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Abstract— The calculation of network reliability in a proba-  different measures of reliability, one may single out the
bilistic context has long been an issue of practical and acatic terminal reliability, namely the probability that a givenbset

importance. Conventional approaches (determination of bonds, K of k nodes  c E) are connected. The most common

sums of disjoint products algorithms, Monte Carlo evaluatons, . . o -
studies of the reliability polynomials, etc.) only provideapproxi- nstances are the all-terminal reliabilifyely (X' = E) and

mations when the network’s size increases, even when nodes d the two-terminal reliabilityRel>(s — ¢), which deals with a
not fail and all edges have the same reliabilityp. particular connection between a sourcand a destination.
We consider here adirected, generic graph of arbitrary size Both of them are affine functions of eagh andp..

mimicking real-life long-haul communication networks, and give The sheer number of possible system states, namely

the exact, analytical solution for the two-terminal reliahility. |E|+|V]| “ .
This solution involves a product of transfer matrices, in wtich 2 o clearly precludt_-:‘s_ the use of an “enumeration of
individual reliabilities of edges and nodes are taken into account. States” strategy for realistic networks, and shows that the

The special case of identical edge and node reliabilitiep (and ~ final expression may be extremely cumbersome. Consequently
p, respectively) is addressed. We consider a case study basednost studies have considered graphs with perfect nodes
on a commonly-used configuration, and assess the mfluence(pn = 1) and edges of identical reliability; radio broadcast

of the edges being directed (or not) on various measures of . .
network performance. While the two-terminal reliability, the networks have also been described by networks with peyfectl

failure frequency and the failure rate of the connection are 'eliable edges butimperfectnodes [9], [10]. It was showryea
quite similar, the locations of complex zeros of the two-taninal on — see for instance the discussion in [4], [11] — that the
reliability polynomials exhibit strong differences, and various calculation ofk-terminal reliability is #P-hard in the general
structure transitions at specific values ofp. _ case, even with the restricting assumptions that (i) thehyra
The present work could be extended to provide a catalog of jg hianar (ii) all nodes are perfectly reliable (i) all ezighave

exactly solvable networks in terms of reliability, which caild be . .
useful as building blocks for new and improved bounds, as wel the same reliabilityp. All reliabilities are then expressed as a

as benchmarks, in the general case. polynomial inp, called the reliability polynomial.
The difficulty of the problem has stimulated many ap-
. INTRODUCTION proaches: partitioning techniques [12], sum of disjoinddar

ucts [13], [14], [15], [16], [17], [18], graph simplificatis

Network reliability has long been a practical issue, an@eries-parallel reductions [1], delta-wye transforimasi[19],
will remain so for years, since networks have entered §p0], [21], factoring [22]), determination of various lowand
era of Quality of Service (QoS). IP networks, mobile phongpper bounds to the reliability polynomial [2], [4], [23R4],
networks, transportation networks, electrical power meks, [25], Monte-Carlo simulations [26], [27], [28], and orddre
etc., have become “commodities.” Connection availabibies binary decision diagram (OBDD) algorithms [29], [30], [31]
of 99.999% are a goal for telecommunication network opergg2]. Other decomposition methods have also been proposed
tors, and premium services may be deployed if the connectif®8], [34], [35]. The reliability polynomial has been exten
reliability is close enough to one. Reliability is therefoa sively studied [36], [37], [38], with the aim of finding geradr
crucial parameter in the design and analysis of networks. information from the structure of its coefficients [36], [3at

The study of network reliability has led to a huge body athe location of its zeros in the complex plane [39].
literature, starting with the work of Moore and Shannon [1], Inrecent years, the tremendous growth of Internet traffic ha
and including excellent textbooks and surveys [2], [3],, [4kalled for a better evaluation of the reliability of conriens
[5], [6], [7], [8]. In what follows, we consider a probabilis in optical networks. Actual failure rates and maintenanaead
approach, in which the network is represented by an undidecshow that a proper evaluation of two-terminal reliabifitraust
graphG = (V, E), whereV is a set of nodes (also calledput node and edge equipments on an equal footing, i.e., both
vertices) andE is a set of undirected edges (or links), eachdge (fiber links, optical amplifiers) and node (optical sros
of which having a probability,, or p. to operate correctly. connects, routers) failures must be taken into account. The
Failures of the different constituents are assumed to oaturpossibility of node failure has been considered in earlyepap
random, and to be statistically independent events. Ambag {9], [40]. Adaptation of algorithms to include imperfectdaes



has been addressed [32], [41], [42], [43], [44]. In order tnetworks, the eigenvalue of highest modulus is, to all psego
be realistic, different edge reliabilities should be useat for the scaling factor of the asymptotic power-law behaviore Th
instance, the failure rate of optical fiber links is oftenuaesed determination of the failure frequency and the failure rate
to increase with their length. the connection is then straightforward. Prompted by thelypea

In recent works, we have shown that the two- and alliniversal character of the Brown-Colbourn conjecture [39]
terminal reliabilities can be exactly calculated for rexsiuie we also address the location of complex zeros of the two-
network architectures, where the underlying graphs aré- untérminal reliability polynomial and show that they (i) mag b
rected and the edge/node reliabilities arbitrary [45]][467]. quite different for directed and undirected networks (iihibit
The final expressions are products of transfer matriced) eatructural transitions at various values of
element of which is a multilinear polynomial of the indivalu ~ Our aim is (i) to give a description of the methodology
edge or node reliabilities constituting the ‘building bto¢or  followed in the derivation of the final results, so that re-
‘elementary cell’) of the recursive graph. searchers or engineers involved in reliability studies cae
them, even in worksheet applications (ii) emphasize adsn t
importance of algebraic structures of the underlying gsaph
the determination of network reliability [5], [48].

Our paper is organized as follows. In Sectﬁn Il, we give
the basic formula and methodology used in the decomposition
method [47], which must be adapted here for directed graphs.
In Section[l1), we give the exact solution for the two-termiin
reliability for the directedK, ladder (with sourceS, and
Fig. 1. GeneralK4 ladder. The source is alwaysy, the destination isS,  destinationS,, or T},). In Sectionm/, we consider directed
or Tn. and undirected configurations of a special architecturefiide
give the generating functions of the two-terminal reliaiai
when all edges and nodes reliabilities ar@ndp, respectively;
we then derive very simple analytical expressions Ret,.

The average failure frequency and the failure rate of the

connection under consideration are then deduced. We then
show that the location of the complex zeros Rél, differ

in the two configurations. We conclude by proposing several

directions in which the present results may be extended.

Il. GRAPH DECOMPOSITION

The purpose of our method is to simplify the graph by
removing links of thex*® (last) elementary cell of the network,
namely the edges and nodes indexedhby procedure called
pivotal decomposition or deletion-contraction [4]. In tba&se
Fig. 2. Last building block of the directef{s ladder. Edges and nodes aregf undirected graphs [47], we saw that if the end terminal
identified by their reliabilities. . ! )

(which can be regarded as perfect) is connected to node

In this work, we show this general result holds for dithrough edge:, with respective reliabilitiep,, andp., then

recte_d netvv_ork_s_ too. As an example, we calc_ulate the_two- Rela(G) = (1 —pe)Rela(G\ e) + pe pu Relo(G - €)
terminal reliability of the directedk, ladder displayed in +pe (1= pu) Rely(G \ ) (1)
Fig. ﬂ This network describes a common (nominal + backup be Pu 2 ’
paths) architecture, with additional connections betwesmsit where G \ e and G \ u are the graphs where or « have
nodes enabling the so-called “local protection” policy,ieth been deleted, and - e the graph where and v have been
bypasses faulty intermediate nodes and/or edges. Byddtien merged through the “contraction” af, eq. ﬂ.) merely sums
individual node and edge reliabilities takebitrary values, we probabilities of disjoint events. Here, we must adapt this
actually do not add to the complexity of the problem but mal@ecomposition to a directed graph. This is done very eagily b
the internal structure of the problem more discernibles then first discarding all edges whose origintiand then applying
easier to fully exploit the recursive nature of the graphe Treq. ﬂ.) to the remaining graph. This procedure, along with
two-terminal reliability’s exact expression is a produtboc5  standard series-parallel reductions, has to be repeatatido
transfer matrices, as in the undirected case [47]; conselyue three secondary graphs in order to take advantage of the
it can also be determined for an arbitrary size (length) ef ttstructural recursivity of the graph. After a finite number of
network. If edges have the same reliabilityand nodes the such reductions, we get replicas of the original graph,ialbe
same reliabilityp, the two-terminal reliability can be expressedvith one less elementary cell and with the—1)t" cell's edge

as a sum over the eigenvalues of the unique transfer mataxd node reliabilities possibly renormalized by those efittt

and its generating function is a rational fraction. For érgcell, or set to either zero or one. In order to ensure the&xést




of a recursion relation, the graph structure mustcbhesed with
under successive applications ofe[th (2); it may initiaiguire

the use of extra edges with symbolic reliabilities, so tHht a’
nodes of an elementary cell are connected pair-wise, even if
such links do not exist in the graph under consideration (the:;
“scaffolding principle”). At this point, a recursion hygusis
is needed, giving for instancRel(Sy — S,,) as a sum over
specific polynomials in the reliabilities indexed by these
are often obvious from the = 2 value. Going fromm —1 25
to n provides the transfer matrix linking the prefactors of z¢
the polynomials, becauskel, is an affine function of each

Ty

- . Z7
component reliability; the (often trivialp = 1 case serves as
the initial condition of the recurrence. 8

IIl. EXACT SOLUTION FOR THE DIRECTEDK 4 LADDER Z9
T10
Let us first illustrate this method by calculatiig, = 11

Rela(Sy — Sy,) for the directedK, ladder shown in Flg[ll
a more detailed view of the last building block is dlsplayea;12
in Fig. E Following the guidelines of the preceding sectior’'13
we remove the irrelevant edges, namely those indexed by

, andd,,. The first application of eq[kl) is represented "?x
Flg E Where each prefactor is put in front of the assomated
secondary graph. Note that the three secondary graphs are
structurally identical, they differ by the actual valuestbé
edge reliabilities only. Clearly, a second application qf @)
provides two-terminal reliabilities, witly,,_, or T,,_; as new T1s
endpoints. This should call for a similar decompositionted t
two-terminal reliabilityRel,(So — T3, ), after which we would
get coupled recursion relations for the two destinatiSpand 17
T,. However, this is unnecessary because the two destinationg
are identical under the permutatiom,s €, cp < dy (and
the corresponding,, < e/,, etc.), andS,, < T,,. It turns out
that R,, may be expressed as the sum of five polynomials in°

T19

Si (ai+bie; T; —
S (di+ Vs T —Vieid T,
Si (aidi +aibic;Ti —aiblicidi Ty +Vicie; T;
—a;bicie;Ti+ (1 —a)bi(1—c;)d;ie;Ty),
(1—a;) (1=0") idie; STy,
a; (1=0;) ¢; (1—d;) €S Ty,
(e; +a;b; S; —a;bie; S;) Ty,
(ci+b;d; S; —bic;d; S;) T
(cieitaibiciSi+a;bid; S; —
—a;bicie;Si+(1—a;)b; (1 —
ai (L="b;) eid'i (1 —e;) Si Ty,
a'i (L=bi) (1 —c¢;) die; S; T,
(1—a;) (1—=V) e ST,
(-0 (- d) ST
(1—=0") (ajc; —a;cid; + cie; — a; cie;

(

+(1—ay) (1 cl)d e;) Si Ti,
(
)

a;bie; T;),

a;b;c;d; S;
ci)die; Si) Ty,

(1-V;) (aic; —a;cid; +cie; —a;cie;
+(1—ay ( cz)d e;) S;T;
—(aibjci+a;bidi —a;bicid; +c;e;
—a;bicie;+(1—a)b;(1—c¢;)d;e;) S; Ty,
(1=20;) (aici+a;di —a;c;d; —
+(1—a;) (1 —c¢)die;) S; Ty,

a; C; €4

— (ci (b + di — b di) + bid; (1 = c;)) Si T,
— (ai (b +e; — bie;) + bjei (1 —a)) S; T,
(1—-0;) (1—¢)di STy,

an, -

., T, (see below). This is also true fdtels(Sq — T,),

Fori =0, we must setig = dy = 1 andcy = ey = 0. These

which leads us to 40 x 10 transfer matrix (the calculationsformulae apply to the most general directad ladder, and
are routinely performed by mathematical software). Beeauwe recover the undirected case by settijg= a;, b}, = b;,
several lines of this matrix are identical, regrouping termetc. A missing edge or node is accounted for by setting the

actually allows to limit the transfer matrix’s dimension %o

relevant reliability to zero, as will be seen in the followin

as in the undirected case [47]. The valugibf, which can be section.

easily calculated, leads to

R =(10000) M, My_y -

for Relz2(So—T7,), the left vector should bé0 1 0 0 0). The

transfer matrix}M; is given by

My My

OO OO

)

)

x1 x2 x3 T4 T5
Tg T7  Xg Tg T10
M= 18 %17 T4 —T4—T9 —Ts—210 |, (3)
T20 T19 T15 —Tg —T10
Ti1 T2 T13 —T4 —I5

IV. APPLICATION

Let us apply the results of the preceding section to the
architecture represented in FI];. 4. The calculations aasit-
forward, since we merely have to replace all nonexistent
edges and nodes by zero. Does the removal of these network
elements drastically change the previous results? Agtuadi,
even though in the directed case the dimension of the transfe
matrix is reduced.

A. Transfer matrices

In both directed and undirected configurations, we must set
To =T, = 0andb; = 0 (0 < i < n). This does not change the
dimension of the transfer matrix in the undirected caseckvhi
remains equal to 5. However, for the directed configuration,
the further simplificatior:; = b; = ¢; = d;, = e, = 0 is such



=(1-b) bhfc,Tyey)

Fig. 3. First step of the decompositios//b corresponds ta andb in parallel, and is therefore equal &0+ b — ad.

matrix. For instance, eq[|(4) leads to

. pp pp p*p
M(p, p) = pp pp Pip
_p2 p2 _p2 p2 p2 p2 (2 _ 4p+p2)

eve T @v@ (6)
e“ A B. Generating functions
© © Because of the intrinsic recursion relation between succes
Fig. 4. Architecture discussed in this workE¢helle Angele”). The source Sive powers ofV/ (p, p), a similar one should hold for the two-
is So, the destination isS,, for both directed and undirected networks. terminal re|iabi|ity_ The generating function formalismg]
is a useful way to store all necessary information in a very

concise manner. It is defined by
that we can reduce the transfer matrix t8 a 3 one, namely

G(2) =) Rely(Sy — Sn) 2", 7)
—~ a; S d; S; a; d; S; n=0
M’i = €i 111 C; Tq, C; €; 111

() ts calculation is straightforward. Herg,z) is necessarily a
—a;e; STy —c;d; S;' Ty xi SiTh

rational fraction ofz, namely

with Xi = Q; C; (1 — dl) (1 — Gi) +d; e; (1 —a; — Ci), so that N(z
6z) = 2, ©
) D(z)
R =(100)MyMu_1--MyMy | 0 |. (5) Using egs. [(5) and[|6) (for the directed configuration), we
0 compute the first values dels(So — S,,) for, say,n equal

to 2, 3, 4, etc., in order to obtain the first terms of the exfmans

In many studies, edge reliabilities are considered idahtidn z of G(z). We then multiply this truncated expression by
to p in order to provide clues to the general behavior of thi&e characteristic polynomial of the transfer matrix talen
connection reliability, while nodes are viewed as perfeet,( 1/z. The series expansion of this product in the vicinity of
their reliabilities are set equal to 1). In this work, we keep = 0 leads toN (z). No determination of eigenvalues or
imperfect nodes with identical reliability. We thus have two eigenvectors of the transfer matrix is needed.
independent parameters to describds(Sy — S,,), allowing Having described the method, we limit ourselves to the final,
us to better distinguish the contributions of edges and siodsimplified expressions, which should be used+ior 2, even
Using only these two parameters implies that a unique teainsthough they are valid fon = 1 (both give the first-order term
matrix needs be considered. Equatioﬂs (2) {hd (5) show thaf® z, corresponding to the two-terminal reliability between
the two-terminal reliability is given by the'" power of this the two nodesS, and.S;, connected by a single edge).



1) undirected case: over the whole rangé < p < 1, while the second eigenvalue
p ) o is much larger in the directed case. Still, asgrows, the
Nulz) = 2(1-p) (1=p (2+2p=60"+3") p°2  contribution of the second eigenvalue should vanish so that
9 3 o 4 o the two-terminal reliability exhibits an asymptotic powaw
+2(1=p)° 2-p)p* AL—p+p°) p'z ) » (9 behaviorr,, x 7, the scaling factor being, , the eigenvalue
Dyu(z) = 1—pp (2 +2pp—6p°p+3p° p) Py of largest modulus. Even fon ~ _10, .this asymptotic limit
42 (1—p) p*p? (2 —3p—2pp+6pp would already be a good approximation.

—4pp+p*p) 2° 1
~4(1-p)’ 2-pp°* (1-p) p°2*.  (10) os
2) directed case:
Niz) = B -ple-apit), ay
Da(z) = 1—pp (2+2pp—4p°p+0’p) 2 04
+2p°p° (1—p) (2—-p) 2°. (12) 02 e TN
C. Analytical expressions of the two-terminal reliabilities __“‘::'—:----------,__:\_\
The two-terminal reliabilities are derived from the pdrtia 0.2 0.4 0.6 0.8 1
fraction decomposition of the associated generating fanst p

Gu(z) and G4(z), because the eigenvalues of the transfer o _ _ _ _

malrix are the inverses of the generating functon poles. {1%,%, varten o (1l 1h9) andc_ Geshen ine) iy e et
1) undirected case: Equations [(9F70) can be further simmodes,

plified for perfect nodesy = 1), becauseD,,(z) is then of

degree 2 inz, from which we find D. Average failure frequency and failure rate

RSZ‘) (p=1;n>2)=a, ( Sr“))n tLa_ (C(_“))n, (13) Steady-state system availability and failure frequency
are important performance measures of a repairable system,

with from which other key parameters such as the mean time
(wy D 2 3 between failures, average failure rate, Birnbaum impagan
& = § (242060 4350 £ V), (9 tc. may be deduced [6], [7], [8]. The first calculations of
B+ (1—4p+2p*) VA 15 steady-state failure frequencies were based on the ioclusi
at = 4(1 _p)2 (1 _p+p2)2 VA’ (15) exclusion principle, yvith adequate failure and repair s_ate
A = 4-8p+36p>—100p> +128p* (more generally, the inverses of the mean down and up times)
were attributed to each term of the expansion [50], [51].
—76p° +177°, (16) several papers have since provided a few simple recipes,
B = 2-10p+38p? —59p>+40p* —10p°. (17) describing how and the system failure rate= 7/ A can then

be derived [52], [53], [54], [55]. All these formal calcuians
3oil down to a simple fact: the failure frequency may be
Mferived from A by the application of a linear differential
operator [56], [57], [58]:

Forp < 1, we would get a sum over three eigenvalues, the
alytical expression of which would only be more cumberso

(it will not be given here).
2) directed case: Even if p # 1, Dy(z) is of degree 2 in oA -
z. We have again two eigenvalues, so that T — A s o — g 22 22
4 ; lplapi ;Hz% aqia (22)

R(d) > 92) = (d) " + a_ (d) " , 18
w(n=2)=ay ( + ) “ (C‘ ) (18)  herel’ = 1 A is the total unavailabilityp; the availabiliy,
with ¢; = 1 — p; the unavailability,\; the failure rate, andu;

@ _ Dpp 5 the repair rate of equipmernt The expressions obtained in

' = b (2+pp(2_4p+p )£ v A/)’ (19)  the preceding sectionsd(= R,) make such calculations
_ (L 2—pp(2—4p+p?) 20 straightforward by the applicatign of the Iingar differiaht

at = 7 VA ’ (20) operator to each transfer matrix. Good estimates of what

A = d—dpp(2—2p+p°) happens for large networks: (> 1) may be obtained by

5 o o5 considering that all links have availabiligyand failure rate\
+p7p"(2—4p+p7)°. (21) (assuming nodes are perfect, to keep the discussion simple)

Cj([“) and Cf) are displayed in Fig[|5 for perfect nodes!'c Rn & a4 (Y, the average failure ratg, is then given by

Obviously,( is nearly always much larger thgn, especially —~ Un Olnay Oln(y
o (W) g (D) An =~ :
whenp lies in the vicinity of 1.} and(}” are nearly equal R

23
Olnp " Olnp (23)



the curves to which the zeros Bkly(p) converge as — oo.
Actually, structural changes occur at critical valueg pfvhich

08 can be deduced from the expressions of the eigenvalues.
2 6 We have displayed in Fig§] 7 ajfl 8 the location of com-
= plex zeros of the two-terminal reliability polynomials fro
30.4 our case study (the numerical values have been obtained
GBS

by using MATHEMATICA). The structures of these zeros are
0.2 quite different for the directed and undirected cases. It bo
configurations, parts of the real positive axis are indeed th
limiting “curve”. It turns out that in the undirected casbete

0.2 0.4 0.6 0.8 1 is no such real line segment for exacly, = 5 (the sole
p intersection of the right-most curve with the real axis las
3 ) -
Fig. 6. Variation ofd1n (4 /0 1np with p for the directed (red curve) and p = 2)' We shall not detail the other critical values fpr

undirected (purple curve) architecture of Hify. 4 with perfeodes. In the directed case, the segment gets closer and “punttures
the curve on the right half-plane fgr., ~ 0.51242 (a root
of a polynomial of degree 10). Ag further decreases, both
The “effective” network can therefore be seen as a serisuctures look like circles plus an extra line segment,ciwhi
network ofn components, having each an availability equal texpands ag~'/3. We limit ourselves to the asymptotic values
¢; and a failure ratéJ: \. From Fig[b we could expect thatof [peirci| (the circle) andp. (the endpoints of the segment
the asymptotic failure rate for our case study would be réughon the real positive axis). Note the expansion rates aredist
similar for directed and undirected configurations, oves thoo.

whole range) < p < 1. This is indeed observed in Fiﬂ. 6. 1) undirected case:

E. Zeros of the reliability polynomials (w) V1T -3 5 34 -217 (V17—3 g
The structure of the different reliability polynomials may L 2p = 153 2p

be understood by studying the locations of their zeros in the 9

complex plane. Such a study has been fruitfully performed fo 5 (23 —V17), (24)

chromatic polynomials [59], [60], [61]. In reliability stlies, 1

a search for general properties of the all-terminal relitgbi | (w) - (\/ﬁ— 3) ‘ (25)

polynomial Rel 4 (p) [36], [37], [38] has brought the Brown- " circle 2p '

Colbourn conjecture [39], according to which all the zeros 2 directed ]

could be found in the regiofl — p| < 1. Although valid ) directed case:

for series-parallel graphs, this remarkable conjectuesdwt (@ 9\3 92 /9\5 4

strictly hold in the general case (but not by far) [6REl4(p) Py — (;) +3 (;) t3 (26)

is linked to the Tutte polynomial, a graph invariant. It has 1

also been studied extensively by Chang and Shrock for variou |p({i) N <2) ’ _ (27)

recursive families of graphs [63], who give the limiting ces crele p

where all the zeros converge.
As n grows, the number of complex zeros of the reliability V. CONCLUSION AND OUTLOOK
polynomial increases. Because of the matrix transfer ptppe The two-terminal reliability of directed networks may also
there is a recursion relation between reliability polynal®i be expressed by a product of transfer matrices, in which each
corresponding to successive valueswoiThe general problem edge and node reliability is exactly taken into account. The
has been treated by Beraha, Kahane, and Weiss [64]. It maysie of the transfer matrix should of course increase with th
understood in the following, simplifying way: if the relidiby network’s “width”. This general result could be extended to
polynomial is of the form)_. c; Ai(p)™* (where \; are the the all-terminal reliability with nonuniform links [65]. ¥/can
eigenvalues of the recurrence), then at langenly the two now go beyond series-parallel simplifications and look fewn
eigenvalues of greater modules, s&y and A2, will prevail, (wider) families of exactly solvable, meshed architecéutet
so that the reliability polynomial will vanish whel\ (p)| = may be useful for general reliability studies (as buildithgchs
|X2(p)|. This equality defines a set of curves in the compleior more complex networks), for the enumeration of self-
plane, where all zeros should accumulate inithe> 0o limit.  avoiding walks on lattices, and for directed percolatiorhwi
A detailed discussion of the convergence to the limitingzear imperfect bondsnd sites. Since the true generating function
may be found in [61]. is itself a rational fraction, Padé approximants couldvpie
The location of the zeros dfels(p) in the complex plane is efficient upper or lower bounds for these studies. Moreover,
also worth investigating, even thoudtels(p) is not a graph individual reliabilities can be viewed as average values of
invariant. The new twist lies in the extra parameter at owmandom variables. Having accessearh edge or node allows
disposal, the node reliability, which has a deep impact onthe introduction of disorder or correlations in calculasd66].
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