (0, 1], there exists a unique k ≥ 1 such that m−k < t ≤
m−k+1. We deduce from (15) that, for 1 ≤ k ≤ n,

m−nτn(t) = (m− 1)−1

( |T∗
n−k|
tn−k

(m−k+1 − 1

mn
) +

|G∗
n−k+1|

mn−k+1
(mt−m−k+1)

)

.

Since both m−n|G∗
n| and t−1

n |T∗
n| converges to W in L2, we finally obtain that m−nτn(t)

converges to m(m− 1)−1tW in L2. �

We deduce from (15) and (7), that for t ∈ (0, 1], n ≥ k, where k = ⌊− log(t)
log(m)⌋ + 1, we have

E[τn(t)] = tn−k + (mkt− 1)(m− 1)−1mn−k+1 = (mn+1t− 1)(m− 1)−1.

Thus, Proposition 4.1 implies that (E[τn(t)]−1M∗
τn(t)(f), n ∈ N

∗) converges to 〈µ, f〉W in L2

for all t ∈ [0, 1], which generalizes Theorem 3.3.
In fact the convergence in Proposition 4.1 is uniform in t.

Corollary 4.2. Let F satisfy (i)-(vi), f ∈ F s.t. |f | ∈ F . We set Rn(t) = m−nM∗
τn(t)(f) −

〈µ, f〉m(m− 1)−1Wt. The sequence (supt∈[0,1] |Rn(t)|, n ∈ N
∗) converges to 0 in L2.

Proof. Let f ∈ F s.t. |f | ∈ F . We set f+ = max(0, f) and f− = max(0,−f). As F
is a vector space, we get that f+ = (f + |f |)/2 and f− = f+ − f belong to F . Notice
that |Rn(t)| ≤ |R+

n (t)| + |R−
n (t)|, where Rδ

n(t) = m−nM∗
τn(t)(f

δ) − 〈µ, f δ〉m(m − 1)−1Wt for

δ ∈ {+,−}. So it is enough to prove the Corollary for f non-negative. As t 7→ m−nM∗
τn(t)(f)

and t 7→ 〈µ, f〉m(m− 1)−1tW are non-decreasing and Rn(0) = 0, we get that for N ≥ 1,

sup
t∈[0,1]

|Rn(t)| ≤ 1

N
〈µ, f〉m(m− 1)−1W +

N
∑

k=1

|Rn(k/N)|.

Now, use that W ∈ L2 and that Rn(t) goes to 0 in L2 for all t ∈ [0, 1] to get the result. �

We have a version of Proposition 4.1 and Corollary 4.2 for functions defined on S̄3.

Proposition 4.3. Let F satisfy (i)-(vi), g ∈ B(S̄3) s.t. P ∗g and P ∗(g2) exist and belong to
F . Let t ∈ [0, 1]. The sequence (m−nM∗

τn(t)(g), n ∈ N
∗) converges to 〈µ,P ∗g〉m(m− 1)−1tW

in L2.
Furthermore, if P ∗|g| and P ∗(g|g|) also belong to F then (supt∈[0,1] |Rn(t)|, n ∈ N

∗) con-

verges to 0 in L2, where Rn(t) = m−nM∗
τn(t)(g) − 〈µ,P ∗g〉m(m− 1)−1Wt, for t ∈ [0, 1].

Proof. The proof of the first part is similar to the proof of Theorem 3.4. The proof of the
second part is similar to the proof of Corollary 4.2. �

5. Fluctuations

Recall (9). For any real x ≥ 0, using notations from the previous Section, we will write
M∗

x(f) for MI∗
⌊x⌋

(f), with the convention that M∗
0 (f) = 0, where I∗n is defined by (14). We

shall prove a central limit theorem for the sequence (M∗
n(f), n ≥ 1), based on martingale

theorems.
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We set Hn = σ(∆Π̃(k), 1 ≤ k ≤ n ∧ |T∗|) ∨ σ(Π̃(k), 1 ≤ k ≤ n + 1) for n ≥ 1, H0 =

σ(X∅) and H = (Hn, n ∈ N) for the corresponding filtration. With the convention that

X∂T
= ∂, we notice that XΠ̃(n+1) is Hn-measurable. Indeed, given (Π̃(k), 1 ≤ k ≤ n +

1), if Π̃(n + 1) 6= ∂T, we have Π̃(n + 1) = Π̃(j)i for some j ∈ {1, . . . , n} and i ∈ {0, 1},
and as ∆Π̃(j) = (XΠ̃(j),XΠ̃(j)0,XΠ̃(j)1) ∈ Hn, we deduce that XΠ̃(n+1) is Hn-measurable.

In particular, as {|T∗| ≥ n + 1} ∈ Hn, this implies that 1{|T∗|≥n+1}E[f(∆Π̃(n+1))|Hn] =

1{|T∗|≥n+1}P ∗f(XΠ̃(n+1)), for any f ∈ B(S̄3) such that P ∗f is well defined. If in addition

P ∗f = 0, then (M∗
n(f), n ∈ N) is an H-martingale.

We shall first recall a slightly weaker version of Theorem 4.3 from [15] on martingale
convergence. (Theorem 4.3 from [15] is stated for filtrations which may vary with n.)

For u ∈ R
d, we denote by u′ its transpose. Let H = (Hi, i ∈ N) be a filtration. If (Di, i ∈ N)

is a sequence of vector valued random variables H-adapted and such that E[Di+1|Hi] = 0 for
all i ∈ N, then (Di, i ∈ N) is called an H-martingale difference.

Theorem 5.1 (Theorem 4.3 from [15]). Let H = (Hi, i ∈ N) be a filtration. For all n ∈ N
∗,

let (Dn,i = (D
(1)
n,i , . . . ,D

(d)
n,i ), i ∈ N) be a sequence of R

d-valued random vectors and an H-

martingale difference. For each n ∈ N, let (τn(t), t ∈ [0, 1]) be a non-decreasing càdlàg
function s.t. τn(t) is a H-stopping time for all t ∈ [0, 1]. Let (T (t), t ∈ [0, 1]) be a R

d×d-
valued continuous, possibly random, function. We assume the following two conditions hold:

(1) Convergence of the timescales. For all t ∈ [0, 1], we have the following convergence
in probability:

τn(t)
∑

i=1

E
[

Dn,i(Dn,i)
′|Hi−1

] P−−−→
n→∞

T (t).

(2) Lindeberg condition. For all ε > 0, 1 ≤ ℓ ≤ d, we have the following convergence in
probability:

τn(1)
∑

i=1

E

[

(D
(ℓ)
n,i)

21{|D(ℓ)
n,i|>ε}|Hi−1

]

P−−−→
n→∞

0.

Then (
∑⌊τn(·)⌋

i=1 Dn,i, n ∈ N
∗) converges in distribution to BT in the Skorohod space D([0, 1])d

of R
d-valued càdlàg functions defined on [0, 1], where, conditionally on T , (BT (t), t ≥ 0) is a

Gaussian process with independent increments and BT (t) has zero mean and variance T (t).
Furthermore the convergence is stable: if (Yn, n ∈ N) converges in probability to Y , then

((
∑⌊τn(·)⌋

i=1 Dn,i, Yn), n ∈ N) converges in distribution to (BT , Y ), where BT is conditionally
on (T , Y ) distributed as BT conditionally on T , and the distribution of (T , Y ) is determined
by the following convergence

(

τn(·)
∑

i=1

E
[

Dn,i(Dn,i)
′|Hi−1

]

, Yn

)

P−−−→
n→∞

(T , Y ).

For the sake of simplicity, we will write P ∗hk for P ∗(hk), and if h = (h1, . . . , hd) is an R
d

valued function, we will write P ∗h for (P ∗h1, . . . , P
∗hd) and 〈µ, h〉 for (〈µ, h1〉, . . . , 〈µ, hd〉).

Theorem 5.2. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree and τn be defined by (15). Let F satisfy (i)-(vi). Let d ≥ 1, d′ ≥ 1, f = (f1, . . . , fd) ∈
B(S̄3)d, g = (g1, . . . , gd′) ∈ B(S̄3)d

′
such that P ∗fk

ℓ , exist and belong to F for all 1 ≤ ℓ ≤ d
and 1 ≤ k ≤ 4, P ∗gℓ, P

∗|gℓ|, P ∗g2
ℓ and P ∗gℓ|gℓ| exist and belong to F for all 1 ≤ ℓ ≤ d′. Let
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Σ be a square root of the symmetric positive matrix m(m− 1)−1〈µ,P ∗(ff ′) − (P ∗f)(P ∗f)′〉
and γ = m(m− 1)−1〈µ,P ∗g〉.

Then, the sequence (m−n/2M∗
τn(·)(f −P ∗f),m−nM∗

τn(·)(g)) converges in distribution in the

Skorohod space D([0, 1],Rd+d′) of R
d+d′-valued càdlàg functions defined on [0, 1], to the process

(Σ
√
WB,γWh0), where B is a d-dimensional Brownian motion independent of W , defined

by (8), and h0 is the identity function t 7→ t.

Proof. Notice that τn defined by (15) is a non-decreasing continuous function s.t. τn(t) is a
H-stopping time for all t ∈ [0, 1]. We set for all n, i ∈ N

∗,

Dn,i = m−n/2
(

f(∆Π̃(i)) − P ∗f(XΠ̃(i))
)

1{i≤|T∗|},

so that (Dn,i, i ∈ N) is an H-martingale difference. Notice the matrix 〈µ,P ∗ff ′−(P ∗f)(P ∗f)′〉
is indeed symmetric and positive, so that Σ is well defined.

Notice that

E
[

Dn,i(Dn,i)
′|Hi−1

]

= m−n
(

P ∗(ff ′)(XΠ̃(i)) − (P ∗f)(XΠ̃(i))(P
∗f)′(XΠ̃(i))

)

1{i≤|T∗|}.

The convergence of the timescales condition of Theorem 5.1 with T (t) = Σ2Wt, is then a
direct application of Proposition 4.1

For 1 ≤ ℓ ≤ d, we have

E

[

(D
(ℓ)
n,i)

21{|D(ℓ)
n,i|>ε}|Hi−1

]

≤ ε−2
E

[

(D
(ℓ)
n,i)

4|Hi−1

]

= ε−2m−2nP ∗(fℓ−P ∗fℓ)
4(XΠ̃(i))1{i≤|T∗|}.

The Lindeberg condition of Theorem 5.1 is then a direct application of Proposition 4.1
Notice the second part of Proposition 4.3. implies the convergence of Yn = m−nM∗

τn(·)(g)
to γWh0 in probability in the Skorohod space. We then deduce the result from Theorem
5.1. �

The following result is an immediate consequence of Theorem 5.2.

Corollary 5.3. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree. Let F satisfy (i)-(vi). Let f ∈ B(S̄3) such that P ∗fk exists and belongs to F for all
1 ≤ k ≤ 4. Let σ2 = 〈µ,P ∗f2 − (P ∗f)2〉.

Then we have the following convergence in distribution:

1{|G∗
n|>0}|T∗

n|−1/2
∑

i∈T∗
n

f(∆i) − P ∗f(Xi)
(d)−−−→

n→∞
1{W 6=0}σG,

where G is a Gaussian random variable with mean zero and variance 1 independent of W ,
which is defined by (8).

Proof. Notice that
∑

i∈T∗
n
f(∆i)−P ∗f(Xi) = M∗

τn(1)(f)−M∗
τn(1)(P

∗f), |T∗
n| = M∗

τn(1)(1) and

that 1{|G∗
n|>0} converges a.s. to 1{W 6=0}. Then, to conclude, use the stable convergence of

Theorem 5.2, and the fact that the marginals at time 1 converge since the limit is continuous.
�

The next result gives that the fluctuations over each generation are asymptotically inde-
pendent.

Corollary 5.4. Let (Xi, i ∈ T
∗) be a super-critical spatially homogeneous P ∗-BMC on a GW

tree. Let F satisfy (i)-(vi). Let d ≥ 1, f1, . . . , fd ∈ B(S̄3) such that P ∗fk
ℓ exist and belong to

F for all 1 ≤ ℓ ≤ d and 1 ≤ k ≤ 4. Let σ2
ℓ = 〈µ,P ∗f2

ℓ − (P ∗fℓ)
2〉 for 1 ≤ ℓ ≤ d.
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We set for f ∈ B(S̄3)

Nn(f) = |G∗
n|−1/2(MG∗

n
(f − P ∗f)).

Then we have the following convergence in distribution:

(Nn(f1), . . . , Nn−d+1(fd))1{|G∗
n|>0}

(d)−−−→
n→∞

1{W 6=0}(σ1G1, . . . , σdGd),

where G1, . . . , Gd are independent Gaussian random variables with mean zero and variance 1
and are independent of W , which is defined by (8).

Proof. Notice that for n > k ≥ 0,

Nn−k(f)1{|G∗
n|>0} =

M∗
τn(m−k)

(f − P ∗f)−M∗
τn(m−k−1)

(f − P ∗f)
√

M∗
τn(m−k)

(1) −M∗
τn(m−k−1)

(1)
1{|G∗

n|>0}

and 1{|G∗
n|>0} converges a.s. to 1{W 6=0}. To conclude, use the stable convergence of Theorem

5.2 and that the increments of the Brownian motion are independent. �

The extension of the two previous Corollaries to vector-valued function can be proved in
a very similar way.

6. Estimation and tests for the asymmetric auto-regressive model

We consider the asymmetric auto-regressive model given in Section 1.1. Notice that the
process (Xi, i ∈ T) defined in Section 1.1 with the convention that Xi = ∂ if the cell i is
dead or non existing is a spatially homogeneous BMC on a GW tree. We shall assume it is
super-critical, that is 2p1,0 + p1 + p0 > 1.

We compute the maximum likelihood estimator (MLE)

θ̂n = (α̂n
0 , β̂

n
0 , α̂

n
1 , β̂

n
1 , α̂

′n
0 , β̂

′n
0 , α̂

′n
1 , β̂

′n
1 , p̂

n
1,0, p̂

n
0 , p̂

n
1 )

of θ given by (4) and κn = (σ̂n, ρ̂n, σ̂n
0 , σ̂

n
1 ) of κ = (σ, ρ, σ0, σ1), based on the observation of a

sub-tree T
∗
n+1. Let T

1,0
n be the set of cells in T

∗
n with two living daughters, T

0
n (resp. T

1
n) be

the set of cells of T
∗
n with only the new (resp. old) pole daughter alive:

T
1,0
n = {i ∈ T

∗
n,∆i ∈ S3}, T

0
n = {i ∈ T

∗
n,∆i ∈ S2×{∂}} and T

1
n = {i ∈ T

∗
n,∆i ∈ S×{∂}×S}.
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It is elementary to get that for δ ∈ {0, 1},

α̂n
δ =

|T1,0
n |−1

∑

i∈T
1,0
n

XiXiδ − (|T1,0
n |−1

∑

i∈T
1,0
n

Xi)(|T1,0
n |−1

∑

i∈T
1,0
n

Xiδ)

|T1,0
n |−1

∑

i∈T
1,0
n

X2
i − (|T1,0

n |−1
∑

i∈T
1,0
n

Xi)
2

,(17)

β̂n
δ = |T1,0

n |−1
∑

i∈T
1,0
n

Xiδ − α̂n
δ |T1,0

n |−1
∑

i∈T
1,0
n

Xi,(18)

α̂′n
δ =

|Tδ
n|−1

∑

i∈Tδ
n

XiXiδ − (|Tδ
n|−1

∑

i∈Tδ
n

Xi)(|Tδ
n|−1

∑

i∈Tδ
n

Xiδ)

|Tδ
n|−1

∑

i∈Tδ
n

X2
i − (|Tδ

n|−1
∑

i∈Tδ
n

Xi)
2

,

β̂′nδ = |Tδ
n|−1

∑

i∈Tδ
n

Xiδ − α̂′n
δ |Tδ

n|−1
∑

i∈Tδ
n

Xi,

p̂n
1,0 =

|T1,0
n |

|T∗
n|
, p̂n

δ =
|Tδ

n|
|T∗

n|
,(19)

and

(σ̂n)2 =
1

2|T1,0
n |

∑

i∈T
1,0
n

(ε̂2i0 + ε̂2i1), ρ̂n =
1

(σ̂n)2|T1,0
n |

∑

i∈T
1,0
n

ε̂i0ε̂i1, and (σ̂n
δ )2 =

1

|Tδ
n|

∑

i∈Tδ
n

ε̂′2iδ .

The residues are

ε̂iδ = Xiδ − α̂n
δXi − β̂n

δ for i ∈ T
1,0
n , and ε̂′iδ = Xiδ − α̂′n

δ Xi − β̂′nδ for i ∈ T
δ
n.

Notice that those MLE are based on polynomial functions of the observations. In order to
use the results of Sections 3 and 5, we first show that the set of continuous and polynomially
growing functions satisfies properties (i) to (v) of Section 2. The set of continuous and
polynomially growing functions Cpol(R) is defined as the set of continuous real functions
defined on R, s.t. there exists m ≥ 0 and c ≥ 0 and for all x ∈ R, |f(x)| ≤ c(1 + |x|m). It is
easy to check that Cpol(R) satisfies conditions (i)-(iii). To check properties (iv) and (v), we
notice that the auxiliary Markov chain Y = (Yn, n ∈ N) can be written in the following way:

Yn+1 = an+1Yn + bn+1,

with bn = b′n + snen, where ((an, b
′
n, sn), n ≥ 1) is a sequence of independent identically

distributed random variables, whose common distribution is given by, for δ ∈ {0, 1},
(20) P(a1 = αδ, b

′
1 = βδ, s1 = σ) =

p1,0

m
and P(a1 = α′

δ, b
′
1 = β′δ , s1 = σδ) =

pδ

m
,

(en, n ≥ 1) is a sequence of independent N (0, 1) random variables, and is independent of
((an, b

′
n, sn), n ≥ 1), and both sequences are independent of Y0. Notice that Yn is distributed

as Zn = a1a2 · · · an−1anY0 +
∑n

k=1 a1a2 · · · ak−1bk. Since |ak| ≤ max(|α0|, |α1|, |α′
0|, |α′

1|) < 1
for all k ∈ N

∗, we get that the sequence (Zn, n ∈ N) converges a.s. to a limit Z. This implies
that Y converges in distribution to Z. Following the proof of Lemma 26 in [9], we get that
Cpol(R) fulfills properties (iv) and (v), with µ the distribution of Z.

Proposition 6.1. Assume that the distribution of the ancestor X∅ has finite moments of all

orders. Then (1{|G∗
n|>0}θ̂n, n ≥ 1) and (1{|G∗

n|>0}κ̂n, n ≥ 1) converges in probability respec-
tively to 1{W 6=0}θ and 1{W 6=0}κ, where W is defined by (8).
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Proof. The hypothesis on the distribution of X∅ implies that Cpol(R) fulfills (vi). The result
is then a direct consequence of Theorem 3.4. �

Remark 6.2. Using similar arguments as in Proposition 30 and 34 of [9], it is easy to deduce
from (13) and the proofs of Theorem 14 and Proposition 28 of [9] that the convergences in

Proposition 6.1 hold a.s., that is the MLEs θ̂n and κ̂n are strongly consistent.

From the definition of Zn, we deduce that in distribution Z
(d)
= a1Z

′ + b1, where Z ′ is
distributed as Z and is independent of (a1, b1) (see (20) for the distribution of (a1, b1)). This
equality in distribution entails that

(21) µ1 = E[Z] =
β̄

1 − ᾱ
and µ2 = E[Z2] =

2αββ̄/(1 − ᾱ) + β2 + σ2

1 − α2
,

where ᾱ = E[a1], α2 = E[a2
1], β̄ = E[b1], β2 = E[b21], αβ = E[a1b1] and σ2 = E[s21].

We can now state one of the main result of this section.

Proposition 6.3. Assume that the distribution of the ancestor X∅ has finite moments of

all orders. Then 1{|G∗
n|>0}|T∗

n|1/2(θ̂n − θ) converges in law to 1{W 6=0}G11, where G11 is a
11-dimensional vector, independent of W defined by (8), with law N (0,Σ) where

Σ =













σ2K/p1,0 ρσ2K/p1,0 0 0 0
ρσ2K/p1,0 σ2K/p1,0 0 0 0

0 0 σ2
0K/p0 0 0

0 0 0 σ2
1K/p1 0

0 0 0 0 Γ













with

K = (µ2 − µ2
1)

−1

(

1 −µ1

−µ1 µ2

)

and Γ =





p1,0(1 − p1,0) −p0p1,0 −p1p1,0

−p0p1,0 p0(1 − p0) −p0p1

−p1p1,0 −p0p1 p1(1 − p1)



 .

The proof of Proposition 6.3 relies on Theorem 5.2 and mimics the proof of Proposition
33 of [9]. It is left to the reader.

Remark 6.4. Proposition 6.3 deals with the asymptotic normality of the MLE of θ based
on the observation of the sub-tree T

∗
n+1. If L(Xi, i ∈ T

∗
n+1, θ) denotes the corresponding

log-likelihood function for θ, the Fisher information, say In+1, is given by

In+1 = −E

[

∂2L(Xi, i ∈ T
∗
n+1, θ)

∂θ∂θ′

]

.

Using Theorem 3.4, one can check that limn→∞ In+1/E[|T∗
n+1|] = Σ−1. This is the analogue

of the well-known asymptotic efficiency of the MLE for parametric sample of i.i.d. random
variables.

Let θ1,0 (resp. θ̂n
1,0) stand for (α0, β0, α1, β1) (resp. (α̂n

0 , β̂
n
0 , α̂

n
1 , β̂

n
1 )).

Remark 6.5. Proposition 6.3 is quite similar to Proposition 33 in [9]. One of the main
differences comes from the factor p−1

1,0 in front of the matrix K in the asymptotic covariance

matrix for the estimation of θ1,0 with θ̂n
1,0. As a matter of fact, this factor comes from the

normalization by |T∗
n|1/2, number of living cells up to generation n, whereas this estimation is

related to the cells with two living daughters, which would induce a normalization by |T1,0
n |1/2.

Since 1{|T∗
n|>0}|T1,0

n |/|T∗
n| converges in probability to p1,01{W 6=0}, such a normalization would

suppress the factor p−1
1,0, see the following Corollary.
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Corollary 6.6. Assume that the distribution of the ancestor X∅ has finite moments of all

orders. Then 1{|G∗
n|>0}|T1,0

n |1/2(θ̂n
1,0 − θ1,0) converges in law to 1{W 6=0}G4, where G4 is a

4-dimensional vector, independent of W defined by (8), with law N (0,Σ′) where

Σ′ = σ2

(

K ρK
ρK K

)

with K = (µ2 − µ2
1)

−1

(

1 −µ1

−µ1 µ2

)

.

This result is formally the same as Proposition 33 of [9], but one should notice that µ1 and
µ2 are not defined the same way as in [9], since here they also depends on the parameters
concerning cells with dead sisters see equations (2), (3), (20) and (21).

In order to detect cellular aging, see [9] in the case of no death (m = 2), we consider the
null hypothesis H0 = {(α0, β0) = (α1, β1)}, which corresponds to no aging and its alternative
H1 = {(α0, β0) 6= (α1, β1)}. Notice that θ 7→ µ1(θ) and (θ, κ) 7→ µ2(θ, κ) given by (21)
are continuous functions defined respectively on Θ = ((−1, 1) × R)4 × ([0, 1]3 \ {0, 0, 0}) and

Θ×]0,+∞[3. We set µ̂n
1 = µ1(θ̂

n) and µ̂n
2 = µ2(θ̂

n, κ̂n). Proposition 6.7 allows to build a test
for H0 against H1. Its proof, which is left to the reader, follows the proof of Proposition 35 of
[9] and uses Corollary 6.6, the value of the extinction probability η = P(W = 0) = 1 − m−1

p1,0
,

where W is defined by (8) and Remark 6.2.

Proposition 6.7. Let U and V be two independent random variables, with U distributed as
a χ2 with two degrees of freedom and V a Bernoulli random variable with parameter 1 − η.

Assume that the distribution of the ancestor X∅ has finite moments of all orders and define
the test statistic

ζn =
|T1,0

n |
2(σ̂n)2(1 − ρ̂n)

{

(α̂n
0 − α̂n

1 )2(µ̂n
2 − (µ̂n

1 )2) +
(

(α̂n
0 − α̂n

1 )µ̂n
1 + β̂n

0 − β̂n
1

)2
}

.

Then, the statistics 1{|G∗
n|>0}ζn converges under H0 in distribution to UV , and under H1 a.s.

to 0 on {V = 0} and +∞ on {V = 1}.
Remark 6.8. Let us assume that:

• Death occurs, that is m ∈ (1, 2).
• There is no difference for the marginal distribution of a daughter according to her

sister is dead or alive; that is α′
δ = αδ and β′δ = βδ for δ ∈ {0, 1}.

• For simplicity, the death probability is symmetric, that is p0 = p1.

If one uses the statistics given by Proposition 33 in [9] with all the available data, that is if
one uses

• Formula (17) and (18) with T
1,0
n replaced by T

1,0
n ∪ T

δ
n;

• The variance estimator:

(σ̂n)2 =
1

|T∗
n+1| − 1

(

∑

i∈T
1,0
n

(ε̂2i0 + ε̂2i1) +
∑

i∈T0
n

ε̂2i0 +
∑

i∈T1
n

ε̂2i1

)

;

(Notice that we divide by |T∗
n+1| − 1 as this is equal to the total number of data:

2|T1,0
n | + |T0

n| + |T1
n|.)

• Keep the same estimation of the correlation: ρ̂n = 1
(σ̂n)2|T1,0

n |
∑

i∈T
1,0
n
ε̂i0ε̂i1;

then one check that, as n goes to infinity, 1{|G∗
n|>0}|T∗

n|1/2(θ̂n − θ) converges in distribution
to 1{W 6=0}G, where G is a centered Gaussian vector with covariance matrix

σ2(p1,0 + p1)
−1

(

K ρp1,0(p1,0 + p1)
−1K

ρp1,0(p1,0 + p1)
−1K K

)

,
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where K is as in Proposition 6.3; and G is independent of W , which is defined by (8). Then,
it is not difficult to check that the statistics proposed by Guyon in Proposition 35 of [9],
converges under H0 towards cUV , with U and V as in Proposition 6.7 and

c =
(p1,0 + p1)

−1(1 − ρp1,0(p1,0 + p1)
−1)

(1 − ρ)
.

As ρ ∈ [−1, 1], p1,0 +p1 > 1/2 (because m > 1 and p0 = p1) and 2p1 +p1,0 ≤ 1, one can check
that c > 1. In particular, using the test statistic designed for cells with no death to data of
cells with death leads to a non-conservative test.
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