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Abstract

We study a particular class of moving average processes which possess a property

called localisability. This means that, at any given point, they admit a “tangent

process”, in a suitable sense. We give general conditions on the kernel g defining the

moving average which ensures that the process is localisable and we characterize the

nature of the associated tangent processes. Examples include the reverse Ornstein-

Uhlenbeck process and the multistable reverse Ornstein-Uhlenbeck process. In the

latter case, the tangent process is, at each time t, a Lévy stable motion with stability

index possibly varying with t. We also consider the problem of path synthesis, for

which we give both theoretical results and numerical simulations.

1 Introduction and background

In this work, we study moving average processes which are localisable. Loosely speaking,
this means that they have a well-defined local form: at each point, they are “tangent” to
a given stochastic process.

Localisable processes are useful both in theory and in practical applications. Indeed,
they provide an easy way to control important local properties such as the local Hölder
regularity or the jump intensity. In the first case, one speaks of multifractional processes,
and in the second one, of multistable processes. Such processes provide fine models for real
world phenomena including natural terrains, TCP traffic, financial data, EEG or highly
textured images.

Formally, a process Y (t) defined on R (or a subinterval of R) is h-localisable at u if
limr→0+ r−h(Y (u + rt) − Y (u)) exists as a non-trivial process in t for some h > 0, where
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the convergence is in finite dimensional distributions, see [3, 4]. When convergence occurs
in distribution with respect to the appropriate metric on C(R) (the space of continuous
functions on R) or on D(R) (the space of càdlàg functions on R, that is functions which
are continuous on the right and have left limits at all t ∈ R), we say that Y is strongly
localisable. The limit, denoted by Y ′

u = {Y ′
u(t) : t ∈ R}, is called the local form or tangent

process of Y at u and will in general vary with u. A closely related notion is that of locally
asymptotically self-similar processes, which are for instance described in [2].

The simplest localisable processes are self-similar processes with stationary increments
(sssi processes); it is not hard to show that an sssi process Y is localisable at all u with
local form Y ′

u = Y . Furthermore, an sssi process Y is strongly localisable if it has a version
in C(R) or D(R).

In [5], processes with prescribed local form are constructed by “gluing together” known
localisable processes in the following way: let U be an interval with u an interior point.
Let {X(t, v) : (t, v) ∈ U × U} be a random field and let Y be the diagonal process
Y = {X(t, t) : t ∈ U}. In order for Y and X(·, u) to have the same local forms at u, that
is Y ′

u(·) = X ′
u(·, u) where X ′

u(·, u) is the local form of X(·, u) at u, we require

X(u + rt, u + rt) − X(u, u)

rh

fdd
→ X ′

u(t, u) (1.1)

as r ց 0.
This approach allows easy construction of localisable processes from “elementary

pieces” which are known to be themselves localisable. In particular, it applies in a straight-
forward way to processes X(t, v) such that X(·, v) is sssi for each v.

In this work we shall study a rather different way of obtaining localisable processes.
Instead of basing our constructions on existing sssi processes we will consider moving
average processes which, as we shall see, provide a new class of localisable α-stable pro-
cesses.

The remainder of this paper is organized as follows: in section 2, we give general condi-
tions on the kernel g defining the moving average process to ensure (strong) localisability.
Section 3 specializes these conditions to cases where explicit forms for the tangent process
may be given, and presents some examples. In section 4, we deal with multistable moving
average processes, which generalize moving average stable processes by letting the stabil-
ity index vary over time. Finally, section 5 considers numerical aspects: for applications,
it is desirable to synthesize paths of these processes. Using the approach developed in
[12], we first explain how to build traces of arbitrary moving average stable processes.
In the case where the processes are localisable, we then give error bounds between the
numerical and theoretical paths. Under mild additional assumptions, an ‘optimal’ choice
of the parameters defining the synthesis method is derived. Finally, traces obtained from
numerical experiments are displayed.

2 Localisability of stable moving average processes

Recall that a process {X(t) : t ∈ T}, where T is a subinterval of R, is called α-stable
(0 < α ≤ 2) if all its finite-dimensional distributions are α-stable, see the encyclopaedic
work on stable processes [10]. 2-stable processes are just Gaussian processes.

Many stable processes admit a stochastic integral representation. Write Sα(σ, β, µ)
for the α-stable distribution with scale parameter σ, skewness β and shift-parameter µ;
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we will assume throughout that β = µ = 0. Let (E, E , m) be a sigma-finite measure
space (m will be Lebesgue measure in our examples). Taking m as the control measure,
this defines an α-stable random measure M on E such that for A ∈ E we have that
M(A) ∼ Sα(m(A)1/α, 0, 0) (since β = 0, the process is symmetric).

Let
Fα ≡ Fα(E, E , m) = {f : f is measurable and ‖f‖α < ∞},

where ‖ ‖α is the quasinorm (or norm if 1 < α ≤ 2) given by

‖f‖α =

(∫

E

|f(x)|αm(dx)

)1/α

. (2.1)

The stochastic integral of f ∈ Fα(E, E , m) with respect to M then exists [10, Chapter 3]
with ∫

E

f(x)M(dx) ∼ Sα(σf , 0, 0), (2.2)

where σf = ‖f‖α.
We will be concerned with a special kind of stable processes that are stationary and

may be expressed as moving average stochastic integrals in the following way:

Y (t) =

∫
g(t − x)M(dx) (t ∈ R), (2.3)

where g ∈ Fα is sometimes called the kernel of Y .
Such processes are considered in several areas (e.g. linear time-invariant systems) and

it is of interest to know under what conditions they are localisable. A sufficient condition
is provided by the following proposition.

Proposition 2.1 Let 0 < α ≤ 2 and let M be a symmetric α-stable measure on R with
control measure Lebesgue measure L. Let g ∈ Fα and let Y be the moving average process

Y (t) =

∫
g(t − x)M(dx) (t ∈ R).

Suppose that there exist jointly measurable functions h(t, .) ∈ Fα such that

lim
r→0+

∫ ∣∣∣∣
g(r(t + z)) − g(rz)

rγ
− h(t, z)

∣∣∣∣
α

dz = 0 (2.4)

for all t ∈ R, where γ + 1/α > 0. Then Y is (γ + 1/α)-localisable with local form
Y ′

u = {
∫

h(t, z)M(dz) : t ∈ R} at all u ∈ R.

Proof. Using stationarity followed by a change of variable z = −x/r and the self-similarity
of M ,

Y (u + rt) − Y (u) = Y (rt) − Y (0)

=

∫
(g(rt − x) − g(−x))M(dx)

= r1/α

∫
(g(r(t + z)) − g(rz))M(dz),
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where equalities are in finite dimensional distributions. Thus

Y (u + rt) − Y (u)

rγ+1/α
−

∫
h(t, z)M(dz) =

∫ (
g(r(t + z)) − g(rz)

rγ
− h(t, z)

)
M(dz).

By [10, proposition 3.5.1] and (2.4), r−γ−1/α(Y (u + rt) − Y (u)) →
∫

h(t, z)M(dz) in
probability and thus in finite dimensional distributions.

A particular instance of (2.3) is the reverse Ornstein-Uhlenbeck process, see [10, Sec-
tion 3.6]. This process provides a straightforward application of proposition 2.1.

Proposition 2.2 (Reverse Ornstein-Uhlenbeck process) Let λ > 0 and 1 < α ≤ 2 and let
M be an α-stable measure on R with control measure L. The stationary process

Y (t) =

∫ ∞

t

exp(−λ(x − t))M(dx) (t ∈ R)

has a version in D(R) that is 1/α-localisable at all u ∈ R with Y ′
u = Lα, where Lα(t) :=∫ t

0
M(dz) is α-stable Lévy motion.

Proof. The process Y is a moving average process that may be written in the form (2.3)
with g(x) = exp(λx)1(−∞,0](x). It is easily verified using the dominated convergence
theorem that g satisfies (2.4) with γ = 0 and h(t, z) = −1(−t,0](z) for t ≥ 0 and h(t, z) =
−1(0,−t](z) for t < 0, so proposition 2.1 gives the conclusion with Y ′

u(t) = −M([−t, 0]) =
Lα(t) for t ≥ 0 and a similar formula for t < 0.

Proposition 2.1 gives a condition on the kernel ensuring localisability. With an addi-
tional constraint we can get strong localisability. First we need the following proposition
on continuity.

Proposition 2.3 Let 0 < α < 2, g ∈ Fα and let M be an α-stable symmetric random
measure on R with control measure L. Consider the moving average process defined by
(2.3). Suppose that g satisfies, for all sufficiently small h,

∫
|g(h − x) − g(−x)|α dx ≤ c|h|λ,

where c > 0 and λ > 1. Then Y has a continuous version which satisfies a θ-Hölder
condition for all θ < (λ − 1)/α.

Proof. By stationarity,

Y (t) − Y (t′) = Y (t − t′) − Y (0)

=

∫
(g(t − t′ − x) − g(−x))M(dx).

So for 0 < p < α

E|Y (t) − Y (t′)|p ≤ c1

(∫
|g(t − t′ − x) − g(−x)|

α
dx

)p/α

≤ c2|t − t′|λp/α.

The result then follows from the Kolmogorov criterion by taking p arbitrarily close to α.
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Proposition 2.4 With the same notation and assumptions as in proposition 2.1, suppose
that in addition that g satisfies, for all sufficiently small h,

∫
|g(h − x) − g(−x)|α dx ≤ c|h|αγ+1, (2.5)

where c > 0 and γ > 0. Then Y has a version in C(R) that is (γ+1/α)-strongly localisable
with Y ′

u = {
∫

h(t, z)M(dz) : t ∈ R} at all u ∈ R.

Proof. By proposition 2.3, Y (t) has a continuous version and so Zr(t) := r−(γ+1/α)(Y (rt)−
Y (0)) also has a continuous version. Thus, for 0 < p < α, by stationarity and setting
h = r|t − t′| sufficiently small,

E|Zr(t) − Zr(t
′)|p = E|Zr(t − t′) − Zr(0)|p

= c1

(∫ ∣∣∣∣
g(r(t− t′) − x) − g(−x)

rγ+1/α

∣∣∣∣
α

dx

)p/α

= c1

(∫
|g(h − x) − g(−x)|α

hγα+1
dx

)p/α

|t − t′|(γα+1)p/α

≤ c2|t − t′|(γα+1)p/α,

provided |t − t′| is sufficiently small, using (2.5) in the last step. We may choose p suf-
ficiently close to α so that (γα + 1)p/α > 1. By a Corollary to Kolmogorov’s criterion
(see e.g. [9, Theorem 85.5]) the measures on C(R) underlying the processes Zr are con-
ditionally compact. Thus convergence in finite dimensional distributions of Zr to Y ′

u as
r ց 0 implies the convergence in distribution (with Y ′

u necessarily having a continuous
version). Together with localisability which follows from proposition 2.1 this gives strong
localisability.

Note that the reverse Ornstein-Uhlenbeck process is a stationary Markov process which
has a version in D(R) see [11, Remark 17.3]. It also satisfies (2.5) for α ≥ 1 with γ = 0.
However, we cannot deduce that it is strongly localisable since proposition 2.4 is only
valid for γ > 0. The case γ = 0 would be interesting to deal with, but is much harder
and would require different techniques.

3 Sufficient conditions for localisability and examples

For the reverse Ornstein-Uhlenbeck process, it was straightforward to check the conditions
of proposition 2.1. In general, however, it is not easy to guess which kind of functions g
in Fα will satisfy (2.4). In this section we will find simple practical conditions ensuring
this.

Recall that the following process is called linear fractional α-stable motion:

Lα,H,b+,b−(t) =

∫ ∞

−∞

fα,H(b+, b−, t, x)M(dx),

where t ∈ R, b+, b− ∈ R, and

fα,H(b+, b−, t, x) = b+
(
(t − x)

H−1/α
+ − (−x)

H−1/α
+

)

+ b−
(
(t − x)

H−1/α
− − (−x)

H−1/α
−

)
, (3.1)
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where M is a symmetric α-stable random measure (0 < α < 2) with control measure
Lebesgue measure. Being sssi, Lα,H,b+,b− is localisable. In addition, it is strongly localis-
able when H > 1/α, since its paths then belong to C(R).

Recall also that the process

Lα(t) =

∫ t

0

M(dx) (3.2)

is α-stable Lévy motion and the process

Zα(t) =

∫ +∞

−∞

(ln |t − x| − ln |x|)M(dx) (3.3)

is called log-fractional stable motion.
We are now ready to describe easy-to-check conditions that ensure that propositions

2.1 and 2.4 apply.

Proposition 3.1 Let 0 < α ≤ 2, g ∈ Fα and M be an α-stable symmetric random
measure on R with control measure L. Let Y be the moving average process

Y (t) =

∫
g(t − x)M(dx) (t ∈ R).

If there exist c+
0 , c−0 , γ, a, c, η ∈ R with c > 0, η > 0 and 0 < γ + 1/α < a ≤ 1 such that

g(r)

rγ
→ c+

0 and
g(−r)

rγ
→ c−0

as r ց 0 and
|g(u + h) − g(u)| ≤ c|h|a|u|γ−a (u ∈ R, |h| < η), (3.4)

then Y is (γ + 1/α)-localisable at all u ∈ R with local form

(a) Y ′
u = Lα,γ+1/α,c+0 ,c−0

if γ 6= 0,

(b) Y ′
u = (c+

0 − c−0 )Lα if γ = 0.

If, in addition, γ > 0 and 0 < α < 2 then Y has a version in C(R) and is strongly
localisable.

Note that condition (3.4) on the increments of g may be interpreted as a 2-microlocal
condition, namely that g belongs to the global 2-microlocal space Cγ,a−γ

0 , see [7]. Remark
also that, in order for this condition to be satisfied by non-trivial functions g, one needs
a ≤ 1, which in turns implies that γ ≤ 1 − 1/α and a − γ ∈ (1/α, 1 − γ].

Proof (a) We have

g(r(t + z)) − g(rz)

rγ
=

g(r|t + z|)

(r|t + z|)γ
|t + z|γ1{t+z≥0} +

g(−r|t + z|)

(r|t + z|)γ
|t + z|γ1{t+z<0}

−
g(r|z|)

(r|z|)γ
|z|γ1{z≥0} −

g(−r|z|)

(r|z|)γ
|z|γ1{z<0}.
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As r → 0,

g(r(t + z)) − g(rz)

rγ
→ c+

0 |t + z|γ1{t+z≥0} + c−0 |t + z|γ1{t+z<0} − c+
0 |z|

γ1{z≥0} − c−0 |z|
γ1{z<0}

= c+
0 (t + z)γ

+ − c+
0 (z)γ

+ + c−0 (t + z)γ
− − c−0 (z)γ

− (3.5)

= fα,γ+1/α(c+
0 , c−0 , t,−z).

To get convergence in Lα we use the dominated convergence theorem. Fix ǫ > 0 and
m > 0 such that for all 0 < u < ǫ,

∣∣∣∣
g(u)

uγ
− c+

0

∣∣∣∣ ≤ m and

∣∣∣∣
g(−u)

uγ
− c−0

∣∣∣∣ ≤ m.

For fixed t write fr(z) = r−γ(g(r(t + z)) − g(rz)). If t = 0,

fr(z) = fα,γ+1/α(c+
0 , c−0 , t,−z) = 0,

thus fr → fα,γ+1/α(c+
0 , c−0 , t,−.) which belongs to Lα. Assume now t ∈ R∗. There is a

constant m1 such that |fr(z)|α ≤ m1(1 + |z|γ + |t + z|γ)α for all |r| ≤ ǫ
1+|t|

and |z| ≤ 1.

From (3.4)

|fr(z)|α ≤

(
|rt|a|rz|γ−a

|r|γ

)α

≤ |t|aα|z|(γ−a)α

for |r| < η/|t|, so, as (γ − a)α < −1 and γα > −1,

∫

|z|≤1

m1(1 + |z|γ + |t + z|γ)αdz +

∫

|z|>1

|z|(γ−a)αdz < ∞.

Since also fα,γ+1/α(c+
0 , c−0 , t,−z) ∈ Lα, the dominated convergence theorem implies

that fr(z) → fα,γ+1/α(c+
0 , c−0 , t,−z) in Lα. The conclusion in case (a) follows from propo-

sition 2.1, (3.1), and noting that M is a symmetric α-stable measure.

(b) In this case the limit (3.5) is

g(r(t + z)) − g(rz)

rγ
→

{
(c+

0 − c−0 )1[0,t](−z) if t ≥ 0
−(c+

0 − c−0 )1[t,0](−z) if t < 0
.

Dominated convergence follows in the same way as in case (a) so the conclusion follows
from proposition 2.1 and (3.2).

Moving to strong localisability, for h small enough,

∫

|x|≤3|h|

|g(h − x) − g(−x)|αdx ≤ c1

∫

|x|≤3|h|

|h|αγdx ≤ c2|h|
αγ+1,

and
∫

|x|≥3|h|

|g(h − x) − g(−x)|αdx ≤ c1|h|
aα

∫ ∞

3|h|

|x|(γ−a)αdx

≤ c2|h|
aα|h|1+(γ−a)α

= c2|h|
αγ+1
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and the conclusion follows from propositions 2.3 and 2.4.

We now give an alternative condition for localisability in terms of Fourier transforms.
Note that the Fourier transform f̂α,H(b+, b−, t, ξ) of fα,H(b+, b−, t, .) is given by

f̂α,H(b+, b−, t, ξ) =Γ(H + 1 − 1/α)
e−iξt − 1

|ξ|H+1−1/α

×

[
b+ exp

(iπ

2
sgn(ξ)(H + 1 − 1/α)

)
+ b− exp

(
−

iπ

2
sgn(ξ)(H + 1 − 1/α

)]
.

Proposition 3.2 Let 1 ≤ α ≤ 2, and Y be defined by (2.3). If there exist l = l1+il2 ∈ C∗,
γ ∈ (− 1

α
, 1 − 1

α
), a ∈ (0, 1 − (γ + 1

α
)) and K ∈ Lp(R) with p ∈ [1, 1/(γ + 1

α
+ a)), such

that for almost all ξ > 0,

ξγ+1ĝ(ξ) = l +
1

ξa
K̂(ξ), (3.6)

then Y is (γ + 1/α)-localisable at all u ∈ R with local form

(a) Y ′
u = Lα,γ+1/α,b+,b− if γ 6= 0

(b) Y ′
u = 1

π
l1Zα + l2Lα if γ = 0,

where

b+ =
1

2Γ(γ + 1)

(
l1

cos(π(γ + 1)/2)
−

l2
sin(π(γ + 1)/2)

)
,

b− =
1

2Γ(γ + 1)

(
l1

cos(π(γ + 1)/2)
+

l2
sin(π(γ + 1)/2)

)
.

Proof (a) First note that, with b+ and b− as above, we have, for z 6= 0,

f̂α,γ+1/α(b+, b−, t, ξ) =
e−iξt − 1

|ξ|γ+1
(l̄1ξ>0 + l1ξ<0).

Set fr(z) = r−γ(g(r(t + z)) − g(rz)). Then fr ∈ Fα and

f̂r(ξ) =
eiξt − 1

rγ+1
ĝ
(ξ
r

)
.

With α′ such that 1
α

+ 1
α′

= 1 we have f̂r ∈ Fα′ and f̂α,γ+1/α(b+, b−, t, ξ) ∈ Fα′ . We now
show that ‖fr − fα,γ+1/α(b+, b−, t,−·)‖α → 0 when r → 0. Note that (3.6) implies that
for ξ < 0

|ξ|γ+1ĝ(ξ) = l̄ +
1

|ξ|a
K̂(ξ).

Writing f̂(ξ) = f̂α,γ+1/α(b+, b−, t,−ξ), for almost all ξ ∈ R

f̂r(ξ) − f̂(ξ) =
(eiξt − 1)

|ξ|γ+1

(( |ξ|γ+1

rγ+1
ĝ
(ξ
r

)
− l
)
1ξ>0 +

( |ξ|γ+1

rγ+1
ĝ
(ξ
r

)
− l̄
)
1ξ<0

)

=
(eiξt − 1)

|ξ|γ+1

ra

|ξ|a
K
(ξ
r

)

= ra (eiξt − 1)

|ξ|γ+1+a
K
(ξ
r

)
.
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Let Hr(u) = K(ru). Then Ĥr(ξ) = 1
r
K̂( ξ

r
) and we may write for a + γ 6= 0

f̂r(ξ) − f̂(ξ) = ra+1f̂α,γ+1/α+a(b, b, t,−ξ)Ĥr(ξ), (3.7)

where b = 1/(2Γ(γ + a + 1) cos(π(γ + a + 1)/2)).
It is easy to verify that fα,γ+a+1/α(b+, b−, t,−·) ∈ Lβ for all β > 1/(1− γ − a). By the

conditions on α and p, there exists such a β which also satisfies 1
α

+ 1 = 1
β

+ 1
p

and in

particular, 1
p

+ 1
β

> 1. Consequently we may take the inverse Fourier transform of (3.7)

see, for example, [13, Theorem 78] to get:

fr(z) − f(z) = ra+1fα,γ+1/α+a(b
+, b−, t,−.) ∗ Hr(z)

where ∗ denotes convolution. As 1
α

+ 1 = 1
β

+ 1
p
, the Hausdorff-Young inequality yields

‖fr − fα,γ+1/α(b+, b−, t,−·)‖α ≤ ra+1‖fα,γ+1/α+a‖β‖Hr‖p

≤ ra+1− 1
p‖fα,γ+1/α+a‖β‖K‖p.

We conclude that fr → fα,γ+1/α(b+, b−, t,−·) in Lα. The result follows from proposition
2.1. The case a + γ = 0 is dealt with in a similar way.

(b) Let zt and lt be defined by

lt(x) =

{
1]0,t[(x) if t ≥ 0

−1]t,0[(x) if t < 0

and
zt(x) = ln |t − x| − ln |x|.

A straightforward computation shows that

zt(x) = sgn(−t) lim
ε→0

∫

|s|≥ε

1

s
1[min(x−t,x),max(x−t,x)](s)ds,

so that, in the space of distributions we get

zt = −PV(1/·) ∗ lt

where PV denotes the Cauchy principal value. Thus

ẑt(ξ) = −P̂V(1/·)(ξ)l̂t(ξ)

= −(−iπsgn(ξ))
(
−

1

iξ
(e−iξt − 1)

)

= −π
e−iξt − 1

|ξ|
.

With f(z) = − 1
π
l1zt(−z) − l2lt(−z), we obtain

f̂(ξ) =
eiξt − 1

|ξ|
(l1ξ>0 + l̄1ξ<0).

As in (a) we conclude that fr → f in Lα. proposition 2.1 implies that Y is (γ + 1/α)-
localisable at all u ∈ R with local form Y ′

u = 1
π
l1Zα + l2Lα, since M is symmetric.

We give examples to illustrate propositions 3.1 and 3.2.
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Example 3.3 Let 6
5

< α ≤ 2 and let M be an α-stable symmetric random measure on R

with control measure L. Let

g(x) =






0 (x ≤ 0)
x1/6 (0 < x ≤ 1)
x−5/6 (x ≥ 1)

.

The stationary process defined by

Y (t) =

∫
g(t − x)M(dx) (t ∈ R)

is (1/6 + 1/α)-strongly localisable at all u ∈ R with local form Y ′
u = Lα,1/6+1/α,1,0.

Proof. We apply proposition 3.1 case (a) with α ∈ (5
6
, 2]. The function g satisfies the

assumptions with γ = 1
6
, c+

0 = 1, c−0 = 0 and a = 1.

To verify condition (3.6) of proposition 3.2, one needs to check that g ∈ Lα(R) and
also that ξa+γ+1ĝ(ξ)− lξa is the Fourier transform of a function in Lp(R) for some a, γ, p
in the admissible ranges. For this purpose, one may for instance apply classical theorems
such as in [13, Theorems 82-84]. We give below an example that uses a direct approach.

Example 3.4 For 1 ≤ α < 2 let M be an α-stable symmetric random measure on R with
control measure L. Let g be defined by its Fourier transform

ĝ(ξ) =

{
0 (|ξ| ≤ 1)

|ξ|−γ−1 (|ξ| > 1)

where γ ∈ (− 1
α
, 1

2
− 1

α
) ⊆ (−1, 0). Then g ∈ Lα(R) and the moving average process

Y (t) =

∫
g(t − x)M(dx) (t ∈ R)

is well-defined and α-localisable at all u ∈ R, with local form Y ′
u = Lα,γ+1/α,b,b, where

b = −1/(2Γ(γ + 1) cos(π(γ + 1/2))).

Proof. Taking K̂(ξ) = |ξ|1/21[−1,1](ξ) with l = −1 and a = 1
2

in (3.6) gives g. To check that
K ∈ Lp(R) for all p > 1, note that K is continuous (in fact C∞) and that |K(x)| ≤ C|x|−1

for all x. Then Y (t) will be well-defined if g is in Lα(R). To verify this, one computes the
inverse Fourier transform of ĝ, to get g(x) = 2(γ + 1)|x|γ

∫∞

|x|
|v|−γ−2 sin vdv − 2x−1 sin x.

By proposition 3.2(a), Y is α-localisable at all u ∈ R with the local form as stated.

The approach of this example may be be used for general classes of functions g.

4 Multistable moving average processes

In [5], localisability is used to define multistable processes, that is processes which at
each point t ∈ R have an α(t)-stable random process as their local form, where α(t) is a
sufficiently smooth function ranging in (0, 2). Thus such processes “look locally like” a
stable process at each t but with differing stability indices as time evolves.
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Before we recall how this was done in [5], we note briefly that “stable-like” processes
have been defined and studied in [8]. These stable-like processes are Markov jump pro-
cesses, and are, in a sense, “localisable”, but with localisability defined by the requirement
that they are solutions of an order α(x) fractional stochastic differential equations. See
Theorem 2.1 in [8], which shows that the local form of sample paths is considered rather
than of the limiting process. Another essential difference is that stable-like processes are
Markov, whereas, in general, multistable ones, as defined below, are not. In fact, formula
(4.6), where a Poisson process element Y is independent of t but is raised to a power that
involves t means that our processes are “far” from Markov.

We now come back to our multistable processes. One route to defining such processes
is to rewrite stable integrals as countable sums over Poisson processes. We recall briefly
how this can be done, see [5] for fuller details. Let (E, E , m) be a σ-finite measure space
and let Π be a Poisson process on E × R with mean measure m × L. Thus Π is a
random countable subset of E × R such that, writing N(A) for the number of points in
a measurable A ⊂ E × R, the random variable N(A) has a Poisson distribution of mean
(m × L)(A) with N(A1), . . . , N(An) independent for disjoint A1, . . . , An ⊂ E × R, see
[6]. In the case of constant α, with M a symmetric α-stable random measure on E with
control measure m, one has, for f ∈ Fα ([10, Section 3.12]),

∫
f(x)M(dx) = c(α)

∑

(X,Y)∈Π

f(X)Y<−1/α> (0 < α < 2), (4.1)

where
c(α) =

(
2α−1Γ(1 − α) cos(1

2
πα)

)−1/α
, (4.2)

and a<b> = sign(a)|a|b.
Now define the random field

X(t, v) =
∑

(X,Y)∈Π

f(t, v, X)Y<−1/α(v)>. (4.3)

Under certain conditions the “diagonal” process X(t, t) gives rise to a multistable process
with varying α of the form

Y (t) ≡ X(t, t) =
∑

(X,Y)∈Π

f(t, t, X)Y<−1/α(t)>. (4.4)

Theorem 5.2 of [5] gives conditions on f that ensure that Y is localisable (or strongly
localisable) with Y ′

u = X ′
u(·, u) at a given u, provided X(·, u) is itself localisable (resp.

strongly localisable) at u. These conditions simplify very considerably in the moving
average case, taking E = R and m = L with f(t, v, x) = g(x − t). Our next theorem
restates [5, Theorem 5.2] in this specific situation.

We need first to define a quasinorm on certain spaces of measurable functions on E.
For 0 < a ≤ b < 2 let

Fa,b ≡ Fa,b(E, E , m) = {f : f is m-measurable with ‖f‖a,b < ∞}

where

‖f‖a,b =

(∫

E

|f(x)|am(dx)

)1/a

+

(∫

E

|f(x)|bm(dx)

)1/b

. (4.5)
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Theorem 4.1 (Multistable moving average processes) Let U be a closed interval with u
an interior point. Let α : U → (a, b) ⊂ (0, 2) satisfy

|α(v) − α(u)| ≤ k1|v − u|η (v ∈ U)

where 0 < η ≤ 1. Let g ∈ Fa,b, and define

Y (t) =
∑

(X,Y)∈Π

g(X − t)Y<−1/α(t)> (t ∈ R). (4.6)

Assume that g satisfies

lim
r→0

∫ ∣∣∣∣
g(r(t + z)) − g(rz)

rγ
− h(t, z)

∣∣∣∣
α(u)

dz = 0 (4.7)

for jointly measurable functions h(t, ·) ∈ Fα(u), where 0 < γ + 1/α(u) < η ≤ 1. Then Y
is (γ + 1/α(u))-localisable at u with local form Y ′

u = {
∫

h(t, z)Mα(u)(dz) : t ∈ R}, where
Mα(u) is the symmetric α(u)-stable measure with control measure L and skewness 0.

Suppose further that γ > 0 and for h sufficiently small

‖g(h − x) − g(−x)‖α ≤ c|h|γ+1/α(u).

Then Y has a continuous version and is strongly (γ + 1/α(u))-localisable at u with local
form Y ′

u = {
∫

h(t, z)Mα(u)(dz) : t ∈ R} under either of the following additional conditions:
(i) 0 < α(u) < 1 and g is bounded
(ii) 1 < α(u) < 2 and α is continuously differentiable on U with

|α′(v) − α′(w)| ≤ k1|v − w|η (v, w ∈ U),

where 1/α(u) < η ≤ 1.

Proof. Taking

X(t, v) =
∑

(X,Y)∈Π

g(X − t)Y<−1/α(v)> (t, v ∈ R). (4.8)

this theorem is essentially a restatement of [5, Theorem 5.2] in the special case of E = R

and m = L with f(t, v, x) = g(x − t) in (4.3). Since f(t, v, x) no longer depends on v
most of the conditions in [5, Theorem 5.2] are trivially satisfied and we conclude that
Y ′

u = X ′
u(·, u), noting that X(·, u) is (γ +1/α(u))-localisable (or strongly localisable) with

the local form given by propositions 2.1 or 2.4.

It is curious that neither cases (i) or (ii) address localisability if α(u) = 1. This goes
back to the proof of [3, Theorem 5.2] where different approaches are used in the two cases.
For α(u) < 1 the proof uses that the sum (4.8) is absolutely convergent almost surely,
whereas for α(u) > 1 we need to find a number p such that 0 < p < α(t) for t near u with
ηp > 1 to enable us to apply Kolmogorov’s criterion to certain increments.

Corollary 4.2 Let U, α and g be as in Theorem 4.1. Then the same conclusion holds if
Y (t) in (4.6) is replaced by Y (t) = a(t)

∑
(X,Y )∈Π g(X− t)Y<−1/α(t)> (t ∈ R), where a is

a non-zero function of Hölder exponent η > h.
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Proof. This follows easily in just the same way as proposition 2.2 of [5].

We may apply this theorem to get a multistable version of the reverse Ornstein-
Uhlenbeck process considered in Section 2:

Proposition 4.3 (Multistable reverse Ornstein-Uhlenbeck process) Let λ > 0 and α :
R → (1, 2) be continuously differentiable. Let

Y (t) =
∑

(X,Y)∈Π,X≥t

exp(−λ(X − t))Y<−1/α(t)> (t ∈ R).

Then Y is 1/α(u)-localisable at all u ∈ R with Y ′
u = c(α(u))−1Lα(u), where Lα is α-stable

Lévy motion.

Proof. Taking g(x) = 1[0,∞)(x) exp(−λx) and h(t, z) = −1[−t,0](z) for t ≥ 0 (and a similar
formula for t < 0) with γ = 0, localisability follows from Theorem 4.1 with the limit (4.7)
being checked just as in proposition 2.2.

Theorem 4.1 applies in particular to functions g satisfying the conditions of proposition
3.1. Thus, for instance, the moving averages of Examples 3.3 and 3.4 admit multistable
versions. The process of Example 3.3 is strongly γ + 1/α(u) localisable at u whenever α
verifies condition (ii).

5 Path synthesis and numerical experiments

We address here the issue of path simulation. In the previous sections, we have considered
two kinds of stochastic processes: moving average stable ones, that are stationary, and
their multistable versions, which typically are not, nor have stationary increments. Our
simulation method for the moving average stable processes is based on that presented in
[12]. There, the authors propose an efficient algorithm for synthesizing paths of linear
fractional stable motion. In fact, this algorithm really builds traces of the increments of
linear fractional stable motion. These increments form a stationary process, an essential
feature for the algorithm to work. It is straightforward to modify it to synthesize any
stationary stable process which possesses an integral representation. In addition, we are
able to obtain bounds on the approximation error measured in the α-norm, and thus on
the rth moments for r < α, as shown below.

For non (increment) stationary processes, like multistable processes, a possibility
would be to use the general method proposed in [1]. It allows to synthesize (fractional)
fields defined by integration of a deterministic kernel with respect to a random infinitely
divisible measure. When the control measure is finite, the idea is to approximate the
integral with a generalized shot noise series. In this situation, a bound on the Lr norm
of the error is obtained for appropriate r. In the case of infinite control measure, one
needs to deal with the points “far from the origin” through a normal approximation.
This second approximation maybe controlled through Berry-Esseen bounds which lead to
a convergence in law. Thus the overall error when the control measure is infinite may
only be assessed in law, and not in the stronger Lr norm.

Although the method of [1] may be used for the synthesis of multistable processes,
we will rather take advantage here of the particular structure of our processes: being
localisable, they are by definition tangent, at each point, to an increment stationary
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process. Thus we may simulate them by “gluing” together in a appropriate way paths of
their tangent processes, which are themselves synthesized through the simpler procedure
of [12]. This approach allows in addition to control the error in the Lr norm, rather than
only in law (since we are in an infinite control measure case).

We briefly present in the next subsection the main ingredients of the method. We
then give bounds estimating the errors entailed by the numeric approximation, in the
case where the process is localisable. Finally, we display graphs of localisable moving
average processes obtained with this synthesis scheme.

5.1 Simulation of stable moving averages

Let Y = {Y (t), t ∈ R} be the process defined by (2.3). To synthesize a path Y (k), k =
1, ..., N, N ∈ N, of Y , the usual (Euler) method consists in approximating the integral by
a Riemann sum. Two parameters tune the precision of the method: the discretization
step ω and the cut-off value for the integral Ω. The idea in [12] is to use the fast Fourier
transform for an efficient computation of the Riemann sum. More precisely, let

Y (k) =

∫

R

g(k − s)dM(s) = −

∫

R

g(s)dM(k − s).

Let ω, Ω ∈ N and

Yω,Ω(k) =
0∑

j=−ωΩ+1

g(
j − 1

ω
)Zα,ω(ωk − j) +

ωΩ∑

j=1

g(
j

ω
)Zα,ω(ωk − j), (5.1)

where Zα,ω(j) = M( j+1
ω

) − M( j
ω
) are i.i.d. α-stable symmetric random variables. Let

Zα(j) denote a sequence of normalised i.i.d α-stable symmetric random variables. Then
one has the equality in law: {Zα,ω(j), j ∈ Z} = {ω−1/αZα(j), j ∈ Z}. One may thus write:

Yω,Ω(k) =
2ωΩ∑

j=1

aω(j)Zα(ω(k + Ω) − j),

where

aω(j) =

{
ω−1/αg( j−1

ω
− Ω) for j ∈ {1, ..., ωΩ}

ω−1/αg( j
ω
− Ω) for j ∈ {ωΩ + 1, ..., 2ωΩ}.

For n ∈ Z, let

W (n) =

2ωΩ∑

j=1

aω(j)Zα(n − j).

Then {Yω,Ω(k), k = 1, ..., N} has the same law as {W (ω(k + Ω)), k = 1, ..., N}. But W
is the convolution product of the sequences aω and Zα. As such, it may be be efficiently
computed through a fast Fourier transform. See [12] for more details.

5.2 Estimation of the approximation error

When the moving average process is localisable, or more precisely when the conditions of
proposition 3.1 are satisfied, it is easy to assess the performances of the above synthesis
method.
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The following proposition gives a bound on the approximation error in the α−norm.
Recall that the α−norm (defined in (2.1)) is just the scale factor of the random variable,
and is thus independent of the integral representation that is used. In addition, it us, up
to a constant depending on r and α, an upper bound on moments of order 0 < r < α.

Proposition 5.1 Let Y be defined by (2.3), and let Yω,Ω be its approximation defined in
(5.1). Assume g satisfies the conditions of proposition 3.1. Then, for all ω, Ω ∈ N and
k ∈ Z with ω > 1

η
, one has

Err := ‖Y (k) − Yω,Ω(k)‖α ≤ A
1/α
ω,Ω

where

Aω,Ω =
2cα

(1 + aα)ω1+γα

ωΩ∑

j=1

1

j(a−γ)α
+

∫ −Ω

−∞

|g(s)|αds +

∫ +∞

Ω

|g(s)|αds

Proof. By stationarity and independence of the increments of Lévy motion, one gets:

Err =

0∑

j=−ωΩ+1

∫ j/ω

(j−1)/ω

|g(
j − 1

ω
) − g(s)|αds +

ωΩ∑

j=1

∫ j/ω

(j−1)/ω

|g(
j

ω
) − g(s)|αds

+

∫ −Ω

−∞

|g(s)|αds +

∫ +∞

Ω

|g(s)|αds. (5.2)

By assumption, for almost all s ∈ R, |g(s + h) − g(s)| ≤ c|h|a|s|γ−a when 0 < h < η.
Recall that ω > 1

η
. A change of variables yields

∫ j/ω

(j−1)/ω

|g(
j − 1

ω
) − g(s)|αds ≤

∫ 1/ω

0

cα|s|aα|
j − 1

ω
|(γ−a)αds

and thus

Err ≤
0∑

j=−ωΩ+1

∫ 1/ω

0

cα|s|aα|
j − 1

ω
|(γ−a)αds +

ωΩ∑

j=1

∫ 1/ω

0

cα|s|aα|
j

ω
|(γ−a)αds

+

∫ −Ω

−∞

|g(s)|αds +

∫ +∞

Ω

|g(s)|αds.

Rearranging terms:

Err ≤
cα

(1 + aα)

1

ω1+γα

(
0∑

j=−ωΩ+1

|j − 1|(γ−a)α +
ωΩ∑

j=1

|j|(γ−a)α

)

+

∫ −Ω

−∞

|g(s)|αds +

∫ +∞

Ω

|g(s)|αds

= Aω,Ω.

which is the stated result.
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Corollary 5.2 Under the conditions of proposition 5.1, ‖Y (k) − Yω,Ω(k)‖α → 0 when
(ω, Ω) tends to infinity.

If in addition g(x) ≤ C|x|−β when |x| → ∞ for some C > 0 and β > 1
α
, then:

‖Y (k) − Yω,Ω(k)‖α
α ≤ K

(
ω−1−αγ + Ω1−αβ

)
(5.3)

where K is a constant independent of k, ω, Ω.

Proof. Since g satisfies the assumptions of proposition 3.1, a > γ + 1
α
. As a consequence,

the sum in the first term of Aω,Ω converges when (ω, Ω) tends to infinity. The first
statement then follows from the facts that αγ + 1 > 0 and g ∈ Fα. The second part
follows by making the obvious estimates.

The significance of (5.3) is that it allows us to tune ω and Ω to obtain an optimal
approximation, provided a bound on the decay of g at infinity is known: optimal pairs
(ω, Ω) are those for which the two terms in (5.3) are of the same order of magnitude. More
precisely, if the value of β is sharp, the order of decay of the error will be maximal when

Ω = ω
−1−αγ
1−αβ . Note that the exponent −1−αγ

1−αβ
is always positive, as expected. Intuitively, ω

is related to the regularity of g (irregular g requires larger ω), while Ω is linked with the
rate of decay of g at infinity.

For concreteness, let us apply these results to some specific processes:

Example 5.3 (reverse Ornstein-Uhlenbeck process) Let Y be the reverse Ornstein-Uhlenbeck
process defined in proposition 2.2. When α > 1, we may apply proposition 5.1 with
g(x) = exp(x)1l(x ≤ 0), γ = 0, a = 1, c = 2, η = 1. One gets, for ω > 1, Ω > 1,

Aω,Ω =
2α+1

1 + α

(
ωΩ∑

j=1

1

jα

)
1

ω
+

e−αΩ

α
.

However, we may obtain a more precise bound on the approximation error, valid for
any α ∈ (0, 2), by using (5.2) directly:

‖Y (k) − Yω,Ω(k)‖α
α ≤

2α

1 + α

(
1 − e−αΩ

eα/ω − 1

)
1

ω1+α
+

e−αΩ

α
.

When (ω, Ω) → +∞, Err ≤ O( 1
ωα ) + O(e−αΩ), which is better than Aω,Ω above when

α > 1.
We note finally that the optimal choice for (ω, Ω) is here Ω = ln(ω), which is consistent

with the fact that the β in Corollay 5.2 may be chosen arbitrarily large.

Example 5.4 (linear fractional stable noise) Let 0 < α ≤ 2 and let M be an α-stable
symmetric random measure on R with control measure L. Let:

g(x) = (x)
H−1/α
+ − (x − 1)

H−1/α
+

and

Y (t) =

∫
g(t − x)M(dx) (t ∈ R)

Applying the analysis above with γ = H − 1
α
, a = 1,c = 2|γ|,η = 1 one gets, for ω > 1,

Ω > 1,

Aω,Ω =
2α+1|H − 1

α
|α

1 + α
(

ωΩ∑

j=1

1

j1+α(1−H)
)

1

ωαH
+

∫ +∞

Ω

|(x)H−1/α − (x − 1)H−1/α|αdx
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When (ω, Ω) → +∞,

Aω,Ω = O(
1

ωαH
) +

∫ +∞

Ω

|(x)H−1/α − (x − 1)H−1/α|αdx

= O(
1

ωαH
) + O(Ω1+α(H−1/α−1))

= O(
1

ωαH
) + O(

1

Ωα(1−H)
)

This process is the one considered in [12]. Here we reach a conclusion similar to [12,
Theorem 2.1], which yields the same order of magnitude for the error when (ω, Ω) → +∞.
Extensive tests are conducted in [12] to choose the best values for (ω, Ω). The criterion
for optimizing these parameters is to test how an estimation method for H performs on
synthesized traces. Here we adopt a different approach based on Corollary 5.2: optimal
pairs (ω, Ω) are those for which (5.3) is minimized. Since the value of β = 1 − H + 1/α

is sharp here, one gets Ω = ω
H

1−H . It is interesting to note that the exponent H/(1 − H)
depends only on the scaling factor H and not on α, and that it may be larger or smaller
than one depending on the value of H . We do not have an explanation for this fact nor
for the reason why H = 1/2 plays a special rôle.

Example 5.5 As a final illustration, we consider the process of Example 3.3. With γ = 1
6
,

a = 1,c = 1,η = 1, one gets, for ω > 1, Ω > 1,

Aω,Ω =
2

1 + α

(
ωΩ∑

j=1

1

j
5α
6

)
1

ω1+ α
6

+
1

5α
6
− 1

1

Ω
5α
6
−1

.

Again, the value of β = 5/6 is sharp, and the optimal choice is to set Ω = ω
α+6
5α−6 .

Since (α + 6)/(5α − 6) ≥ 1, Ω is larger than ω in this case, in contrast to the reverse
Ornstein-Uhlenbeck process: it is the decay at infinity of the kernel that dictates the
parameters here, while it was the regularity that mattered in the case of the reverse
Ornstein-Uhlenbeck process.

5.3 Numerical experiments

We display in figure 1 traces of:

• moving average stable processes: the reverse Ornstein-Uhlenbeck process (figures
1(e),(f)), and the processes of Examples 3.3 (figure 1(c)) and 3.4 (figure 1(a)). In
each case, α = 1.8. Some of the relevant features of the processes of Examples
3.3 and 3.4 seem to appear more clearly when one integrates them. Thus integral
versions are displayed in the right-hand part of the corresponding graphs, figures
1(b),(d).

• a multistable version of the reverse Ornstein-Uhlenbeck process, using the theory
developed in Section 4 (figures 1(g),(h)). Since these processes are localisable, one
may obtain paths by computing first stable versions with all values assumed by α,
and then “gluing” these tangent processes together as appropriate. More precisely,
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assume we want to obtain the values of a multistable process S at the discrete
points (t1, . . . , tn). At each ti, S is tangent to a stable process denoted Si. We
first synthesize the n stable processes Si with the method just described, all with
the same random seed. The multistable process S is then obtained by setting
S(ti) = Si(ti), i = 1, . . . , n. Two graphs are displayed for the multistable process:
in figure 1(g) the graphs are as explained above. In figure 1(h) each “line” of the
random field (i.e. the process obtained for a fixed value of α) is renormalized so
that it ranges between -1 and 1, prior to building the multistable process by gluing
the paths as appropriate. This renormalization may be justified using Corollary 4.2.

The parameters are as follows:

• Process of Example 3.4: ω = 5000, Ω = 877, N = 2000. The approximation error
Err is bounded by 2.172.

• Process of Example 3.3: ω = 104, Ω = 175504, N = 2000. The term A
1/α
ω,Ω is equal

to 0.074.

• Reverse Ornstein-Uhlenbeck process with λ = 1 : ω = 512, Ω = 7, N = 7392. The
term A

1/α
ω,Ω is equal to 0.0018.

• Reverse Ornstein-Uhlenbeck process with λ = 0.01 : ω = 256, Ω = 800, N = 7392.
The term A

1/α
ω,Ω is equal to 0.0032.

• Multistable reverse Ornstein-Uhlenbeck process: λ = 0.01, ω = 256, Ω = 800, N =
7392. The α function is the logistic function starting from 1.2 and ending at 1.85.
More precisely, we take: α(t) = 1.2 + 0.65

1+exp(− 5
1000

(t−N/2))
, where N is the number of

points and t ranges from 1 to N (the graph of α(t) is plotted in figure 1(h). Thus,
one expects to see large jumps at the beginning of the paths and smaller ones at
the end. Note that we do not have any results concerning the approximation error
for these non-stationary processes.

The value of Ω in all cases is adjusted so that the pair (ω, Ω) is approximately “optimal”
as described in the preceding subsection (optimality is not guaranteed for the multistable
processes. Nevertheless, since the relation between ω and Ω does not depend on α for the
reverse Ornstein-Uhlenbeck process, it holds in this case).

The function g of example 3.4 cannot be treated using corollary 5.2 nor proposition
5.1 since g does not satisfy the conditions of proposition 3.1. However, it is possible
to estimate Err directly. Since |g(x + h) − g(x)| ≤ 2|h|(|x|−

3
21|x|<1 + |x|−11|x|≥1) and

|g(x)| ≤ 4
|x|

, one gets:

Errα ≤
2α+2

1 + α

ωΩ∑

j=1

1

jα

1

ω1−α
2

+
8

α − 1

1

Ωα−1

Errα ≤
2α+2

1 + α

α

α − 1

1

ω1−α
2

+
8

α − 1

1

Ωα−1
.

The asymptotic optimal relation between ω and Ω is thus Ω = ω
2−α

2(α−1) = ω0.125. The
values in our simulation are slightly different since they are chosen to optimize the actual
expression with a finite ω.
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Finally, we stress that the same random seed (i.e. the same underlying stable M(dx))
has been used for all simulations, for easy comparison. Thus, for instance, the jumps
appear at precisely the same locations in each graph. Notice in particular the ranges
assumed by the different processes.

The differences between the graphs of the processes of Examples 3.3, 3.4 and the
reverse Ornstein-Uhlenbeck process are easily interpreted by examining the three kernels:
the kernel of the process of Example 3.4 diverges at 0, thus putting more emphasis on
strong jumps, as seen on the picture, with more jaggy curves and an “antipersistent”
behaviour. The kernel of the process of Example 3.3, in contrast, is smooth at the
origin. In addition, it has a slow decay. These features result in an overall smoother
appearance and allow “trends” to appear in the paths. Finally, the kernel of the reverse
Ornstein-Uhlenbeck process has a decay controlled by λ. For “large” λ (here, λ = 1), little
averaging is done, and the resulting path is very irregular. For “small” λ (here, λ = 0.01),
the kernel decays slowly and the paths look smoother (recall that, in the Gaussian case,
the Ornstein-Uhlenbeck tends in distribution to white noise when λ tends to infinity, and
to Brownian motion when λ tends to 0).
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Figure 1: Paths of localisable processes. (a) The process in Example 3.4 and (b) the
integrated version. (c) The process in Example 3.3 and (d) the integrated version. (e)
Reverse Ornstein-Uhlenbeck processes with λ = 1, and (f) λ = 0.01. (g) A multistable
reverse Ornstein-Uhlenbeck process with λ = 0.01 and (h) the renormalised version along
with α(t).
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