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Abstract— The calculation of network reliability in a proba-
bilistic context has long been an issue of practical and academic
importance. Conventional approaches (determination of bounds,
sums of disjoint products algorithms, Monte Carlo evaluations,
studies of the reliability polynomials, etc.) only provideapproxi-
mations when the network’s size increases, even when nodes do
not fail and all edges have the same reliabilityp.

We consider here adirected, generic graph of arbitrary size
mimicking real-life long-haul communication networks, and give
the exact, analytical solution for the two-terminal reliability.
This solution involves a product of transfer matrices, in which
individual reliabilities of edges and nodes are taken into account.
The special case of identical edge and node reliabilities (p and
ρ, respectively) is addressed. We consider a case study based
on a commonly-used configuration, and assess the influence
of the edges being directed (or not) on various measures of
network performance. While the two-terminal reliability, the
failure frequency and the failure rate of the connection are
quite similar, the locations of complex zeros of the two-terminal
reliability polynomials exhibit strong differences, and various
structure transitions at specific values ofρ.

The present work could be extended to provide a catalog of
exactly solvable networks in terms of reliability, which could be
useful as building blocks for new and improved bounds, as well
as benchmarks, in the general case.

I. I NTRODUCTION

Network reliability has long been a practical issue, and
will remain so for years, since networks have entered an
era of Quality of Service (QoS). IP networks, mobile phone
networks, transportation networks, electrical power networks,
etc., have become “commodities.” Connection availabilityrates
of 99.999% are a goal for telecommunication network opera-
tors, and premium services may be deployed if the connection
reliability is close enough to one. Reliability is therefore a
crucial parameter in the design and analysis of networks.

The study of network reliability has led to a huge body of
literature, starting with the work of Moore and Shannon [1],
and including excellent textbooks and surveys [2], [3], [4],
[5], [6], [7], [8]. In what follows, we consider a probabilistic
approach, in which the network is represented by an undirected
graph G = (V, E), whereV is a set of nodes (also called
vertices) andE is a set of undirected edges (or links), each
of which having a probabilitypn or pe to operate correctly.
Failures of the different constituents are assumed to occurat
random, and to be statistically independent events. Among the

different measures of reliability, one may single out thek-
terminal reliability, namely the probability that a given subset
K of k nodes (K ⊂ E) are connected. The most common
instances are the all-terminal reliabilityRelA (K ≡ E) and
the two-terminal reliabilityRel2(s → t), which deals with a
particular connection between a sources and a destinationt.
Both of them are affine functions of eachpn andpe.

The sheer number of possible system states, namely
2|E|+|V |, clearly precludes the use of an “enumeration of
states” strategy for realistic networks, and shows that the
final expression may be extremely cumbersome. Consequently,
most studies have considered graphs with perfect nodes
(pn ≡ 1) and edges of identical reliabilityp; radio broadcast
networks have also been described by networks with perfectly
reliable edges but imperfect nodes [9], [10]. It was shown early
on — see for instance the discussion in [4], [11] — that the
calculation ofk-terminal reliability is #P-hard in the general
case, even with the restricting assumptions that (i) the graph
is planar (ii) all nodes are perfectly reliable (iii) all edges have
the same reliabilityp. All reliabilities are then expressed as a
polynomial inp, called the reliability polynomial.

The difficulty of the problem has stimulated many ap-
proaches: partitioning techniques [12], sum of disjoint prod-
ucts [13], [14], [15], [16], [17], [18], graph simplifications
(series-parallel reductions [1], delta-wye transformations [19],
[20], [21], factoring [22]), determination of various lower and
upper bounds to the reliability polynomial [2], [4], [23], [24],
[25], Monte-Carlo simulations [26], [27], [28], and ordered
binary decision diagram (OBDD) algorithms [29], [30], [31],
[32]. Other decomposition methods have also been proposed
[33], [34], [35]. The reliability polynomial has been exten-
sively studied [36], [37], [38], with the aim of finding general
information from the structure of its coefficients [36], [37] or
the location of its zeros in the complex plane [39].

In recent years, the tremendous growth of Internet traffic has
called for a better evaluation of the reliability of connections
in optical networks. Actual failure rates and maintenance data
show that a proper evaluation of two-terminal reliabilities must
put node and edge equipments on an equal footing, i.e., both
edge (fiber links, optical amplifiers) and node (optical cross-
connects, routers) failures must be taken into account. The
possibility of node failure has been considered in early papers
[9], [40]. Adaptation of algorithms to include imperfect nodes



has been addressed [32], [41], [42], [43], [44]. In order to
be realistic, different edge reliabilities should be used too: for
instance, the failure rate of optical fiber links is often assumed
to increase with their length.

In recent works, we have shown that the two- and all-
terminal reliabilities can be exactly calculated for recursive
network architectures, where the underlying graphs are undi-
rected and the edge/node reliabilities arbitrary [45], [46], [47].
The final expressions are products of transfer matrices, each
element of which is a multilinear polynomial of the individual
edge or node reliabilities constituting the ‘building block’ (or
‘elementary cell’) of the recursive graph.
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Fig. 1. GeneralK4 ladder. The source is alwaysS0, the destination isSn

or Tn.
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Fig. 2. Last building block of the directedK4 ladder. Edges and nodes are
identified by their reliabilities.

In this work, we show this general result holds for di-
rected networks too. As an example, we calculate the two-
terminal reliability of the directedK4 ladder displayed in
Fig. 1. This network describes a common (nominal + backup
paths) architecture, with additional connections betweentransit
nodes enabling the so-called “local protection” policy, which
bypasses faulty intermediate nodes and/or edges. By letting the
individual node and edge reliabilities takearbitrary values, we
actually do not add to the complexity of the problem but make
the internal structure of the problem more discernible. It is then
easier to fully exploit the recursive nature of the graph. The
two-terminal reliability’s exact expression is a product of 5×5
transfer matrices, as in the undirected case [47]; consequently,
it can also be determined for an arbitrary size (length) of the
network. If edges have the same reliabilityp, and nodes the
same reliabilityρ, the two-terminal reliability can be expressed
as a sum over the eigenvalues of the unique transfer matrix,
and its generating function is a rational fraction. For large

networks, the eigenvalue of highest modulus is, to all purposes,
the scaling factor of the asymptotic power-law behavior. The
determination of the failure frequency and the failure rateof
the connection is then straightforward. Prompted by the nearly
universal character of the Brown-Colbourn conjecture [39],
we also address the location of complex zeros of the two-
terminal reliability polynomial and show that they (i) may be
quite different for directed and undirected networks (ii) exhibit
structural transitions at various values ofρ.

Our aim is (i) to give a description of the methodology
followed in the derivation of the final results, so that re-
searchers or engineers involved in reliability studies canuse
them, even in worksheet applications (ii) emphasize again the
importance of algebraic structures of the underlying graphs in
the determination of network reliability [5], [48].

Our paper is organized as follows. In Section II, we give
the basic formula and methodology used in the decomposition
method [47], which must be adapted here for directed graphs.
In Section III, we give the exact solution for the two-terminal
reliability for the directedK4 ladder (with sourceS0 and
destinationSn or Tn). In Section IV, we consider directed
and undirected configurations of a special architecture. Wefirst
give the generating functions of the two-terminal reliabilities
when all edges and nodes reliabilities arep andρ, respectively;
we then derive very simple analytical expressions forRel2.
The average failure frequency and the failure rate of the
connection under consideration are then deduced. We then
show that the location of the complex zeros ofRel2 differ
in the two configurations. We conclude by proposing several
directions in which the present results may be extended.

II. GRAPH DECOMPOSITION

The purpose of our method is to simplify the graph by
removing links of thenth (last) elementary cell of the network,
namely the edges and nodes indexed byn, a procedure called
pivotal decomposition or deletion-contraction [4]. In thecase
of undirected graphs [47], we saw that if the end terminalt
(which can be regarded as perfect) is connected to nodeu
through edgee, with respective reliabilitiespu andpe, then

Rel2(G) = (1 − pe)Rel2(G \ e) + pe pu Rel2(G · e)
+pe (1 − pu)Rel2(G \ u), (1)

where G \ e and G \ u are the graphs wheree or u have
been deleted, andG · e the graph wheret and u have been
merged through the “contraction” ofe; eq. (1) merely sums
probabilities of disjoint events. Here, we must adapt this
decomposition to a directed graph. This is done very easily by
first discarding all edges whose origin ist and then applying
eq. (1) to the remaining graph. This procedure, along with
standard series-parallel reductions, has to be repeated for the
three secondary graphs in order to take advantage of the
structural recursivity of the graph. After a finite number of
such reductions, we get replicas of the original graph, albeit
with one less elementary cell and with the(n−1)th cell’s edge
and node reliabilities possibly renormalized by those of thenth

cell, or set to either zero or one. In order to ensure the existence



of a recursion relation, the graph structure must beclosed
under successive applications of eq. (1); it may initially require
the use of extra edges with symbolic reliabilities, so that all
nodes of an elementary cell are connected pair-wise, even if
such links do not exist in the graph under consideration (the
“scaffolding principle”). At this point, a recursion hypothesis
is needed, giving for instanceRel2(S0 → Sn) as a sum over
specific polynomials in the reliabilities indexed byn; these
are often obvious from then = 2 value. Going fromn − 1
to n provides the transfer matrix linking the prefactors of
the polynomials, becauseRel2 is an affine function of each
component reliability; the (often trivial)n = 1 case serves as
the initial condition of the recurrence.

III. E XACT SOLUTION FOR THE DIRECTEDK4 LADDER

Let us first illustrate this method by calculatingRn =
Rel2(S0 → Sn) for the directedK4 ladder shown in Fig. 1;
a more detailed view of the last building block is displayed
in Fig. 2. Following the guidelines of the preceding section,
we remove the irrelevant edges, namely those indexed bya′

n,
b′n, andd′n. The first application of eq. (1) is represented in
Fig. 3, where each prefactor is put in front of the associated
secondary graph. Note that the three secondary graphs are
structurally identical, they differ by the actual values ofthe
edge reliabilities only. Clearly, a second application of eq. (1)
provides two-terminal reliabilities, withSn−1 or Tn−1 as new
endpoints. This should call for a similar decomposition of the
two-terminal reliabilityRel2(S0→Tn), after which we would
get coupled recursion relations for the two destinationsSn and
Tn. However, this is unnecessary because the two destinations
are identical under the permutationsan ↔ en, cn ↔ dn (and
the correspondinga′

n ↔ e′n, etc.), andSn ↔ Tn. It turns out
thatRn may be expressed as the sum of five polynomials in
an, ..., Tn (see below). This is also true forRel2(S0 → Tn),
which leads us to a10 × 10 transfer matrix (the calculations
are routinely performed by mathematical software). Because
several lines of this matrix are identical, regrouping terms
actually allows to limit the transfer matrix’s dimension to5,
as in the undirected case [47]. The value ofR1, which can be
easily calculated, leads to

Rn = (1 0 0 0 0)Mn Mn−1 · · ·M1 M0




1
0
0
0
0




; (2)

for Rel2(S0→Tn), the left vector should be(0 1 0 0 0). The
transfer matrixMi is given by

Mi =




x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x18 x17 x14 −x4 − x9 −x5 − x10

x20 x19 x15 −x9 −x10

x11 x12 x13 −x4 −x5




, (3)

with

x1 = Si (ai + b′i ei Ti − ai b′i ei Ti) ,

x2 = Si (di + b′i ci Ti − b′i ci di Ti) ,

x3 = Si (ai di + ai b′i ci Ti − ai b′i ci di Ti + b′i ci ei Ti

−ai b′i ci ei Ti + (1 − ai) b′i (1 − ci) di ei Ti) ,

x4 = (1 − ai) (1 − b′i) c′i di ei Si Ti,

x5 = ai (1 − b′i) ci (1 − di) e′i Si Ti,

x6 = (ei + ai bi Si − ai bi ei Si) Ti,

x7 = (ci + bi di Si − bi ci di Si) Ti,

x8 = (ci ei + ai bi ci Si + ai bi di Si − ai bi ci di Si

−ai bi ci ei Si + (1 − ai) bi (1 − ci) di ei Si) Ti,

x9 = ai (1 − bi) ci d′i (1 − ei) Si Ti,

x10 = a′
i (1 − bi) (1 − ci) di ei Si Ti,

x11 = (1 − ai) (1 − b′i) ei Si Ti,

x12 = (1 − b′i) ci (1 − di) Si Ti,

x13 = (1 − b′i) (ai ci − ai ci di + ci ei − ai ci ei

+(1 − ai) (1 − ci) di ei) Si Ti,

x14 = (1 − b′i) (ai ci − ai ci di + ci ei − ai ci ei

+(1 − ai) (1 − ci) di ei) Si Ti

− (ai bi ci + ai bi di − ai bi ci di + ci ei

−ai bi ci ei + (1 − ai) bi (1 − ci) di ei) Si Ti,

x15 = (1 − bi) (ai ci + ai di − ai ci di − ai ci ei

+(1 − ai) (1 − ci) di ei) Si Ti,

x17 = − (ci (b′i + di − b′i di) + bi di (1 − ci)) Si Ti,

x18 = − (ai (bi + ei − bi ei) + b′i ei (1 − ai)) Si Ti,

x19 = (1 − bi) (1 − ci) di Si Ti,

x20 = ai (1 − bi) (1 − ei) Si Ti.

For i = 0, we must seta0 = d0 = 1 and c0 = e0 = 0. These
formulae apply to the most general directedK4 ladder, and
we recover the undirected case by settinga′

i = ai, b′i = bi,
etc. A missing edge or node is accounted for by setting the
relevant reliability to zero, as will be seen in the following
section.

IV. A PPLICATION

Let us apply the results of the preceding section to the
architecture represented in Fig. 4. The calculations are straight-
forward, since we merely have to replace all nonexistent
edges and nodes by zero. Does the removal of these network
elements drastically change the previous results? Actually, no,
even though in the directed case the dimension of the transfer
matrix is reduced.

A. Transfer matrices

In both directed and undirected configurations, we must set
T0 = Tn = 0 andbi = 0 (0 ≤ i ≤ n). This does not change the
dimension of the transfer matrix in the undirected case, which
remains equal to 5. However, for the directed configuration,
the further simplificationa′

i = b′i = c′i = d′i = e′i = 0 is such
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Fig. 4. Architecture discussed in this work (“Échelle Angèle”). The source
is S0, the destination isSn for both directed and undirected networks.

that we can reduce the transfer matrix to a3× 3 one, namely

M̃i =




ai Si di Si ai di Si

ei Ti ci Ti ci ei Ti

−ai ei Si Ti −ci di Si Ti χi Si Ti


 , (4)

with χi = ai ci (1− di) (1− ei) + di ei (1 − ai − ci), so that

R̃n = (1 0 0) M̃n M̃n−1 · · · M̃1 M̃0




1
0
0


 . (5)

In many studies, edge reliabilities are considered identical
to p in order to provide clues to the general behavior of the
connection reliability, while nodes are viewed as perfect (i.e.,
their reliabilities are set equal to 1). In this work, we keep
imperfect nodes with identical reliabilityρ. We thus have two
independent parameters to describeRel2(S0 →Sn), allowing
us to better distinguish the contributions of edges and nodes.
Using only these two parameters implies that a unique transfer
matrix needs be considered. Equations (2) and (5) show that
the two-terminal reliability is given by thenth power of this

matrix. For instance, eq. (4) leads to

M̃(p, ρ) =




p ρ p ρ p2 ρ
p ρ p ρ p2 ρ

−p2 ρ2 −p2 ρ2 p2 ρ2 (2 − 4 p + p2)


 .

(6)

B. Generating functions

Because of the intrinsic recursion relation between succes-
sive powers of̃M(p, ρ), a similar one should hold for the two-
terminal reliability. The generating function formalism [49]
is a useful way to store all necessary information in a very
concise manner. It is defined by

G(z) =
∞∑

n=0

Rel2(S0 → Sn) zn, (7)

Its calculation is straightforward. Here,G(z) is necessarily a
rational fraction ofz, namely

G(z) =
N (z)

D(z)
. (8)

Using eqs. (5) and (6) (for the directed configuration), we
compute the first values ofRel2(S0 → Sn) for, say,n equal
to 2, 3, 4, etc., in order to obtain the first terms of the expansion
in z of G(z). We then multiply this truncated expression by
the characteristic polynomial of the transfer matrix takenat
1/z. The series expansion of this product in the vicinity of
z = 0 leads toN (z). No determination of eigenvalues or
eigenvectors of the transfer matrix is needed.

Having described the method, we limit ourselves to the final,
simplified expressions, which should be used forn ≥ 2, even
though they are valid forn = 1 (both give the first-order term
p ρ2 z, corresponding to the two-terminal reliability between
the two nodesS0 andS1, connected by a single edge).



1) undirected case:

Nu(z) =
ρ

2 (1 − ρ)

(
1 − p

(
2 + 2 p − 6 p2 + 3 p3

)
ρ2 z

+2 (1 − p)
2

(2 − p) p3
(
1 − p + p2

)
ρ4 z2

)
, (9)

Du(z) = 1 − p ρ
(
2 + 2 p ρ − 6 p2 ρ + 3 p3 ρ

)
z

+2 (1 − p) p3 ρ3
(
2 − 3 p− 2 p ρ + 6 p2 ρ

−4 p3 ρ + p4 ρ
)

z2

−4 (1 − p)
2

(2 − p) p6 (1 − ρ) ρ5 z3 . (10)

2) directed case:

Nd(z) =
ρ

2

(
1 − p2 ρ2 (2 − 4 p + p2) z

)
, (11)

Dd(z) = 1 − p ρ
(
2 + 2 p ρ − 4 p2 ρ + p3 ρ

)
z

+2 p3 ρ3 (1 − p) (2 − p) z2 . (12)

C. Analytical expressions of the two-terminal reliabilities

The two-terminal reliabilities are derived from the partial
fraction decomposition of the associated generating functions
Gu(z) and Gd(z), because the eigenvalues of the transfer
matrix are the inverses of the generating function poles.

1) undirected case: Equations (9–10) can be further sim-
plified for perfect nodes (ρ = 1), becauseDu(z) is then of
degree 2 inz, from which we find

R(u)
n (ρ = 1; n ≥ 2) = a+

(
ζ
(u)
+

)n

+ a−

(
ζ
(u)
−

)n

, (13)

with

ζ
(u)
± =

p

2

(
2 + 2 p − 6 p2 + 3 p3 ±

√
A
)

, (14)

a± =
B ±

(
1 − 4 p + 2 p2

) √
A

4 (1 − p)
2
(1 − p + p2)

2 √A
, (15)

A = 4 − 8 p + 36 p2 − 100 p3 + 128 p4

−76 p5 + 17 p6 , (16)

B = 2 − 10 p + 38 p2 − 59 p3 + 40 p4 − 10 p5. (17)

For ρ < 1, we would get a sum over three eigenvalues, the an-
alytical expression of which would only be more cumbersome
(it will not be given here).

2) directed case: Even if ρ 6= 1, Dd(z) is of degree 2 in
z. We have again two eigenvalues, so that

R(d)
n (n ≥ 2) = α+

(
ζ
(d)
+

)n

+ α−

(
ζ
(d)
−

)n

, (18)

with

ζ
(d)
± =

p ρ

2

(
2 + p ρ (2 − 4 p + p2) ±

√
A′
)

, (19)

α± =
ρ

4

(
1 ± 2 − p ρ (2 − 4 p + p2)√

A′

)
, (20)

A′ = 4 − 4 p ρ (2 − 2 p + p2)

+p2 ρ2 (2 − 4 p + p2)2 . (21)

ζ
(u)
± and ζ

(d)
± are displayed in Fig. 5 for perfect nodes.

Obviously,ζ+ is nearly always much larger thanζ−, especially
whenp lies in the vicinity of 1.ζ(u)

+ andζ
(d)
+ are nearly equal

over the whole range0 ≤ p ≤ 1, while the second eigenvalue
is much larger in the directed case. Still, asn grows, the
contribution of the second eigenvalue should vanish so that
the two-terminal reliability exhibits an asymptotic power-law
behaviorRn ∝ ζn

+, the scaling factor beingζ+, the eigenvalue
of largest modulus. Even forn ≈ 10, this asymptotic limit
would already be a good approximation.

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

Ζ±

Fig. 5. Variation ofζ+ (full line) andζ
−

(dashed line) withp for the directed
(red curve) and undirected (purple curve) architectures ofFig. 4 with perfect
nodes.

D. Average failure frequency and failure rate

Steady-state system availabilityA and failure frequencyν
are important performance measures of a repairable system,
from which other key parameters such as the mean time
between failures, average failure rate, Birnbaum importance,
etc. may be deduced [6], [7], [8]. The first calculations of
steady-state failure frequencies were based on the inclusion-
exclusion principle, with adequate failure and repair rates
(more generally, the inverses of the mean down and up times)
were attributed to each term of the expansion [50], [51].
Several papers have since provided a few simple recipes,
describing howν and the system failure rateλ = ν/A can then
be derived [52], [53], [54], [55]. All these formal calculations
boil down to a simple fact: the failure frequency may be
derived from A by the application of a linear differential
operator [56], [57], [58]:

ν =
∑

i

λi pi
∂A

∂pi
=
∑

i

µi qi
∂U

∂qi
, (22)

whereU = 1−A is the total unavailability,pi the availability,
qi = 1 − pi the unavailability,λi the failure rate, andµi

the repair rate of equipmenti. The expressions obtained in
the preceding sections (A ≡ Rn) make such calculations
straightforward by the application of the linear differential
operator to each transfer matrix. Good estimates of what
happens for large networks (n ≫ 1) may be obtained by
considering that all links have availabilityp and failure rateλ
(assuming nodes are perfect, to keep the discussion simple).
If Rn ≈ a+ ζn

+, the average failure rateλn is then given by

λn =
νn

Rn
≈ λ

(
∂ ln a+

∂ ln p
+ n

∂ ln ζ+

∂ ln p

)
. (23)
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Fig. 6. Variation of∂ ln ζ+/∂ ln p with p for the directed (red curve) and
undirected (purple curve) architecture of Fig. 4 with perfect nodes.

The “effective” network can therefore be seen as a series
network ofn components, having each an availability equal to
ζ+ and a failure rate∂ ln ζ+

∂ ln p λ. From Fig. 5 we could expect that
the asymptotic failure rate for our case study would be roughly
similar for directed and undirected configurations, over the
whole range0 ≤ p ≤ 1. This is indeed observed in Fig. 6.

E. Zeros of the reliability polynomials

The structure of the different reliability polynomials may
be understood by studying the locations of their zeros in the
complex plane. Such a study has been fruitfully performed for
chromatic polynomials [59], [60], [61]. In reliability studies,
a search for general properties of the all-terminal reliability
polynomialRelA(p) [36], [37], [38] has brought the Brown-
Colbourn conjecture [39], according to which all the zeros
could be found in the region|1 − p| < 1. Although valid
for series-parallel graphs, this remarkable conjecture does not
strictly hold in the general case (but not by far) [62].RelA(p)
is linked to the Tutte polynomial, a graph invariant. It has
also been studied extensively by Chang and Shrock for various
recursive families of graphs [63], who give the limiting curves
where all the zeros converge.

As n grows, the number of complex zeros of the reliability
polynomial increases. Because of the matrix transfer property,
there is a recursion relation between reliability polynomials
corresponding to successive values ofn. The general problem
has been treated by Beraha, Kahane, and Weiss [64]. It may be
understood in the following, simplifying way: if the reliability
polynomial is of the form

∑
i αi λi(p)n (where λi are the

eigenvalues of the recurrence), then at largen, only the two
eigenvalues of greater modules, sayλ1 and λ2, will prevail,
so that the reliability polynomial will vanish when|λ1(p)| =
|λ2(p)|. This equality defines a set of curves in the complex
plane, where all zeros should accumulate in then → ∞ limit.
A detailed discussion of the convergence to the limiting curves
may be found in [61].

The location of the zeros ofRel2(p) in the complex plane is
also worth investigating, even thoughRel2(p) is not a graph
invariant. The new twist lies in the extra parameter at our
disposal, the node reliabilityρ, which has a deep impact on

the curves to which the zeros ofRel2(p) converge asn → ∞.
Actually, structural changes occur at critical values ofρ, which
can be deduced from the expressions of the eigenvalues.

We have displayed in Figs. 7 and 8 the location of com-
plex zeros of the two-terminal reliability polynomials from
our case study (the numerical values have been obtained
by using MATHEMATICA ). The structures of these zeros are
quite different for the directed and undirected cases. In both
configurations, parts of the real positive axis are indeed the
limiting “curve”. It turns out that in the undirected case, there
is no such real line segment for exactlyρc1

= 8
9 (the sole

intersection of the right-most curve with the real axis liesat
p = 3

2 ). We shall not detail the other critical values forρ.
In the directed case, the segment gets closer and “punctures”
the curve on the right half-plane forρc2

≈ 0.51242 (a root
of a polynomial of degree 10). Asρ further decreases, both
structures look like circles plus an extra line segment, which
expands asρ−1/3. We limit ourselves to the asymptotic values
of |pcircle| (the circle) andp± (the endpoints of the segment
on the real positive axis). Note the expansion rates are distinct,
too.

1) undirected case:

p
(u)
± →

(√
17 − 3

2 ρ

) 1
3

±

√
34 − 2

√
17

153

(√
17 − 3

2 ρ

) 1
6

+
2

51
(23 −

√
17) , (24)

|p(u)
circle| →

(√
17 − 3

2 ρ

) 1
3

. (25)

2) directed case:

p
(d)
± →

(
2

ρ

) 1
3

± 2

3

(
2

ρ

) 1
6

+
4

3
, (26)

|p(d)
circle| →

(
2

ρ

) 1
3

. (27)

V. CONCLUSION AND OUTLOOK

The two-terminal reliability of directed networks may also
be expressed by a product of transfer matrices, in which each
edge and node reliability is exactly taken into account. The
size of the transfer matrix should of course increase with the
network’s “width”. This general result could be extended to
the all-terminal reliability with nonuniform links [65]. We can
now go beyond series-parallel simplifications and look for new
(wider) families of exactly solvable, meshed architectures that
may be useful for general reliability studies (as building blocks
for more complex networks), for the enumeration of self-
avoiding walks on lattices, and for directed percolation with
imperfect bondsand sites. Since the true generating function
is itself a rational fraction, Padé approximants could provide
efficient upper or lower bounds for these studies. Moreover,
individual reliabilities can be viewed as average values of
random variables. Having access toeach edge or node allows
the introduction of disorder or correlations in calculations [66].
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Fig. 7. Location of complex zeros for the undirected ladder,with n = 100

andρ equal to 1, 0.9, and 0.1 (from top to bottom).
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