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ABSTRACT

Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models.
Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future
Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface
soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion
processes, and both surface and root-zone soil layers are commonly simulated by land surface models
(LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture
using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters
(KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled
root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and
Atmosphere scheme (ISBA) LSM, using the observations of the surface soil moisture of the Surface
Monitoring of the Soil Reservoir Experiment (SMOSREX) over a 4-yr period (2001–04). This time period
includes contrasting climatic conditions. Among the different algorithms, the ensemble Kalman filter
(EnKF) and a simplified one-dimensional variational data assimilation (1DVAR) show the best perfor-
mances. The lower computational cost of the 1DVAR is an advantage for operational root-zone soil
moisture analysis based on remotely sensed surface soil moisture observations at a global scale.

1. Introduction

The accuracy of short-term to seasonal weather pre-
dictions depends on a good initialization of several sur-
face variables of slow variation in the coupled land sur-
face–atmosphere system. Among these variables, root-
zone soil moisture is of prime importance.

Root-zone soil moisture plays a vital role in the regu-
lation of water and energy budgets at the soil–vege-
tation–atmosphere interface through evaporation pro-
cesses of the uppermost surface soil layer and plant
transpiration (Shukla and Mintz 1982). If the initializa-
tion of this variable is not accurate, significant drifts of
the temporal evolution of the surface state variables

may develop and may consequently cause a degrada-
tion of the weather forecast (Beljaars et al. 1996; Dir-
meyer 2000; Koster and Suarez 2003).

Land surface models (LSMs) aim to describe the con-
tinental lower boundary conditions for numerical
weather prediction (NWP) models (i.e., water and en-
ergy exchanges). They are now able to simulate the
main processes of the surface functioning (e.g., soil wa-
ter dynamics, vegetation–hydrology interaction, water
and energy fluxes) but are still limited by several con-
straints: 1) the need for a high amount of input data
(soil and vegetation characteristics) that cannot be pro-
vided accurately at large scales, 2) the incompatibility
between the relatively low spatial scale (�0.1–1 km) of
surface and hydrological processes (in particular run-
off, subsurface flow), and the grid scale of NWP models
(�10–100 km), and 3) the meteorological forcing er-
rors, especially for rainfall, which has the most signifi-
cant influence on soil moisture variability. These con-
straints have an effect on the simulation of soil moisture
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evolution within the LSM and may adversely affect the
quality of the weather predictions.

A possible solution to improve simulations of LSM is
to assimilate observations sensitive to soil moisture by
using data assimilation schemes. Operational optimal
interpolation systems for NWP models have been de-
veloped (Giard and Bazile 2000; Douville et al. 2000)
with the aim to analyze soil moisture by incorporating
air temperature and humidity observations at a height
of 2 m over the soil surface. Within the framework
of the European Land Data Assimilation System
(ELDAS) project, Balsamo et al. (2004) have tested a
simplified variational system. Nevertheless, air tem-
perature and humidity are quite indirectly linked to soil
moisture. A more direct source of information is pro-
vided by L-band microwave remote sensing, which
links the observed brightness temperature (TB) to the
surface soil moisture (top 0–5 cm). These observations
show a large sensitivity to soil moisture variations
(Eagleman and Lin 1976; Wigneron et al. 2002), and
they could be included in NWP systems by assimilating
TB directly, which requires a radiative transfer model,
or by assimilating derived soil moisture products. The
potential of the analysis of root-zone soil moisture (w2)
from surface soil moisture observations (wg) was high-
lighted by Calvet et al. (1998a) and Calvet and Noilhan
(2000). Several authors have already conducted the
analysis of w2 at a local scale using observations of
microwave brightness temperatures (Houser et al.
1998), synthetic observations (Reichle et al. 2002), or
soil surface moisture retrievals from the synthetic ap-
erture radar on board the European Remote Sensing
(ERS) satellites (François et al. 2003). Global-scale wg

products also exist like those provided by the Advanced
Microwave Scanning Radiometer for the Earth Observ-
ing System (EOS) (AMSR-E) sensor (Njoku et al.
2003), on board the National Aeronautics and Space
Administration’s (NASA) Aqua satellite and those de-
rived from the ERS-1 and ERS-2 scatterometers (Wag-
ner et al. 2003). The future Soil Moisture and Ocean
Salinity (SMOS) satellite of the European Space
Agency (ESA), planned to be launched in 2008 (Kerr et
al. 2001), will provide an estimation of the soil moisture
in L band at a global scale, with a sampling time of
around 3 days at the equator and with a spatial resolu-
tion compatible with NWP models. If we want to take
advantage of this vast amount of available data, assimi-
lation systems have to be developed and integrated
within the NWP models (Seuffert et al. 2003; Balsamo
et al. 2006). Within this context, this study aims to ana-
lyze w2 by assimilating wg measurements. The dataset
used in the present study comes from the Surface Moni-
toring of the Soil Reservoir Experiment (SMOSREX)

campaign (De Rosnay et al. 2006) over a fallow ground
area, which is similar to that used by Calvet et al. (1999)
(MUREX: monitoring the usable soil reservoir experi-
mentally). The dataset comprises four years of mea-
surements (2001–04), during which the area underwent
very contrasting climatic conditions. In particular the
severe drought of the summer of 2003 over western
Europe is well represented. This study follows the work
of Calvet and Noilhan (2000) by adding a comparison
between several assimilation methods.

Following this introduction, section 2 presents the
experimental site, the dataset, the newest version of the
Interaction between Soil, Biosphere, and Atmosphere
scheme (ISBA) LSM ISBA-A-gs, and the assimilation
methods employed in this study [extended Kalman fil-
ter (EKF), ensemble Kalman filter (EnKF), simplified
one-dimensional variational data assimilation (1DVAR),
and tuning variational (T-VAR)]. Furthermore, the
methodology to estimate the model error is presented,
and the implementation of the four assimilation
schemes is described. In section 3, the results for each
assimilation method are shown, and a sensitivity study
(to model and observation error) is carried out for the
best performing method. Finally, section 4 summarizes
the main conclusions and prospects.

2. Methodology

a. Experimental site and dataset

The SMOSREX site is situated within the ONERA
(French National Aerospace Research Establishment)
center of Fauga-Mauzac, located 40 km at the south
of Toulouse (43°23�N, 1°17�E, 188-m altitude).
SMOSREX is a field-scale experiment, operative since
2001 with measurements similar to those of MUREX
(Calvet et al. 1999). The experimental dataset is de-
scribed below.

1) AUTOMATIC MEASUREMENTS

A meteorological station is providing continuous
measurements, every 30 min, of precipitation, atmo-
spheric pressure, wind speed and direction, air humid-
ity, air temperature, and incident and emitted solar and
infrared radiation. Deep and surface soil temperature
and soil moisture are monitored continuously on a half-
hourly basis. To obtain a representative estimate of wg,
four probes (ThetaProbe, Delta T Devices) are verti-
cally installed at different locations within the area,
providing a measurement over the top 6 cm of the soil
layer. Daily mean values wj

g are obtained by averaging
the four probe measurements. The uncertainty in wj

g is
given by the standard deviation of these measurements.
Here w2 is obtained by calculating an average bulk soil
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water content from these surface probes and three
ThetaProbe profiles set up at the same locations (1–3 m
apart). These profiles consist of soil moisture sensors
installed vertically at the surface (0–6 cm) and horizon-
tally at depths of 10, 20, 30, 40, 50, 60, 70, 80, and 90 cm.
Our goal, here, is to use the information provided by
the experimental data as much as possible in order to
define prescribed observation error statistics coherent
with the field observations. For lack of a sufficient sam-
pling of the plot, the spatial averaging is replaced by a
temporal one (ergodicity principle). From the indi-
vidual measurements, a mean and a standard deviation
are computed on a daily time step. The daily standard
deviation averaged over the year 2001 is assumed to be
equal to the observation error: �(wOBS

g ) � 0.03 m3 m�3

and �(wOBS
2 ) � 0.02 m3 m�3. These errors are attrib-

uted to the subsequent years (2002–04).

2) MANUAL MEASUREMENTS

Measurements of the vegetation characteristics [leaf
area index (LAI), green and dry biomass and height of
the canopy] were carried out every two weeks from
spring to autumn. Figure 1 shows the in situ observa-
tions of the LAI, the root-zone soil moisture, and the
monthly accumulated precipitation for the four years
(2001–04). It can be observed that 2003 was a particu-
larly dry year, with a yearly accumulated precipitation
of less than 600 mm. Unlike the other years, 2003 shows
an atypical double cycle of LAI, with a first maximum
in spring and another one at the beginning of the winter

season. Precipitation is quite irregularly distributed
during 2004, with a wet spring and a very dry summer.
That causes a rapid growth of the vegetation and a
marked senescence during the dry period, with w2

reaching values below wilting point (wp) during all the
summer season and part of autumn.

In Table 1, a list of the most relevant characteristics
of the soil over the SMOSREX site for ISBA-A-gs is
provided. The soil is a loam characterized by its texture
and density, which were determined in the laboratory.
The wilting point and the field capacity parameters
were derived from the clay content observations, by
using the relationships given by Noilhan and Mahfouf
(1996).

b. Land surface model: ISBA-A-gs

The ISBA model was first developed by Noilhan and
Planton (1989) and further improved by Noilhan and
Mahfouf (1996) to describe the surface processes in
weather and climate models.

The ISBA model uses the equations of the force–
restore method (Deardorff 1977, 1978) to describe the
evolution of five surface state variables: surface tem-
perature (Ts), mean surface temperature (T2), surface
soil volumetric moisture (wg), total soil volumetric
moisture (w2), and canopy interception reservoir (Ws),
together with the surface energy fluxes (LE, H, G). The
model was modified in order to account for the effect of
the atmospheric carbon dioxide concentration on the
stomatal aperture. This new version of ISBA was called
ISBA-A-gs (Calvet et al. 1998b; Gibelin et al. 2006).
The net assimilation of CO2 is used to predict the veg-
etation biomass and the LAI. However, a study of the
impact of using an interactive LAI on the w2 analyses is

FIG. 1. (from top to bottom) LAI, wg, w2, and monthly precipi-
tation for 2001–04 as measured over the SMOSREX site. The
interpolated LAI (solid line) is used to drive the ISBA-A-gs simu-
lations and is superimposed on the observations (circles). Note
that the LAI interpolation technique may change from one year
to another, depending on data quality and frequency. The wg and
w2 simulations of ISBA-A-gs (solid line) are superimposed on the
observations (dots).

TABLE 1. Main soil and vegetation parameters used in the
ISBA-A-gs model over the SMOSREX site.

Soil parameters

Parameter Symbol Unit Value

Soil root depth d2 cm 95
Sand content SAND % 32.0
Clay content CLAY % 22.8
Field capacity wfc m3 m�3 0.30
Wilting point wp m3 m�3 0.17

Vegetation parameters

Parameter Symbol Unit Value

Mesophyll conductance gm mm s�1 0.56
Critical extractable

soil moisture
�c % 50

Plant response to
water stress

— — Drought tolerant
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beyond the scope of this paper and, in this study, the
LAI is prescribed from measurements. In Fig. 1, the
ISBA-A-gs control simulation of w2 with the prescribed
interpolated LAI (solid lines) is superimposed over the
observations. The photosynthesis parameters (see
Table 1) are the same as those prescribed during the
MUREX campaign (Calvet and Soussana 2001). In sec-
tion 3 these results are discussed.

c. Assimilation methodologies

1) DERIVED FROM KALMAN FILTERS (KF)

The well-known Kalman filter (Kalman 1960) is an
optimal sequential assimilation method extensively
used in various environmental problems. It is based on
a minimum variance analysis scheme (see, e.g., Teunis-
sen 2000). In such a scheme the best linear unbiased
estimators (BLUE) yield at time i of the measurements
for the variables to be analyzed (wg and w2 in this study,
for the KF case, hereafter embedded in the state vector
xi) and for the associated prognostic state variance–co-
variance matrix Pi the following equations:

xi
a � x i

f � Ki �yi � Hx i
f 	, 
1�

Pi
a � 
I � KiH�Pi

f, 
2�

with

Ki � P i
fHT�HP i

fH
T

� Ri	
�1, 
3�

where the superscripts (f) and (a) refer to the point in
time just before and after the analysis, respectively; yi is
the observation vector at time i (wobs

g in this study); Ri

the associated variance–covariance error matrix; I the
identity matrix; and Ki is called the Kalman gain. In the
standard KF, a linear relationship is assumed as follows:

yi � Hxi � ui, 
4�

where H is the observation operator, and ui is a function
accounting for the uncertainties of the measurements
and the observation model, given the variance–covari-
ance Ri.

The analyzed state [Eq. (1)] is equal to the forecasted
state plus the analysis increment, which is equal to the
innovation vector (the difference between observations
yi and the associated simulations in the observation
space Hx f

i ) multiplied by the Kalman gain Ki; Ki ac-
counts for the errors in the observations and the prog-
nostic state (the correction will be higher as more con-
fidence is given to the observations). During the propa-
gation step the system evolves according to the linear
dynamics of the system:

xi�1
f � Mxi

a � wi, 
5�

where M is the prognostic model operator and wi

groups all modeled uncertainties (assumed normal dis-
tributed with zero mean and covariance equal to Qi).
Finally, for the propagation law of variances, the fore-
cast error covariance matrix P will evolve according to

Pi�1
f � MPi

aM
T

� Qi. 
6�

(i) Extended Kalman filter

Equations (1)–(6) describe the system propagation
and the optimal updating completely, for linear prob-
lems. However, in most cases, physical systems are non-
linear and, in contrast to Eq. (5), the model system
propagates in time using the full nonlinear dynamics of
the system:

xi�1
f � M
xi

a� � wi, 
7�

where M() is a nonlinear operator that groups all the
model equations. The EKF equations differ from those
of the standard KF in the way that the system is locally
linearized around the forecasted vector xf

i at the time i
of the observations. Here M of Eq. (6) becomes the
Jacobian of the prognostic model:

Mi �
�M
xi�

�xi
| xi � xi

f . 
8�

(ii) Ensemble Kalman filter

One of the main drawbacks of the EKF is the time-
consuming process of propagating the variance–covari-
ance matrix Pi when dealing with systems with a large
number of state variables such as the one of NWP mod-
els (typically around 106). The EnKF (Evensen 1994;
Burgers et al. 1998) circumvents this problem by using
an ensemble of j state vectors, each of which represents
a potential model trajectory.

Equations are those of the standard KF [Eqs. (1)–
(6)], but now the state variance–covariance matrix Pi is
estimated throughout the statistics of the ensemble:

Pi
f � Pe,i

f �
1

N � 1 
j�1

N


x j,i
f � x i

f �T
x j,i
f � x i

f �, 
9�

where x f
i denotes the average of the ensemble. More-

over, observations are considered as random variables
too, and an ensemble of observations is created at each
observation time step by artificially perturbing them
with Gaussian noise, following Burgers et al. (1998).

The state covariance matrix is implicitly propagated
by the ensemble and, unlike the EKF, no linear ap-
proximation is involved. The mean of the ensemble is
considered to be the most probable assimilated state
and the dispersion of the ensemble will be an approxi-
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mation of second moment of the model potential tra-
jectory distribution. When the size of the ensemble
tends to infinite, the ensemble Pf

e,i matrix will converge
to Pf

i (Evensen 2003).

2) DERIVED FROM VARIATIONAL METHODS

In the variational method, instead of updating the
system each time an observation is available, an assimi-
lation window with a predefined length in time is used.
The simulations are adjusted to the observations that
are available within the assimilation window (at obser-
vations times) by minimizing a cost function J, with
respect to a background information xb. Both the initial
state and the model trajectory within the assimilation
window are updated. The general form of J is given by

J
x� � 
x � x
b
�T

B�1

2

x � x

b
� � �y � H
x�	T

R�1

2

� �y � H
x�	 � Jb
x� � J0
x�. 
10�

The cost function in Eq. (10) has two terms: the back-
ground term Jb(x), which measures the distance be-
tween the state vector x and the a priori state xb

(weighted by the background error matrix B), and the
observation term J0(x), which accounts for the distance
between the vector of observations during the assimi-
lation window, y, and the simulations weighted by the
observation error matrix R. The subscript i has been
omitted in Eq. (10) as, in contrast to sequential meth-
ods, all the observations available within the assimila-
tion window are considered for variational methods.
The projection of the state vector in the observation
space is done through the observation operator H(),
which is often nonlinear and includes the integration
over time through the model operator M(). The mini-
mization of J is generally computed by applying the
descent gradient method for which the adjoint and the
tangent linear models are needed. Building these mod-
els is usually a time-consuming task. In this study, as
described below, a numerical linearization is used in
order to avoid the use of the adjoint and tangent linear
models.

(i) Simplified 1DVAR

The simplified 1DVAR is an assimilation method de-
veloped by Balsamo et al. (2004) and adapted to our
study. The observation operator is numerically linear-
ized by perturbing the initial conditions (i.e., the state
vector at the beginning of the assimilation window).
Under this tangent linear hypothesis the observation
operator H() can be developed by a first-order expan-
sion:

H
x � �x� � H
x� � H
�x�. 
11�

The minimum of the cost function is given by �J � 0
and, with the hypothesis that errors follow a normal
distribution, it takes the following form:

x
a

� x
b

� K �y � H
x
b
�	 
12�

with

K � BHT �HBH
T

� R	�1. 
13�

Note that the 1DVAR analyses in this study only con-
cern w2 (1 � 1 control vector), whereas the KF analyses
concern w2 and wg (2 � 1 control vector). Indeed, a
control vector of two variables does not imply higher
computational costs for the KF, whereas the inclusion
of the wg analysis in the 1DVAR would require an
extra run.

(ii) Variational tuning method

T-VAR is a simplified suboptimal variational method
introduced by Calvet and Noilhan (2000). It has the
ability to retrieve soil moisture estimates of the deep
reservoir by using a window of 10 days with four inde-
pendent observations (if no missing values) of wg. They
are globally adjusted to the model estimates by a sys-
tematic exploration of all the potential initial values of
the root-zone soil moisture. Here, the control vector is
composed of w2, only (wg is not analyzed). The re-
trieved value of w2 corresponds to the minimum of the
root-mean-square error (RMSE), which is in fact the
cost function J to be minimized, without a background
term and with R � I. Although a minimization is per-
formed by systematic search of model initial state that
best-fit the observations, there is no optimal use of er-
ror statistics.

3) METHODOLOGICAL DISCUSSION

In this study, three methods over four rely on the
linear least squares theory: EKF, EnKF, and 1DVAR.
Besides this apparent similarity, differences in the
analysis calculation exist. First, EKF and 1DVAR rely
on the local linearization of the model equations
whereas the full nonlinear system dynamics is ac-
counted for by the EnKF. The linearization of the
model is valid if the time step between two observations
is smaller than the correlation length of the state vari-
ables. This is not always the case, particularly for the
rapid variations affecting surface soil moisture. In the
case of highly nonlinear models, the filter diverges from
optimality and may become unstable (Miller et al.
1999). For example, in our case the linear hypothesis
may not work when strong precipitation or evaporation
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rates take place. A decoupling between both variables
may then lead to inadequate corrections.

For Kalman filters, the background error covariance
is sequentially updated. The information stored in the
covariance matrix is propagated in time and thus ex-
tends the coherence of the assimilation beyond the as-
similation time window. The propagation of the covari-
ance information is done through the linear model for
EKF whereas it is implicit thanks to a stochastic sam-
pling of the a priori space for EnKF. In contrast to the
Kalman type methods, a fixed background error matrix
is assumed for the 1DVAR.

A fourth method is tested in this study that mimics
the case where no a priori information is available. This
method is often used on extended time windows, for
example, one year, to tune parameters related to soil
moisture, like field capacity. Although it is clearly in-
ferior to the other methods, this simple algorithm per-
mits us to assess to what extent w2 can be analyzed
when both the quality of the observations is not known
and a priori estimates of w2 are unavailable.

d. Implementation of the assimilation methods

In this subsection the practical implementation of the
assimilation algorithms employed in this study and the
requirement for working in a normalized space are de-
scribed. A description of the model forecast and back-
ground covariance error matrices (P and B) and the
observation error matrix R is presented for the four
assimilation methods in Table 2. Note that we have set
the observation error R to twice the uncertainty of the
observations [�(wOBS

g )]. This step was taken because
the experimental setup does not permit us to quantify
the spatial representativeness error. To take this effect
into account the error in the observations was inflated
empirically by a factor of 2.

1) NORMALIZATION OF THE STATE VARIABLES

Calvet and Noilhan (2000) pointed out the need to
normalize soil moisture before any data assimilation is

undertaken, because of an existing bias in the simulated
wg. Indeed, wg is a model-dependent variable. In par-
ticular, peak values within a year of wg are likely to vary
from one model to another. In Fig. 2 the comparison
between the wg observations and the ISBA-A-gs simu-
lations are plotted for 2001. It is shown that their rela-
tionship is far from the 1:1 line, which would be the case
if the model were perfect. Therefore, all soil moisture
observations for the period of 2001–04 were normalized
using the maximum and minimum values observed in
2001, which was chosen as the calibration year. Simi-
larly, all soil moisture simulations were normalized be-
tween the maximum and minimum values estimated
from the model simulations for the year 2001. In this
way observations and simulations can be compared in a
normalized space (wg and w2 ranging from 0 to 1).

2) IMPLEMENTATION

In this subsection, the technique to estimate the
model error is described, as well as the approach to
apply the assimilation schemes.

(i) Model error

An accurate estimation of the model error is likely to
be the most difficult task in the error prescription
(Bouttier 1994; Reichle et al. 2002; François et al. 2003).
An approximation of the model imperfections was ob-
tained as follows: at each observation time, an en-
semble of initial conditions was created for the two
state variables (wg and w2) from the observation values.
The model was then run for each member of the en-
semble, every three days (which mimics the frequency
of satellite-derived wg observations) to estimate the

TABLE 2. Definition of the background error matrix P and the
observation error matrix R, for four assimilation schemes: EnKF,
EKF, a simplified 1DVAR, and T-VAR.

Background error
matrix P

Observation error
matrix R

EnKF Pi � ((x f
j, i � x f

j, i)
T Ri � ((yj,i � yj, i)

T

(x f
j, i � x f

j, i)/N � 1) (yj, i � yj, i)/N � 1)
1DVAR B � Qvar R � [2�(wobs

g )]2

EKF Pf
i � MiP

a
i�1M

T
i � Qi Ri � [2�(wobs

g )]2

T-VAR No background term R � I

FIG. 2. Observed vs modeled surface soil moisture (wg) for 2001.
The scatterplot is compared with the 1:1 relationship (solid line).
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forecasted error for the sequential methods and every
10 days, that is, the assimilation window duration, to
estimate the background error for the 1DVAR. At the
end of each time window (3 or 10 days), the dispersion
of the residuals (difference between an ensemble mem-
ber and the observation value) was calculated. This
value is considered as the qxi

term of the Qtype [type
being sequential (seq) or variational (var)] matrix at
time i, and an annual evolution of this term is obtained.
The year 2001 was chosen as the calibration year be-
cause of its characteristics in terms of atmospheric forc-
ing, which resembled an average year. If the model
error is stationary, the temporal evolution is close to
constant. This is the case for the state variable w2 and to
a lesser extent for wg, due to its shorter temporal cor-
relation length. Nevertheless, from here onward, the
estimated forecast and background error are defined as
follows:

Q
seq

��0.052 
m3 m�3�2 0

0 0.022 
m3 m�3�2�
Q

var
��0.062 
m3 m�3�2 0

0 0.012 
m3 m�3�2�. 
14�

In Eq. (14), it is assumed that there is no correlation
between the model error on wg and the model error on
w2, by setting the nondiagonal terms to zero. Indeed,
preliminary calculations (not shown) of the cross-
correlation terms produced negligible values. The in-
troduction of these values into the covariance matrix
had only minor effects on the results of the assimilation.

(ii) EKF

The assimilation of remote sensing data into LSMs
usually constitutes a low-dimensional problem in
comparison with the assimilation of observations in at-
mospheric or oceanic models. Therefore the propaga-
tion of the model error covariance matrix is rather
straightforward and methods like the EKF can be
tested easily.

An initial background error covariance matrix P0 is
constructed using the uncertainty of the observations
and assuming no initial correlation between the state
variables, hence a block diagonal covariance matrix. To
propagate P between observations and apply the tan-
gent linear hypothesis, a perturbation of the initial state
vector (composed in the present case of wg and w2) is
carried out, yielding the numerical linear matrix Mi

[which is substituted into Eq. (6)]:

Mi ��
Mi �wg


i�1� � �wg

i�1�	 � Mi �wg


i�1�
	

�wg

i�1�

Mi �wg

i�1� � �wg


i�1�	 � Mi �wg

i�1�	

�w2

i�1�

Mi�w2

i�1� � �w2


i�1�	 � Mi �w2

i�1�	

�wg

i�1�

Mi �w2

i�1� � �w2


i�1�	 � Mi�w2

i�1�	

�w2

i�1�

� , 
15�

where Mi() is the nonlinear full operator at time i, and
�wg and �w2 are the perturbations of the updated
state variables wg and w2 at the precedent time i � 1,
respectively. The size of the perturbation of the ini-
tial state is critical. Theoretically, an infinitesimal per-
turbation in the neighborhood of the initial state vector
would ensure that the linear hypothesis is fulfilled.
However it may cause an adverse effect due to numeri-
cal errors. Large perturbations may also produce er-
rors when nonlinear effects are predominant. In this
study a value of 0.05 m3 m�3 was chosen as perturba-
tion of the initial state and the error variance–covari-
ance matrix of the forecasted state is integrated in
time using Eq. (6). Since the state variable wg is di-
rectly observed, the observation operator H is in
this case: H � [1 0]. Thus, developing Eq. (3) and com-
bining it with Eq. (1), the corrections of the forecasted
state variables at the time i of the observation are
given by

wg,i
a � wg,i

f �
Pi
1, 1�

Pi
1, 1� � Ri

wg,i

obs � wg,i
f � 
16�

and

w2,i
a � w2,i

f �
Pi
1, 2�

Pi
1, 1� � Ri

wg,i

obs � wg,i
f �, 
17�

where the Pi(1, 1) and Pi(1, 2) terms are elements of
the 2 � 2 Pi matrix.

(iii) EnKF

Samples of the initial ensemble are created assuming
a normal distribution with a mean equal to the first
observation and a variance–covariance matrix equal to
R. An ensemble of N � 100 members is used following
Evensen (2003). A rapid convergence of the forecasted
w2 is observed (not shown) and the analysis ensemble
tends to collapse. Physically, the explanation is that the
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water loss by evaporation modulates the root-zone soil
moisture: the members of the ensemble starting with a
wet soil are loosing more water than the drier soils. This
tends to make w2 converge to the same value on aver-
age over a year. To prevent the collapse of the en-
semble, the new ensembles are built by multiplying the
variance of the updated ensemble by an inflation factor.
This approach is equivalent to the covariance inflation
described in Anderson and Anderson (1999). Moreover
the atmospheric forcing is perturbed at each model step
by adding random Gaussian noise. The inflation factor
was empirically calibrated by minimizing the RMSE
between the analyzed and the observed w2 for the year
2001. A value of 1.35 was found and kept constant for
the other years. For the perturbation of the atmo-
spheric forcing, the following standard deviations were
used: 60 W m�2, 35 W m�2, 50% relative difference, 10
K, 1 m s�1, and 1000 Pa, for shortwave and longwave
incident radiation, precipitation, air temperature, wind
speed, and surface pressure, respectively. As for the
EKF, the observation operator remains H � [1 0]. Fi-
nally, since information about the observation error is
obtained from the ThetaProbe measurements, an en-
semble of normally distributed observations is created,
with � equal to twice the observation error of wg.

(iv) Simplified 1DVAR

In this simplified version of the 1DVAR the B and R
variance–covariance matrices are estimated once and
remain unchanged for the rest of the assimilation pe-
riod. After the updating step, the assimilation window
slides in time until a new observation is found (mini-
mum of three days). Since observations are assimilated
more than once, this method departs from optimality in
theory. Nevertheless, in this context, rather that search-
ing for the optimality, our objective is the comparison
of this assimilation approach with the T-VAR in the
fairest way. For an operational application, it is recom-
mended using sequential assimilation windows and sup-
pressing the first observation within the assimilation
window. In this study, this does not adversely affect the
analyses (not shown). The background matrix has been
left fixed and equal to Q var [Eq. (14)]. On the other
hand, in consistency with the sequential methods, the

variance of the observations has been set to twice the
uncertainty of the observations of wg. The linearization
of the model is done through the observation operator
H by perturbing the initial state of w2. Finally, the mag-
nitude of the perturbation has been set to the same
value as for EKF.

(v) T-VAR

In this simple variational method no initial prescrip-
tion of variance–covariance error matrices, nor back-
ground information, are needed. At each analysis step a
systematic exploration of the potential initial conditions
is conducted, by initializing the model with values be-
tween 0.10 m3 m�3 (w2,min) and 0.40 m3 m�3 (w2,max),
incremented by steps of 0.015 m3 m�3. The analysis of
w2 is undertaken by minimizing the cost function be-
tween observations wobs

g and model estimations wsim
g :

J
w2� ��1
n 

i�1

n


wi,g
sim � wi,g

obs�2, 
18�

with n the number of measurements within the assimi-
lation window. According to Calvet and Noilhan
(2000), if the wobs

g are available every 3 days, a 10-day
assimilation window yields the best results for the
MUREX site (i.e., using four observations).

3. Results and discussion

a. Root-zone soil moisture simulation (2001–04)

In Fig. 1 the ISBA-A-gs simulations of w2 and wg are
compared with the observations during the period
2001–04. Error statistics are given in Table 3 (RMSE,
bias, and skill score). The skill score E is defined as

E � 1 �


i


xi
obs � xi

mod�ana�2


i


xi
obs � xobs�2

, 
19�

where x refers to the soil moisture variables, either ob-
served (obs), simulated (mod), or analyzed (ana).

In general, the agreement is good as long as the ob-
served w2 is above the wp. The model overestimates w2

from September 2001 to March 2002. This may be due

TABLE 3. Surface and root-zone soil moisture yearly scores of the control simulation and for the whole 2001–04 period
[RMSE (m3 m�3), bias (m3 m�3), and skill score E ].

2001 2002 2003 2004 2001–04

RMSE Bias E RMSE Bias E RMSE Bias E RMSE Bias E RMSE Bias E

wg 0.05 �0.020 0.56 0.06 �0.023 0.50 0.08 0.027 0.51 0.08 0.006 0.60 0.07 �0.03 0.59
w2 0.02 0.010 0.82 0.02 0.009 0.92 0.03 0.015 0.83 0.05 0.044 0.51 0.03 0.020 0.73
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to the lack of regular LAI measurements during this
period and to the underestimation of LAI by the linear
interpolation employed. Low values of LAI tend to de-
crease the root water extraction and transpiration rate,
leading to an overestimation of the soil moisture with
regard to the observations during this period. The
model overestimates w2 also during the droughts of the
summers of 2003 and 2004. In this case, the modeled w2

reaches the prescribed wp value and root extraction
stops, whereas in reality, evaporation may continue
even with a soil moisture below the prescribed wilting
point. Our goal is to investigate to what extent the as-
similation schemes used here are able to improve the
model simulation.

b. Analysis of the root-zone soil moisture: EKF
and T-VAR

Figure 3 shows the results of the EKF and T-VAR
analysis of the root-zone soil moisture. The analyses,
the observations, and the free model simulations are
plotted together for comparison purposes (hereafter,

all the soil moisture results are given in absolute units
of m3 m�3). By using the EKF, an enhancement is
achieved with regard to the control model simulation
(E � 0.85 against E � 0.73). Small improvements are
achieved for the years 2003 (E � 0.93) and 2004 (E �
0.66), where w2 goes below the wilting point. Here, the
nonlinear effects observed during the dry periods trig-
ger large Kalman gains, and a significant correction of
w2. For 2001 and 2002, the EKF tends to degrade the
model estimations (Table 4). This is a consequence of
the lack of sensitivity of the state variables to a single
perturbation of the surface soil moisture between two
observations (3 days). This means that, except for pe-
riods of large recharge or high evaporation rates, the
system behaves stable to perturbations of wg. As a con-
sequence, the product MPMT of Eq. (6) often acquires
a very low value. Hence, the forecasted Pi matrix is
mainly controlled by the estimated model covariance
error matrix Qi [see Eq. (6)]. In a first approximation,
the correction of wf

2,i [Eq. (17)] is proportional to the
Q12 term of the model error matrix, which was assumed
to be zero [Eq. (14)]. Therefore, by using this method,
it is expected that only small corrections of the wf

2,i a
priori estimate are undertaken. With the EKF, the con-
trol simulations are virtually unchanged during the first
half of 2003, and since the control model fits the obser-
vations well, a very good skill score is obtained.

Therefore, even though an apparently good perfor-
mance of the EKF is obtained (E � 0.85 for the whole
period), the corrections are small for the major part
of the period. This is attributed to the force–restore
scheme of ISBA, which produces a low sensitivity of
the surface soil moisture to a perturbation of the root-
zone soil moisture, during the days following the per-
turbation. Concerning T-VAR, a high scattering of the
retrieved w2 is observed (Fig. 3), which deteriorates the
skill score with regard to the model estimation. In gen-
eral this method is able to reproduce the overall shape
of the evolution of the w2 observations, but also the
limitations are obvious, since no background informa-
tion is used. Locally, retrieved points are found within
the uncertainty of the observations, and either during
the drought of 2003 or 2004, the analyzed w2 is below
the wilting point, which confirms the potential of this
method to retrieve information on w2 despite the lack
of any background information.

c. Analysis of the root-zone soil moisture: EnKF
and simplified 1DVAR

In Fig. 4 the results obtained with the EnKF and
1DVAR are shown. For both methods, a significant
overall improvement of the control model simulations
is achieved (see Tables 3 and 4); in particular the model

FIG. 3. Analysis of the root-zone soil moisture from surface
observations using (top) an extended Kalman filter and (bottom)
a tuning variational method, for 2001–04 over the SMOSREX
experimental site: model control simulation (solid line), observa-
tions (dots), and analysis (circles).
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overestimation at the end of 2001 and at the beginning
of 2002 is corrected. The 1DVAR shows a slightly bet-
ter performance during periods where the simulations
are limited by the prescribed wilting point, that is, the
summers of 2003 and 2004. In our study case, the EnKF
outperforms 1DVAR for 2001, which is the calibration
year for the inflation factor, but the 1DVAR is better,
on average, for the whole 2001–04 period (RMSE �
0.02 m3 m�3 and E � 0.86, compared to RMSE � 0.03
m3 m�3 and E � 0.78 for an EnKF with 100 members).
Furthermore, the 1DVAR analyses are smoother than
those of the EnKF. The main shortcoming of the EnKF
is observed close to wilting point. Indeed, the main dif-
ference between the two methods consists in the EnKF
background error covariance matrix propagated by the
ensemble, as opposed to the 1DVAR fixed background
error. Close to wilting point, the spread of the ensemble
broadens significantly (not shown) and the analysis
does not match the observations. These results suggest
that, over the SMOSREX site, the analyses are more
stable and accurate by using a fixed background error.
A possible explanation is that the normalization of wg,
performed for 2001, does not eliminate all the seasonal
biases.

The assimilation in the transition period between
2001 and 2002 and the drought of 2003 shows a much
better performance of the 1DVAR, resulting in better
yearly skill scores for 2002, 2003, and 2004 (Table 4).
On the other hand, the EnKF performs better than the
1DVAR in 2004. To understand how the model esti-
mations are corrected by the 1DVAR method, Fig. 5
shows an example of the temporal evolution of w2

along with the gain components for the year 2003 (Figs.
5a and 5b, respectively). In our case the gain of the
1DVAR is a vector of four components (one for each
observation within the assimilation window). The be-
ginning of the assimilation time window coincides with

the first available observation [see section 2d(2)iv];
therefore, the first component of the gain is negligible
with regard to the other three. Then in Fig. 5 (bottom)
only the last three components of the gain are consid-
ered. It is observed that with the soil moisture at field
capacity the greatest term of the gain is generally the

FIG. 4. Analysis of the root-zone soil moisture from surface
observations using (top) an ensemble Kalman filter and (bottom)
a simplified 1DVAR method, for 2001–04 over the SMOSREX
experimental site: model control simulation (solid line), observa-
tions (dots), and analysis (circles).

TABLE 4. Root-zone soil moisture analysis yearly scores and for the whole 2001–04 period [RMSE (m3 m�3), bias (m3 m�3), and
skill score E ], using an EnKF with N � 10, 20, 50, 100, and 200 members, an EKF, a simplified 1DVAR, and a T-VAR.

2001 2002 2003 2004 2001–04

RMSE Bias E RMSE Bias E RMSE Bias E RMSE Bias E RMSE Bias E

EnKF
(N � 10) 0.02 �0.001 0.91 0.05 0.043 0.15 0.07 0.052 0.12 0.08 0.064 0.05 0.06 0.040 0.25
(N � 20) 0.02 0.001 0.91 0.05 0.044 0.18 0.04 �0.008 0.71 0.07 0.065 0.15 0.05 0.024 0.43
(N � 50) 0.02 �0.001 0.92 0.03 0.004 0.62 0.03 �0.005 0.77 0.06 0.065 0.19 0.04 0.016 0.58
(N � 100) 0.01 �0.001 0.94 0.03 0.006 0.76 0.03 �0.005 0.74 0.04 0.029 0.68 0.03 0.009 0.78
(N � 200) 0.01 �0.001 0.94 0.03 0.007 0.67 0.03 0.004 0.82 0.04 0.028 0.76 0.03 0.010 0.81

1DVAR 0.02 �0.011 0.90 0.01 0.001 0.93 0.02 �0.009 0.89 0.04 0.029 0.79 0.02 0.002 0.86

EKF 0.04 0.026 0.44 0.02 0.014 0.81 0.02 0.010 0.93 0.05 0.037 0.66 0.03 0.011 0.85

T-VAR 0.04 �0.056 0.50 0.04 �0.006 0.37 0.06 �0.026 0.32 0.05 0.009 0.58 0.05 0.014 0.53
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second term, that is, the one corresponding to the dif-
ference between the second observation (within the as-
similation window) and the model estimate. For the
following observations, small corrections of w2 were un-
dertaken, of the order of 5%. Nonlinearities are more
significant during the rest of the hydrological cycle,
when no privileged gain component is found. In that
case, the tangent linear model may depart from the real
model trajectory and important deviations with regard
to the observations are found. Moreover the innovation
term is also larger, which indicates a decoupling be-
tween wg and w2, leading sometimes to inaccurate cor-
rections.

d. Sensitivity to different levels of prescribed errors

The performance of an assimilation method is very
dependent on accurate prescription of the error statis-
tics. Over the SMOSREX experimental site, continu-
ous observations of both wg and w2 are available. We
have taken advantage of all these sources of informa-
tion to define errors, coherent with the terrain obser-
vations. A sensitivity study permits us to assess how the
system behaves with regard to background and obser-
vation errors. Figure 6 shows the contour lines of re-
gions of the same performance for different values of
the observation and forecasted/background errors for
the simplified 1DVAR. A maximum of efficiency is
obtained for an observation error of 0.07 m3 m�3 and a
forecasted error equal to the estimated model error
Q var with a skill score close to 0.90 and a RMSE of 0.02
m3 m�3. Even though this sensitivity study is specific to
this experimental site, it is important to note that
around this peak of efficiency a broad region is found

where the skill score is higher than 0.8 and the RMSE
is lower than 0.03 m3 m�3, confirming thus the skill of
a method that uses several observations (for each
analysis) to generate correct gains. However at the
boundaries, that is, very small observation errors or
large forecasted state errors, a much larger RMSE and
a sharp drop in performance is found. Monte Carlo–
based methods, like the EnKF, could partially correct
and counteract large deviations from the true state by
using an ensemble of model trajectories.

Furthermore, within the range of the expected
SMOS observation errors, of about 0.04 m3 m�3, a good
performance (around or higher than 0.8) of the system
is observed for a wide range of background model er-
ror. This shows the potential use of the SMOS data to
obtain a spatialized information on the root-zone soil
moisture.

e. Processing time

To finish this analysis the importance of computa-
tional time of an assimilation algorithm in an opera-
tional system has to be emphasized, in particular when
run over large areas. In Table 5, the total processing
times for a whole year and for the four assimilation
algorithms are compared. The runs were performed on
the same platform, an Intel Pentium IV processor with
a 2.40-GHz CPU. The simplified 1DVAR appears to be
a good trade-off between computing time and the qual-
ity of the results. It can be seen (Table 5) that by using
an ensemble of around 10 members the EnKF and the
simplified 1DVAR are comparable in terms of comput-

FIG. 5. Gain components for the simplified 1DVAR method
compared with the yearly evolution of w2 in 2003. (top) The con-
trol simulation (solid line) is superimposed on the analyses
(circles). (bottom) The evolution of the gain components (multi-
plied by 100) at each analysis step.

FIG. 6. Skill score for different error levels in observations (R)
and forecasted state variables (P) for the simplified 1DVAR.
Note that the Q values in the abscises axis are those in Eq. (14).
The dashed line superimposed on the figures corresponds to the
performance with an observation error corresponding to the
SMOS satellite specification.
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ing time. Nevertheless, the statistics of the ensemble
would be of lesser quality and, consequently, the qual-
ity of the retrievals of w2. To get closer to a perfor-
mance similar to the 1DVAR, an ensemble of around
200 members is necessary for the EnKF, thus increasing
the EnKF processing time.

4. Summary and conclusions

Four assimilation methods were implemented
over an experimental site in southwestern France
(SMOSREX) and the analyzed soil moisture results
were compared. Three methods were based on least
squares principles (EKF, EnKF, and 1DVAR) and one
was a simple tuning method (T-VAR). The assimilation
approaches and their practical implementation in the
ISBA-A-gs land surface model were described and dis-
cussed. The multiyear SMOSREX dataset (2001–04)
allowed us to assess the performance of the assimilation
methods in contrasting conditions. In particular,
marked droughts were observed during the summers of
2003 and 2004, for which the observed root-zone soil
moisture was lower than the wilting point of the control
simulation of ISBA-A-gs. The difficulty of the model to
adequately reproduce the drought in 2003 and 2004 of-
fered a good test for the assimilation schemes. In gen-
eral, the four methods provided satisfactory results.
The best performance was shown by the 1DVAR, with
a skill score of 0.86, improving the control simulations
(skill score of 0.73). Finally, a sensitivity study of the
1DVAR performance to different levels of background
and observation errors was conducted.

The analysis results over SMOSREX show that

• The w2 analyses were improved by using a back-
ground/a priori information: the 1DVAR outper-
formed the T-VAR, which did not use any back-
ground term.

• The EnKF, which propagates the covariance through
the sampling of several model trajectories, was more
efficient than the EKF, which relies on the tangent
linearization of the model equations to propagate the
covariance information.

• The EnKF is a promising technique to deal with high

nonlinear systems, but over the SMOSREX site, it
was outperformed by the 1DVAR. This result was
attributed to 1) the limited nonlinearity of the system,
which could have prevented the expression of the
added value of the EnKF; 2) the difficulty in “tuning”
the algorithmic parameters of the EnKF, such as the
inflation factor, which, in this study, was required to
prevent the ensemble from collapsing.

It is also important to remark that, in this study, the
limited performance of the EKF (despite its apparently
good behavior) could be related to the functioning of
the ISBA-A-gs model (and models relying on the
force–restore scheme) rather than to the assimilation
method itself. Indeed, the force–restore approach pre-
sents a low sensitivity of the KF state variables to a
perturbation of the surface soil moisture for the days
following the date of the perturbation.

A sensitivity study showed that the 1DVAR method
leads to good performance for a large range of back-
ground and observation errors. Moreover, using 0.04
m3 m�3 as a prescribed error in the wg observations,
that is, the error level that is expected from the SMOS
satellite (shown as a dashed line in Fig. 6), good results
are also obtained provided that variances in the fore-
casted state variables do not exceed the estimated
model error.

Finally, with the lower computing time, the 1DVAR
is a good alternative to the EnKF for the development
of an operational data assimilation system aiming to
analyze root-zone soil moisture from surface soil mois-
ture observations. Nevertheless, this promising method
needs to be tested at other experimental sites repre-
senting different geoclimatic environments, and further
research is needed before the implementation of a full
2D application, in particular concerning the spatial cor-
relation of background errors (Reichle and Koster
2003).
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