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We study the energy spectrum and electronic properties of two-dimensional electron gas in a
periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how
the structure of electron energy bands can be changed with the variation of the field strength, so
that we can start from nearly free electron gas and then transform it continuously to a system
of essentially localized chiral electron states. We find that the electrons near some minima of the
effective potential are responsible for occurrence of dissipationless persistent currents creating a
lattice of current contours. The topological properties of the electron energy bands are also varied
with the intensity of periodic field. We calculated the topological Chern numbers of several lower
energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when

the Fermi level lies in the gap, it is quantized.

PACS numbers: 73.21.-b,73.50.Jt,75.47.-m,73.23.Ra

I. INTRODUCTION

The aim of this work is to study the effect of a peri-
odic magnetic field of zero average on the dynamic of a
free electron gas. The magnetic field distribution forms
a "magnetic-field lattice” for electrons, which results in
the formation of electron energy bands controlled by the
strength and the geometry of the magnetic field.

The possibility of using periodic magnetic fields for
tailoring the electronic structure is mostly related to
recent advances in nanotechnology, which enables to
manufacture two-dimensional lattices of ferromagnetic
nanocylinderst. This idea has been already used by us
to suggest a system where the spin chirality mechanism
related to the anomalous Hall effect (AHE) in frustrated
ferromagnets2:3:45 can be measured and controlled ex-
ternally®. To detect this effect, we proposed to measure
the Hall effect in 2D diluted magnetic semiconductor on
top of the nanolattice of ferromagnetic cylinders. An-
other possible way to create the periodic field is to use
an array of magnetic nanodots with tunable out-of-plane
magnetization like in Ref. [].

Previous investigations of the 2D electronic system in
periodic magnetic fields concentrated mostly on the one-
dimensional periodic modulation®? and, in some cases,
on a mutual effect of the uniform and periodic magnetic
fields A9:11:12:13.14 The main difference of our work is that
we assume that the uniform magnetic field is exactly zero,
whereas the periodic field forms a real two-dimensional
nanolattice. For definiteness, here we focus on the case
of triangular lattice, which corresponds to the nanocylin-
der structure of Ref. [l]. It should be emphasized that
the assumption of zero uniform field is very important
because it results in formation of well-defined electron

energy bands characterized by the electron momentum k
like in the case of electric modulation. On the other hand,
the presence of 2D magnetic-field modulation substan-
tially changes a picture of the ”snakelike” electron motion
in a nonuniform (linear-in-gradient) magnetic field 13

The semiclassical consideration of the motion of elec-
trons in inhomogeneous magnetic field shows that the
low-energy electrons mostly tend to localize near the lines
of zero magnetic field 2216 The corresponding effective
potential has a different form for electrons moving in
opposite directions along the zero-field line. We found
an analogous tendency to localization of electrons in the
2D periodic field. In this case, the zero-field lines cor-
respond to some closed trajectories of electron motion,
which is chiral and quantized and which leads to occur-
rence of equilibrium persistent currents. It should be
noted that usually the persistent currents are associated
with mesoscopic rings, for which the symmetry of the
electron motion in opposite directions is broken by the
magnetic field 17:18:19:20.21.22 However, in our case of the
"magnetic crystal”, the persistent currents appear like a
periodic array of circular currents.

Quite recently a lot of discussions has been induced by
the study of an ”intrinsic” mechanism of the anomalous
Hall effect (AHE).22:24 In the ballistic regime, when the
impurities can be totally neglected, the anomalous Hall
effect is related to the topology of electron energy bands,
which can be characterized by integers called Chern num-
bers. It turned out that the discussion of the intrinsic
mechanism of AHE lead to a partial revising of the Lan-
dau theory of Fermi liquid because the transport prop-
erties are found to be related to the Berry curvature of
electron bands in momentum space,;22 which means that
the corresponding topological element should be added
to the Landau theory.26



Some rather simplified theoretical models like the 2D
electron gas with Rashba spin-orbit interaction or the rel-
ativistic 2D Dirac model allow full analytical calculation
of the Berry curvatures and Chern numbers. Recently,
several publications reported calculations of the Berry
curvature for SrRuOs2? and bec Fe28:29 using ab initio
methods. In our previous publication,2? we presented nu-
merical calculations of the Berry curvature of the energy
bands of electrons interacting with a chiral spin texture
defined on top of a kagomé lattice. However, in the latter
case the essential element is the inhomogeneous orienta-
tion of the localized spins, which leads to the chirality
contribution?3:4:2 to the AHE.

In this work, we study the topology of electron energy
bands by calculating the Chern numbers as a function of
the intensity of periodic magnetic field. The model with
the periodic field gives us such a parameter, which can
presumably be varied in the experiment (for example,
by changing a distance between the 2D layer and the
nanocylinder lattice). This way we can demonstrate a
strong jump-like dependence of the Chern numbers on
the field.

II. MODEL

We consider a model of two-dimensional electron gas
(2DEG) of spinless electrons in the x — y plane under
periodic magnetic field B(r). Since the electrons move in
the plane, the only component of field acting on electrons
is the component perpendicular to this plane, which we
denote by B(r). Then the properties of the system can
be described by the following Hamiltonian:

M= % (fiV - %A(r)f , (1)

where m is the effective electron mass and A(r) is the
vector potential related to the magnetic field B(r) by
V x A(r) = B(r). In the following we use the Coulomb
gauge determined by the condition V- A(r) = 0. In
the case of zero average field, it is possible to choose the
vector potential A(r) as periodic-in-space (see below).

Thus, we have a problem of electron in a periodic po-
tential, and we can use the Bloch theorem for the eigen-
functions of Hamiltonian ()

Ynk(r) = " Tun k(r), (2)

where n is the band index and k is the crystal momen-
tum, which is restricted to the first Brillouin zone. The
function u, k(r) is periodic, up k(r) = up k(r + R) with
R being the lattice vector determined by the periodicity
of the potential. Substituting Eq. @) in Eq. [), we find
that u, k(r) verify

Hk un,k(r) =&nk Un,k(r)v (3)

where e,k is the eigenvalue associated with the eigen-
function ¢, x(r) and

Hi = % (~iv+k- %A(r))Z 4)

is the reduced Hamiltonian depending on k. Using the
periodicity of u, k(r), we can write it as

“n,k(r) = Z “n,k(g) eig'ra (5)

where g is a vector of the reciprocal lattice, u, k(g) is
the Fourier transform of u,, k(r) defined by

1 .
un,k(g) = § /un,k(r) e—zgvrer, (6)

S

and S is the area of the unit cell. Substituting Eq. (@)
into @), we find that u, x(g) satisfy the following set of
equations

> Hi(g, &) tnxc(g) = enitin ik (8)- (7)

The matrix elements Hy (g, g') can be calculated by using

Eqgs. @) and @):

2 2e
A 2 , = . _ o
Hi(gg) = 5~ {(k+g) Ogg — 7 (k+g) Alg—¢g)
62 2 /
+ h2C2 A (g -8 ) ) (8)

where A(g) and A?(g) are the Fourier transforms of A (r)
and A?(r), respectively. Note that Eq. () depends on
the gauge, and is written in the Coulomb gauge g-A(g) =
0. Finally, the Fourier transform of A%(r) is related to
A(g) by the convolution

A’g)=> Ag-g) Alg). 9)

Up to now, the derivation is quite general. In the fol-
lowing, we specify the form of the magnetic field profile
to the symmetry of triangular lattice. It can be realized
by using a periodic array of ferromagnetic nanocylinders
with a period of few ten nanometers! on top of 2DEG,
like explained in Ref. [f]. This distribution is periodic
in plane and its Fourier components are decreasing ex-
ponentially with the wave vector g and with the dis-
tance between the 2D film and the array of ferromagnetic
nanocylinders.

The magnetic field has a zero net flux over the unit cell
and we assume that only the first Fourier components
of the field are important. The magnetic field profile is
shown in Fig. M Our approximation is valid when the
distance between the 2DEG and the array of ferromag-
netic nanocylinders is of the order of the lattice period.



We write down the z-component of the magnetic field

as
2 2
B(r) = By [cos (—W b -r) + cos (—W b '1‘)
a a
2
+ cos (—F bs - I‘)} , (10
a

where By is the amplitude of the field and a is the lattice
period. The vectors b; with ¢ = 1,2 and by = by +b; are
the vectors of reciprocal lattice of the triangular lattice.
They are defined by the relations b;-a; = §;;, where 4, j =
1,2,a; = (1,0), a = (1/2,v/3/2), and a3 = ag—a;. The
first Brillouin zone (Fig. [l) is an hexagon with corners
at k; = g—’;ai. The (Coulomb gauge) vector potential
A(r) can be chosen in the following form (i.e., periodic
in space)

A(r) = Ao [az sin (2_7r b1 'r> — aj sin (2_7r b, 'r>
a a
. 27
+ agsin (— bs - r)} , (11)
a

@2

FIG. 1: (Color online) (Left panel) Density plot of the mag-
netic field distribution (in arbitrary units). The black lines
are the isolines B(r) = 0. (Right panel) First Brillouin zone
of the triangular lattice.

where Ag = Bov/3a/4x.

V'

X

For the numerical calculations we define the reduced
units B(r) — BoB(r), A(r) — AjA(r), g — Zgis
the vector of reciprocal lattice and k — %’Tk the crystal
momentum taken in the first Brillouin zone. The energy
is replaced by € — e with eg = h?/2ma?. Finally, after
introducing the dimensionless parameter « = —eAga/hc,
Eq. @) becomes

Hi(g, 8) = co [(k+8)°0ge +20A(g — &) - (k+8g)
+a’A%(g—g)], (12)

so that unless stated, all the quantities will be presented
in the reduced dimensionless units. In what follows «
is the main parameter determining the intensity of the
magnetic-field modulation.
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FIG. 2: Energy spectrum of electrons in periodic magnetic
field calculated for a = 0.05 (a), 0.5 (b), 1 (c), and 5 (d).
Local gaps are open at points of the Brillouin zone where
degeneracies due to the Bragg plan are located.



III. ELECTRON ENERGY SPECTRUM AND
WAVE FUNCTIONS

A. Weak magnetic field: perturbation theory

Due to our choice of the gauge for the vector poten-
tial ([TJ), one can use the perturbation theory over A(r),
which corresponds to the limit of weak magnetic field.
Then the unperturbed Hamiltonian is Ho = —h?V?2/2m
(in this section we do not use reduced units), and the
Hamiltonian of interaction

ieh e?

e 2
Hznt - A( ) V+ 2mc2 A (I‘)

(13)
with

A(r) r), (14)

%bi. The eigenfunctions
of Hy are the usual plane waves ¥ (r) = %e“"r, and
the corresponding matrix elements of interaction can be

calculated as the Fourier components of Hipt

= Ay sin(g;-r)— A sin(gs-r)+ Assin(gs-

where A; = Apa; and g; =

2 42

e“A
7_(int (q) = 8mcg

[66(q) — (g +2g1) —
—0(q + 2g2) — 0(q — 2g2) — 0(q + 2g3) — )
+0(g+g1+82) —d(q+g1 —g2) —d(q— g1 +82)
+6(q—g1—g2) —d(q+ g1 +g3) +(q+ g1 —g3)
)
(

5(q —2g1)
5(q —2g3

+0(q—g1+g3) —d(q—g1 —g3) —d(q+g2+gs3

+0(q+ g2 —g3) +0(a— g2 +83) — d(a— g2 — g3)]. (15)
It should be noted that any matrix elements of the first
(linear in A) term in Eq. ([[3) are zero.

The perturbation related to H;ns breaks the degeneracy
of states belonging to the points in the Brillouin zone
separated by vector g, for which Hiu(g) # 0. Using
Eq. (@) we find the matrix elements corresponding to
transitions between the states in the opposite points at
the Brillouin zone edges

2 42
e”Ag

8mc?

Hint(81) = Hint(82) = Hint(g3) = (16)

For example, the element Hint (g2) couples the degenerate
states k = (0, —27/a+/3) and k' = (0, 27/a+/3). Using
the perturbation theory for the degenerate states k and
k', we can find that the value e? A3 /8mc? determines the
magnitude of the corresponding energy gap at the Bril-
louin zone edge. Note that the gap in these points is
nonzero for any weak perturbation and it increases with
the amplitude of magnetic field as BE.

We can find that the perturbation theory approach is
valid for |o| < 1. This condition can be also presented
as ¢/po < 1, where ¢ = Boa®/3/2 is the flux of field By
per elementary cell and ¢g = he/e is the flux quantum.

B. Energy Spectrum
1. Degeneracies and symmetries of the hamiltonian

The Hamiltonian ([IJ) is invariant under discrete trans-
lations of vectors R = ia; 4+ jas and because of the
polar nature of the vector potential A(r), it is also in-
variant under the point group Cs (but not Cg,) of pure
six fold rotations. Its space group is therefore abelian
and its irreducible representations are all of dimensions 1.
This physically means that the energy spectrum can only
have accidental degeneracies between consecutive energy
bands.

2.  Energy spectrum: Numerical results

The solution of Eq. () should be obtained by diagonal-
izing the infinite matrix with elements given by Eq. (&).
In practice, one cuts the basis to get a finite matrix. We
cut the basis by introducing the energy cutoff ., i.e., we
keep the plane waves with energies ¢ < e, and neglect
the others. Then we diagonalize the obtained matrix by
using the Lanczos algorithm (with reorthogonalisation)
implemented in the library SLEPC2L. Finally, the value
of e, is chosen to get the converged quantities.

The presence of linear term, which couples the mo-
mentum k to the vector potential, gives rise to a rich
energy spectrum when the amplitude of magnetic field
is changed. In the low-field regime the band structure
(Fig.@a) is similar to the band structure of free particle.
It is slightly modified near the points obeying relation
k? = (k + g)? because the Bloch band are degenerated
at these points. As we found in Sec. [ITAland Sec. [ITB1],
the application of a periodic vector potential leaves the
degeneracy.

The energy spectrum demonstrates a strong variation
when the amplitude of magnetic field is increased. The
gaps can be seen for rather weak values of |a| (Fig. Bb)
and the band width continuously decreases when |o| in-
creases. FiguresPl b and ¢ show that the band crossing
occur at some high symmetry points of the first Brillouin
zone like the points K, M and I'. We see that the band
crossing occur very often when || is increased. As we
shall see later, this property is important for the quan-
tization of Hall conductivity because it gives rise to the
jumps in o4y. The corresponding jumps of o, when an
external parameter is changed can be identified as topo-
logical transitions.

Finally, for larger values of |a| (Fig. Bd), the bands
are practically flat indicating that (i) electrons are mostly
localized and (ii) they have very low group velocity (i.e.,
the electrons are extremely heavy).



C. Properties of the Bloch states

Here we present the probability distribution of the
Bloch states in dependence on the parameter a. Our
study is restricted to the high symmetry points of the
first Brillouin zone, where the Bloch state w, k(r) has
the symmetry of the point k.

[

[ — ]
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FIG. 3: (Color online) Probability distribution for the Bloch
states of the first energy band in I' point for « = 0.5.
The black lines are the isolines of constant magnetic field
B(r) = 0. The left panel shows that the particle is substan-
tially delocalized over the unit cell, but avoids the regions
where the magnetic field is maximum. This effect can clearly
be seen on the right panel, where the color scale has been
changed in order to see better the fine structure of the Bloch
states.

Let us start by considering the I' point. The Bloch
state at this point has the symmetry of the lattice.
We consider first the band n = 1 as a function of a.
The results of calculation of the probability distribution
|thnx(r)|? for @ = 0.5 are presented in Fig. Bl At small ||
(see Fig. B left), the electrons are mainly delocalized over
the unit cell. However, they avoid the regions where the
magnetic field is large (inside the regions delimited by the
black lines on the figure). This is also clearly illustrated
by Fig. Bl right, where the color scale has been changed
in order to see the fine structure of the distribution. As
shown in Fig. @l b, the increase of the parameter || en-
hances this effect. The particles are rejected from the
region where the magnetic field is large and concentrated
in the regions where the field is close to zero (Fig.H b,c).
Figure @ d represents the limiting case where the repul-
sion effect confines the particle to the region close to the
line of B(r) = 0 (black lines in Fig. Bl d). In this case,
the particle is moving in an effective potential created by
the field profile, which forms a ring, with the ring width
depending on a.

This behavior corresponds to the semiclassical picture
of the electron motion in linear magnetic field*2. In this
approach the low-energy electron drifts along the line of
minimum magnetic field, and the trajectory of this mo-
tion can be wavy or snakelike depending on the drift di-
rection. One can also understand the effect of electron
localization as a tendency to occupy the region, in which
the energy of Landau level is minimum.

Up to now, we considered the states, in which the par-
ticle is rejected into the regions of the weak field but
one can also obtain the states with particles rejected
from these regions and concentrated in the regions where
B(r) is large. Such situation can be found by considering
higher energy bands. A typical example is presented in
the right panel of Fig. B

We also calculated the probability distribution at other
symmetry points of the Brillouin Zone. Except for a par-
tial loss of symmetry, these electronic states have prop-
erties similar to the electronic states at the I' point.

FIG. 4: (Color online) Bloch states of the first band in the T’
point for (a) @« = 0.5, (b) a =1, (¢) a = 2 and (d) o = 5.
The black lines correspond to B(r) = 0. These figures shows
that the particle tries to avoid the region where the magnetic
field is large. This effect can be seen already in figure (a), but
it is better visible in (b) and (c). For larger |«|, the particle
is confined around the lines of zero magnetic field.

Our main result of this section is that the strong peri-
odic field results in localization of electrons in some low-
energy states. The electrons of the lowest energy bands
are effectively confined within some rings near the closed
lines of zero magnetic field, and the rings form a regular
array corresponding to the symmetry of the magnetic-
field lattice. The characteristic thickness of the rings de-
creases with the field intensity.

IV. PERSISTENT CURRENTS

Now we show that the electrons, which are confined
within the rings, are moving along the zero-field lines cre-
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FIG. 5: (Color online) Bloch states of the fifth band (a = 0.5)
and fourth band (o = 1) in the I" point. The particle is
confined in the regions of strong magnetic field.

(b) Jgk(r)
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FIG. 6: (Color online) Components of the current density (in
unit of he/2ma) calculated for @« = 5 and n = 1. It shows
that the particle moves along the lines B(r) = 0 indicated in
black.

ating a regular array of equilibrium persistent currents.
For this purpose we calculate the local current density
Jn k(r) defined as

Jpi(r) = %Re [uj%k(r) (—N tk— %A(r)) un,k(r)} ,

(17)
where u, k(r) refers to the corresponding Bloch state.
One can also calculate the total current density J(r) de-
fined as the sum over all occupied states below the Fermi
level ep.

Let us consider the current distribution at the I' point
for « = 5 and n = 1. The distribution density for the
corresponding Bloch state is shown in Fig. Bd, whereas
Fig. B represents the spatial distribution of  and y com-
ponents of current density ([T). As we see from Fig. B
the electrons within the rings are moving along the lines
of B(r) = 0 (black lines on the figure), so that the cur-
rent density is nonzero along the circle. One can see at
this picture that the current density has an oscillating
fine structure in the direction perpendicular to the lines
B(r) = 0. Similar oscillations have been observed by
Hofstetter et alt® for electrons moving in linear magnetic
fields.

Velocity (a.u.)

Energy (a.u.)

FIG. 7: Schematic view of the velocity (a) and dispersion (b)
curves (only the first band is shown) of an electron moving in
a linear magnetic field. When the line B(r) = 0 is infinite, the
energy spectrum is continuous as a function of momentum k&
along the line. The minimum at the dispersion is indicated
by arrow, and it corresponds to kmin 7# 0. For finite L the
energy spectrum is discrete (black points).

The appearance of persistent currents is due to the
chirality of electron motion in the nonuniform magnetic
field along the line of B(r) = 0. One can understand it
by using a semiclassical picture of the 1D motion in the
inhomogeneous field®. The effective potential for the
motion of an electron along the zero-field line is different
for the opposite directions of the motion. It results in a
strong asymmetry of the electron energy spectrum with
respect to k — —Fk, where k is the electron momentum
along the zero-field line.

In the case of 2D periodic field, this chirality of elec-
tron energy spectrum should be combined with the fact
that the trajectories are closed in circles. Then the en-
ergy spectrum is not only asymmetric but also quantized
due to the quantization of the motion along the circu-
lar trajectory. Using the semiclassical picture, one can
find the quantized values of the momentum from rela-
tion k, — A; = 27n/L, where A; is the vector potential
along the contour and L is its length. The circulation
of A; along the circle is equal to the encompassed flux,
which causes the difference in phases for electron motion
in opposite directions. Thus, the condition of quantiza-
tion can be also presented as k, = 2w (n + ¢/¢o)/L. In
our 2D model of periodic field, the ratio ¢/¢ can be re-
lated to the parameter ae. The calculation of flux through
an isoline B = 0 using Eq. () gives ¢/¢g ~ 3.2437a.

Figure[@b shows schematically the energy spectrum as
a function of momentum k along the circle. The points
correspond to the quantized values of k. As we see from
Fig. [ even for integer values of ¢/¢g, i.e., in absence



of the Aharonov-Bohm effect, the chirality of the mo-
tion in opposite directions would result in appearance of
nonzero electric current along the circle. We therefore
have identified a novel mechanism for appearance of per-
sistent currents.

V. HALL EFFECT IN THE PERIODIC
MAGNETIC FIELD

Here we consider the occurrence of non-vanishing off-
diagonal conductivity in the 2DEG with periodic mag-
netic field. As emphasized earlier, we assume that the
average magnetic field is zero, so that the ordinary Hall
effect is absent. In our case, the mechanism of nonzero
Hall conductivity has the same origin as the “intrinsic
mechanism 723:24:32 of the anomalous Hall effect in ferro-
magnets, i.e., the Hall effect in 2DEG in periodic mag-
netic field is related to the nontrivial topology of electron
energy bands in the momentum space. However, unlike
the anomalous Hall effect in ferromagnets, it does not
require any uniform magnetization.

It should be noted that this effect is also quite differ-
ent from the recently proposed “topological Hall effect”
in textured ferromagnets.8 Even though it was proposed
in Ref. [d] to use the periodic magnetic field and 2D semi-
conductor with magnetic impurities, the only role of the
magnetic field was to order the magnetic moments in cor-
respondence to the field periodicity, so that the topologi-
cal properties of the magnetization profile are responsible
for the topological Hall effect. But in the model under
consideration there is no magnetization related to mag-
netic impurities. Nevertheless, as we can see from the
calculation of the off-diagonal conductivity, o, the Hall
effect is nonzero.

The occurence of Hall effect and the quantization of
Hall conductivity has been discovered in the past in
frame of 2D tight-binding honeycomb model with an ad-
ditional periodic magnetic field 22 The phase diagram of
this model has two phases with Chern numbers +1. Also,
the quantum Hall effect without any external magnetic
field has been found by Volovik in the model of electrons
in ®He film2¢ In both cases the origin of the Hall effect is
related to topological properties of electron energy bands.

Assuming that the Fermi level is in the energy gap and
in the absence of impurities one obtains from the Kubo
formula23:24

e? d’k
Ogy = E ;/W f(sn,k) Qn,k; (18)
where

Qn,k = Vk X Aﬂ’k (1 9)

is the Berry curvature, A, x = —i(n,k|Vk|n,k) is the
gauge connection, and f(¢) is the Fermi function. Ex-
pression ([J) was first found by Karplus and Luttinger32
in the context of the anomalous Hall effect.

Thus, if the Fermi level is in the energy gap and the
temperature is zero, the sum in Eq. ([J) can be presented
as a sum over fully occupied energy bands

e —’
%w:EE:cm, (20)
where we denoted by

4’k
cm=/@mﬂm (21)

the Chern number of the n-th energy band. The Chern
numbers are integer22:34 because they are topological
invariants3”. Correspondingly, if the Fermi level is in the
gap, the Hall conductivity 20) is quantized like in case
of the quantum Hall effect®. The value of o,, changes
when the gap between two occupied bands is closing and
depends explicitly on the dispersion relation around the
points where the band degeneracies occur3®32. So, the
calculation of the off-diagonal conductivity reduces to the
calculations of the Chern numbers when the Fermi level
is located between two separated bands.

We calculate numerically the Berry curvature () and
the Chern numbers [I). It should be noted that the
computation of the derivative is a hard task because the
phase of the Bloch state is ill defined and gauge depen-
dent. Moreover, the summation over the first Brillouin
zone involves a large number of k-points. The problem
of derivatives can be overcome by expressing the Berry
connection in term of the matrix elements of the velocity
operators:

nm,,mn nm,,mn

v v — v v
Quae=iy L v ° 22
n,k 1 Z (En K — Em k)2 ) ( )
m#n ) s

where

v = <n,k ’—a(;ik

mg (23)

are the offdiagonal elements of the velocity operator.
This formula is gauge invariant but two difficulties re-
main, (i) we need to calculate the sum over all energy
bands and (ii) the computational efforts to calculate the
elements of the velocity operator can still be important.
In practice, the summation over unoccupied bands is usu-
ally truncated over a few number of unoccupied bands
but a large number of k point is still needed to calculate
the Chern numbers.

Recently, Fukui et al*® proposed another method of
calculation of the Chern numbers. This method has some
advantages: one needs to calculate only the Bloch states
of occupied bands over a coarse mesh of the first Brillouin
zone. Moreover, the method is gauge invariant. In order
to calculate the Chern numbers, we define the quantity

7’77; = Imlog (<n7k1|n7k2><n7k2|nvk3>
X <n,k3|n,k4><n,k4|n,k1>) ’ (24)



where the function log z is defined in the complex plane
with branchcut along the negative real axis, and Py is
a small closed path passing by the points ks with s =
1,2,3,4. The quantity 73, which is often called the field
strength, is the Berry phase that a Bloch state acquires
when it is transported adiabatically along the path Ps.
In this formalism, the Chern number is given by a sum
over the coarse mesh of phases 3 :

Chy =Y .. (25)
PS

The last step is to decompose the first Brillouin zone into
small paths Ps and to calculate the field strength 3 for
each small path. The decomposition of the first Brillouin
zone is illustrated in Fig.

ks ko k;

P Py
ks

Py Ps

kg kg k-

FIG. 8: Principle of construction of the paths Ps in the case
of a rectangular Brillouin zone and a given mesh. The black
points indicate the mesh taken for the decomposition of the
first Brillouin zone. P; = k; — ko — ks — k4 — kj and the
orientation is indicated by the arrow inside the rectangle. The
others paths can be easy deduced using a similar construction.

We calculated the Chern numbers of the first five en-
ergy bands of our problem using this method and ob-
tained the results, which are shown in Fig. @ It should
be noted that the sum given by Eq. ([8) depends strongly
on the number of planes waves used to calculate the so-
lutions of the Schrédinger equation. This phenomena,
which is not related to any numerical errors, occurs be-
cause the truncation of the basis breaks the symmetry
Hyx+g = Hk, where g is a vector of the reciprocal space.
The latter relation is used to prove that the off-diagonal
conductivity is an integer when the Fermi level is in the
gap. This effect can not be observed in the case of tight-
binding models because this symmetry is always verified.
The effect disappears quickly when the number of plane
waves is increasing.

The Chern numbers of the first five bands are presented
in Fig. These results show that the variation of the
Chern numbers with the intensity of field looks rather
chaotic and there is no simple relation between the val-
ues of «, for which the band crossing occurs. It is known
that the Chern numbers are related to the band cross-
ings between the different bands. The value of the jump

N A
T
!

Ch,

o

FIG. 9: Chern numbers of the first energy bands calculated as
a function of the amplitude of the magnetic field . This figure
shows that the Chern numbers have chaotic variations which
are connected to closing gaps between the different bands.

depends on the number of k-points in the first Brillouin
zone, where the band crossing occurs, and the dispersion
relation around these points3?. Although the physical
mechanism is essentially the same, the behavior observed
here is much more complex as the one obtained in Hal-
dane’s simplified model2S.

According to Eq. 0) the Hall conductivity can be
found using the Chern numbers, provided that the Fermi
energy is within the gap. As we can see from Fig. B the
number of filled band changes with a. For example, if
a = 0.5 then from Fig. Bb follows that two filled energy
bands correspond to the Fermi level located in the gap.
Using the results of Fig. @ we find Ch; + Chy =1 and
0wy = €2 /N



Finally, we found that the Chern numbers tend to zero
when « is increasing. This is related to the low dispersive
spectrum that we obtained in Sec.

Our result shows that the off-diagonal conductivity is
quantized if the Fermi level is located within the gap. It
should be noted that this does not really prove the exis-
tence of Hall plateau, which could be observed when the
field amplitude is varied. The plateau cannot be seen
if the Fermi level jumps across the gap with changing
field. A possible way to control smoothly the Fermi level
position is to add impurities, which would lead to nonva-
nishing density of localized states in the gap. In this case
the location of the Fermi level is stabilized in the gap,
whereas the magnitude of plateau is determined by the
interval of field corresponding to crossing the gap like in
the case of quantum Hall effect in homogeneous field.

VI. EFFECT OF ELECTRON SPIN

In the previous consideration with did not take into
account the spin of electron. Now we discuss the effect of
Zeeman coupling between the electron spin and magnetic
field. We show that in the case of strong magnetic field
it leads to a small correction of vector potential.

We consider the following Hamiltonian

M= 5 (~ihV ~ A)* + gusB(E) o, (20)
where g is the gyromagnetic constant, up the Bohr mag-
neton and o are the Pauli matrices. It should be noted
that pp is determined by the mass of free electron, my,
whereas the first term in (26) contains the effective mass
m. In the case of semiconductors like, e.g., GaAs, the
large difference of these masses, m/my < 1, leads to
relatively small Zeeman splitting.

After a local rotation 7 (r) of the quantization axes
along the field in each point, the Hamiltonian reads

H= % (—ihV — qA(r) — qA4(r)* + gus|B(r)|o-,
(27)

i
Ay(r) = —%TT (r)VT(r) = AZo, + Alo, + AZo..(28)

The gauge field A 4(r) depends only on unit vector n(r) =
B(r)/|B(r)| which represents the direction of field in
point r. In the adiabatic regime, the off-diagonal terms of
the gauge field A,/ (r) can be neglected.® Hence, the spin
up and down electrons are decoupled, and the effective
Hamiltonian describing each species have a form similar
to Eq. ([ where the effective magnetic field is given by
B(r) = B.(r) £ By(r) with B,(r) =V x AZ(r).

The gauge field B, (r) depends only on geometry of the
magnetic lattice but does not depend on the amplitude of

field B(r).¢ Its flux is quantized and equal to 27wn¢g with
n € Z. Then the gauge field B, (r) can be neglected if the
amplitude of magnetic field B(r) is larger than 2wngg/S
or, in others terms, if a > 1.

VII. CONCLUSIONS

We calculated the energy spectrum of 2D electron gas
in periodic field with the symmetry of triangular lattice.
As we can see, the energy-band structure can be con-
trolled by the variation of the magnetic field strength.
Using the realistic parameters of Fe nanolattice with the
lattice parameter of 100 nm, we have estimated the mag-
nitude of magnetic field as 5 kG.8 This value strongly de-
pends on the gap between the nanolattice and the elec-
tron gas, which gives a possible way to vary the field
strength.

As a 2D electron gas one can use a metallic or semi-
conductor layer. In this case there is also an additional
crystal-lattice field but the corresponding lattice constant
ap is much smaller that the lattice constant of the peri-
odic magnetic field a. It means that we can neglect the
effect of periodic field of the crystal lattice as long as the
energy of electrons € < h?/ma?.

We found that the low-energy electrons are effectively
localized near the lines of zero magnetic field, and in
this state they produce an equilibrium persistent currents
in form of a ring array. The mechanism of creation of
such persistent currents is not necessarily induced by the
magnetic flux through the ring but is rather related to
the peculiarities of electron motion in opposite directions
along the zero-field lines.

We have also shown that the quantum Hall effect can
be observed in this system when the Fermi energy is lo-
cated in the gap. In principle, the problem of controlling
the Fermi level location has been already solved for 2D
system with the gate. In a structure with fully controlled
periodic magnetic field and the Fermi energy, it would re-
sult in a large functionality of the structure.

It should be noted that the impurity effects have been
ignored in our calculations. This is justified if the charac-
teristic sizes of 2D structure are smaller than the electron
mean free path.
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